101
|
Dualsteric modulators of the M2 muscarinic acetylcholine receptor. J Cheminform 2014. [PMCID: PMC3980162 DOI: 10.1186/1758-2946-6-s1-p40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
102
|
Recent progress in understanding subtype specific regulation of NMDA receptors by G Protein Coupled Receptors (GPCRs). Int J Mol Sci 2014; 15:3003-24. [PMID: 24562329 PMCID: PMC3958896 DOI: 10.3390/ijms15023003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/30/2013] [Accepted: 02/12/2014] [Indexed: 12/24/2022] Open
Abstract
G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity.
Collapse
|
103
|
Bhattacharya S, Katlinski KV, Reichert M, Takano S, Brice A, Zhao B, Yu Q, Zheng H, Carbone CJ, Katlinskaya YV, Leu NA, McCorkell KA, Srinivasan S, Girondo M, Rui H, May MJ, Avadhani NG, Rustgi AK, Fuchs SY. Triggering ubiquitination of IFNAR1 protects tissues from inflammatory injury. EMBO Mol Med 2014; 6:384-97. [PMID: 24480543 PMCID: PMC3958312 DOI: 10.1002/emmm.201303236] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type 1 interferons (IFN) protect the host against viruses by engaging a cognate receptor (consisting of IFNAR1/IFNAR2 chains) and inducing downstream signaling and gene expression. However, inflammatory stimuli can trigger IFNAR1 ubiquitination and downregulation thereby attenuating IFN effects in vitro. The significance of this paradoxical regulation is unknown. Presented here results demonstrate that inability to stimulate IFNAR1 ubiquitination in the Ifnar1(SA) knock-in mice renders them highly susceptible to numerous inflammatory syndromes including acute and chronic pancreatitis, and autoimmune and toxic hepatitis. Ifnar1(SA) mice (or their bone marrow-receiving wild type animals) display persistent immune infiltration of inflamed tissues, extensive damage and gravely inadequate tissue regeneration. Pharmacologic stimulation of IFNAR1 ubiquitination is protective against from toxic hepatitis and fulminant generalized inflammation in wild type but not Ifnar1(SA) mice. These results suggest that endogenous mechanisms that trigger IFNAR1 ubiquitination for limiting the inflammation-induced tissue damage can be purposely mimicked for therapeutic benefits.
Collapse
Affiliation(s)
- Sabyasachi Bhattacharya
- Department of Animal Biology, School of Veterinary Medicine University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Zhao P, Metcalf M, Bunnett NW. Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 2014; 5:67. [PMID: 24860547 PMCID: PMC4026716 DOI: 10.3389/fendo.2014.00067] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/22/2014] [Indexed: 01/06/2023] Open
Abstract
In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions.
Collapse
Affiliation(s)
- Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Matthew Metcalf
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Nigel W. Bunnett, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia e-mail:
| |
Collapse
|
105
|
GPCR & Company: Databases and Servers for GPCRs and Interacting Partners. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:185-204. [DOI: 10.1007/978-94-007-7423-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
106
|
Employing novel animal models in the design of clinically efficacious GPCR ligands. Curr Opin Cell Biol 2013; 27:117-25. [PMID: 24680437 PMCID: PMC3989050 DOI: 10.1016/j.ceb.2013.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
The headline success of targeting GPCRs in human diseases has masked the fact that many GPCR drug discovery programmes fail. This is despite a substantial increase in our understanding of GPCR pharmacology that has provided an array of ligands that target both orthosteric and allosteric sites as well as ligands that show stimulus bias. From this plethora of pharmacological possibilities, can we design ligand properties that would deliver maximal clinical efficacy with lowest toxicity? This may be achieved through animal models that both validate a particular GPCR as a target as well as revealing the signalling mechanisms that underlie receptor-mediated physiological and clinical responses. In this article, we examine recent novel transgenic models being employed to address this issue.
Collapse
|
107
|
Skrabalova J, Drastichova Z, Novotny J. Morphine as a Potential Oxidative Stress-Causing Agent. MINI-REV ORG CHEM 2013; 10:367-372. [PMID: 24376392 PMCID: PMC3871421 DOI: 10.2174/1570193x113106660031] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 12/21/2022]
Abstract
Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress.
Collapse
Affiliation(s)
- Jitka Skrabalova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| |
Collapse
|
108
|
Wootten D, Christopoulos A, Sexton PM. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 2013; 12:630-44. [PMID: 23903222 DOI: 10.1038/nrd4052] [Citation(s) in RCA: 372] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allosteric ligands bind to G protein-coupled receptors (GPCRs; also known as seven-transmembrane receptors) at sites that are distinct from the sites to which endogenous ligands bind. The existence of allosteric ligands has enriched the ways in which the functions of GPCRs can be manipulated for potential therapeutic benefit, yet the complexity of their actions provides both challenges and opportunities for drug screening and development. Converging avenues of research in areas such as biased signalling by allosteric ligands and the mechanisms by which allosteric ligands modulate the effects of diverse endogenous ligands have provided new insights into how interactions between allosteric ligands and GPCRs could be exploited for drug discovery. These new findings have the potential to alter how screening for allosteric drugs is performed and may increase the chances of success in the development of allosteric modulators as clinical lead compounds.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
109
|
Justus CR, Dong L, Yang LV. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol 2013; 4:354. [PMID: 24367336 PMCID: PMC3851830 DOI: 10.3389/fphys.2013.00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/19/2013] [Indexed: 01/02/2023] Open
Abstract
The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Oncology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Lixue Dong
- Department of Oncology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Li V Yang
- Department of Oncology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; Department of Internal Medicine, Brody School of Medicine, East Carolina University Greenville, NC, USA ; Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
110
|
Valtcheva N, Primorac A, Jurisic G, Hollmén M, Detmar M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J Biol Chem 2013; 288:35736-48. [PMID: 24178298 DOI: 10.1074/jbc.m113.512954] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The important role of the lymphatic vascular system in pathological conditions such as inflammation and cancer has been increasingly recognized, but its potential as a pharmacological target is poorly exploited. Our study aimed at the identification and molecular characterization of lymphatic-specific G protein-coupled receptors (GPCRs) to assess new targets for pharmacological manipulation of the lymphatic vascular system. We used a TaqMan quantitative RT-PCR-based low density array to determine the GPCR expression profiles of ex vivo isolated intestinal mouse lymphatic (LECs) and blood vascular endothelial cells (BECs). GPR97, an orphan adhesion GPCR of unknown function, was the most highly and specifically expressed GPCR in mouse lymphatic endothelium. Using siRNA silencing, we found that GPR97-deficient primary human LECs displayed increased adhesion and collective cell migration, whereas single cell migration was decreased as compared with nontargeting siRNA-transfected control LECs. Loss of GPR97 shifted the ratio of active Cdc42 and RhoA and initiated cytoskeletal rearrangements, including F-actin redistribution, paxillin and PAK4 phosphorylation, and β1-integrin activation. Our data suggest a possible role of GPR97 in lymphatic remodeling and furthermore provide the first insights into the biological functions of GPR97.
