101
|
Zhang DY, Zhu L, Liu HN, Tseng YJ, Weng SQ, Liu TT, Dong L, Shen XZ. The protective effect and mechanism of the FXR agonist obeticholic acid via targeting gut microbiota in non-alcoholic fatty liver disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2249-2270. [PMID: 31308634 PMCID: PMC6617567 DOI: 10.2147/dddt.s207277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/02/2019] [Indexed: 12/25/2022]
Abstract
Background: It is reported that various diseases such as non-alcoholic fatty liver disease (NAFLD) are associated with imbalance of microbiome. And FXR has been well investigated in liver diseases. Purpose: The objective of this study was to identify the role of farnesoid X receptor agonist obeticholic acid via targeting gut microbiota in NAFLD. Patients and methods: Male C57BL/6 mice were fed either a normal-chow diet or a high-fat diet (HFD). Obeticholic acid(30mg/(kg·d)) and/or a combination of antibiotics were administered orally by gavage to mice for 12 weeks. Gut microbiota profiles were established through 16S rRNA amplicon sequencing. The effects of obeticholic acid on liver inflammation, the gut barrier, endotoxemia, gut microbiome and composition of the bile acid were also investigated. Results: Obeticholic acid treatment can significantly improve obesity, circulation metabolism disorders, liver inflammation and fibrosis, and intestinal barrier damage caused by HFD. Removal of normal commensal bacteria can weaken the effect of obeticholic acid. The gut microbial structure was changed, and abundance of Blautia was increased significantly after treated with obeticholic acid. After obeticholic acid treatment, the concentration of taurine-bound bile acid caused by HFD was reduced in the liver. Conclusion: Taken together, these data suggest that obeticholic acid has aprotective effect on NAFLD via changing the components of gut microbiota, specifically increasing the abundance of Blautia.
Collapse
Affiliation(s)
- Dan-Ying Zhang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Lin Zhu
- Department of Geriatrics, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Hai-Ning Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Yu-Jen Tseng
- Department of Gastroenterology, Huashan Hospital of Fudan University, Shanghai 200040, People's Republic of China
| | - Shu-Qiang Weng
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
102
|
Nakhi A, McDermott CM, Stoltz KL, John K, Hawkinson JE, Ambrose EA, Khoruts A, Sadowsky MJ, Dosa PI. 7-Methylation of Chenodeoxycholic Acid Derivatives Yields a Substantial Increase in TGR5 Receptor Potency. J Med Chem 2019; 62:6824-6830. [PMID: 31268316 DOI: 10.1021/acs.jmedchem.9b00770] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TGR5 agonists are potential therapeutics for a variety of conditions including type 2 diabetes, obesity, and inflammatory bowel disease. After screening a library of chenodeoxycholic acid (CDCA) derivatives, it was determined that a range of modifications could be made to the acid moiety of CDCA which significantly increased TGR5 agonist potency. Surprisingly, methylation of the 7-hydroxyl of CDCA led to a further dramatic increase in potency, allowing the identification of 5.6 nM TGR5 agonist 17.
Collapse
Affiliation(s)
- Ali Nakhi
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Connor M McDermott
- Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Kristen L Stoltz
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Kristen John
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Elizabeth A Ambrose
- Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Alexander Khoruts
- Center for Immunology, Department of Medicine, Division of Gastroenterology , University of Minnesota , Minneapolis , Minnesota 55414 , United States.,BioTechnology Institute, Department of Soil, Water & Climate, and Department of Plant and Microbial Biology , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Michael J Sadowsky
- BioTechnology Institute, Department of Soil, Water & Climate, and Department of Plant and Microbial Biology , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Peter I Dosa
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| |
Collapse
|
103
|
Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats. Front Med 2019; 13:398-408. [DOI: 10.1007/s11684-019-0689-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
|
104
|
Shipley LC, Kodali S, Singal AK. Recent updates on alcoholic hepatitis. Dig Liver Dis 2019; 51:761-768. [PMID: 31010745 DOI: 10.1016/j.dld.2019.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Alcoholic hepatitis (AH) is a unique clinical syndrome that affects patients with chronic and active harmful alcohol consumption, and is associated with a high mortality of up to 40% at 1 month from presentation. It is important to assess disease severity and prognosis at time of presentation to identify patients at risk for high mortality and potential candidates for specific therapies. The cornerstone therapy for AH is enteral nutrition and abstinence. Steroids remain the only pharmacological option for severe AH however, adverse effects and lack of long-term benefit limit their routine use. Early liver transplantation is a potential salvage therapy for select severe AH patients. This review article comprehensively covers recent advances on the clinical unmet needs in the field including newer therapies and therapeutic targets, role of liver transplantation, and emerging biomarkers throughout the disease process from diagnosis, assessing prognosis and disease severity, and predicting responsiveness to medical therapies for severe AH.
