101
|
Li Y, Mao Y, Wang J, Liu Z, Jia P, Wu N, Yu H, Wang J, Song Y, Zhou J. Cracking enabled unclonability in colloidal crystal patterns authenticated with computer vision. NANOSCALE 2022; 14:8833-8841. [PMID: 35695072 DOI: 10.1039/d2nr01479c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colloidal crystals with iridescent structural coloration have appealing applications in the fields of sensors, displays, anti-counterfeiting, etc. A serious issue accompanying the facile chemical self-assembly approach to colloidal crystals is the formation of uncontrolled and irregular cracks. In contrast to the previous efforts to avoid cracking, the unfavorable and random micro-cracks in colloidal crystals were utilized here as unclonable codes for tamper-proof anti-counterfeiting. The special structural and optical characteristics of the colloidal crystal patterns assembled with monodisperse poly(styrene-methyl methacrylate-acrylic acid) core-shell nanospheres enabled multi-anti-counterfeiting modes, including angle-dependent structural colors and polarization anisotropy, besides the physically unclonable functions (PUFs) of random micro-cracks. Moreover, by using the random cracks in the colloidal crystals as templates to guide fluorescent silica nanoparticle deposition, an fluorescent anti-counterfeiting mode with PUFs was introduced. To validate the PUFs of the fluorescent micro-cracks in the colloidal crystals, a novel edge-sensitive template matching approach based on a computer vision algorithm with an accuracy of ∼100% was developed, enabling ultimate security immune to forgery. The computer-vision verifiable physically unclonable colloidal crystals with multi-anti-counterfeiting modes are superior to conventional photonic crystal anti-counterfeiting materials that rely on angle-dependent or tunable structural colors, and the conventional PUF labels in the aspect of decorative functions, which will open a new avenue for advanced security materials with multi-functionality.
Collapse
Affiliation(s)
- Yuhuan Li
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Yexin Mao
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiahui Wang
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Zhiwei Liu
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Pan Jia
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Na Wu
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Haitao Yu
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Jinqiao Wang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jinming Zhou
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| |
Collapse
|
102
|
Lee S, Yu S. Hot carrier extraction from plasmonic-photonic superimposed heterostructures. J Chem Phys 2022; 156:234703. [PMID: 35732529 DOI: 10.1063/5.0092654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmonic nanostructures have been exploited in photochemical and photocatalytic processes owing to their surface plasmon resonance characteristics. This unique property generates photoinduced potentials and currents capable of driving chemical reactions. However, these processes are hampered by low photon conversion and utilization efficiencies, which are issues that need to be addressed. In this study, we integrate plasmonic photochemistry and simple tunable heterostructure characteristics of a dielectric photonic crystal for the effective control of electromagnetic energy below the diffraction limit of light. The nanostructure comprises high-density Ag nanoparticles on nanocavity arrays of SrTiO3 and TiO2, where two oxides constitute a chemical heterojunction. Such a nanostructure is designed to form intense electric fields and a vectorial electron flow channel of Ag → SrTiO3 → TiO2. When the plasmonic absorption of Ag nanoparticles matched the photonic stopband, we observed an apparent quantum yield of 3.1 × 10-4 e- per absorbed photon. The contributions of light confinement and charge separation to the enhanced photocurrent were evaluated.
Collapse
Affiliation(s)
- Sanghyuk Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Sungju Yu
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
103
|
Li J, Zhang K, Pang C, Zhao Y, Zhou H, Chen H, Lu G, Liu F, Wu A, Du G, Akhmadaliev S, Zhou S, Chen F. Tunable structural colors in all-dielectric photonic crystals using energetic ion beams. OPTICS EXPRESS 2022; 30:23463-23474. [PMID: 36225025 DOI: 10.1364/oe.456129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
The modulation of structural color through various methods has attracted considerable attention. Herein, a new modulation method for the structural colors in all-dielectric photonic crystals (PCs) using energetic ion beams is proposed. One type of periodic PC and two different defective PCs were experimentally investigated. Under carbon-ion irradiation, the color variation primarily originated from the blue shift of the optical spectra. The varying degrees of both the reflection and transmission structural colors mainly depended on the carbon-ion fluences. Such nanostructures are promising for tunable color filters and double-sided chromatic displays based on PCs.
Collapse
|
104
|
Factors Influencing Recognition Capability of Inverse Opal Structured Photonic Crystal Sensors. CRYSTALS 2022. [DOI: 10.3390/cryst12060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nowadays, many kinds of colloidal photonic crystal (PC) sensors with inverse opal (IO) structures have been developed. However, there are few systematic studies on the factors influencing their recognition capability and responsiveness capability. In this paper, the relationships between recognition capability of IO structured PC sensors and all the parameters in Bragg–Snell’s law have been explored. In addition, research on the recognition ability of PC sensors typically focuses only on the refractive index difference between the identified substances. Herein, we define two concepts, namely the absolute refractive index difference and the relative refractive index difference, and prove that the recognition ability not only relies on the absolute refractive index between the identified substances, but also on the relative refractive index. Bragg–Snell’s law analysis confirms that the responsiveness capability is directly proportional to the void size of the IO structure, which is also confirmed by the finite difference time domain (FDTD) method. It is believed that these systematic studies have important guiding significance for creating advanced IO structured PC sensors.
Collapse
|
105
|
Yoshida K, Hayashi T, Takinoue M, Onoe H. Repeatable detection of Ag + ions using a DNA aptamer-linked hydrogel biochemical sensor integrated with microfluidic heating system. Sci Rep 2022; 12:9692. [PMID: 35690676 PMCID: PMC9188593 DOI: 10.1038/s41598-022-13970-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/31/2022] [Indexed: 01/23/2023] Open
Abstract
This paper describes repeatable detection of Ag+ ions using a DNA aptamer-linked hydrogel biochemical sensor integrated with a microfluidic heating system. Biochemical sensors that respond to chemical compounds and produce detectable signals have a critical role in many aspects of modern society. In particular, the repeatable measurement of environmental information such as toxic substances including Ag+ ions could be expected to improve the environment. The DNA aptamer is an attractive candidate because of the stability and the selectivity of binding to chemicals. However, previous DNA aptamer biochemical sensors could not measure repeatedly because those sensors did not have initializing functions. To overcome this challenge, we proposed a DNA aptamer-linked hydrogel biochemical sensor integrated with the microfluidic heating system enabling repeatable detection of Ag+ ions. The binding Ag+ ions are dissociated by heating and flushing through the integrated microfluidic heating device. The DNA aptamer-linked hydrogel had the capability to detect a wide range of Ag+ ion concentrations (10-5-10 mM) including a toxic range for various aquatic organisms. Finally, we demonstrated the repeatable detection of the Ag+ ions. These results indicated that our proposed biochemical sensor is expected to use for long-term monitoring with high stability in ambient temperature and low power consumption.
Collapse
Affiliation(s)
- Koki Yoshida
- Graduate School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan
| | - Tomoki Hayashi
- Graduate School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan
| | - Masahiro Takinoue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-Ku, Yokohama, 226-8502, Japan
| | - Hiroaki Onoe
- Graduate School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan. .,Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
106
|
He J, Shen X, Li H, Yao Y, Guo J, Wang C. Scalable and Sensitive Humidity-Responsive Polymer Photonic Crystal Films for Anticounterfeiting Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27251-27261. [PMID: 35656847 DOI: 10.1021/acsami.2c06273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we fabricate a new kind of ultrasensitive humidity-responsive photonic crystal (HPC) films based on emulsion polymerization and the open mill and bending-induced ordering technique (OM-BIOT) method, which is simple and scalable. The HPC film senses relative humidity (RH) from 9 to 98% for the polymer matrix swells up in high RH and shrinks in low RH, leading to a large reflectance shift (81 nm) and distinct color change. Based on the double-peak reflective spectra of the HPC film, we confirm the gradient swelling hypothesis and find that the thickness is another important factor for controlling the sensitivity and response rate of the HPC film. Except for static humidity, the HPC film can also respond to the dynamic humid flow of blowing and polar solvents, which broadens its application potential. This kind of HPC film shows a vivid structural color, and the humidity-responsive behavior is quick, distinct, energy-free, and reversible, having a great prospect for anticounterfeiting application.