Collapse
Affiliation(s)
- Nadejda Valtcheva
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
111
|
Zhang X, Tan F, Skidgel RA. Carboxypeptidase M is a positive allosteric modulator of the kinin B1 receptor. J Biol Chem 2013; 288:33226-40. [PMID: 24108126 DOI: 10.1074/jbc.m113.520791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand binding to extracellular domains of G protein-coupled receptors can result in novel and nuanced allosteric effects on receptor signaling. We previously showed that the protein-protein interaction of carboxypeptidase M (CPM) and kinin B1 receptor (B1R) enhances B1R signaling in two ways; 1) kinin binding to CPM causes a conformational activation of the B1R, and 2) CPM-generated des-Arg-kinin agonist is efficiently delivered to the B1R. Here, we show CPM is also a positive allosteric modulator of B1R signaling to its agonist, des-Arg(10)-kallidin (DAKD). In HEK cells stably transfected with B1R, co-expression of CPM enhanced DAKD-stimulated increases in intracellular Ca(2+) or phosphoinositide turnover by a leftward shift of the dose-response curve without changing the maximum. CPM increased B1R affinity for DAKD by ∼5-fold but had no effect on basal B1R-dependent phosphoinositide turnover. Soluble, recombinant CPM bound to HEK cells expressing B1Rs without stimulating receptor signaling. CPM positive allosteric action was independent of enzyme activity but depended on interaction of its C-terminal domain with the B1R extracellular loop 2. Disruption of the CPM/B1R interaction or knockdown of CPM in cytokine-treated primary human endothelial cells inhibited the allosteric enhancement of CPM on B1R DAKD binding or ERK1/2 activation. CPM also enhanced the DAKD-induced B1R conformational change as detected by increased intramolecular fluorescence or bioluminescence resonance energy transfer. Thus, CPM binding to extracellular loop 2 of the B1R results in positive allosteric modulation of B1R signaling, and disruption of this interaction could provide a novel therapeutic approach to reduce pathological B1R signaling.
Collapse
|
112
|
Kimple AJ, Garland AL, Cohen SP, Setola V, Willard FS, Zielinski T, Lowery RG, Tarran R, Siderovski DP. RGS21, a regulator of taste and mucociliary clearance? Laryngoscope 2013; 124:E56-63. [PMID: 23908053 DOI: 10.1002/lary.24326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2013] [Accepted: 07/05/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVES/HYPOTHESIS Motile cilia of airway epithelial cells help to expel harmful inhaled material. Activation of bitterant-responsive G protein-coupled receptors (GPCRs) is believed to potentiate cilia beat frequency and mucociliary clearance. In this study, we investigated whether regulator of G protein signaling-21 (RGS21) has the potential to modulate signaling pathways connected to airway mucociliary clearance, given that RGS proteins modulate GPCR signaling by acting as GTPase-accelerating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins. STUDY DESIGN This is a pilot investigation to determine if RGS21, a potential tastant specific RGS gene, is expressed in sinonasal mucosa, and to determine its specific Gα substrate using in vitro biochemical assays with purified proteins. METHODS Rgs21 expression in sinonasal mucosa was determined using quantitative, real-time PCR and a transgenic mouse expressing RFP from the Rgs21 promoter. Rgs21 was cloned, over-expressed, and purified using multistep protein chromatography. Biochemical and biophysical assays were used to determine if RGS21 could bind and accelerate the hydrolysis of GTP on heterotrimeric Gα subunits. RESULTS Rgs21 was expressed in sinonasal mucosa and lingual epithelium. Purified recombinant protein directly bound and accelerated GTP hydrolysis on Gα subunits. CONCLUSIONS Rgs21 is expressed in sinonasal mucosa, is amenable to purification as a recombinant protein, and can bind to Gα(i/o/q) subunits. Furthermore, RGS21 can accelerate the hydrolysis rate of GTP on Gαi subunits. This provides evidence that RGS21 may be a negative regulator of bitterant responses. Future studies will be needed to determine the physiological role of this protein in mucociliary clearance.