Collapse
Affiliation(s)
- Lindsey C Shipley
- University of South Dakota Sanford School of Medicine, United States; Avera Transplant Institute, United States
| | - Sudha Kodali
- Division of Gastroenterology and Hepatology, Methodist Hospital, Houston, TX, United States
| | - Ashwani K Singal
- Division of Gastroenterology and Hepatology, University of South Dakota, Avera McKennan University Health Center and Transplant Institute, Sioux Falls, SD 57105, United States.
| |
Collapse
|
105
|
Manka P, Zeller A, Syn WK. Fibrosis in Chronic Liver Disease: An Update on Diagnostic and Treatment Modalities. Drugs 2019; 79:903-927. [DOI: 10.1007/s40265-019-01126-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
106
|
Flynn CR, Albaugh VL, Abumrad NN. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cell Mol Gastroenterol Hepatol 2019; 8:235-246. [PMID: 31075353 PMCID: PMC6664228 DOI: 10.1016/j.jcmgh.2019.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Bariatric surgery is the most effective and durable treatment for morbid obesity, with an unexplained yet beneficial side effect of restoring insulin sensitivity and improving glycemia, often before weight loss is observed. Among the many contributing mechanisms often cited, the altered handling of intestinal bile acids is of considerable therapeutic interest. Here, we review a growing body of literature examining the metabolic effects of bile acids ranging from their physical roles in dietary fat handling within the intestine to their functions as endocrine and paracrine hormones in potentiating responses to bariatric surgery. The roles of 2 important bile acid receptors, Takeda G-protein coupled receptor (also known as G-protein coupled bile acid receptor) and farnesoid X receptor, are highlighted as is downstream signaling through glucagon-like polypeptide 1 and its cognate receptor. Additional improvements in other phenotypes and potential contributions of commensal gut bacteria, such as Akkermansia muciniphila, which are manifest after Roux-en-Y gastric bypass and other emulations, such as gallbladder bile diversion to the ileum, are also discussed.
Collapse
Affiliation(s)
- Charles R. Flynn
- Correspondence Address correspondence to: Charles R. Flynn, PhD, 1161 21st Avenue S, CCC-2308 MCN, Nashville, Tennessee 37232-2730. fax: (615) 343-6456.
| | | | | |
Collapse
|
107
|
Zhou J, Huang N, Guo Y, Cui S, Ge C, He Q, Pan X, Wang G, Wang H, Hao H. Combined obeticholic acid and apoptosis inhibitor treatment alleviates liver fibrosis. Acta Pharm Sin B 2019; 9:526-536. [PMID: 31193776 PMCID: PMC6542786 DOI: 10.1016/j.apsb.2018.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Obeticholic acid (OCA), the first FXR-targeting drug, has been claimed effective in the therapy of liver fibrosis. However, recent clinical trials indicated that OCA might not be effective against liver fibrosis, possibly due to the lower dosage to reduce the incidence of the side-effect of pruritus. Here we propose a combinatory therapeutic strategy of OCA and apoptosis inhibitor for combating against liver fibrosis. CCl4-injured mice, d-galactosamine/LPS (GalN/LPS)-treated mice and cycloheximide/TNFα (CHX/TNFα)-treated HepG2 cells were employed to assess the effects of OCA, or together with IDN-6556, an apoptosis inhibitor. OCA treatment significantly inhibited hepatic stellate cell (HSC) activation/proliferation and prevented fibrosis. Elevated bile acid (BA) levels and hepatocyte apoptosis triggered the activation and proliferation of HSCs. OCA treatment reduced BA levels but could not inhibit hepatocellular apoptosis. An enhanced anti-fibrotic effect was observed when OCA was co-administrated with IDN-6556. Our study demonstrated that OCA inhibits HSCs activation/proliferation partially by regulating BA homeostasis and thereby inhibiting activation of HSCs. The findings in this study suggest that combined use of apoptosis inhibitor and OCA at lower dosage represents a novel therapeutic strategy for liver fibrosis.