Collapse
Affiliation(s)
- Jia He
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xiuqing Shen
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Huateng Li
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ying Yao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
107
|
Dual-Responsive Photonic Crystal Sensors Based on Physical Crossing-Linking SF-PNIPAM Dual-Crosslinked Hydrogel. Gels 2022; 8:gels8060339. [PMID: 35735683 PMCID: PMC9223110 DOI: 10.3390/gels8060339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/26/2022] Open
Abstract
Flexible wearable materials have frequently been used in drug delivery, healthcare monitoring, and wearable sensors for decades. As a novel type of artificially designed functional material, photonic crystals (PCs) are sensitive to the changes in the external environment and stimuli signals. However, the rigidity of the PCs limits their application in the field of biometric and optical sensors. This study selects silk fibroin (SF) and poly-N-isopropylacrylamide (PNIPAM) as principal components to prepare the hydrogel with the physical crosslinking agent lithium silicate (LMSH) and is then integrated with PCs to obtain the SF-PNIPAM dual-crosslinked nanocomposite for temperature and strain sensing. The structural colors of the PCs change from blue to orange-red by the variation in temperature or strain. The visual temperature-sensing and adhesion properties enable the SF-PNIPAM dual-crosslinked nanocomposite to be directly attached to the skin in order to monitor the real-time dynamic of human temperature. Based on its excellent optical properties and biocompatibility, the SF-PNIPAM dual-crosslinked nanocomposite can be applied to the field of visual biosensing, wearable display devices, and wound dressing materials.
Collapse
|
108
|
Sandu I, Fleaca CT, Dumitrache F, Sava BA, Urzica I, Antohe I, Brajnicov S, Dumitru M. Shaping in the Third Direction; Fabrication of Hemispherical Micro-Concavity Array by Using Large Size Polystyrene Spheres as Template for Direct Self-Assembly of Small Size Silica Spheres. Polymers (Basel) 2022; 14:polym14112158. [PMID: 35683831 PMCID: PMC9183027 DOI: 10.3390/polym14112158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Silica and polystyrene spheres with a small size ratio (r = 0.005) form by sequential hanging drop self-assembly, a binary colloidal crystal through which calcination transforms in a silica-ordered concavity array. These arrays are capable of light Bragg diffraction and shape dependent optical phenomena, and they can be transformed into inverse-opal structures. Hierarchical 2D and 3D super-structures with ordered concavities as structural units were fabricated in this study.
Collapse
Affiliation(s)
- Ion Sandu
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Claudiu Teodor Fleaca
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Florian Dumitrache
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Bogdan Alexandru Sava
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 313 Splaiul Independenţei Street, Sector 6, 060042 Bucharest, Romania
- Correspondence: (B.A.S.); (M.D.); Tel.: +40-728062160 (B.A.S.)
| | - Iuliana Urzica
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Iulia Antohe
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Simona Brajnicov
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Marius Dumitru
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
- Correspondence: (B.A.S.); (M.D.); Tel.: +40-728062160 (B.A.S.)
| |
Collapse
|
109
|
Fu Q, Ge J, Chen C, Wang Z, Yang F, Yin Y. High-Precision Colorimetric Sensing by Dynamic Tracking of Solvent Diffusion in Hollow-Sphere Photonic Crystals. RESEARCH 2022; 2022:9813537. [PMID: 35611370 PMCID: PMC9107592 DOI: 10.34133/2022/9813537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Expensive instruments and complicated data processing are often required to discriminate solvents with similar structures and properties. Colorimetric sensors with high selectivity, low cost, and good portability are highly desirable to simplify such detection tasks. Herein, we report the fabrication of a photonic crystal sensor based on the self-assembled resorcinol formaldehyde (RF) hollow spheres to realize colorimetric sensing of polar solvents, including homologs and isomers based on the saturated diffusion time. The diffusion of solvent molecules through the photonic crystal film exhibits a unique three-step diffusion profile accompanied by a dynamic color change, as determined by the physicochemical properties of the solvent molecules and their interactions with the polymer shells, making it possible to accurately identify the solvent type based on the dynamic reflection spectra or visual perception. With its superior selectivity and sensitivity, this single-component colorimetric sensor represents a straightforward tool for convenient solvent detection and identification.
Collapse
Affiliation(s)
- Qianqian Fu
- Department of Chemistry, University of California, Riverside, California, CA 92521, USA
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Jianping Ge
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, California, CA 92521, USA
| | - Zichen Wang
- Department of Chemistry, University of California, Riverside, California, CA 92521, USA
| | - Fan Yang
- Department of Chemistry, University of California, Riverside, California, CA 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California, CA 92521, USA
| |
Collapse
|
110
|
Bao J, Wang Z, Shen C, Huang R, Song C, Li Z, Hu W, Lan R, Zhang L, Yang H. Freestanding Helical Nanostructured Chiro-Photonic Crystal Film and Anticounterfeiting Label Enabled by a Cholesterol-Grafted Light-Driven Molecular Motor. SMALL METHODS 2022; 6:e2200269. [PMID: 35398983 DOI: 10.1002/smtd.202200269] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Design and fabrication of freestanding chiro-photonic crystal film with the ability to change color over the whole visible light spectrum is appealing for anticounterfeiting technology and smart labels. Utilizing a newly synthesized light-responsive molecular motor functionalized with cholesterol (chol-MM) on the rotor, novel light-controlled photonic crystal is prepared by doping the novel chol-MM into liquid crystals (LCs). Thanks to the liquid crystalline cholesterol substituent, the chol-MM can be triggered by visible light (420 nm). At the same time, the miscibility of chol-MM in LC matrix is significantly enhanced. Integrating the chol-MM with thermochromic hydrogen-bonded LC matrix, thermal and light dual-responsive cholesteric LC (CLC) material is prepared, in which the nanoscale helical pitch is tunable by photo-induced molecular motions of chol-MM. More importantly, utilizing UV-initiated polymerization of the visible light-modulated CLC material, structural colored photonic crystal films with arbitrary colorful patterns are fabricated. Such freestanding helical nanostructured labels have potential in the application of encrypted communication and anticounterfeiting.