Collapse
Affiliation(s)
- Adam J Kimple
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, U.S.A; Department of Pharmacology, University of North Carolina at Chapel Hill, North Carolina, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Barlow N, Baker SP, Scammells PJ. Effect of Linker Length and Composition on Heterobivalent Ligand-Mediated Receptor Cross-Talk between the A1Adenosine and β2Adrenergic Receptors. ChemMedChem 2013; 8:2036-46. [DOI: 10.1002/cmdc.201300286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 01/09/2023]
|
114
|
Taylor SW, Nikoulina SE, Andon NL, Lowe C. Peptidomic profiling of secreted products from pancreatic islet culture results in a higher yield of full-length peptide hormones than found using cell lysis procedures. J Proteome Res 2013; 12:3610-9. [PMID: 23746063 DOI: 10.1021/pr400115q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptide Hormone Acquisition through Smart Sampling Technique-Mass Spectrometry (PHASST-MS) is a peptidomics platform that employs high resolution liquid chromatography-mass spectrometry (LC-MS) techniques to identify peptide hormones secreted from in vitro or ex vivo cultures enriched in endocrine cells. Application of the methodology to the study of murine pancreatic islets has permitted evaluation of the strengths and weaknesses of the approach, as well as comparison of our results with published islet studies that employed traditional cellular lysis procedures. We found that, while our PHASST-MS approach identified fewer peptides in total, we had greater representation of intact peptide hormones. The technique was further refined to improve coverage of hydrophilic as well as hydrophobic peptides and subsequently applied to human pancreatic islet cultures derived from normal donors or donors with type 2 diabetes. Interestingly, in addition to the expected islet hormones, we identified alpha-cell-derived bioactive GLP-1, consistent with recent reports of paracrine effects of this hormone on beta-cell function. We also identified many novel peptides derived from neurohormonal precursors and proteins related to the cell secretory system. Taken together, these results suggest the PHASST-MS strategy of focusing on cellular secreted products rather than the total tissue peptidome may improve the probability of discovering novel bioactive peptides and also has the potential to offer important new insights into the secretion and function of known hormones.
Collapse
Affiliation(s)
- Steven W Taylor
- Amylin Pharmaceuticals, LLC., 9360 Towne Centre Drive, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
115
|
Shiraishi A, Niijima S, Brown JB, Nakatsui M, Okuno Y. Chemical genomics approach for GPCR-ligand interaction prediction and extraction of ligand binding determinants. J Chem Inf Model 2013; 53:1253-62. [PMID: 23721295 DOI: 10.1021/ci300515z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical genomics research has revealed that G-protein coupled receptors (GPCRs) interact with a variety of ligands and that a large number of ligands are known to bind GPCRs even with low transmembrane (TM) sequence similarity. It is crucial to extract informative binding region propensities from large quantities of bioactivity data. To address this issue, we propose a machine learning approach that enables identification of both chemical substructures and amino acid properties that are associated with ligand binding, which can be applied to virtual ligand screening on a GPCR-wide scale. We also address the question of how to select plausible negative noninteraction pairs based on a statistical approach in order to develop reliable prediction models for GPCR-ligand interactions. The key interaction sites estimated by our approach can be of great use not only for screening of active compounds but also for modification of active compounds with the aim of improving activity or selectivity.
Collapse
Affiliation(s)
- Akira Shiraishi
- Department of Systems Biosciences for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto
| | | | | | | | | |
Collapse
|
116
|
Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proc Natl Acad Sci U S A 2013; 110:10830-5. [PMID: 23754417 DOI: 10.1073/pnas.1300393110] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
μ-Opioid receptors are among the most studied G protein-coupled receptors because of the therapeutic value of agonists, such as morphine, that are used to treat chronic pain. However, these drugs have significant side effects, such as respiratory suppression, constipation, allodynia, tolerance, and dependence, as well as abuse potential. Efforts to fine tune pain control while alleviating the side effects of drugs, both physiological and psychological, have led to the development of a wide variety of structurally diverse agonist ligands for the μ-opioid receptor, as well as compounds that target κ- and δ-opioid receptors. In recent years, the identification of allosteric ligands for some G protein-coupled receptors has provided breakthroughs in obtaining receptor subtype-selectivity that can reduce the overall side effect profiles of a potential drug. However, positive allosteric modulators (PAMs) can also have the specific advantage of only modulating the activity of the receptor when the orthosteric agonist occupies the receptor, thus maintaining spatial and temporal control of receptor signaling in vivo. This second advantage of allosteric modulators may yield breakthroughs in opioid receptor research and could lead to drugs with improved side-effect profiles or fewer tolerance and dependence issues compared with orthosteric opioid receptor agonists. Here, we describe the discovery and characterization of μ-opioid receptor PAMs and silent allosteric modulators, identified from high-throughput screening using a β-arrestin-recruitment assay.
Collapse
|
117
|
Carney TJ, Ingham PW. Drugging Hedgehog: signaling the pathway to translation. BMC Biol 2013; 11:37. [PMID: 23587183 PMCID: PMC3626896 DOI: 10.1186/1741-7007-11-37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022] Open
Abstract
First discovered in Drosophila, the Hedgehog signaling pathway controls a wide range of developmental processes and is implicated in a variety of cancers. The success of a screen for chemical modulators of this pathway, published in 2002, opened a new chapter in the quest to translate the results of basic developmental biology research into therapeutic applications. Small molecule pathway agonists are now used to program stem cells, whilst antagonists are proving effective as anti-cancer therapies.
Collapse
Affiliation(s)
- Tom J Carney
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | |
Collapse
|
118
|
Petrel C, Hocking HG, Reynaud M, Upert G, Favreau P, Biass D, Paolini-Bertrand M, Peigneur S, Tytgat J, Gilles N, Hartley O, Boelens R, Stocklin R, Servent D. Identification, structural and pharmacological characterization of τ-CnVA, a conopeptide that selectively interacts with somatostatin sst3 receptor. Biochem Pharmacol 2013; 85:1663-71. [PMID: 23567999 DOI: 10.1016/j.bcp.2013.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 11/24/2022]
Abstract
Conopeptides are a diverse array of small linear and reticulated peptides that interact with high potency and selectivity with a large diversity of receptors and ion channels. They are used by cone snails for prey capture or defense. Recent advances in venom gland transcriptomic and venom peptidomic/proteomic technologies combined with bioactivity screening approaches lead to the identification of new toxins with original pharmacological profiles. Here, from transcriptomic/proteomic analyses of the Conus consors cone snail, we identified a new conopeptide called τ-CnVA, which displays the typical cysteine framework V of the T1-conotoxin superfamily. This peptide was chemically synthesized and its three-dimensional structure was solved by NMR analysis and compared to that of TxVA belonging to the same family, revealing very few common structural features apart a common orientation of the intercysteine loop. Because of the lack of a clear biological function associated with the T-conotoxin family, τ-CnVA was screened against more than fifty different ion channels and receptors, highlighting its capacity to interact selectively with the somatostatine sst3 receptor. Pharmacological and functional studies show that τ-CnVA displays a micromolar (Ki of 1.5μM) antagonist property for the sst3 receptor, being currently the only known toxin to interact with this GPCR subfamily.