Collapse
Key Words
- ALT, alanine aminotransferase
- ANOVA, analysis of variance
- AST, aspartate aminotransferase
- BA, bile acid
- BSEP, bile salt export pump
- Bile acid
- BrdU, bromodeoxyuridine
- CA, cholic acid
- CCl4, carbon tetrachloride
- CDCA, chenodeoxycholic acid
- CHX, cycloheximide
- CYP7A1, cholesterol 7α-hydroxylase
- Col, collagen
- FXR, farnesoid X receptor
- Farnesoid X receptor
- GalN, d-galactosamine
- H&E, hematoxylin and eosin
- HPLC, high performance liquid chromatography
- HSCs, hepatic stellate cells
- Hepatic stellate cell
- Hepatocellular apoptosis
- IDN-6556
- KCs, Kupffer cells
- LPS, lipopolysaccharide
- Liver fibrosis
- OCA, obeticholic acid
- Obeticholic acid
- PBC, primary biliary cholangitis
- RT-PCR, reverse transcription polymerase chain reaction
- SHP, small heterodimer partner
- TGF, transforming growth factor
- TIMP, tissue inhibitor of metalloproteinase
- TNFα, tumor necrosis factor α
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling
- α-SMA, α-smooth muscle action
Collapse
Affiliation(s)
- Jiyu Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ningning Huang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yitong Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Chaoliang Ge
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qingxian He
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojie Pan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
108
|
Jin LH, Fang ZP, Fan MJ, Huang WD. Bile-ology: from bench to bedside. J Zhejiang Univ Sci B 2019; 20:414-427. [PMID: 31090267 PMCID: PMC6568232 DOI: 10.1631/jzus.b1900158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Bile acids (BAs) are originally known as detergents essential for the digestion and absorption of lipids. In recent years, extensive research has unveiled new functions of BAs as gut hormones that modulate physiological and pathological processes, including glucose and lipid metabolism, energy expenditure, inflammation, tumorigenesis, cardiovascular disease, and even the central nervous system in addition to cholesterol homeostasis, enterohepatic protection and liver regeneration. BAs are closely linked with gut microbiota which might explain some of their crucial roles in organs. The signaling actions of BAs can also be mediated through specific nuclear receptors and membrane-bound G protein-coupled receptors. Several pharmacological agents or bariatric surgeries have demonstrated efficacious therapeutic effects on metabolic diseases through targeting BA signaling. In this mini-review, we summarize recent advances in bile-ology, focusing on its translational studies.
Collapse
Affiliation(s)
- Li-hua Jin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhi-peng Fang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Min-jie Fan
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-dong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
109
|
Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16:221-234. [PMID: 30568278 DOI: 10.1038/s41575-018-0097-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver microcirculatory milieu, mainly composed of liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatic macrophages, has an essential role in liver homeostasis, including in preserving hepatocyte function, regulating the vascular tone and controlling inflammation. Liver microcirculatory dysfunction is one of the key mechanisms that promotes the progression of chronic liver disease (also termed cirrhosis) and the development of its major clinical complication, portal hypertension. In the present Review, we describe the current knowledge of liver microcirculatory dysfunction in cirrhotic portal hypertension and appraise the preclinical models used to study the liver circulation. We also provide a comprehensive summary of the promising therapeutic options to target the liver microvasculature in cirrhosis.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain. .,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland.
