101
|
Gu JG, Wang CX, Hu GQ, Shen K, Zhang HH. K 2CO 3/18-Crown-6-Catalyzed Selective H/D Exchange of Heteroarenes with Bromide as a Removable Directing Group. Org Lett 2023; 25:3055-3059. [PMID: 37126411 DOI: 10.1021/acs.orglett.3c00883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The K2CO3/18-crown-6-catalyzed H/D exchange of heretoarenes in high atom % deuterium incorporation is disclosed. The use of a weak base as a catalyst leads to excellent site selectivity and broad functional group tolerance. Control experiments indicated that the use of bromide, which enhances the adjacent C-H bond reactivity, as a removable directing group is essential. Moreover, conversion of bromide to other functional groups is also performed to construct other useful deuterated compounds.
Collapse
Affiliation(s)
- Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Cai-Xia Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Guang-Qi Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kang Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
102
|
Wang WH, Shao WY, Sang JY, Li X, Yu X, Yamamoto Y, Bao M. N,N-Dialkylation of Acyl Hydrazides with Alcohols Catalyzed by Amidato Iridium Complexes via Borrowing Hydrogen. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Wan-Hui Wang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Wei-Yu Shao
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Jia-Yue Sang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xu Li
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Ming Bao
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
103
|
Ortega M, Manrique R, Jiménez R, Parreño M, Domine ME, Arteaga-Pérez LE. Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters. Catalysts 2023. [DOI: 10.3390/catal13040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The production of renewable chemicals using lignocellulosic biomass has gained significant attention in green chemistry. Among biomass-derived chemicals, secondary amines have emerged as promising intermediates for synthetic applications. Here, we report a systematic study on the reductive amination of phenolics with cyclohexylamine using Pd/C and Rh/C as catalysts. The catalytic tests were performed in batch reactors under different reaction conditions (various: amine concentration (0.1–0.4 mol/L), hydrogen pressure (0–2.5 bar), temperature (80–160 °C), and substituted phenols (phenol, o-cresol, p-cresol, and methoxyphenol)) and using tert-amyl alcohol as a solvent. The experimental observations were consistent with a multi-step mechanism, where hydrogenation of phenol to cyclohexanone is followed by condensation of the ketone with cyclohexylamine to form an imine, which is finally hydrogenated to produce secondary amines. In addition, there was evidence of parallel self-condensation of the cyclohexylamine. The study also supported a limited dehydrogenation capacity of Rh/C, unlike Pd/C, which increases this capacity at higher temperatures generating a higher yield of cyclohexylaniline (up to 15%). The study of the alkylated phenols demonstrated that the nature and propensity of hydrogenation of the phenolic controls their amination. Kinetic analysis revealed reaction orders between 0.4 and 0.7 for H2, indicating its dissociative adsorption. Meanwhile, phenol’s order (between 1–1.8) suggests a single participation of this compound in the hydrogenation step. The order of 0.4 for cyclohexylamine suggests its participation as a surface-abundant species. The apparent activation energies derived from a power law approximation were of 37 kJ/mol and 10 kJ/mol on Pd/C and Rh/C, respectively.
Collapse
|
104
|
Jia X, Tian X, Zhuang D, Wan Z, Gu J, Li Z. Copper-Catalyzed Intermolecular Cross-dehydrogenative C-N Coupling at Room Temperature via Remote Activating Group Enabled Radical Relay Strategy. Org Lett 2023; 25:2012-2017. [PMID: 36944029 DOI: 10.1021/acs.orglett.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Employing N-fluorobenzenesulfonimide (NFSI) as a nitrogen-centered radical (NCR) precursor, an intermolecular C(sp2)-N coupling on heteroarenes or substituted benzenes with remote activated aniline derivatives via copper catalyzed N-N radical relay strategy at room temperature is developed. Good to excellent yields are acquired, and no ligand or additive is required. Reaction scope investigation and preliminary mechanistic studies demonstrate that the remote activating strategy and delicate control on the reactivities of active NCR species are essential to guarantee satisfactory chemo- and site-selectivity.
Collapse
Affiliation(s)
- Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Xiangmin Tian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiahao Gu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
105
|
Ivančič A, Košmrlj J, Gazvoda M. Elucidating the reaction mechanism of a palladium-palladium dual catalytic process through kinetic studies of proposed elementary steps. Commun Chem 2023; 6:51. [PMID: 36934172 PMCID: PMC10024772 DOI: 10.1038/s42004-023-00849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
In the synergistic dual catalytic process, the kinetics of the catalytic cycles must be balanced for the successful outcome of the reaction. Therefore, the analysis of the kinetics of the independent catalytic cycles is essential for such reactions, as it enables their relational optimization as well as their design. Here we describe an analysis of the mechanism of a catalytic synergistic bimetallic reaction through the experimental study of a palladium-catalysed cross-coupling of aryl halides with terminal alkynes, an example of a monometallic dual catalytic process. The proposed mechanism of the investigated reaction was disassembled into two palladium catalytic cycles and further into elementary reactions, and each step was studied independently. The described mechanistic analysis allowed us to identify the rate-determining step of the catalytic process by comparing the rates of the elementary reactions under similar reaction conditions, balanced kinetics of the palladium catalytic cycles, and also in which step which reagent enters the catalytic cycle and how.
Collapse
Affiliation(s)
- Anže Ivančič
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Janez Košmrlj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Martin Gazvoda
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia.
| |
Collapse
|
106
|
Adachi J, Oda H, Fukushima T, Lestari B, Kimura H, Sugai H, Shiraki K, Hamaguchi R, Sato K, Kinbara K. Dense and Acidic Organelle-Targeted Visualization in Living Cells: Application of Viscosity-Responsive Fluorescence Utilizing Restricted Access to Minimum Energy Conical Intersection. Anal Chem 2023; 95:5196-5204. [PMID: 36930819 PMCID: PMC10061370 DOI: 10.1021/acs.analchem.2c04133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Cell-imaging methods with functional fluorescent probes are an indispensable technique to evaluate physical parameters in cellular microenvironments. In particular, molecular rotors, which take advantage of the twisted intramolecular charge transfer (TICT) process, have helped evaluate microviscosity. However, the involvement of charge-separated species in the fluorescence process potentially limits the quantitative evaluation of viscosity. Herein, we developed viscosity-responsive fluorescent probes for cell imaging that are not dependent on the TICT process. We synthesized AnP2-H and AnP2-OEG, both of which contain 9,10-di(piperazinyl)anthracene, based on 9,10-bis(N,N-dialkylamino)anthracene that adopts a nonflat geometry at minimum energy conical intersection. AnP2-H and AnP2-OEG exhibited enhanced fluorescence as the viscosity increased, with sensitivities comparable to those of conventional molecular rotors. In living cell systems, AnP2-OEG showed low cytotoxicity and, reflecting its viscosity-responsive property, allowed specific visualization of dense and acidic organelles such as lysosomes, secretory granules, and melanosomes under washout-free conditions. These results provide a new direction for developing functional fluorescent probes targeting dense organelles.