Collapse
Affiliation(s)
- C Petrel
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Siehler S. G12/13-dependent signaling of G-protein-coupled receptors: disease context and impact on drug discovery. Expert Opin Drug Discov 2013; 2:1591-604. [PMID: 23488903 DOI: 10.1517/17460441.2.12.1591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptors (GPCRs) transmit extracellular signals across the plasma membrane via intracellular activation of heterotrimeric G proteins. The signal transduction pathways of Gs, Gi and Gq protein families are widely studied, whereas signaling properties of G12 proteins are only emerging. Many GPCRs were found to couple to G12/13 proteins in addition to coupling to one or more other types of G proteins. G12/13 proteins couple GPCRs to activation of the small monomeric GTPase RhoA. Activation of RhoA modulates various downstream effector systems relevant to diseases such as hypertension, artherosclerosis, asthma and cancer. GPCR screening assays exist for Gs-, Gi- and Gq-linked pathways, whereas a drug-screening assay for the G12-Rho pathway was developed only recently. The review gives an overview of the present understanding of the G12/13-related biology of GPCRs.
Collapse
Affiliation(s)
- Sandra Siehler
- Novartis Institutes for BioMedical Research Basel, Center for Proteomic Chemistry, Novartis Pharma AG, WSJ-88.2.05, 4002 Basel, Switzerland +41 61 324 8946 ; +41 61 324 2870 ;
| |
Collapse
|
120
|
Leschner J, Wennerberg G, Feierler J, Bermudez M, Welte B, Kalatskaya I, Wolber G, Faussner A. Interruption of the ionic lock in the bradykinin B2 receptor results in constitutive internalization and turns several antagonists into strong agonists. J Pharmacol Exp Ther 2013; 344:85-95. [PMID: 23086229 DOI: 10.1124/jpet.112.199190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The DRY motif with the highly conserved R3.50 is a hallmark of family A G protein-coupled receptors (GPCRs). The crystal structure of rhodopsin revealed a salt bridge between R135(3.50) and another conserved residue, E247(6.30), in helix 6. This ionic lock was shown to maintain rhodopsin in its inactive state. Thus far, little information is available on how interruption of this ionic bond affects signaling properties of nonrhodopsin GPCRs, because the focus has been on mutations of R3.50, although this residue is indispensable for G protein activation. To investigate the importance of an ionic lock for overall receptor activity in a nonrhodopsin GPCR, we mutated R128(3.50) and E238(6.30) in the bradykinin (BK) B(2) receptor (B(2)R) and stably expressed the constructs in HEK293 cells. As expected, mutation of R3.50 resulted in lack of G protein activation. In addition, this mutation led to considerable constitutive receptor internalization. Mutation of E6.30 (mutants E6.30A and E6.30R) also caused strong constitutive internalization. Most intriguingly, however, although the two E6.30 mutants displayed no increased basal phosphatidylinositol hydrolysis, they gave a response to three different B(2)R antagonists that was almost comparable to that obtained with BK. In contrast, swapping of R3.50 and E6.30, thus allowing the formation of an inverse ionic bond, resulted in rescue of the wild type phenotype. These findings demonstrate for the first time, to our knowledge, that interruption of the ionic lock in a family A GPCR can have distinctly different effects on receptor internalization and G protein stimulation, shedding new light on its role in the activation process.
Collapse
Affiliation(s)
- Jasmin Leschner
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-Maximilians-Universitaet, Pettenkoferstrasse 9, D-80336 Muenchen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Lane JR, Sexton PM, Christopoulos A. Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol Sci 2013. [DOI: 10.1016/j.tips.2012.10.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
122
|
|
123
|
|
124
|
Abstract
Solid-state NMR spectroscopy proved to be a versatile tool for characterization of structure and dynamics of complex biochemical systems. In particular, magic angle spinning (MAS) solid-state NMR came to maturity for application towards structural elucidation of biological macromolecules. Current challenges in applying solid-state NMR as well as progress achieved recently will be discussed in the following chapter focusing on conceptual aspects important for structural elucidation of proteins.
Collapse
Affiliation(s)
- Henrik Müller
- Institute of Physical Biology, Heinrich-Heine-University of Düsseldorf, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
125
|
Chen D, Errey JC, Heitman LH, Marshall FH, IJzerman AP, Siegal G. Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A(2A) receptor with novel biological activity. ACS Chem Biol 2012; 7:2064-73. [PMID: 23013674 DOI: 10.1021/cb300436c] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fragment-based drug discovery (FBDD) has proven a powerful method to develop novel drugs with excellent oral bioavailability against challenging pharmaceutical targets such as protein-protein interaction targets. Very recently the underlying biophysical techniques have begun to be successfully applied to membrane proteins. Here we show that novel, ligand efficient small molecules with a variety of biological activities can be found by screening a small fragment library using thermostabilized (StaR) G protein-coupled receptors (GPCRs) and target immobilized NMR screening (TINS). Detergent-solubilized StaR adenosine A(2A) receptor was immobilized with retention of functionality, and a screen of 531 fragments was performed. Hits from the screen were thoroughly characterized for biochemical activity using the wild-type receptor. Both orthosteric and allosteric modulatory activity has been demonstrated in biochemical validation assays. Allosteric activity was confirmed in cell-based functional assays. The validated fragment hits make excellent starting points for a subsequent hit-to-lead elaboration program.