| | - Giusi Marrone
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| |
Collapse
|
110
|
Baffy G. Potential mechanisms linking gut microbiota and portal hypertension. Liver Int 2019; 39:598-609. [PMID: 30312513 DOI: 10.1111/liv.13986] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
Gut microbiota is the largest collection of commensal micro-organisms in the human body, engaged in reciprocal cellular and molecular interactions with the liver. This mutually beneficial relationship may break down and result in dysbiosis, associated with disease phenotypes. Altered composition and function of gut microbiota has been implicated in the pathobiology of nonalcoholic fatty liver disease (NAFLD), a prevalent condition linked to obesity, insulin resistance and endothelial dysfunction. NAFLD may progress to cirrhosis and portal hypertension, which is the result of increased intrahepatic vascular resistance and altered splanchnic circulation. Gut microbiota may contribute to rising portal pressure from the earliest stages of NAFLD, although the significance of these changes remains unclear. NAFLD has been linked to lower microbial diversity and weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defence and inflammation. Moreover, disrupted host-microbial metabolic interplay alters bile acid signalling and the release of vasoregulatory gasotransmitters. These perturbations become prominent in cirrhosis, increasing the risk of clinically significant portal hypertension and leading to bacterial translocation, sepsis and acute-on-chronic liver failure. Better understanding of the gut-liver axis and identification of novel microbial molecular targets may yield specific strategies in the prevention and management of portal hypertension.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
111
|
AMPK agonist AICAR ameliorates portal hypertension and liver cirrhosis via NO pathway in the BDL rat model. J Mol Med (Berl) 2019; 97:423-434. [PMID: 30721324 PMCID: PMC6394556 DOI: 10.1007/s00109-019-01746-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Recent studies have indicated that the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway is closely involved in liver fibrosis and other fibrotic diseases. However, whether targeting the AMPK pathway can rescue liver fibrosis and its complications, such as portal hypertension, is unknown. This study aimed to explore the therapeutic value of AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside), an agonist of the AMPK pathway, on liver fibrosis and portal hypertension in bile duct ligation (BDL) rats. In vitro experiments showed that the gene expression levels of TGF-b, a-SMA, and collagen 1 in primary rat hepatic stellate cells (HSCs) were significantly decreased after AICAR treatment. The p-eNOS expression and nitric oxide (NO) production were increased by AICAR administration in sinusoidal endothelial cells (SECs). For in vivo animal studies, AICAR acutely decreased portal pressure in the BDL and CCL4 fibrotic rats, but not in the partial portal vein ligation (PVL) rats, without changes in systemic hemodynamics. It was also observed by using intravital fluorescence microscopy that AICAR led to sinusoidal vasodilation in situ experiment. We propose that the relevant mechanisms may be related to the activation of the AMPK/NO pathway in SECs and that this activation promoted NO production in the liver, thereby promoting hepatic sinusoid microcirculation and decreased intrahepatic resistance. The results were verified using the NO inhibitor L-NAME. Chronic AICAR treatment also showed profound beneficial effects on the BDL model rats. The hemodynamic condition was greatly improved, but the positive effect could be partially blocked by L-NAME. Moreover, AICAR also decreased hepatic fibrogenesis in the BDL rats. KEY MESSAGES: Acute and chronic use of AICAR could alleviate portal pressure without changing systemic hemodynamics. AICAR induced sinusoidal vasodilation by improving NO bioavailability and ameliorating endothelial dysfunction in vivo and in vitro. AICAR could alleviate liver cirrhosis in the BDL model rats.
Collapse
|
112
|
Sundaram V, Morgan TR. Will Studies in Nonalcoholic Steatohepatitis Help Manage Alcoholic Steatohepatitis? Clin Liver Dis 2019; 23:157-165. [PMID: 30454829 DOI: 10.1016/j.cld.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic steatosis and steatohepatitis have several etiologies; the most common are alcoholic steatohepatitis (ASH) and obesity/metabolic syndrome-induced steatohepatitis, also known as nonalcoholic steatohepatitis (NASH). Although the etiology of these 2 conditions is different, they share pathways to disease progression and severity. They also have differences in physiologic pathways, and shared and divergent mechanisms can be therapeutic targets. There is no approved pharmacologic therapy for NASH, but several molecules are under study. Focus remains on modulation of insulin resistance, oxidative stress, the inflammatory cascade, hepatic fibrosis, and cell death. This review provides an overview of pathophysiologic similarities and differences between ASH and NASH.