Collapse
Affiliation(s)
- Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chenjie Song
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, P. R. China
| | - Zhaozhong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
111
|
Li G, Luo W, Che Z, Pu Y, Deng P, Shi L, Ma H, Guan J. Lipophilic Magnetic Photonic Nanochains for Practical Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200662. [PMID: 35460197 DOI: 10.1002/smll.202200662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Magnetic photonic crystals (PCs) possess attractive magnetic orientation, flexible pattern designability, and abundant angle-dependent colors, providing immense potential in anticounterfeiting field. However, all-solid magnetic PCs-based labels generally suffer from incompatibility with screen printing techniques, and inferior environmental endurance and mechanical properties. Herein, by developing a selective concentration polymerization method under magnetic field (H) in microheterogenous dimethyl sulfoxide-water binary solvents, individual tens-of-micrometer-length lipophilic magnetic photonic nanochains (PNCs) of full-width at half-maxima below 30 nm are fabricated, which, after simply dispersed in solvent-free cycloaliphatic epoxy resin, can be formulated as photonic inks to print robust anticounterfeiting labels through an H-assisted screen-printing technology. The as-printed labels possess vivid optically variable effects (OVEs) associated with the spatial distribution of H directionality, which are easy to identify by the naked eye but difficult to imitate and duplicate, while they show excellent environmental resistance and mechanical properties, promising practical applications in banknotes and high-grade commodities. The polymerization mechanism of the lipophilic PNCs is elucidated, and the OVEs are deciphered in numerical simulation. Besides an efficient way to build organic-inorganic hybrid nanostructures, the work provides advanced structural color pigments to achieve the practical application of magnetic PCs in such an anticounterfeiting field.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Wei Luo
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Zhiyuan Che
- Department of Physics, Fudan University, 220 Handan road, Shanghai, 200433, P. R. China
| | - YuYang Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Peng Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Lei Shi
- Department of Physics, Fudan University, 220 Handan road, Shanghai, 200433, P. R. China
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| |
Collapse
|
112
|
Abstract
Structural color has been regarded as an ideal alternative to pigments because of the advantages of environmental friendliness, resistance to fading, and dynamic regulation. Responsive structural color can give real-time visible feedback to external stimuli and thus has great prospects in many applications, such as displays, sensing, anticounterfeiting, information storage, and healthcare monitoring. In this Perspective, we elucidate basic concepts, controllable fabrications, and promising applications of responsive structural colors. In particular, we systematically summarize the general regulation mode of all kinds of responsive structural color systems. First, we introduce the basic chromogenic structures as well as the regulation modes of responsive structural color. Second, we present the fabrication methods of patterned structural color. Then, the promising applications of responsive structural color systems are highlighted in detail. Finally, we present the existing challenges and future perspectives on responsive structural colors.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
| | - Fuzhen Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
- Key Laboratory of Materials Processing and Mold of the Ministry of Education, Zhengzhou University, Zhengzhou 450002, P.R. China
| |
Collapse
|
113
|
Tran VT, Kim J, Oh S, Jeong KJ, Lee J. Rapid Assembly of Magnetoplasmonic Photonic Arrays for Brilliant, Noniridescent, and Stimuli-Responsive Structural Colors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200317. [PMID: 35344276 DOI: 10.1002/smll.202200317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
There are usually trade-offs between maximizing the color saturation and brightness and minimizing the angle-dependent effect in structural colors. Here, a magnetic field-induced assembly for the rapid formation of scalable, uniform amorphous photonic arrays (APAs) featuring unique structural colors is demonstrated. The magnetic field plays a fundamental role in photonic film formation, making this assembly technology versatile for developing structural color patterns on arbitrary substrates. The synergistic combination of surface plasmonic resonance of the Ag core and broadband light absorption of high refractive index (RI) Fe3 O4 shell in hybrid magnetoplasmonic nanoparticles (MagPlas NPs) enables breaking the trade-offs to produce brilliant, noniridescent structural colors with high tunability and responsiveness. These features enable the fabrication of various types of highly sensitive and reliable colorimetric sensors for naked-eye detection without sophisticated instruments. Furthermore, large-scale structural color patterns are effortlessly achieved, demonstrating the high potential of the present approach for full-spectrum displays, active coatings, and rewritable papers.
Collapse
Affiliation(s)
- Van Tan Tran
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, 10000, Vietnam
| | - Jeonghyo Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sangjin Oh
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ki-Jae Jeong
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
114
|
Chen Q, Wang S, Huang T, Xiao F, Wu Z, Yu R. Construction and Research of Multiple Stimuli-Responsive 2D Photonic Crystal DNA Hydrogel Sensing Platform with Double-Network Structure and Signal Self-Expression. Anal Chem 2022; 94:5530-5537. [PMID: 35357128 DOI: 10.1021/acs.analchem.1c04390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stimuli-responsive DNA hydrogel has attracted wide attention in the fields of chemical and biological sensing. However, it is still a challenge to integrate characteristics with low-cost, high mechanical strength, and signal self-expression into a DNA hydrogel simultaneously. Herein, a stimuli-responsive 2D photonic crystal double network DNA hydrogel (2D PhC DN-DNA hydrogel) sensing platform is developed via combining the signal self-expression of 2D PhC array with the selective recognition of polyacrylamide (PAM)/DNA DN hydrogel. The change of DNA configuration induced by specific target triggers the change of 2D PhC DN-DNA hydrogel volume, leading to a shift of the Debye diffraction ring diameter. In order to verify the feasibility of this strategy, the 2D PhC DN-DNA hydrogel with C-rich sequences is chosen as a proof-of-concept. The results indicate that the hydrogel has good detection performance for pH and Ag+/Cys. And the Debye diffraction ring diameter of the hydrogel is correlated with the concentration of the Ag+/Cys in the range of 0.5-20 μM. Compared with previously pure DNA hydrogel sensing platform, the 2D PhC DN-DNA hydrogel features low-cost preparation process and label-free determination. Meanwhile, only a laser pointer and a ruler are needed for the determination of targets, which shows that the hydrogel has application prospect in the development of portable response equipment.
Collapse
Affiliation(s)
- Qianshan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Shihong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ting Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Fubing Xiao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, Hengyang 421001, People's Republic of China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
115
|
Sun YW, Li ZW, Chen ZQ, Zhu YL, Sun ZY. Colloidal cubic diamond photonic crystals through cooperative self-assembly. SOFT MATTER 2022; 18:2654-2662. [PMID: 35311843 DOI: 10.1039/d1sm01770e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal cubic diamond crystals with low-coordinated and staggered structures could display a wide photonic bandgap at low refractive index contrasts, which makes them extremely valuable for photonic applications. However, self-assembly of cubic diamond crystals using simple colloidal building blocks is still considerably challenging, due to their low packing fraction and mechanical instability. Here we propose a new strategy for constructing colloidal cubic diamond crystals through cooperative self-assembly of surface-anisotropic triblock Janus colloids and isotropic colloidal spheres into superlattices. In self-assembly, cooperativity is achieved by tuning the interaction and particle size ratio of colloidal building blocks. The pyrochlore lattice formed by self-assembly of triblock Janus colloids acts as a soft template to direct the packing of colloidal spheres into cubic diamond lattices. Numerical simulations show that this cooperative self-assembly strategy works well in a large range of particle size ratio of these two species. Moreover, photonic band structure calculations reveal that the resulting cubic diamond lattices exhibit wide and complete photonic bandgaps and the width and frequency of the bandgaps can also be easily adjusted by tuning the particle size ratio. Our work will open up a promising avenue toward photonic bandgap materials by cooperative self-assembly employing surface-anisotropic Janus or patchy colloids as a soft template.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
116
|
Cheng C, Zhang X, Li M, Pei D, Chen Y, Zhao X, Li C. Iridescent coating of graphene oxide on various substrates. J Colloid Interface Sci 2022; 617:604-610. [PMID: 35305472 DOI: 10.1016/j.jcis.2022.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Two-dimensional nanomaterials have been incorporated into coating layers for exceptional properties in mechanic toughness, electronics, thermology and optics. Graphene oxide (GO), however, was greatly hindered by its strong adsorption within visible wavelength and hereby the intrinsic dark color at the solid state. Herein, we found a unique aqueous mixture of GO containing sodium dodecyl sulfate and l-ascorbic acid. It enabled to produce iridescent coating layers with tunable thickness of 0.3-50 μm on both hydrophilic and hydrophobic substrates (e.g., glass, aluminum foil, polytetrafluoroethylene), through brushing, liquid-casting, dipping and writing. Their iridescence could be further tuned by incorporating MXene nanosheets. And their mechanical properties could be enhanced by certain synthetic polymers (e.g., polyvinyl alcohol and polyethylene glycol). Their sensitivity to heat, laser and water also benefited to pattern the coating layers. Furthermore, by controlling laser intensity, the domain color could be changed (e.g., green to blue). Thus, this study may pave a new pathway of producing iridescent coatings of graphene oxide in a large scale for practical applications.
Collapse
Affiliation(s)
- Chaoyi Cheng
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, PR China; Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xiaofang Zhang
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
| | - Mingjie Li
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Danfeng Pei
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Yijun Chen
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xihui Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, PR China.
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, PR China; Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
117
|
Inverse Colloidal Crystal Polymer Coating with Monolayer Ordered Pore Structure. CRYSTALS 2022. [DOI: 10.3390/cryst12030378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A functional lens coating, based on the structure of inversed colloidal photonic crystals, is proposed. The color-reflecting colloidal crystal was first prepared by self-assembly of nano-colloids and was infiltrated by adhesive polymer solution. As the polymer was crosslinked and the crystal array was removed, a robust mesh-like coating was achieved. Such a functional coating has good transmittance and has a shielding efficiency of ~9% for UV–blue light according to different particle sizes of the nano-colloids, making it an ideal functional material.