Collapse
Affiliation(s)
- Junya Adachi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Toshiaki Fukushima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Beni Lestari
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroka Sugai
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Rei Hamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
107
|
Xiong Z, Nie H, Zhang S, Hu M, Qin C, Wang S, Ji F, Jiang G. Electrochemically Driven Selective Removal of the S═N Bond-Directing Group Using Cyclohexanone Oxime as the Mediator. J Org Chem 2023; 88:4334-4344. [PMID: 36922910 DOI: 10.1021/acs.joc.2c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
An inexpensive electrochemical induction system was used for the efficient reductive defunctionalization of sulfoximines through a radical pathway. This practical and robust strategy could be used for the removal of the S═N bond-directing group from various sulfoximines. The practicability of this method was demonstrated by its mild conditions, simple operation, one-pot procedure, gram-scale synthesis, and the undivided cell. Furthermore, preliminary mechanistic studies suggested that the reaction might proceed via a homocoupling reaction and a denitrification procedure.
Collapse
Affiliation(s)
- Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
108
|
A Second-Generation Palladacycle Architecture Bearing a N-Heterocyclic Carbene and Its Catalytic Behavior in Buchwald–Hartwig Amination Catalysis. Catalysts 2023. [DOI: 10.3390/catal13030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Palladacyclic architectures have been shown as versatile motifs in cross-coupling reactions. NHC-ligated palladacycles possessing unique electronic and steric properties have helped to stabilize the catalytically active species and provide additional control over reaction selectivity. Here, we report on a synthetic protocol leading to palladacycle complexes using a mild base and an environmentally desirable solvent, with a focus on complexes bearing backbone-substituted N-heterocyclic carbene ligands. The readily accessible complexes exhibit high catalytic activity in the Buchwald–Hartwig amination. This is achieved using low catalyst loading and mild reaction conditions in a green solvent.
Collapse
|
109
|
Rama RJ, Maya C, Molina F, Nova A, Nicasio MC. Important Role of NH-Carbazole in Aryl Amination Reactions Catalyzed by 2-Aminobiphenyl Palladacycles. ACS Catal 2023; 13:3934-3948. [PMID: 36970467 PMCID: PMC10029719 DOI: 10.1021/acscatal.3c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Indexed: 03/09/2023]
Abstract
2-Aminobiphenyl palladacycles are among the most successful precatalysts for Pd-catalyzed cross-coupling reactions, including aryl amination. However, the role of NH-carbazole, a byproduct of precatalyst activation, remains poorly understood. Herein, the mechanism of the aryl amination reactions catalyzed by a cationic 2-aminobiphenyl palladacycle supported by a terphenyl phosphine ligand, PCyp2ArXyl2 (Cyp = cyclopentyl; ArXyl2 = 2,6-bis(2,6-dimethylphenyl)phenyl), P1, has been thoroughly investigated. Combining computational and experimental studies, we found that the Pd(II) oxidative addition intermediate reacts with NH-carbazole in the presence of the base (NaO t Bu) to yield a stable aryl carbazolyl Pd(II) complex. This species functions as the catalyst resting state, providing the amount of monoligated LPd(0) species required for catalysis and minimizing Pd decomposition. In the case of a reaction with aniline, an equilibrium between the carbazolyl complex and the on-cycle anilido analogue is established, which allows for a fast reaction at room temperature. In contrast, heating is required in a reaction with alkylamines, whose deprotonation involves coordination to the Pd center. A microkinetic model was built combining computational and experimental data to validate the mechanistic proposals. In conclusion, our study shows that despite the rate reduction observed in some reactions by the formation of the aryl carbazolyl Pd(II) complex, this species reduces catalyst decomposition and could be considered an alternative precatalyst in cross-coupling reactions.
Collapse
Affiliation(s)
- Raquel J. Rama
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences and Centre for Materials Science and Nanotechnology, University of Oslo, N-0315 Oslo, Norway
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21071 Huelva, Spain
| | - Ainara Nova
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences and Centre for Materials Science and Nanotechnology, University of Oslo, N-0315 Oslo, Norway
| | - M. Carmen Nicasio
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| |
Collapse
|
110
|
Snead DR, Gan Y, Scattolin T, Paymode DJ, Achmatowicz M, Rudisill DE, Vidal ES, Gharbaoui T, Roberts P, Yang J, Shi Z, Liu W, Bolger J, Qiao Z, Chen CY. Development of Adagrasib’s Commercial Manufacturing Route. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- David R. Snead
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Yonghong Gan
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Thomas Scattolin
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Dinesh J. Paymode
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Michal Achmatowicz
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Duane E. Rudisill
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Ephraim S. Vidal
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Tawfik Gharbaoui
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Phil Roberts
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| | - Jianbo Yang
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P.R. China
| | - Zhangbing Shi
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P.R. China
| | - Wei Liu
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P.R. China
| | - Joshua Bolger
- Asymchem, Inc., 600 Airport Blvd. Suite 1000, Morrisville, North Carolina 27560, United States
| | - Zhen Qiao
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P.R. China
| | - Cheng-yi Chen
- Mirati Therapeutics, Inc., 3545 Cray Ct, San Diego, California 92121, United States
| |
Collapse
|
111
|
Migliorini F, Monciatti E, Romagnoli G, Parisi ML, Taubert J, Vogt M, Langer R, Petricci E. Switching Mechanistic Pathways by Micellar Catalysis: A Highly Selective Rhodium Catalyst for the Hydroaminomethylation of Olefins with Anilines in Water. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Francesca Migliorini
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Elisabetta Monciatti
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Giulia Romagnoli
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Maria Laura Parisi
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Julia Taubert
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Matthias Vogt
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Robert Langer
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Elena Petricci
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| |
Collapse
|
112
|
Unsupported Copper Nanoparticles in the Arylation of Amines. Catalysts 2023. [DOI: 10.3390/catal13020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Commercially available copper and copper (II) oxide nanoparticles (CuNPs and CuO NPs) were characterized using TEM and electronography methods to elucidate their true average size and composition. The catalytic amine arylation using unsupported copper nanoparticles differing in their size and copper oxidation state was investigated. The reaction of the model iodobenzene with n-octylamine was shown to be successfully catalyzed by CuNPs of average size 25 and 10/80 nm in the presence of the ligands such as 2-isobutyrylcyclohexanone (L1) and rac-1,1′-bi-2-naphthol (BINOL, L2), giving high yields (up to 95%) of the target N-octylaniline. CuO in bulk and nano forms was shown to be almost equally efficient in this process. Studies on the Cu-catalyzed amination of substituted iodobenzenes and 2-iodopyridine, as well as the arylation of different aliphatic amines and NH-heterocycles, verified that CuNPs (25 or 10/80 nm) with L1 and L2 are the most versatile and efficient nanocatalysts for a variety of substrates. Investigation of copper leaching under different conditions was carried out.