Collapse
Affiliation(s)
- Dan Chen
- ZoBio BV, Leiden 2300RA, The Netherlands
| | - James C. Errey
- Heptares Therapeutics Limited, BioPark, Broadwater Road, Welwyn Garden City,
Hertfordshire AL7 3AX, U.K
| | | | - Fiona H. Marshall
- Heptares Therapeutics Limited, BioPark, Broadwater Road, Welwyn Garden City,
Hertfordshire AL7 3AX, U.K
| | | | | |
Collapse
|
126
|
Ivanova B, Spiteller M. Functionalized Ergot-alkaloids as potential dopamine D3 receptor agonists for treatment of schizophrenia. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
127
|
Mukai A, Yamamoto-Hino M, Komada M, Okano H, Goto S. Balanced ubiquitination determines cellular responsiveness to extracellular stimuli. Cell Mol Life Sci 2012; 69:4007-16. [PMID: 22825661 PMCID: PMC11115028 DOI: 10.1007/s00018-012-1084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 01/22/2023]
Abstract
Signal strength evoked by ligand stimulation is crucial for cellular responses such as fate decision, cell survival/death, secretion, and migration. For example, morphogens are secreted signaling molecules that form concentration gradients within tissues and induce distinct cell fates in a signal strength-dependent manner. In addition to extracellular ligand abundance, the sensitivity of signal-receiving cells to ligands also influences signal strength. Cell sensitivity to ligands is controlled at various levels: receptor presentation at the cell surface, positive/negative regulation of signal transduction, and target gene activation/repression. While the regulation of signal transduction and gene transcription is well studied, receptor presentation is still not fully understood. Recently, it was reported that cellular sensitivity to the Wingless (Wg)/Wnt morphogen is regulated by balanced ubiquitination and deubiquitination of its receptor Frizzled (Fz). In this review, we review how ubiquitination regulates receptor presentation at the cell surface for the detection of extracellular signal strength.
Collapse
Affiliation(s)
- Akiko Mukai
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-Kagaku Institute of Life Sciences, Minamiooya, Machida, Tokyo 194-8511 Japan
| | - Miki Yamamoto-Hino
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-Kagaku Institute of Life Sciences, Minamiooya, Machida, Tokyo 194-8511 Japan
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masayuki Komada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Satoshi Goto
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-Kagaku Institute of Life Sciences, Minamiooya, Machida, Tokyo 194-8511 Japan
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
128
|
Fallarero A, Pohjanoksa K, Wissel G, Parkkisenniemi-Kinnunen UM, Xhaard H, Scheinin M, Vuorela P. High-throughput screening with a miniaturized radioligand competition assay identifies new modulators of human α2-adrenoceptors. Eur J Pharm Sci 2012; 47:941-51. [DOI: 10.1016/j.ejps.2012.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 11/30/2022]
|
129
|
McVeigh P, Atkinson L, Marks NJ, Mousley A, Dalzell JJ, Sluder A, Hammerland L, Maule AG. Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol Drugs Drug Resist 2012; 2:76-91. [PMID: 24533265 PMCID: PMC3862435 DOI: 10.1016/j.ijpddr.2011.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023]
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Louise Atkinson
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Nikki J. Marks
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Angela Mousley
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Johnathan J. Dalzell
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Ann Sluder
- Scynexis Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA
| | | | - Aaron G. Maule
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
130
|
Hara K, Shigemori T, Kuroda K, Ueda M. Membrane-displayed somatostatin activates somatostatin receptor subtype-2 heterologously produced in Saccharomyces cerevisiae. AMB Express 2012. [PMID: 23193953 PMCID: PMC3558460 DOI: 10.1186/2191-0855-2-63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) superfamily, which includes somatostatin receptors (SSTRs), is one of the most important drug targets in the pharmaceutical industry. The yeast Saccharomyces cerevisiae is an attractive host for the ligand screening of human GPCRs. Here, we demonstrate the utility of the technology that was developed for displaying peptide ligands on yeast plasma membrane, termed "PepDisplay", which triggers signal transduction upon GPCR activation. A yeast strain that heterologously produced human somatostatin receptor subtype-2 (SSTR2) and chimeric Gα protein was constructed along with membrane-displayed somatostatin; somatostatin was displayed on the yeast plasma membrane by linking it to the anchoring domain of the glycosylphosphatidylinositol anchored plasma membrane protein Yps1p. We demonstrate that the somatostatin displayed on the plasma membrane successfully activated human SSTR2 in S. cerevisiae. The methodology presented here provides a new platform for identifying novel peptide ligands for both liganded and orphan mammalian GPCRs.