Collapse
|
118
|
Lyu Q, Li M, Zhang L, Zhu J. Bioinspired Supramolecular Photonic Composites: Construction and Emerging Applications. Macromol Rapid Commun 2022; 43:e2100867. [PMID: 35255176 DOI: 10.1002/marc.202100867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Indexed: 11/08/2022]
Abstract
Natural organisms have evolved fascinating structural colors to survive in complex natural environments. Artificial photonic composites developed by imitating the structural colors of organisms have been applied in displaying, sensing, biomedicine, and many other fields. As emerging materials, photonic composites mediated by supramolecular chemistry, namely, supramolecular photonic composites, have been designed and constructed to meet emerging application needs and challenges. This feature article mainly introduces the constructive strategies, properties, and applications of supramolecular photonic composites. First, constructive strategies of supramolecular photonic composites are summarized, including the introduction of supramolecular polymers into colloidal photonic array templates, co-assembly of colloidal particles (CPs) with supramolecular polymers, self-assembly of soft CPs, and compounding photonic elastomers with functional substances via supramolecular interactions. Supramolecular interactions endow photonic composites with attractive properties, such as stimuli-responsiveness and healability. Subsequently, the unique optical and mechanical properties of supramolecular photonic composites are summarized, and their applications in emerging fields, such as colorful coatings, real-time and visual motion monitoring, and biochemical sensors, are introduced. Finally, challenges and perspectives in supramolecular photonic composites are discussed. This feature article provides general strategies and considerations for the design of photonic materials based on supramolecular chemistry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Quanqian Lyu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Miaomiao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lianbin Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jintao Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
119
|
Nishikawa H, Sano K, Araoka F. Anisotropic fluid with phototunable dielectric permittivity. Nat Commun 2022; 13:1142. [PMID: 35241651 PMCID: PMC8894468 DOI: 10.1038/s41467-022-28763-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
Dielectric permittivity, a measure of polarisability, is a fundamental parameter that dominates various physical phenomena and properties of materials. However, it remains a challenge to control the dielectric permittivity of materials reversibly over a large range. Herein, we report an anisotropic fluid with photoresponsive dielectric permittivity (200 < ε < 18,000) consisting of a fluorinated liquid-crystalline molecule (96 wt%) and an azobenzene-tethered phototrigger (4 wt%). The reversible trans-cis isomerisation of the phototrigger under blue and green light irradiation causes a switch between two liquid-crystalline phases that exhibit different dielectric permittivities, with a rapid response time (<30 s) and excellent reversibility (~100 cycles). This anisotropic fluid can be used as a flexible photovariable capacitor that, for example, allows the reversible modulation of the sound frequency over a wide range (100 < f < 8500 Hz) in a remote manner using blue and green wavelengths. Light stimuli are widely used to control material properties, yet it remains challenging to reversibly photocontrol the dielectric permittivity. Nishikawa et al. achieve this goal in an anisotropic fluid via its liquid crystal phase transition induced by isomerization of an azobenzene-tethered phototrigger.
Collapse
Affiliation(s)
- Hiroya Nishikawa
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Koki Sano
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. .,Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
120
|
Xiao Z, Zhang L, Colvin VL, Zhang Q, Bao G. Synthesis and Application of Magnetic Nanocrystal Clusters. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen Xiao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Linlin Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Vicki L. Colvin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
121
|
Li L, Zhou N, Zhao Y. Azobenzene/Acid Binary Systems for Colorimetric Humidity Sensing with Reversibility, High Sensitivity, and Tunable Colors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7382-7391. [PMID: 35090104 DOI: 10.1021/acsami.1c24529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Humidity sensors are important for humidity detection in many storage and manufacturing processes. Issues like sensibility, response rate, controllability, and material and preparation process costs need to be taken into consideration for practical applications. Herein, we report an investigation on a series of azobenzene/acid binary systems using easily accessible compounds, whose thin films display reversible and widely tunable color changes in response to humidity stimulation, with high sensitivity, fast color change, and recovery speed. The interesting properties for colorimetric humidity sensing are showcased with potential applications in dynamic art painting, smart windows, and respiration monitoring.
Collapse
Affiliation(s)
- Lishan Li
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
122
|
Xie G, Du S, Huang Q, Mo M, Gao Y, Li M, Tao J, Zhang L, Zhu J. Photonic Hydrogels for Synergistic Visual Bacterial Detection and On-Site Photothermal Disinfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5856-5866. [PMID: 35061361 DOI: 10.1021/acsami.1c22586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and sensitive diagnostics in the early stage of bacterial infection and immediate treatment play critical roles in the control of infectious diseases. However, it remains challenging to develop integrated systems with both rapid detection of bacterial infection and timely on-demand disinfection ability. Herein, we demonstrate a photonic hydrogel platform integrating visual diagnosis and on-site photothermal disinfection by incorporating Fe3O4@C nanoparticles into a poly(hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAAm) matrix. In vitro experiments demonstrate that such a hydrogel can respond to pH variation caused by bacterial metabolism and generate the corresponding color changes to realize naked-eye observation. Meanwhile, its excellent photothermal conversion ability enables it to effectively kill bacteria by destroying cell membranes under near-infrared irradiation. Moreover, the pigskin infection wound model also verifies the bacterial detection performance and disinfection ability of the hydrogel in vivo. Our strategy demonstrates a new approach for visual diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Ge Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qiuyi Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Mo
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yujie Gao
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Miaomiao Li
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
123
|
Wang L, Zhou L, Ma N, Su Q, Wan Y, Zhang Y, Wu F, Qian W. Real-time monitoring of immunoglobulin G levels in milk using an ordered porous layer interferometric optical sensor. Talanta 2022; 237:122958. [PMID: 34736683 DOI: 10.1016/j.talanta.2021.122958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Immunoglobulin G (IgG) is a significant ingredient of immunological activity in milk and colostrum, the activity and content of which is easily disturbed by potentially conditional variant during sterilization. Therefore, developing robust methods for the detection of IgG levels in milk is especially important. Herein, protein A from the Staphylococcus aureus functionalized silica colloidal crystalline film (SCC@SPA) sensing unit combined with ordered porous layer interferometry (OPLI) for IgG detection in untreated bovine milk was developed. Calibration curves in milk and buffer were set up by the variations of the optical thickness (OT) of the sensing unit after the IgG association and dissociation phases. The influence of temperature on the level of IgG was evaluated. Furthermore, the identification of IgG levels with pasteurized milk and ultrahigh temperature (UHT) sterilized milk from the market randomly was successfully carried out without any sample pretreatment. More importantly, compared with other methods, this novel method has the advantages of convenient operation, low cost, and suitability for point-of-care (POC) testing.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lele Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qianqian Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yifan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Feng Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; OPLI (Suzhou) Biotechnology Co., Ltd, New District, Suzhou, 215163, China.
| |
Collapse
|
124
|
Wu J, Li J, Liu X, Gong L, Chen J, Tang Z, Lin W, Mu Y, Lin X, Hong W, Yi G, Chen X. Unclonable Photonic Crystal Hydrogels with Controllable Encoding Capacity for Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2369-2380. [PMID: 34958565 DOI: 10.1021/acsami.1c20905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by the formation of random sparkling microcrystallines in naturally precious opals, we develop a new strategy to produce a class of unclonable photonic crystal hydrogels (UPCHs) induced by the electrostatic interaction effect, which further achieve unclonable encoding/decoding and random high-encrypted patterns along with an ultrahigh and controllable encoding capacity up to ca. 2 × 10166055. Owing to the randomness of colloidal crystals in the self-assembly process, UPCHs with randomly distributed sparkling spots are endowed with unpredictable/unrepeatable characteristics. This, coupled with the water response of UPCHs with angle dependence and robustness, can upgrade the encryption level and address some limitations of easy fading, limited durability, and high cost in practical uses of existing unclonable materials. Interestingly, UPCHs can be readily patterned to exhibit reliable and rapid authentication by utilizing artificial intelligence (AI) deep learning, which can find broad applications in developing unbreakable and portable information storage/steganography systems not limited to anticounterfeiting.