Collapse
|
113
|
Martinek N, Morrison KM, Field JM, Fisher SA, Stradiotto M. Comparative Screening of DalPhos/Ni Catalysts in C-N Cross-couplings of (Hetero)aryl Chlorides Enables Development of Aminopyrazole Cross-couplings with Amine Base. Chemistry 2023; 29:e202203394. [PMID: 36331074 DOI: 10.1002/chem.202203394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
A systematic competitive evaluation of the DalPhos ligand family in nickel-catalyzed N-arylation chemistry is reported, involving primary (linear and branched) and secondary alkylamines, as well as a primary five-membered heteroarylamine (aminopyrazole), in combination with a diverse set of test electrophiles and bases (NaOtBu, K2 CO3 , DBU/NaTFA). In addition to providing optimal ligand/catalyst identification, and bringing to light methodology limitations (e. g., unwanted C-O cross-coupling with NaOtBu), our survey enabled the development of the first efficient catalyst system for heteroatom-dense C-N cross-coupling of aminopyrazoles and related nucleophiles with (hetero)aryl chlorides by use of an amine 'dual-base' system.
Collapse
Affiliation(s)
- Nicole Martinek
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kathleen M Morrison
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Justin M Field
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Samuel A Fisher
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
114
|
Qi L, Dong M, Qian J, Yu S, Tong X. Pd 0 -Catalyzed Asymmetric Carbonitratation Reaction Featuring an H-Bonding-Driven Alkyl-Pd II -ONO 2 Reductive Elimination. Angew Chem Int Ed Engl 2023; 62:e202215397. [PMID: 36420824 DOI: 10.1002/anie.202215397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Reductive elimination of alkyl-PdII -O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4 ] and AgNO3 additive under toluene/H2 O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0 -catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I- and NO3 - , alkene insertion and SN 2-type alkyl-PdII -ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2 NO- ligand from the alkyl-PdII -ONO2 species, thus enabling the challenging alkyl-PdII -ONO2 reductive elimination to be feasible.
Collapse
Affiliation(s)
- Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Ming Dong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
115
|
Karl TA, Seidl M, König B. Energy Harvesting: Synthetic Use of Recovered Energy in Electrochemical Late‐Stage Functionalization. ChemElectroChem 2023. [DOI: 10.1002/celc.202201097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias A. Karl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Max Seidl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
116
|
Nam S, Kim I. Cu-Catalyzed Ullmann-Type Double C-N Coupling Approach to 5-Aryl-5 H-indolizino[3,2- b]indoles. J Org Chem 2023; 88:745-754. [PMID: 36494330 DOI: 10.1021/acs.joc.2c02517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A modular approach to a polyfunctionalized 5H-indolizino[3,2-b]indole, an indolizine-indole fused system, was achieved from readily available pyridine-2-acetonitrile, 2-bromobenzaldehyde, and TMSCN via the strategic combination of a one-pot three-component assembly and Cu-catalyzed Ullmann-type double C-N coupling reactions through which five new bonds (two C-C and three C-N) were formed in two steps.