Collapse
|
131
|
May S, Andreasson-Ochsner M, Fu Z, Low YX, Tan D, de Hoog HPM, Ritz S, Nallani M, Sinner EK. In-vitro-funktionalisierte Polymersomen: eine Strategie für die Wirkstoffsuche. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
132
|
May S, Andreasson-Ochsner M, Fu Z, Low YX, Tan D, de Hoog HPM, Ritz S, Nallani M, Sinner EK. In Vitro Expressed GPCR Inserted in Polymersome Membranes for Ligand-Binding Studies. Angew Chem Int Ed Engl 2012; 52:749-53. [DOI: 10.1002/anie.201204645] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/02/2012] [Indexed: 11/08/2022]
|
133
|
Haberland A, Wallukat G, Schimke I. Aptamer binding and neutralization of β1-adrenoceptor autoantibodies: basics and a vision of its future in cardiomyopathy treatment. Trends Cardiovasc Med 2012; 21:177-82. [PMID: 22814426 DOI: 10.1016/j.tcm.2012.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Autoantibodies directed against the second extracellular receptor loop of the β(1) receptor (β(1)-ECII-AABs) that belong to the superfamily of G protein-coupled receptors have been frequently found in patients with idiopathic dilated cardiomyopathy, Chagas' cardiomyopathy, and peripartum cardiomyopathy and have been clearly evidenced to be related to disease pathogenesis. Consequently, specific proteins or peptides used as binders in immunoapheresis or as in vivo neutralizers of β(1)-ECII-AABs have been suggested for patient treatment. Aptamers, which are target specifically selected short single- or double-stranded RNA or DNA sequences, are a recently introduced new molecule class applicable to bind and neutralize diverse molecule species, including antibodies. This article reviews selection technologies and characteristics of aptamers with respect to a single-stranded DNA aptamer recently identified as having a very high affinity against β(1)-ECII-AABs. The potential of this aptamer for the elimination of β(1)-ECII-AABs and in vivo neutralization is critically analyzed in view of its potential for future use in cardiomyopathy treatment.
Collapse
Affiliation(s)
- Annekathrin Haberland
- Pathobiochemie und Medizinische Chemie, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | |
Collapse
|
134
|
Cohen SP, Buckley BK, Kosloff M, Garland AL, Bosch DE, Cheng G, Radhakrishna H, Brown MD, Willard FS, Arshavsky VY, Tarran R, Siderovski DP, Kimple AJ. Regulator of G-protein signaling-21 (RGS21) is an inhibitor of bitter gustatory signaling found in lingual and airway epithelia. J Biol Chem 2012; 287:41706-19. [PMID: 23095746 DOI: 10.1074/jbc.m112.423806] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gustatory system detects tastants and transmits signals to the brain regarding ingested substances and nutrients. Although tastant receptors and taste signaling pathways have been identified, little is known about their regulation. Because bitter, sweet, and umami taste receptors are G protein-coupled receptors (GPCRs), we hypothesized that regulators of G protein signaling (RGS) proteins may be involved. The recent cloning of RGS21 from taste bud cells has implicated this protein in the regulation of taste signaling; however, the exact role of RGS21 has not been precisely defined. Here, we sought to determine the role of RGS21 in tastant responsiveness. Biochemical analyses confirmed in silico predictions that RGS21 acts as a GTPase-accelerating protein (GAP) for multiple G protein α subunits, including adenylyl cyclase-inhibitory (Gα(i)) subunits and those thought to be involved in tastant signal transduction. Using a combination of in situ hybridization, RT-PCR, immunohistochemistry, and immunofluorescence, we demonstrate that RGS21 is not only endogenously expressed in mouse taste buds but also in lung airway epithelial cells, which have previously been shown to express components of the taste signaling cascade. Furthermore, as shown by reverse transcription-PCR, the immortalized human airway cell line 16HBE was found to express transcripts for tastant receptors, RGS21, and downstream taste signaling components. Over- and underexpression of RGS21 in 16HBE cells confirmed that RGS21 acts to oppose bitter tastant signaling to cAMP and calcium second messenger changes. Our data collectively suggests that RGS21 modulates bitter taste signal transduction.
Collapse
Affiliation(s)
- Staci P Cohen
- Department of Pharmacology, University of North Carolina Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Dass JFP, Sudandiradoss C. The function and structural influence of selective relaxed constraint at functional intracellular loop3 of 5-HT1A serotonin-1 receptor family. Gene 2012; 508:211-20. [DOI: 10.1016/j.gene.2012.07.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
136
|
|
137
|
Development of new chromatographic tools based on A2A adenosine receptor subtype for ligand characterization and screening by FAC-MS. Anal Bioanal Chem 2012; 405:837-45. [PMID: 22960794 DOI: 10.1007/s00216-012-6353-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 12/26/2022]
Abstract
A liquid chromatographic stationary phase containing immobilized membranes from cells expressing A(2A) adenosine receptor (A(2A)AR) is firstly described. Cellular membranes from CHO cells stably transfected with human A(2A)AR vector (A(2A)(+)) and from the same cell line transfected with the corresponding empty vector (A(2A)(-)) were entrapped on immobilized artificial membrane (IAM) support and packed into 6.6 mm I.D. glass columns to create A(2A)(+)-IAM and A(2A)(-)-IAM stationary phases. Frontal chromatography experiments on both A(2A)(+)-IAM and A(2A)(-)-IAM columns demonstrated the presence of a low specific interaction with the receptor. However, immobilized A(2A) retained its ability to specifically bind known ligands as demonstrated by the agreement of the calculated K(d) values with two different chromatographic protocols in comparison to previously reported data. In order to maximize the specific interaction, the same cellular membranes were immobilized on the inner surface of a silica capillary (40 cm × 100 μm I.D.) by non-covalent interactions using the avidin-biotin coupling system to create two open tubular columns A(2A)(+)-OT and A(2A)(-)-OT. The open tubular system was characterized by ranking experiments for affinity studies in mixture useful for the selection of new potential candidates.