Collapse
Affiliation(s)
- Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiawei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaochun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Li Gong
- Instrumental Analysis Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jiayao Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wei Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
125
|
Shang S, Zhang K, Hu H, Sun X, Liu J, Ni Y, Zhu P. Magnetic field responsive microspheres with tunable structural colors by controlled assembly of nanoparticles. RSC Adv 2022; 12:5656-5664. [PMID: 35425548 PMCID: PMC8982052 DOI: 10.1039/d1ra09028c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
Dynamic color tuning has many useful applications in nature for communication, camouflage, mood indication, etc. Structural colors have more advanced applications due to their ability to respond to external stimuli by dynamically changing color. In this work, we proposed an efficient method to prepare magneto-chromatic microspheres with tunable structural color. Through a microfluidic technique, the magneto-chromatic microspheres containing Fe3O4@C magnetic particles were continuously prepared. The size of the microspheres decreases with the increase of PVA solution phase to ETPTA phase flow rate ratio. Furthermore, the microspheres with larger sizes more easily form close packed structures. Microspheres can be constrained in PVA to form a free-standing film after the evaporation of water in PVA solution. The PVA film could display tunable brilliant structural colors when an external magnetic field is applied. Moreover, microspheres with fixed structural colors can also be acquired by polymerizing microspheres under UV light under an external magnetic field. An efficient strategy was used for the preparation of magneto-chromatic microspheres with tunable structural color.![]()
Collapse
Affiliation(s)
- Shenglong Shang
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kaiqi Zhang
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Huifang Hu
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xiaoran Sun
- Chinesisch-Deutsche Fakultät für Ingenieurwissenschaft, Qingdao University of Science & Technology, Qingdao 266599, China
| | - Jie Liu
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yanpeng Ni
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Ping Zhu
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
126
|
Xu B, Ma X, Dai A, Pan X, Pan X, Li N, Zhu J. Fabrication of multi-responsive photonic crystals based on selenium-containing copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00654e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Responsive photonic crystals (PCs) have attracted great interest due to their adjustable structure color.
Collapse
Affiliation(s)
- Bin Xu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Xiaoliang Ma
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Anqi Dai
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Xiaofeng Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Na Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| |
Collapse
|
127
|
Lee D, Kim J, Ku KH, Li S, Shin JJ, Kim B. Poly(vinylpyridine)-Containing Block Copolymers for Smart, Multicompartment Particles. Polym Chem 2022. [DOI: 10.1039/d2py00150k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicompartment particles generated by the self-assembly of block copolymers (BCPs) have received considerable attention due to their unique morphologies and functionalities. A class of important building blocks for multicomponent particles...
Collapse
|
128
|
Li Z, Wang X, Han L, Zhu C, Xin H, Yin Y. Multicolor Photonic Pigments for Rotation-Asymmetric Mechanochromic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107398. [PMID: 34710254 DOI: 10.1002/adma.202107398] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Photonic crystals are extensively explored to replace inorganic pigments and organic dyes as coloring elements in printing, painting, sensing, and anti-counterfeiting due to their brilliant structural colors, chemical stability, and environmental friendliness. However, most existing photonic-crystal-based pigments can only display monochromatic colors once made, and generating multicolors has to start with designing different building blocks. Here, a novel photonic pigment featuring highly tunable structural colors in the entire visible spectrum, made by the magnetic assembly of monodisperse nanorods into body-centered-tetragonal photonic crystals, is reported. Their prominent magnetic and crystal anisotropy makes it efficient to generate multicolors using one photonic pigment by magnetically controlling the crystal orientation. Further, the combination of angle-dependent diffraction and magnetic orientation control enables the design of rotation-asymmetric photonic films that display distinct patterns and encrypted information in response to rotation. The efficient multicolor generation through precise orientational control makes this novel photonic pigment promising in developing high-performance structural-colored materials and optical devices.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiaojing Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Lili Han
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA, 92697, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Huolin Xin
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA, 92697, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
129
|
Gu H, Liu X, Mu Z, Wang Q, Ding H, Du X, Gu Z. Wide-Gamut Biomimetic Structural Colors from Interference-Assisted Two-Photon Polymerization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60648-60659. [PMID: 34881867 DOI: 10.1021/acsami.1c18604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-photon polymerization (TPP) is an emerging direct laser writing technique for the fabrication of structural colors. However, its coloration ability is suppressed as the vertical resolution is up to several microns. To solve this issue, an interference-assisted TPP technique was employed. Laser interference at a highly reflective interface produced the periodic energy redistribution along the vertical direction, turning the laser voxel into multilayer structures and confirming this technology as a facile and robust method for precise control of its vertical feature size. Biomimetic structural colors (BSCs) inspired from the ridge-lamella configurations in the Morph butterflies were fabricated using this improved TPP technique. The coloration mechanisms of the multilayer interference from the lamella layers, the thin-film interference from the fusion of multilayers, and the hybrid situations were systematically studied. These BSC colors were grouped as pixel palettes with various TPP parameters corresponding to each other, and they spanned almost the entire standard red-green-blue color space. Moreover, under optimized conditions, it was possible to fabricate a 1 cm2 area within 2.5 h. These features make interference-assisted TPP an ideal coloration method for practical applications, such as display, decoration, sensing, and so on.
Collapse
Affiliation(s)
- Hongcheng Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaojiang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongde Mu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
130
|
Hussain S, Park SY. Photonic Cholesteric Liquid-Crystal Elastomers with Reprogrammable Helical Pitch and Handedness. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59275-59287. [PMID: 34854301 DOI: 10.1021/acsami.1c18697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The unique combination of the rubber-like property and the photonic helicoidal structure of cholesteric liquid-crystal elastomers (CLCEs) results in one-handed circular polarized light reflection, the wavelength of which is dictated by the Bragg relationship. Herein, a highly stretchable mechanochromic photonic CLCE film was fabricated by cross-linking mesogenic oligomers having thiol terminal groups, which further reacted to form disulfide (-S-S-) linkages. The mechanically stretched photonic CLCE film reflected both right- and left-handed circular polarized lights with a blue-shifted color. The helicoidal pitch and handedness controlled by the applied strain were programmed through a dynamic exchange reaction between the -S-S- linkages, thus realizing the patterning at selective regions. The pattern almost vanished under unpolarized daylight but was visible under circularly polarized light when the patterned photonic CLCE film had been heated above its isotropic temperature. The hidden patterns of the heat-treated CLCE film reappeared under unpolarized daylight when stretched, demonstrating a data encryption ability. These patterned photonic elastomers can be uniquely used in sensors, actuators, soft robotics, flexible displays, data encryption, and anticounterfeiting applications with a mechanochromic camouflage response.
Collapse
Affiliation(s)
- Saddam Hussain
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Young Park
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
131
|
Iwata N, Koike T, Tokuhiro K, Sato R, Furumi S. Colloidal Photonic Crystals of Reusable Hydrogel Microparticles for Sensor and Laser Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57893-57907. [PMID: 34821501 PMCID: PMC8662631 DOI: 10.1021/acsami.1c16500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Although a wide variety of techniques have been developed to date for the fabrication of high-quality colloidal photonic crystals (CPCs) using monodisperse silica and polystyrene microparticles, poly(N-isopropylacrylamide) (PNIPA) hydrogel microparticles have rarely been utilized for the preparation of active CPCs despite the intriguing feature of temperature-responsive volume changes. This report describes the promising potential abilities of PNIPA hydrogel microparticles for sensor and laser applications. Monodisperse PNIPA hydrogel microparticles were synthesized by emulsion polymerization, and the microparticle diameter was finely controlled by adjusting the surfactant concentration. Such hydrogel microparticles spontaneously formed uniform CPCs with visible Bragg reflection even in fluid suspensions. The addition of small amounts of ionic substances into the centrifuged and deionized CPC suspensions enabled the on-demand color switching between Bragg reflection and white turbidity with temperature, leading to temperature- and ion-sensing applications. Moreover, our expanding experiments successfully demonstrated the optically excited laser action with a single and narrow peak from CPC suspensions with light-emitting dyes by the photonic band gap effect. After the light-emitting dyes were simply removed from the CPC suspensions by centrifugation, the purified PNIPA hydrogel microparticles were permanently reusable as the CPC laser microcavities to generate the laser action at other wavelengths using different dyes. This study contributes the circular economy concept using reusable hydrogel microparticles for the realization of a sustainable society.