Collapse
Affiliation(s)
- Seonghyeon Nam
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| |
Collapse
|
117
|
Shet H, Patel M, Waikar JM, More PM, Sanghvi YS, Kapdi AR. Room-Temperature Dialkylamination of Chloroheteroarenes Using a Cu(II)/PTABS Catalytic System. Chem Asian J 2023; 18:e202201006. [PMID: 36355632 DOI: 10.1002/asia.202201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The dimethylamino functionality has significant importance in industrially relevant molecules and methodologies to install these efficiently are highly desirable. We report herein a highly efficient, room-temperature dimethylamination of chloroheteroarenes performed via the in-situ generation of dimethylamine using N,N-dimethylformamide (DMF) as precursor wiith a large substrate scope that includes various heteroarenes, purines as well as commercially relevant drugs such as altretamine, ampyzine and puromycin precursor.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India.,Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, 751013, Odisha, India
| | - Manisha Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Jyoti M Waikar
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Pavan M More
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge road, Encinitas, CA 92024-6615, U.S.A
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
118
|
Chemoselective Chan-Lam and reductive nitroarene coupling of boronic acid using an octahedral Ni-DMAP complex as catalyst. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
119
|
Efficient and Reusable Benzimidazole Based Sulphonic Acid Functionalized Porphyrin Photocatalyst for C–N Bond Formation Under Visible Light Irradiation. Catal Letters 2022. [DOI: 10.1007/s10562-022-04255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
120
|
Simon CM, Robertson KN, DeRoy PL, Yadav AA, Johnson ER, Stradiotto M. Nickel-Catalyzed N-Arylation of Sulfinamides: A Comparative Study versus Analogous Sulfonamide Cross-Couplings. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Connor M. Simon
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Patrick L. DeRoy
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Arun A. Yadav
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
121
|
New Light-Green Thermally Activated Delayed Fluorescence Polymer Based on Dimethylacridine-Triphenyltriazine Light-Emitting Unit and Tetraphenylsilane Moiety as Non-Conjugated Backbone. Polymers (Basel) 2022; 15:polym15010067. [PMID: 36616417 PMCID: PMC9824120 DOI: 10.3390/polym15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
In the search for solution-processable TADF materials as a light emitting layer for OLED devices, polymers have attracted considerable attention due to their better thermal and morphological properties in the film state with respect to small molecules. In this work, a new polymer (p-TPS-DMAC-TRZ) with thermally activated delayed fluorescence (TADF) light-emitting characteristics was prepared from a conjugation-break unit (TPS) and a well-known TADF core (DAMC-TRZ). This material was designed to preserve the photophysical properties of DAMC-TRZ, while improving other properties, such as thermal stability, promoted by its polymerization with a TPS core. Along with excellent solubility in common organic solvents such as toluene, chloroform and THF, the polymer (Mn = 9500; Mw = 15200) showed high thermal stability (TDT5% = 481 °C), and a Tg value of 265 °C, parameters higher than the reference small molecule DMAC-TRZ (TDT5% = 305 °C; Tg = 91 °C). The photoluminescence maximum of the polymer was centered at 508 nm in the solid state, showing a low redshift compared to DMAC-TRZ (500 nm), while also showing a redshift in solution with solvents of increasing polarity. Time-resolved photoluminescence of p-TPS-DMAC-TRZ at 298 K, showed considerable delayed emission in solid state, with two relatively long lifetimes, 0.290 s (0.14) and 2.06 s (0.50), and a short lifetime of 23.6 ns, while at 77 K, the delayed emission was considerably quenched, and two lifetimes in total were observed, 24.6 ns (0.80) and 180 ns (0.20), which was expected from the slower RISC process at lower temperatures, decreasing the efficiency of the delayed emission and demonstrating that p-TPS-DMAC-TRZ has a TADF emission. This is in agreement with room temperature TRPL measurements in solution, where a decrease in both lifetime and delayed contribution to total photoluminescence was observed when oxygen was present. The PLQY of the mCP blend films with 1% p-TPS-DMAC-DMAC-TRZ as a dopant was determined to be equal to 0.62, while in the pure film, it was equal to 0.29, which is lower than that observed for DMAC-TRZ (0.81). Cyclic voltammetry experiments showed similarities between p-TPS-DMAC-TRZ and DAMC-TRZ with HOMO and LUMO energies of -5.14 eV and -2.76 eV, respectively, establishing an electrochemical bandgap value of 2.38 eV. The thin film morphology of p-TPS-DMAC-TRZ and DMAC-TRZ was compared by AFM and FE-SEM, and the results showed that p-TPS-DMAC-TRZ has a smoother surface with fewer defects, such as aggregations. These results show that the design strategy succeeded in improving the thermal and morphological properties in the polymeric material compared to the reference small molecule, while the photophysical properties were mostly maintained, except for the PLQY determined in the pure films. Still, these results show that p-TPS-DMAC-TRZ is a good candidate for use as a light-emitting layer in OLED devices, especially when used as a host-guest mixture in suitable materials such as mCP.
Collapse
|
122
|
Yang S, Yu X, Poater A, Cavallo L, Cazin CSJ, Nolan SP, Szostak M. Buchwald-Hartwig Amination and C-S/S-H Metathesis of Aryl Sulfides by Selective C-S Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Unified Mechanism for Activation of Inert C-S Bonds. Org Lett 2022; 24:9210-9215. [PMID: 36480689 DOI: 10.1021/acs.orglett.2c03717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a combined experimental and mechanistic study on the Buchwald-Hartwig amination and C-S/S-H metathesis of aryl sulfides by selective activation of C-S bonds mediated by well-defined, air- and moisture-stable Pd(II)-NHC precatalysts, [Pd(NHC)(μ-Cl)Cl]2. This class of Pd(II)-NHC precatalysts displays excellent activity in the cross coupling of aryl sulfides. Most crucially, we unravel the unified mechanism for activation of C-S bonds in the C-N cross-coupling and C-S metathesis manifolds, where the inert C-S bond serves as a precursor to valuable amine or thioether products.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
123
|
Xu X, Lin Z. Understanding the Reaction Mechanism of Nickel-Catalyzed Enantioselective Arylative Activation of the Aromatic C–O Bond. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
124
|
Lalloo N, Brigham CE, Sanford MS. Mechanism-Driven Development of Group 10 Metal-Catalyzed Decarbonylative Coupling Reactions. Acc Chem Res 2022; 55:3430-3444. [PMID: 36382937 PMCID: PMC9764028 DOI: 10.1021/acs.accounts.2c00496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are widely used in both academia and industry for the construction of carbon-carbon and carbon-heteroatom bonds. The vast majority of cross-coupling reactions utilize aryl (pseudo)halides as the electrophilic coupling partner. Carboxylic acid derivatives (RC(O)X) represent a complementary class of electrophiles that can engage in decarbonylative couplings to produce analogous products. This decarbonylative approach offers the advantage that RC(O)X are abundant and inexpensive. In addition, decarbonylative coupling enables both intramolecular (between R and X of the carboxylic acid derivative) as well as intermolecular bond-forming reactions (in which an exogeneous nucleophile is coupled with the R group derived from RC(O)X). In these intermolecular reactions, the X-substituent on the carboxylic acid can be tuned to facilitate both oxidative addition and transmetalation, thus eliminating the need for an exogeneous base. This Account details our group's development of a diverse variety of base-free decarbonylative coupling reactions catalyzed by group 10 metals. Furthermore, it highlights how catalyst design can be guided by stoichiometric organometallic studies of these systems.Our early studies focused on intramolecular decarbonylative couplings that transform RC(O)X to the corresponding R-X with extrusion of CO. We first identified Pd and Ni monodentate phosphine catalysts that convert aryl thioesters (ArC(O)SR) to the corresponding thioethers (ArSR). We next expanded this reactivity to fluoroalkyl