Collapse
|
138
|
Ivanova BB, Spiteller M. Derivatives of Ergot-alkaloids: Molecular structure, physical properties, and structure–activity relationships. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.04.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
139
|
Cho YM, Merchant CE, Kieffer TJ. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 2012; 135:247-78. [DOI: 10.1016/j.pharmthera.2012.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
|
140
|
Halai R, Croker DE, Suen JY, Fairlie DP, Cooper MA. A Comparative Study of Impedance versus Optical Label-Free Systems Relative to Labelled Assays in a Predominantly Gi Coupled GPCR (C5aR) Signalling. BIOSENSORS 2012; 2:273-90. [PMID: 25585930 PMCID: PMC4263554 DOI: 10.3390/bios2030273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/11/2012] [Accepted: 07/24/2012] [Indexed: 12/18/2022]
Abstract
Profiling ligand function on G-protein coupled receptors (GPCRs) typically involves using transfected cells over-expressing a target of interest, a labelled ligand, and intracellular secondary messenger reporters. In contrast, label-free assays are sensitive enough to allow detection in native cells, which may provide a more physiologically relevant readout. Here, we compare four agonists (native agonists, a peptide full agonist and a peptide partial agonist) that stimulate the human inflammatory GPCR C5aR. The receptor was challenged when present in human monocyte-derived macrophages (HMDM) versus stably transfected human C5aR-CHO cells. Receptor activation was compared on label-free optical and impedance biosensors and contrasted with results from two traditional reporter assays. The rank order of potencies observed across label-free and pathway specific assays was similar. However, label-free read outs gave consistently lower potency values in both native and transfected cells. Relative to pathway-specific assays, these technologies measure whole-cell responses that may encompass multiple signalling events, including down-regulatory events, which may explain the potency discrepancies observed. These observations have important implications for screening compound libraries against GPCR targets and for selecting drug candidates for in vivo assays.
Collapse
Affiliation(s)
- Reena Halai
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Daniel E Croker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jacky Y Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
141
|
Noblin DJ, Bertekap RL, Burford NT, Hendricson A, Zhang L, Knox R, Banks M, O'Connell J, Alt A. Development of a high-throughput calcium flux assay for identification of all ligand types including positive, negative, and silent allosteric modulators for G protein-coupled receptors. Assay Drug Dev Technol 2012; 10:457-67. [PMID: 22746835 DOI: 10.1089/adt.2011.443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, the increased use of cell-based functional assays for G protein-coupled receptors in high-throughput screening has enabled the design of robust assays to identify allosteric modulators (AMs) in addition to the more traditional orthosteric agonists and antagonists. In this article, the authors describe a screening format able to identify all ligand types using a triple-add assay that measures changes in cytosolic calcium concentration with three separate additions and reads in the same assay plate. This triple-add assay captures more small molecule ligand types than previously described assay formats without a significant increase in screening cost. Finally, the customizability of the triple-add assay to suit the needs of various AM screening programs is demonstrated.
Collapse
Affiliation(s)
- Devin J Noblin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Belmonte SL, Blaxall BC. Conducting the G-protein Coupled Receptor (GPCR) Signaling Symphony in Cardiovascular Diseases: New Therapeutic Approaches. ACTA ACUST UNITED AC 2012; 9:e85-e90. [PMID: 23162605 DOI: 10.1016/j.ddmod.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a virtually ubiquitous class of membrane-bound receptors, which functionally couple hormone or neurotransmitter signals to physiological responses. Dysregulation of GPCR signaling contributes to the pathophysiology of a host of cardiovascular disorders. Pharmacological agents targeting GPCRs have been established as therapeutic options for decades. Nevertheless, the persistent burden of cardiovascular diseases necessitates improved treatments. To that end, exciting drug development efforts have begun to focus on novel compounds that discriminately activate particular GPCR signaling pathways.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
143
|
Cui L, Li J, Xie X. Rediocide A, an Insecticide, induces G-protein-coupled receptor desensitization via activation of conventional protein kinase C. JOURNAL OF NATURAL PRODUCTS 2012; 75:1058-1062. [PMID: 22650618 DOI: 10.1021/np3000359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In order to identify small-molecule antagonists of Methuselah (Mth), a Drosophila G-protein-coupled receptor (GPCR) involved in life-span control, a library of natural compounds was screened, and it was found that rediocide A (1), a daphnane ester from the roots of Trigonostemon reidioides and used currently for flea control, potently inhibited calcium mobilization mediated by this receptor. Compound 1 inhibited calcium mobilization in GPCRs other than Mth, indicating that the inhibitory effect was not due to receptor antagonism but rather to a more general mechanism. It was found that 1 can induce GPCR desensitization and internalization, and such effects were mediated by the activation of conventional protein kinase C.
Collapse
Affiliation(s)
- Lixin Cui
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | | | | |
Collapse
|
144
|
Affiliation(s)
- Alexander Dömling
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
145
|
Denis C, Saulière A, Galandrin S, Sénard JM, Galés C. Probing heterotrimeric G protein activation: applications to biased ligands. Curr Pharm Des 2012; 18:128-44. [PMID: 22229559 DOI: 10.2174/138161212799040466] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022]
Abstract
Cell surface G protein-coupled receptors (GPCRs) drive numerous signaling pathways involved in the regulation of a broad range of physiologic processes. Today, they represent the largest target for modern drugs development with potential application in all clinical fields. Recently, the concept of "ligand-directed trafficking" has led to a conceptual revolution in pharmacological theory, thus opening new avenues for drug discovery. Accordingly, GPCRs do not function as simple on-off switch but rather as filters capable of selecting the activation of specific signals and thus generating texture responses to ligands, a phenomenon often referred to as ligand-biased signaling. Also, one challenging task today remains optimization of pharmacological assays with increased sensitivity so to better appreciate the inherent texture of ligands. However, considering that a single receptor has pleiotropic signaling properties and that each signal can crosstalk at different levels, biased activity remains thus difficult to evaluate. One strategy to overcome these limitations would be examining the initial steps following receptor activation. Even, if some G protein independent functions have been recently described, heterotrimeric G protein activation remains a general hallmark for all GPCRs families and the first cellular event subsequent to agonist binding to the receptor. Herein, we review the different methodologies classically used or recently developed to monitor G protein activation and discussed them in the context of G protein biased-ligands.