Collapse
Affiliation(s)
- Naoto Iwata
- Department of Applied Chemistry, Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Takeru Koike
- Department of Applied Chemistry, Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Kaya Tokuhiro
- Department of Applied Chemistry, Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Ryu Sato
- Department of Applied Chemistry, Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Seiichi Furumi
- Department of Applied Chemistry, Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
132
|
Dong Y, Combs JD, Cao C, Weeks ER, Bazrafshan A, Rashid SA, Salaita K. Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution. NANO LETTERS 2021; 21:9958-9965. [PMID: 34797077 DOI: 10.1021/acs.nanolett.1c03399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels embedded with periodic arrays of nanoparticles display a striking photonic crystal coloration that may be useful for applications such as camouflage, anticounterfeiting, and chemical sensing. Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. Magnetic nanoparticles entrapped within these DNA gels generate a structural color only when the gel is heated and a magnetic field is applied. A spatially controlled photonic crystal coloration was achieved by photopatterning with a near-infrared illumination. Color was "erased" by illuminating or heating the gel in the absence of an external magnetic field. The on-demand assembly technology demonstrated here may be beneficial for the development of a new generation of smart materials with potential applications in erasable lithography, encryption, and sensing.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - J Dale Combs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Cong Cao
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Eric R Weeks
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sk Aysha Rashid
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
133
|
Wang H, Cai L, Zhang D, Shang L, Zhao Y. Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9829068. [PMID: 34888526 PMCID: PMC8628110 DOI: 10.34133/2021/9829068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Micromotors with self-propelling ability demonstrate great values in highly sensitive analysis. Developing novel micromotors to achieve label-free multiplex assay is particularly intriguing in terms of detection efficiency. Herein, structural color micromotors (SCMs) were developed and employed for this purpose. The SCMs were derived from phase separation of droplet templates and exhibited a Janus structure with two distinct sections, including one with structural colors and the other providing catalytic self-propelling functions. Besides, the SCMs were functionalized with ion-responsive aptamers, through which the interaction between the ions and aptamers resulted in the shift of the intrinsic color of the SCMs. It was demonstrated that the SCMs could realize multiplex label-free detection of ions based on their optical coding capacity and responsive behaviors. Moreover, the detection sensitivity was greatly improved benefiting from the autonomous motion of the SCMs which enhanced the ion-aptamer interactions. We anticipate that the SCMs can significantly promote the development of multiplex assay and biomedical fields.
Collapse
Affiliation(s)
- Huan Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dagan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
134
|
Hussain S, Haider S, Al-Masry W, Park SY. Optical anticounterfeiting photonic bilayer film based on handedness of solid-state helicoidal structure. RSC Adv 2021; 11:37498-37503. [PMID: 35496384 PMCID: PMC9043834 DOI: 10.1039/d1ra07021e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
Anticounterfeiting photonic bilayer films were fabricated by sandwiching two solid-state cholesteric liquid crystal films having different handedness. The fabricated photonic bilayer films were successfully applied to patterning by selective photopolymerization. This photonic bilayer film as a new cryptographic technology is of interest for its anticounterfeiting application.
Collapse
Affiliation(s)
- Saddam Hussain
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University Daegu 41566 Republic of Korea
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Waheed Al-Masry
- Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Soo-Young Park
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|
135
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
136
|
Shi Y, Jiang N, Bikkannavar P, Cordeiro MF, Yetisen AK. Ophthalmic sensing technologies for ocular disease diagnostics. Analyst 2021; 146:6416-6444. [PMID: 34591045 DOI: 10.1039/d1an01244d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Point-of-care diagnosis and personalized treatments are critical in ocular physiology and disease. Continuous sampling of tear fluid for ocular diagnosis is a need for further exploration. Several techniques have been developed for possible ophthalmological applications, from traditional spectroscopies to wearable sensors. Contact lenses are commonly used devices for vision correction, as well as for other therapeutic and cosmetic purposes. They are increasingly being developed into ocular sensors, being used to sense and monitor biochemical analytes in tear fluid, ocular surface temperature, intraocular pressure, and pH value. These sensors have had success in detecting ocular conditions, optimizing pharmaceutical treatments, and tracking treatment efficacy in point-of-care settings. However, there is a paucity of new and effective instrumentation reported in ophthalmology. Hence, this review will summarize the applied ophthalmic technologies for ocular diagnostics and tear monitoring, including both conventional and biosensing technologies. Besides applications of smart readout devices for continuous monitoring, targeted biomarkers are also discussed for the convenience of diagnosis of various ocular diseases. A further discussion is also provided for future aspects and market requirements related to the commercialization of novel types of contact lens sensors.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | | | - M Francesca Cordeiro
- UCL Institute of Ophthalmology, London, UK.,ICORG, Imperial College London, London, UK
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
137
|
Tripathi AK, Tsavalas JG. A surprisingly gentle approach to cavity containing spherocylindrical microparticles from ordinary polymer dispersions in flow. MATERIALS HORIZONS 2021; 8:2808-2815. [PMID: 34605843 DOI: 10.1039/d1mh01108a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrate a facile approach to fully transform spherical polymeric microparticles to elongated spherocylinders containing an internal cavity under ambient and mild stirring conditions. Critical to the process is to deform the amorphous and non-crosslinked particles under glassy conditions for an unusually long time; 120 hours for the poly(styrene-co-glycidyl methacrylate) microparticles discussed in greatest detail. Larger particles in the 5 micron and greater range were markedly more susceptible to the shear imposed by stirring the aqueous dispersion. The resulting morphology is robust and kinetically frozen yet reverts to the original spherical shape if annealed above the glass transition temperature with suitable temperature or plasticizer. The volume fraction of the internal void can be modulated by particle composition and process conditions and is irregular in shape we believe as a result of a cavitation event during plastic deformation.
Collapse
Affiliation(s)
- Amit K Tripathi
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA
| | - John G Tsavalas
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA
- Materials Science Program, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
138
|
Dong A, Su Q, Ma N, Xu P, Zhou L, Wu F, Wang L, Wan Y, Qian W. Effect of Relative Humidity on the Thickness of Assembled Silica Colloidal Crystal Films. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5215-5221. [PMID: 33875109 DOI: 10.1166/jnn.2021.19441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order for the colloidal crystal films to be better applied, the influence of relative humidity on the preparation of silica colloidal crystal (SCC) films was systematically studied to solve the problem of different thicknesses of SCC films prepared by different batches under the conditions with the same temperature, concentration of suspension and diameter of the particles. SCC films with 190 nm particles were prepared by static vertical deposition method under different humidity regulated by saturated salt solutions, and the thickness of the films was obtained by an interferometric method. The results showed that the increase in humidity would reduce the thickness of the prepared films, which was believed to be caused by the decrease in evaporation rate after the wetting film absorbs water vapor. A new formula for calculating film thickness was proposed and verified from a series of experiments. With the control of humidity, high-quality SCC films with controlled thickness can be repeatedly prepared.
Collapse
Affiliation(s)
- Ao Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qianqian Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lele Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Feng Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
139
|
Chen W, Guo Z, Yu H, Liu Q, Fu M. Molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under neutral pH. J Colloid Interface Sci 2021; 607:1163-1172. [PMID: 34571303 DOI: 10.1016/j.jcis.2021.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
Glycoproteins play vital roles in living organisms and often serve as biomarkers for some disease. However, due to the low content of glycoprotein in biological fluids, selective detection of glycoproteins is still a challenging issue that needs to be addressed. In this study, molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under physiological pH was proposed. Monodispersed glycoprotein imprinted particles (SiO2@PEI/MIPs) was first prepared based on surface imprinting strategy using horseradish peroxidase (HRP) as template, and polyethyleneimine (PEI) was used to increase the number of boronic acid groups. The binding experiment indicated that the SiO2@PEI/MIPs hold satisfactory adsorption capacity (1.41 μmol/g), rapid adsorption rate (40 min) and preferable selectivity toward HRP. Then the SiO2@PEI/MIPs was assembled into close-packed colloidal array to construct a label free optical sensor (denoted as GICA). Benefiting from the high ordered photonic crystal structure, binding of HRP onto the GICA could be directly readout from the changes in structure color and diffracted wavelength. The structure color of the GICA changed from bright blue to yellow with the diffraction wavelength red shifted 59 nm when the HRP concentration increased from 2.5 to 15 μmol/L. Importantly, the GICA was capable of detecting HRP from human serum samples. All those results indicated the potential of the GICA for naked-eye detection of glycoprotein.