thioesters, using readily available fluoroalkyl carboxylic acids as the fluoroalkyl (RF) source. A Ni-phosphinoferrocene catalyst proved optimal, and the large bite angle bidentate ligand was necessary to promote the challenging RF-S bond-forming reductive elimination step.We next pursued intramolecular decarbonylative couplings of aroyl halides. Palladium-based catalysts bearing dialkylbiaryl ligands (e.g., BrettPhos) were identified as optimal for converting aroyl chlorides (ArC(O)Cl) to aryl chlorides (ArCl). These ligands were selected based on their ability to facilitate the key C-Cl bond-forming reductive elimination step of the catalytic cycle. In contrast, all attempts to convert aroyl fluorides [ArC(O)F)] to aryl fluorides (ArF) were unsuccessful with either Pd- or Ni-based catalysts. Organometallic studies of the Ni-system show that C(O)-F oxidative addition and CO deinsertion proceed smoothly, but the resulting nickel(II) aryl fluoride intermediate fails to undergo C-F bond-forming reductive elimination.In contrast to its inertness to reductive elimination, this nickel(II) aryl fluoride proved highly reactive toward transmetalation. The fluoride ligand serves as an internal base, such that no additional base is required. We leveraged this "transmetalation active" intermediate to achieve base-free Ni-catalyzed intermolecular decarbonylative coupling reactions between aroyl fluorides and boron reagents to access both biaryl and aryl-boronate ester products. By tuning the electrophile, transmetalating reagent, and catalyst, this same approach also proved applicable to base-free intermolecular decarbonylative fluoroalkylation (between difluoromethylacetyl fluoride and arylboronate esters) and aryl amination (between phenol esters and silyl amines).Moving forward, a key goal is to identify catalyst systems that enable more challenging bond constructions via this manifold. In addition, CO inhibition remains a major issue leading to the requirement for high temperatures and high catalyst loadings. Identifying catalysts that are resistant to CO binding and/or approaches to remove CO under mild conditions will be critical for making these reactions more practical and scalable.
Collapse
Affiliation(s)
- Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor E. Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
125
|
Song G, Nong DZ, Li Q, Yan Y, Li G, Fan J, Zhang W, Cao R, Wang C, Xiao J, Xue D. Photochemical Synthesis of Anilines via Ni-Catalyzed Coupling of Aryl Halides with Ammonium Salts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ding-Zhan Nong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
126
|
Kuliukhina DS, Yakushev AA, Malysheva AS, Averin AD, Beletskaya IP. Synthesis of N,N′-Diaryl Diamines and Oxadiamines via Chan–Lam Amination. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802212003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
127
|
Polydentate P, N-based ligands for palladium-catalyzed cross-coupling reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
128
|
Lan J, Zhang T, Yang Y, Li X, Chung LW. A Mechanistic Study of the Cobalt(I)-Catalyzed Amination of Aryl Halides: Effects of Metal and Ligand. Inorg Chem 2022; 61:18019-18032. [DOI: 10.1021/acs.inorgchem.2c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jialing Lan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Tonghuan Zhang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuhong Yang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
129
|
Schultz JR, Costa SK, Jachak GR, Hegde P, Zimmerman M, Pan Y, Josten M, Ejeh C, Hammerstad T, Sahl HG, Pereira PM, Pinho MG, Dartois V, Cheung A, Aldrich CC. Identification of 5-(Aryl/Heteroaryl)amino-4-quinolones as Potent Membrane-Disrupting Agents to Combat Antibiotic-Resistant Gram-Positive Bacteria. J Med Chem 2022; 65:13910-13934. [PMID: 36219779 PMCID: PMC9826610 DOI: 10.1021/acs.jmedchem.2c01151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone 111 with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.06 μg/mL against numerous clinical isolates. Preliminary mechanism of action and resistance studies demonstrate that the 5-amino-4-quinolones are bacteriostatic, do not select for resistance, and selectively disrupt bacterial membranes. While the precise molecular mechanism has not been elucidated, the lead compound is nontoxic displaying a therapeutic index greater than 500, is devoid of hemolytic activity, and has attractive physicochemical properties (clog P = 3.8, molecular weight (MW) = 441) that warrant further investigation of this promising antibacterial scaffold for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- John R Schultz
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen K Costa
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Gorakhnath R Jachak
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Michaele Josten
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Chinedu Ejeh
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Travis Hammerstad
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hans Georg Sahl
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Pedro M Pereira
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Mariana G Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
130
|
Manna K, Sutter JP, Natarajan S. Blue-Emitting Ligand-Mediated Assembly of Rare-Earth MOFs toward White-Light Emission, Sensing, Magnetic, and Catalytic Studies. Inorg Chem 2022; 61:16770-16785. [PMID: 36227059 DOI: 10.1021/acs.inorgchem.2c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New lanthanide carboxylate compounds with two- (2D) and three-dimensional (3D) structures have been prepared by employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as an organic linker. The compounds, [Ln(C14H8O6)(C7O3H4)·2H2O]·4(H2O), Ln = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy and [Ln(C7O3H4)3·(C3H7ON)·(H2O)]·2(H2O)(C3H7NO), Ln = La, Ce, Pr, have two- and three-dimensional structures, respectively. In all compounds, lanthanide ions are connected together, forming a dimer, which is connected by the 2,5-BPTA ligand. In the two-dimensional structure, there are two 2,5-BPTA moieties present, and in the three-dimensional structure, there are three 2,5-BPTA moieties present. The lanthanide centers are nine-coordinated, the 2D structure has a tricapped trigonal prismatic arrangement, and the 3D structure has a monocapped distorted square antiprismatic arrangement. The Pr compound forms in both 2D and 3D structures, whose formation depends on the time of the reaction (2 days─2D and 5-6 days─3D). The ligand emits in the blue region, and using the characteristic emission of Eu3+ (red) and Tb3+ (green) ions, we achieve white light emission in the (Y0.96Tb0.02Eu0.02) compound. The overall quantum yield for the white light emission is 28%. The strong green luminescence of the Tb3+-containing compound was employed to selectively sense the Cr3+ and Fe3+ ions in aqueous solution with limits of detection (LODs) at 0.41 and 8.6 ppm, respectively. The Tb compound was found to be a good heterogeneous catalyst for the Ullman-type O-arylation reaction between phenol and bromoarene with yields of 95%. Magnetic studies on the Gd-, Tb-, and Dy-containing compounds showed weak exchange interactions within the dimeric Ln2 units. The present work demonstrates the many utilities of the rare-earth-containing MOFs, especially toward white-light emission, metal-ion sensing, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jean-Pascal Sutter
- Laboratoire de Chime de Coordination du CNRS, Université de Toulouse, CNRS 205 route de Narbonne, 31077 Toulouse, France
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
131
|
Rosa M, Jędryka N, Skorupska S, Grabowska-Jadach I, Malinowski M. New Route to Glycosylated Porphyrins via Aromatic Nucleophilic Substitution (SNAr)—Synthesis and Cellular Uptake Studies. Int J Mol Sci 2022; 23:ijms231911321. [PMID: 36232622 PMCID: PMC9570116 DOI: 10.3390/ijms231911321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Glycoporphyrins are group of compounds of high value for the purpose of photodynamic therapy and other biomedical applications. Despite great progress in the field, new diversity-oriented syntheses of carbohydrate-porphyrin hybrids are increasingly desired. Herein, we present efficient, mild, and metal-free conditions for synthesis of glycoporphyrins. The versatile nature of the SNAr procedure is presented in 16 examples. Preliminary biological studies have been conducted on the cytotoxicity and cellular uptake of the final molecules.