Collapse
Affiliation(s)
- Colette Denis
- Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, Centre Hospitalier Universitaire de Toulouse, France.
| | | | | | | | | |
Collapse
|
146
|
Bandholtz S, Wichard J, Kühne R, Grötzinger C. Molecular evolution of a peptide GPCR ligand driven by artificial neural networks. PLoS One 2012; 7:e36948. [PMID: 22606313 PMCID: PMC3351444 DOI: 10.1371/journal.pone.0036948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 04/13/2012] [Indexed: 11/18/2022] Open
Abstract
Peptide ligands of G protein-coupled receptors constitute valuable natural lead structures for the development of highly selective drugs and high-affinity tools to probe ligand-receptor interaction. Currently, pharmacological and metabolic modification of natural peptides involves either an iterative trial-and-error process based on structure-activity relationships or screening of peptide libraries that contain many structural variants of the native molecule. Here, we present a novel neural network architecture for the improvement of metabolic stability without loss of bioactivity. In this approach the peptide sequence determines the topology of the neural network and each cell corresponds one-to-one to a single amino acid of the peptide chain. Using a training set, the learning algorithm calculated weights for each cell. The resulting network calculated the fitness function in a genetic algorithm to explore the virtual space of all possible peptides. The network training was based on gradient descent techniques which rely on the efficient calculation of the gradient by back-propagation. After three consecutive cycles of sequence design by the neural network, peptide synthesis and bioassay this new approach yielded a ligand with 70fold higher metabolic stability compared to the wild type peptide without loss of the subnanomolar activity in the biological assay. Combining specialized neural networks with an exploration of the combinatorial amino acid sequence space by genetic algorithms represents a novel rational strategy for peptide design and optimization.
Collapse
Affiliation(s)
- Sebastian Bandholtz
- Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Tumor Targeting Lab, Berlin, Germany
| | - Jörg Wichard
- Leibnitz-Institut für Molekulare Pharmakologie (fmp), Berlin, Germany
| | - Ronald Kühne
- Leibnitz-Institut für Molekulare Pharmakologie (fmp), Berlin, Germany
| | - Carsten Grötzinger
- Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Tumor Targeting Lab, Berlin, Germany
- * E-mail:
| |
Collapse
|
147
|
Goddard AD, Watts A. Contributions of fluorescence techniques to understanding G protein-coupled receptor dimerisation. Biophys Rev 2012; 4:291-298. [PMID: 28510206 DOI: 10.1007/s12551-012-0073-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/13/2012] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of eukaryotic cell-surface receptors and, over the last decade, it has become clear that they are capable of dimerisation. Whilst many biochemical and biophysical approaches have been used to study dimerisation, fluorescence techniques, including Förster resonance energy transfer and single molecule fluorescence, have been key players. Here we review recent contributions of fluorescence techniques to investigate GPCR dimers, including dimerisation in cell membranes and native tissues, the effect of ligand binding on dimerisation and the kinetics of dimer formation and dissociation. The challenges of studying multicomponent membrane protein systems have led to the development and refinement of many fluorescence assays, allowing the functional consequences of receptor dimerisation to be investigated and individual protein molecules to be imaged in the membranes of living cells. It is likely that the fluorescence techniques described here will be of use for investigating many other multicomponent membrane protein systems.
Collapse
Affiliation(s)
- Alan D Goddard
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
148
|
Hara K, Ono T, Kuroda K, Ueda M. Membrane-displayed peptide ligand activates the pheromone response pathway in Saccharomyces cerevisiae. J Biochem 2012; 151:551-7. [PMID: 22406406 DOI: 10.1093/jb/mvs027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The budding yeast, Saccharomyces cerevisiae, is an attractive host for studying G protein-coupled receptors (GPCRs). We developed a system in which a peptide ligand specific for GPCR is displayed on yeast plasma membrane. The model system described here is based on yeast plasma membrane display of an analogue of α-factor, which is a peptide ligand for Ste2p, the GPCR that activates the yeast pheromone response pathway. α-Factor analogues, containing linkers of varying lengths and produced in yeast cells, became attached to the cell plasma membrane by linking to the glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein Yps1p. We were able to demonstrate that an optimized α-factor analogue activated the pheromone response pathway in S. cerevisiae, as assessed by a fluorescent reporter assay. Furthermore, it was shown that linker length strongly influenced signalling pathway activation. To our knowledge, this is the first report documenting functional signalling by a plasma membrane-displayed ligand in S. cerevisiae.
Collapse
Affiliation(s)
- Keisuke Hara
- Research Fellow of the Japan Society for the Promotion of Science, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
149
|
Berg KA, Patwardhan AM, Akopian AN. Receptor and channel heteromers as pain targets. Pharmaceuticals (Basel) 2012; 5:249-78. [PMID: 24281378 PMCID: PMC3763638 DOI: 10.3390/ph5030249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/04/2012] [Accepted: 02/15/2012] [Indexed: 12/20/2022] Open
Abstract
Recent discoveries indicate that many G-protein coupled receptors (GPCRs) and channels involved in pain modulation are able to form receptor heteromers. Receptor and channel heteromers often display distinct signaling characteristics, pharmacological properties and physiological function in comparison to monomer/homomer receptor or ion channel counterparts. It may be possible to capitalize on such unique properties to augment therapeutic efficacy while minimizing side effects. For example, drugs specifically targeting heteromers may have greater tissue specificity and analgesic efficacy. This review will focus on current progress in our understanding of roles of heteromeric GPCRs and channels in pain pathways as well as strategies for controlling pain pathways via targeting heteromeric receptors and channels. This approach may be instrumental in the discovery of novel classes of drugs and expand our repertoire of targets for pain pharmacotherapy.
Collapse
Affiliation(s)
- Kelly A. Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (K.A.B.)
| | - Amol M. Patwardhan
- Department of Anesthesiology, Arizona Health Sciences Center, Tucson, AZ 85724, USA; (A.M.P.)
| | - Armen N. Akopian
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (K.A.B.)
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
150
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2012; 133:40-69. [PMID: 21903131 PMCID: PMC3241883 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|