Collapse
Affiliation(s)
- Wei Chen
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Zhiyang Guo
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Hao Yu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qingyun Liu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Min Fu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
140
|
Li K, Li T, Zhang T, Li H, Li A, Li Z, Lai X, Hou X, Wang Y, Shi L, Li M, Song Y. Facile full-color printing with a single transparent ink. SCIENCE ADVANCES 2021; 7:eabh1992. [PMID: 34550746 PMCID: PMC8457659 DOI: 10.1126/sciadv.abh1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Structural colors are promising candidates for their antifading and eco-friendly characteristics. However, high cost and complicated processing inevitably hinder their development. Here, we propose a facile full-color structural-color inkjet printing strategy with a single transparent ink from the common polymer materials. This structural color arisen from total internal reflections is prepared by digitally printing the dome-shaped microstructure (microdome) with well-controlled morphology. By controlling the ink volume and substrate wettability, the microdome color can be continuously regulated across whole visible regions. The gamut, saturation, and lightness of the printed structural-color image are precisely adjusted via the programmable arrangement of different microdomes. With the advantages of simple manufacturing and widely available inks, this color printing approach presents great potential in imaging, decoration, sensing, and biocompatible photonics.
Collapse
Affiliation(s)
- Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tongyu Li
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, P. R. China
| | - Tailong Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xintao Lai
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyu Hou
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lei Shi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Materials Processing and Mold of the Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
- Corresponding author. (M.L.); (Y.S.)
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding author. (M.L.); (Y.S.)
| |
Collapse
|
141
|
Moriceau G, Kilchoer C, Djeghdi K, Weder C, Steiner U, Wilts BD, Gunkel I. Photonic Particles Made by the Confined Self-Assembly of a Supramolecular Comb-Like Block Copolymer. Macromol Rapid Commun 2021; 42:e2100522. [PMID: 34523759 DOI: 10.1002/marc.202100522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Indexed: 12/25/2022]
Abstract
Approaches that enable the preparation of robust polymeric photonic particles are of interest for the development of nonfading and highly reflective pigments for applications such as paints and display technologies. Here, the preparation of photonic particles that display structural color in both, aqueous suspension and the dry solid state is reported. This is achieved by exploiting the confined self-assembly of a supramolecular comb-like block copolymer (BCP) that microphase separates into a well-ordered lamellar morphology with dimensions that promote a photonic bandgap in the visible range. The comb-like BCP is formed by robust ionic interactions between poly(styrene-b-4-vinyl-pyridine) (PS-b-P4VP) BCP and dodecylbenzene sulfonic acid (DBSA), which selectively interacts with P4VP blocks. The components are combined in chloroform, and an aqueous emulsion is prepared. Evaporation of the organic solvent leads to the formation of solid microparticles with an onion-like 3D morphology. These photonic pigments display brilliant colors with reflectance spectra featuring pronounced optical bandgaps across the entire visible wavelength range with a peak reflectivity of 80-90%.
Collapse
Affiliation(s)
- Guillaume Moriceau
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Cédric Kilchoer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Kenza Djeghdi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| |
Collapse
|
142
|
Li Z, Qian C, Xu W, Zhu C, Yin Y. Coupling morphological and magnetic anisotropy for assembling tetragonal colloidal crystals. SCIENCE ADVANCES 2021; 7:eabh1289. [PMID: 34516773 PMCID: PMC8442868 DOI: 10.1126/sciadv.abh1289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/22/2021] [Indexed: 05/22/2023]
Abstract
Morphological and magnetic anisotropy can be combined in colloidal assembly to create unconventional secondary structures. We show here that magnetite nanorods interact along a critical angle, depending on their aspect ratios and assemble into body-centered tetragonal colloidal crystals. Under a magnetic field, size-dependent attractive and repulsive domains develop on the ends and center of the nanorods, respectively. Our joint experiment-computational multiscale study demonstrates the presence of a critical angle in the attractive domain, which defines the equilibrium bonding states of interacting rods and leads to the formation of non–close-packed yet hard-contact tetragonal crystals. Small-angle x-ray scattering measurement attributes the perfect tetragonal phase to the slow assembly kinetics. The crystals exhibit brilliant structural colors, which can be actively tuned by changing the magnetic field direction. These highly ordered frameworks and well-defined three-dimensional nanochannels may offer new opportunities for manipulating nanoscale chemical transformation, mass transportation, and wave propagation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chang Qian
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Wenjing Xu
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Corresponding author.
| |
Collapse
|
143
|
Li T, Dong H, Hao Y, Zhang Y, Chen S, Xu M, Zhou Y. Near‐infrared Responsive Photoelectrochemical Biosensors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ting Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| |
Collapse
|
144
|
Wang S, Qi Y, Chen Q, Zhang G, Liu B, Xiao F, Zhou J, Wu Z, Yu R. Control of Liquid Crystal Microarray Optical Signals Using a Microspectral Mode Based on Photonic Crystal Structures. Anal Chem 2021; 93:11887-11895. [PMID: 34398607 DOI: 10.1021/acs.analchem.1c02920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a novel liquid crystal microarray (LCM) film with optical regulation ability is first constructed by combining liquid crystals (LC) and the highly ordered microporous structure of inverse opal photonic crystals (IOPhCs). The LCM films are fabricated by infiltrating LC molecules into the LC polymer with the structure of IOPhCs, and their properties are very different from those without the LC. Interestingly, the optical property of LCM films can be controlled by changing the orientation of LC molecules, which varies with the interfacial force. In combination with polarization images, spectral reflection peak, circular dichroism spectra, potential difference, and fluorescence images of LCM films, the mechanism of this change is investigated. It is found that the exposed basic group of single-stranded DNA is the key to the change of the optical property of LC microarrays. Meanwhile, the optical signals of LC microarrays based on the PhCs provide a novel LC signal mode for an LC sensing system (microspectral signal mode), and it can be recorded by a fiber-optic spectrometer, which is a great improvement on LC sensing signals. Therefore, the LC microarray sensing signal can be used for accurate analysis of targets by the change of the reflection peak intensity of PhCs. When the LC molecules are induced by different aptamers, the LC microarray sensing interface can be further used for the determination of different targets, such as cocaine and Hg2+. The research on LCM films is of significant value for the development of LC sensing technology and also shows great application prospects in biochemical sensing fields.
Collapse
Affiliation(s)
- Shihong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Yue Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qianshan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Guannan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Fubing Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, Hengyang 421001, People's Republic of China
| | - Jun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
145
|
Schlafmann KR, White TJ. Retention and deformation of the blue phases in liquid crystalline elastomers. Nat Commun 2021; 12:4916. [PMID: 34389708 PMCID: PMC8363666 DOI: 10.1038/s41467-021-25112-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022] Open
Abstract
The blue phases are observed in highly chiral liquid crystalline compositions that nascently organize into a three-dimensional, crystalline nanostructure. The periodicity of the unit cell lattice spacing is on the order of the wavelength of visible light and accordingly, the blue phases exhibit a selective reflection as a photonic crystal. Here, we detail the synthesis of liquid crystalline elastomers that retain blue phase I, blue phase II, and blue phase III. The mechanical properties and optical reconfiguration via deformation of retained blue phases are contrasted to the cholesteric phase in fully solid elastomers with glass transition temperatures below room temperature. Mechanical deformation and chemical swelling of the lightly crosslinked polymer networks induces lattice asymmetry in the blue phase evident in the tuning of the selective reflection. The lattice periodicity of the blue phase elastomer is minimally affected by temperature. The oblique lattice planes of the blue phase tilt and red-shift in response to mechanical deformation. The retention of the blue phases in fully solid, elastomeric films could enable functional implementations in photonics, sensing, and energy applications.