Collapse
|
132
|
Nebauer J, Neiß C, Krug M, Vogel A, Fehn D, Ozaki S, Rominger F, Meyer K, Kamada K, Guldi DM, Görling A, Kivala M. Oxidative Cyclodehydrogenation of Trinaphthylamine: Selective Formation of a Nitrogen-Centered Polycyclic π-System Comprising 5- and 7-Membered Rings. Angew Chem Int Ed Engl 2022; 61:e202205287. [PMID: 35900162 PMCID: PMC9804279 DOI: 10.1002/anie.202205287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/05/2023]
Abstract
We describe a new type of nitrogen-centered polycyclic scaffold comprising a unique combination of 5-, 6-, and 7-membered rings. The compound is accessible through an intramolecular oxidative cyclodehydrogenation of tri(1-naphthyl)amine. To the best of our knowledge this is the very first example of a direct 3-fold cyclization of a triarylamine under oxidative conditions. The unusual ring fusion motif is confirmed by X-ray crystallography and the impact of cyclization on the electronic and photophysical properties is investigated both experimentally and theoretically based on density-functional theory (DFT) calculations. The formation of the unexpected product is rationalized by detailed mechanistic studies on the DFT level. The results suggest the cyclization to occur under kinetic control via a dicationic mechanism.
Collapse
Affiliation(s)
- Johannes Nebauer
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Christian Neiß
- Department of Chemistry and PharmacyChair of Theoretical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Marcel Krug
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Alexander Vogel
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Dominik Fehn
- Department of Chemistry and PharmacyChair of General and Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| | - Shuhei Ozaki
- Nanomaterials Research Institute (NMRI)National Institute of Advanced Industrial Science and Technology (AIST)1-8-31 MidorigaokaIkeda, Osaka563-8577Japan
- Department of ChemistryGraduate School of Science and TechnologyKwansei Gakuin UniversitySanda669-1337Japan
| | - Frank Rominger
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Karsten Meyer
- Department of Chemistry and PharmacyChair of General and Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| | - Kenji Kamada
- Nanomaterials Research Institute (NMRI)National Institute of Advanced Industrial Science and Technology (AIST)1-8-31 MidorigaokaIkeda, Osaka563-8577Japan
- Department of ChemistryGraduate School of Science and TechnologyKwansei Gakuin UniversitySanda669-1337Japan
| | - Dirk M. Guldi
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Andreas Görling
- Department of Chemistry and PharmacyChair of Theoretical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Milan Kivala
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
133
|
Abstract
This paper describes a mild strategy to promote amide arylations. Photoinduced oxidation of a Ni(II) aryl amido intermediate is proposed to facilitate the challenging C-N reductive elimination step at moderate temperatures. Notably, the mildly basic conditions employed facilitate access to a broad scope including protected amino acids, heterocycles, phenols, and sterically hindered substituents. Hence, this work presents an attractive strategy to enable late-stage functionalization of pre-existing amide moieties in commercial drugs and natural products.
Collapse
Affiliation(s)
- Robert D Bradley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
134
|
Fang S, Ling H, Zeng C, Li M, Jiang H, Wu W. Palladium-Catalyzed Sequential Three-Component Cross-Coupling to 1,3-Dienes: Employing Alkenes as Hydride and Alkenyl Donors. J Org Chem 2022; 87:12816-12830. [PMID: 36099344 DOI: 10.1021/acs.joc.2c01406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report discloses a novel Pd-catalyzed sequential three-component multiple reaction of alkenes, bromoalkynes, and boronic acids using alkenes as hydride and alkenyl donors, leading to highly stereoselective assembly of (Z,E)-1,3-diene derivatives. Mechanistic studies demonstrate that the generation and reutilization of palladium hydride species are critical to the success of this transformation. In addition, the good functional group compatibility, late-stage modification, and investigation of photophysical properties of 1,3-diene products illustrate the synthetic value of this strategy.
Collapse
Affiliation(s)
- Songjia Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hongling Ling
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Caijin Zeng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Meng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
135
|
Hibbard JP, Yam JG, Alsalek EB, Bahamonde A. Mild Sustainable Amide Alkylation Protocol Enables a Broad Orthogonal Scope. J Org Chem 2022; 87:12036-12040. [PMID: 36001807 DOI: 10.1021/acs.joc.2c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the development of a mild sustainable protocol to couple primary alkyl chlorides and bromides with amides is described. In contrast to current methodologies, our system does not require the use of strongly basic conditions, high temperatures, or the addition of an organometallic catalyst, thereby enabling access to a remarkably orthogonal scope. K3PO4 is used to facilitate the formation of secondary and tertiary amides, which are ubiquitous scaffolds in bioactive molecules and natural products. Alkylated amide products are obtained in good to excellent yields, with no substantial limitations observed based on the steric and electronic properties of either coupling partner.
Collapse
Affiliation(s)
- Jason P Hibbard
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California92521, United States
| | - Jessalyn G Yam
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California92521, United States
| | - Eyad B Alsalek
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California92521, United States
| |
Collapse
|
136
|
Liu B, Li J, Hu Y, Chen Q, Liu Y, Ji S, Maruoka K, Huo Y, Zhang HL. Visible-Light-Induced α-C(sp 3)-H Phosphinylation of Unactivated Ethers under Photocatalyst- and Additive-Free Conditions. J Org Chem 2022; 87:11281-11291. [PMID: 35930606 DOI: 10.1021/acs.joc.2c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photocatalyst- and additive-free visible-light-induced α-C(sp3)-H phosphinylation of unactivated ethers involving a C-O bond cleavage with molecular oxygen as the sole oxidant at room temperature has been achieved. This method provides a sustainable access to α-hydroxyphosphine oxides in up to 88% yield with good functional group compatibility under mild and neutral conditions (34 examples). Moreover, the subsequent two-step conversion of the resulting dihydroxy diarylphosphine oxides afforded α-phosphinylated cyclic ethers in good overall yields (10 examples).
Collapse
Affiliation(s)
- Bo Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jianji Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yifan Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Hao-Li Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
137
|
Guo M, Chen B, Chen K, Guo S, Liu FS, Xu C, Yao HG. N-Heterocyclic carbene copper complex catalyzed Chan-Evans-Lam reactions of arylboronic acids with azoles and amines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
138
|
Qin J, Zhou T, Zhou TP, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao RZ, Zhong F. Catalytic Atroposelective Electrophilic Amination of Indoles. Angew Chem Int Ed Engl 2022; 61:e202205159. [PMID: 35612900 DOI: 10.1002/anie.202205159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 01/13/2023]
Abstract
Reported here is the first catalytic atroposelective electrophilic amination of indoles, which delivers functionalized atropochiral N-sulfonyl-3-arylaminoindoles with excellent optical purity. This reaction was furnished by 1,6-nucleophilic addition to p-quinone diimines. Control experiments suggest an ionic mechanism that differs from the radical addition pathway commonly proposed for 1,6-addition to quinones. The origin of 1,6-addition selectivity was investigated through computational studies. Preliminary studies show that the obtained 3-aminoindoles atropisomers exhibit anticancer activities. This method is valuable with respect to enlarging the toolbox for atropochiral amine derivatives.
Collapse
Affiliation(s)
- Jingyang Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tong Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Langyu Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Honghua Zuo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
139
|
Cho SM, Kim JY, Han S, Ryu DH. Visible Light-Mediated Enantioselective Addition of α-Aminoalkyl Radicals to Ketones Catalyzed by Chiral Oxazaborolidinium Ion. J Org Chem 2022; 87:11196-11203. [PMID: 35912586 DOI: 10.1021/acs.joc.2c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a visible light-mediated synthetic method for chiral 1,2-amino tertiary alcohols is described. In the presence of a chiral oxazaborolidinium ion catalyst and photosensitizer, the enantioselective addition of an α-aminoalkyl radical to aryl methyl ketones under visible light provides chiral 1,2-amino tertiary alcohol derivatives in high yields (up to 88%) with excellent enantioselectivities (up to 98% ee). With mechanistic studies such as radical trapping analysis, radical clock analysis, and the measurement of quantum yield, a plausible catalytic cycle is proposed.
Collapse
Affiliation(s)
- Soo Min Cho
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Jae Yeon Kim
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Shinyeong Han
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| |
Collapse
|
140
|
Nebauer J, Neiß C, Krug M, Vogel A, Fehn D, Ozaki S, Rominger F, Meyer K, Kamada K, Guldi DM, Görling A, Kivala M. Oxidative Cyclodehydrogenation of Trinaphthylamine: Selective Formation of a Nitrogen‐Centered Polycyclic π‐System Comprising 5‐ and 7‐Membered Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Johannes Nebauer
- Ruprecht Karls Universitat Heidelberg Organisch-Chemisches Institut GERMANY
| | - Christian Neiß
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department Chemie und Pharmazie GERMANY
| | - Marcel Krug
- Friedrich Alexander University Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department Chemie und Pharmazie GERMANY
| | - Alexander Vogel
- Ruprecht Karls Universitat Heidelberg Organisch-Chemisches Institut GERMANY
| | - Dominik Fehn
- Friedrich Alexander University Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department Chemie und Pharmazie GERMANY
| | - Shuhei Ozaki
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus Department of Chemistry GERMANY
| | - Frank Rominger
- Ruprecht Karls Universitat Heidelberg Fakultat fur Chemie und Geowissenschaften Organisch-Chemisches Institut GERMANY
| | - Karsten Meyer
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Department Chemie und Pharmazie GERMANY
| | - Kenji Kamada
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus Department of Chemistry GERMANY
| | - Dirk M. Guldi
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Naturwissenschaftliche Fakultat Department Chemie und Pharmazie GERMANY
| | - Andreas Görling
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Naturwissenschaftliche Fakultat Department Chemie und Pharmazie GERMANY
| | - Milan Kivala
- Ruprecht Karls Universitat Heidelberg Fakultat fur Chemie und Geowissenschaften Organisch-Chemisches Institute Im Neuenheimer Feld 270 69120 Heidelberg GERMANY
| |
Collapse
|
141
|
Song G, Nong DZ, Li JS, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. General Method for the Amination of Aryl Halides with Primary and Secondary Alkyl Amines via Nickel Photocatalysis. J Org Chem 2022; 87:10285-10297. [PMID: 35877165 DOI: 10.1021/acs.joc.2c01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Buchwald-Hartwig C-N coupling reaction has been ranked as one of the 20 most frequently used reactions in medicinal chemistry. Owing to its much lower cost and higher reactivity toward less reactive aryl chlorides than palladium, the C-N coupling reaction catalyzed by Ni-based catalysts has received a great deal of attention. However, there appear to be no universal, practical Ni catalytic systems so far that could enable the coupling of electron-rich and electron-poor aryl halides with both primary and secondary alkyl amines. In this study, it is reported that a Ni(II)-bipyridine complex catalyzes efficient C-N coupling of aryl chlorides and bromides with various primary and secondary alkyl amines under direct excitation with light. Intramolecular C-N coupling is also demonstrated. The feasibility and applicability of the protocol in organic synthesis is attested by more than 200 examples.