Collapse
Affiliation(s)
- Kyle R Schlafmann
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
- Department of Materials Science and Engineering, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
146
|
Kim YG, Park S, Choi YH, Han SH, Kim SH. Elastic Photonic Microcapsules Containing Colloidal Crystallites as Building Blocks for Macroscopic Photonic Surfaces. ACS NANO 2021; 15:12438-12448. [PMID: 33988026 DOI: 10.1021/acsnano.1c02000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal crystals develop structural colors through wavelength-selective diffraction. Recently, a granular format of colloidal crystals has emerged as building blocks to construct macroscopic photonic surfaces or architectures with high reconfigurability through the secondary assembly. Here, we design elastic photonic microcapsules containing colloidal crystallites along the inner wall as a building block. Water-in-oil-in-water double-emulsion templates are microfluidically prepared to have an aqueous dispersion of polystyrene particles in the inner droplet and polydimethylsiloxane prepolymers in the shell. Colloidal particles are enriched in the presence of depletant and salt by osmotic compression, with the crystallization at the inner interface by depletion attraction. The number of nucleation sites depends on the rate of the enrichment, which enables control over the size and surface coverage of the crystallites with osmotic conditions. The enrichment is ceased by transferring the droplets into an isotonic solution, and the oil shell is cured to form an elastic membrane. As the elastic microcapsules have a large void in the core, they are deformable without structural damage in the crystallites. Therefore, the microcapsules can be closely packed to form macroscopic surfaces while achieving a high quality of structural colors with a collection of crystallites aligned along the flattened membrane.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
147
|
Hongbo X, Dan L, Suli W, Shuai F, Chao M, Bin D. H 2O- and ethanol concentration-responsive polymer/gel inverse opal photonic crystal. J Colloid Interface Sci 2021; 605:803-812. [PMID: 34371425 DOI: 10.1016/j.jcis.2021.07.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022]
Abstract
Responsive photonic crystals have attracted much attention due to their strong capability to manipulate the propagation of light in the visible region, but it is still a big challenge to invisibility and mechanical stability. Here, the novel Poly(ether sulfone)/Poly(acrylic acid) inverse opal photonic crystals, which have high mechanical stability and can release visible patterns after wetting with water, are discussed. The Poly(ether sulfone)/Poly(acrylic acid) inverse opal photonic crystals are also responsive to the concentration of ethanol, and the structural color response times increase with increasing ethanol concentration. This design uses the selective infiltration, hydrogen bonding and capillary action of solvent to realize the spectral diversity of reflectance. Owing to the high polarity and hydrogen bonding ability of carboxyl groups, water molecules are adsorbed easily by the poly(acrylic acid) gel. Subsequently, the encrypted information is decrypted due to the redshift of the structural color. Because of its lower polarity and hydrogen bonding ability relative to water, ethanol can impede the absorption of solvent by gel. Therefore, the ethanol concentration can be identified based on the structural color response time. Furthermore, reliable information decryption methods make Poly(ether sulfone)/Poly(acrylic acid) inverse opal photonic crystals potentially uesful as trusted encryption devices.
Collapse
Affiliation(s)
- Xia Hongbo
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116024, China
| | - Li Dan
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116024, China
| | - Wu Suli
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Feng Shuai
- School of Science, Minzu University of China, Beijing 100081, China.
| | - Meng Chao
- School of Science, Minzu University of China, Beijing 100081, China
| | - Dong Bin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116024, China.
| |
Collapse
|
148
|
Noniridescent structural color from enhanced electromagnetic resonances of particle aggregations and its applications for reconfigurable patterns. J Colloid Interface Sci 2021; 604:178-187. [PMID: 34265678 DOI: 10.1016/j.jcis.2021.06.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS The conventional noniridescent structural colors refer to the coherent scattering of visible light by the short-range ordered structures assembled from the small colloids (100-250 nm). Our hypothesis is that noniridescent structural color can be generated by the random aggregations of large silica particles through the enhanced electromagnetic resonances. EXPERIMENTS The random aggregations of large silica particles (350-475 nm) were prepared through the infiltration of silica particles solution with the porous substrate. The mechanism of the structural color is investigated. Reconfigurable patterns are prepared. FINDINGS Dissimilar to the conventional noniridescent colors, the angle-independent colors of silica aggregations originate from the enhanced electromagnetic resonances due to the random aggregation of the particles. The colors (blue, green, and red) and corresponding reflection peak positions of the particle aggregations can be well controlled by simply altering the size of the silica particles. Compared to the traditional prints with permanent patterns, reconfigurable patterns with large-area and multicolor can be fabricated by the repeatedly selective spray of water on the substrate pre-coated with noniridescent colors. This work provides new insight and greenway for the fabrication of noniridescent structural colors and reconfigurable patterns, and will promote their applications in soft display, green printing, and anti-counterfeiting.
Collapse
|
149
|
Liu Y, Fan Q, Zhu G, Shi G, Ma H, Li W, Wu T, Chen J, Yin Y, Guan J. A dual responsive photonic liquid for independent modulation of color brightness and hue. MATERIALS HORIZONS 2021; 8:2032-2040. [PMID: 34846480 DOI: 10.1039/d1mh00556a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Responsive chromic materials are highly desirable in the fields of displays, anti-counterfeiting, and camouflage, but their advanced applications are usually limited by the unrealized delicate and independent tunability of their three intrinsic attributes of color. This work achieves the separate, continuous, and reversible modulation of structural color brightness and hue with an aqueous suspension of dual-responsive Fe3O4@polyvinylpyrrolidone (PVP)@poly(N-isopropyl acrylamide) (PNIPAM) flexible photonic nanochains. The underlying modulation mechanism of color brightness was experimentally and numerically deciphered by analyzing the morphological responses to stimuli. When an increasing magnetic field was applied, the random worm-like flexible photonic nanochains gradually orientated along the field direction, due to the dominant magnetic dipole interaction over the thermal motion, lengthening the orientation segment length up to the whole of the nanochains. Consequently, the suspension displays increased color brightness (characterized by diffraction intensity). Meanwhile, the color hue (characterized by diffraction frequency) could be controlled by temperature, due to the volume changes of the interparticle PNIPAM. The achieved diverse color modulation advances the next-generation responsive chromic materials and enriches the basic understanding of the color tuning mechanisms. With versatile and facile color tunability and shape patterning, the developed responsive chromic liquid promises to have attractive potential in full-color displays and in adaptive camouflages.
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Ioka M, Toyotama A, Yamaguchi M, Nozawa J, Uda S, Okuzono T, Yoshimura M, Yamanaka J. Crystallization of charged gold particles mediated by nonadsorbing like-charged polyelectrolyte. J Chem Phys 2021; 154:234901. [PMID: 34241247 DOI: 10.1063/5.0052339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report that the aqueous dispersions of negatively charged submicron-sized colloidal Au particles formed non-close-packed colloidal crystals by the addition of a like-charged linear polyelectrolyte, sodium polyacrylate (NaPAA). Au particles often form irregular aggregates in dispersions because of a strong van der Waals force acting between them. To prevent aggregation, we introduced negative electric charges on particle surfaces. By the addition of NaPAA, colloidal crystals were formed on the bottom of a sample cell because of the supply of Au particles by sedimentation and 2D diffusion even under very dilute conditions. Interparticle potential calculations demonstrated that the addition of NaPAA caused depletion attraction between the particles as well as a significant reduction in the interparticle repulsion because of the electrostatic screening effect. However, the electrostatic repulsion was strong enough to prevent the direct contact of particles in the excluded region between Au particles. Large-area crystals could be obtained by tilting the sample cell. By drying the sample, the Au particles came into contact and the non-space-filling crystals changed into closest packed crystals. These closest packed crystals exhibited a significant enhancement of Raman scattering intensity because of high hot-spot density.
Collapse
Affiliation(s)
- Miyu Ioka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya 467-8603, Japan
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya 467-8603, Japan
| | - Megumi Yamaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya 467-8603, Japan
| | - Jun Nozawa
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Satoshi Uda
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Tohru Okuzono
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya 467-8603, Japan
| | - Masamichi Yoshimura
- Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan
| | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya 467-8603, Japan
| |
Collapse
|