Collapse
Affiliation(s)
- Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ding-Zhan Nong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing-Sheng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
142
|
Pérez-Fehrmann M, Kesternich V, Puelles A, Quezada V, Salazar F, Christen P, Castillo J, Cárcamo JG, Castro-Alvarez A, Nelson R. Synthesis, antitumor activity, 3D-QSAR and molecular docking studies of new iodinated 4-(3 H)-quinazolinones 3 N-substituted. RSC Adv 2022; 12:21340-21352. [PMID: 35975048 PMCID: PMC9344282 DOI: 10.1039/d2ra03684c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
A novel series of 6-iodo-2-methylquinazolin-4-(3H)-one derivatives, 3a–n, were synthesized and evaluated for their in vitro cytotoxic activity. Compounds 3a, 3b, 3d, 3e, and 3h showed remarkable cytotoxic activity on specific human cancer cell lines when compared to the anti-cancer drug, paclitaxel. Compound 3a was found to be particularly effective on promyelocytic leukaemia HL60 and non-Hodgkin lymphoma U937, with IC50 values of 21 and 30 μM, respectively. Compound 3d showed significant activity against cervical cancer HeLa (IC50 = 10 μM). The compounds 3e and 3h were strongly active against glioblastoma multiform tumour T98G, with IC50 values of 12 and 22 μM, respectively. These five compounds showed an interesting cytotoxic activity on four human cancer cell types of high incidence. The molecular docking results reveal a good correlation between experimental activity and calculated binding affinity on dihydrofolate reductase (DHFR). Docking studies proved 3d as the most potent compound. In addition, the three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis exhibited activities that may indicate the existence of electron-withdrawing and lipophilic groups at the para-position of the phenyl ring and hydrophobic interactions of the quinazolinic ring in the DHFR active site. New iodinated 4-(3H)-quinazolinones 3N-substituted with antitumor activity and 3D-QSAR and molecular docking studies as dihydrofolate reductase (DHFR) inhibitors.![]()
Collapse
Affiliation(s)
- Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Arturo Puelles
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Fernanda Salazar
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Philippe Christen
- School of Pharmaceutical Sciences University of Geneva 1211 Geneva 4 Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva 1211 Geneva 4 Switzerland
| | - Jonathan Castillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR) Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera Av. Francisco Salazar 01145 Temuco 4780000 Chile.,Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| |
Collapse
|
143
|
Abstract
Synthetic chemists have long focused on selective C(sp 3)-N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp 3)-H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.
Collapse
|
144
|
Valentini F, Di Erasmo B, Ciancuti C, Rossi S, Maramai S, Taddei M, Vaccaro L. Macroreticular POLITAG-Pd(0) for the waste minimized hydrogenation/reductive amination of phenols using formic acid as hydrogen source. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
145
|
Vijeta A, Casadevall C, Reisner E. An Integrated Carbon Nitride-Nickel Photocatalyst for the Amination of Aryl Halides Using Sodium Azide. Angew Chem Int Ed Engl 2022; 61:e202203176. [PMID: 35332981 PMCID: PMC9321912 DOI: 10.1002/anie.202203176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/12/2022]
Abstract
The synthesis of primary anilines via sustainable methods remains a challenge in organic synthesis. We report a photocatalytic protocol for the selective synthesis of primary anilines via cross-coupling of a wide range of aryl/heteroaryl halides with sodium azide using a photocatalyst powder consisting of nickel(II) deposited on mesoporous carbon nitride (Ni-mpg-CNx ). This heterogeneous photocatalyst contains a high surface area with a visible light-absorbing and adaptive "built-in" solid-state ligand for the integrated catalytic Ni site. The method displays a high functional group tolerance, requires mild reaction conditions, and benefits from easy recovery and reuse of the photocatalyst powder. Thereby, it overcomes the need of complex ligand scaffolds required in homogeneous catalysis, precious metals and elevated temperatures/pressures in existing protocols of primary anilines synthesis. The reported heterogeneous Ni-mpg-CNx holds potential for applications in the academic and industrial synthesis of anilines and exploration of other photocatalytic transformations.
Collapse
Affiliation(s)
- Arjun Vijeta
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Carla Casadevall
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
146
|
Chernyshev VM, Khazipov OV, Shevchenko MA, Pasyukov DV, Burykina JV, Minyaev ME, Eremin DB, Ananikov VP. Discovery of the N–NHC Coupling Process under the Conditions of Pd/NHC- and Ni/NHC-Catalyzed Buchwald–Hartwig Amination. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Oleg V. Khazipov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Maksim A. Shevchenko
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Dmitry V. Pasyukov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
147
|
Wu Q, Muto K, Yamaguchi J. Pd-Catalyzed 1,4-Carboamination of Bicyclic Bromoarenes with Diazo Compounds and Amines. Org Lett 2022; 24:4129-4134. [PMID: 35652792 DOI: 10.1021/acs.orglett.2c01233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed 1,4-carboamination of bromoarenes with diazo compounds and amines was developed. This reaction proceeds through a palladium-carbene that then generates a π-benzylpalladium intermediate, forming ipso C-C and para C-N bonds on bromoarenes in a regioselective manner. The successful application of this transformation to the rapid synthesis of an antitumor agent demonstrates its synthetic utility.
Collapse
Affiliation(s)
- Qikun Wu
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
148
|
Wang K, Fan R, Wei X, Fang W. Palladacyclic N-heterocyclic carbene precatalysts for transition metal catalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
149
|
Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. Photoinduced Transition-Metal-Free Chan-Evans-Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. J Am Chem Soc 2022; 144:9161-9171. [PMID: 35549253 DOI: 10.1021/jacs.2c03343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.
Collapse
Affiliation(s)
- Zijun Zhou
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
150
|
Qin J, Zhou T, Zhou T, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao RZ, Zhong F. Catalytic Atroposelective Electrophilic Amination of Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jingyang Qin
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Tong Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Taiping Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Langyu Tang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Honghua Zuo
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Huaibin Yu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Guojiao Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Fangrui Zhong
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering Luoyu road 1037 430074 Wuhan CHINA
| |
Collapse
|