Collapse
Affiliation(s)
- Vinay Sundaram
- Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, 8900 Beverly Boulevard, Suite 250, Los Angeles, CA 90048, USA
| | - Timothy R Morgan
- Gastroenterology Section, VA Long Beach Healthcare System, 5901 East Seventh Street - 11G, Long Beach, CA 90822, USA.
| |
Collapse
|
113
|
Singal AK, Shah VH. Current trials and novel therapeutic targets for alcoholic hepatitis. J Hepatol 2019; 70:305-313. [PMID: 30658731 DOI: 10.1016/j.jhep.2018.10.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Alcoholic hepatitis is a clinical syndrome in which patients present with acute-on-chronic liver failure and a high risk of short-term mortality. The current treatment of alcoholic hepatitis is suboptimal. Results recently published from the STOPAH study have improved our understanding of how best to design clinical trials for this condition. Although emerging data on liver transplantation for patients with alcoholic hepatitis are encouraging, less than 2% of these patients qualify. Clearly, there is an unmet need for novel treatments to improve the survival of these patients. Changes in the gut microbiota, inflammatory and cytokine signalling, oxidative stress and mitochondrial dysfunction, and abnormalities in the hepatic regenerative capacity alone or in combination contribute to the pathology of alcoholic hepatitis. In this chapter, we will describe the novel therapeutic agents targeting various pathways in the pathophysiology of alcoholic hepatitis. Specifically, we will describe the ongoing clinical trials in which some of these agents are being studied.
Collapse
Affiliation(s)
- Ashwani K Singal
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
114
|
Fiorucci S, Di Giorgio C, Distrutti E. Obeticholic Acid: An Update of Its Pharmacological Activities in Liver Disorders. Handb Exp Pharmacol 2019; 256:283-295. [PMID: 31201552 DOI: 10.1007/164_2019_227] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Obeticholic acid (OCA), 6α-ethyl-3α,7α-dihydroxy-5-cholan-24-oic acid, is a semisynthetic derivative of the chenodeoxycholic acid (CDCA, 3α,7α-dihydroxy-5-cholan-24-oic acid), a relatively hydrophobic primary bile acid synthesized in the liver from cholesterol. OCA, also known as 6-ethyl-CDCA or INT-747, was originally described by investigators at the Perugia University in 2002 as a selective ligand for the bile acid sensor, farnesoid-X-receptor (FXR). In addition to FXR and similarly to CDCA, OCA also activates GPBAR1/TGR5, a cell membrane G protein-coupled receptor for secondary bile acids. In 2016, based on the results of phase II studies showing efficacy in reducing the plasma levels of alkaline phosphatase, a surrogate biomarker for disease progression in primary biliary cholangitis (PBC), OCA has gained approval as a second-line treatment for PBC patients nonresponsive to UDCA. The use of OCA in PBC patients associates with several side effects, the most common of which is pruritus, whose incidence is dose-dependent and is extremely high when this agent is used as a monotherapy. Additionally, the use of OCA associates with the increased risk for the development of liver failure in cirrhotic PBC patients. Currently, OCA is investigated for its potential in the treatment of nonalcoholic steatohepatitis (NASH). Phase II and III trials have shown that OCA might attenuate the severity of liver fibrosis in patients with NASH, but it has no efficacy in reversing the steatotic component of the disease, while reduces the circulating levels of HDL-C and increases LDL-C. In summary, OCA has been the first-in-class of FXR ligands advanced to a clinical stage and is now entering its third decade of life, highlighting the potential benefits and risk linked to FXR-targeted therapies.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.
- Perugia Medical School, Perugia, Italy.
| | - Cristina Di Giorgio
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
115
|
Gege C, Hambruch E, Hambruch N, Kinzel O, Kremoser C. Nonsteroidal FXR Ligands: Current Status and Clinical Applications. Handb Exp Pharmacol 2019; 256:167-205. [PMID: 31197565 DOI: 10.1007/164_2019_232] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
FXR agonists have demonstrated very promising clinical results in the treatment of liver disorders such as primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), and nonalcoholic steatohepatitis (NASH). NASH, in particular, is one of the last uncharted white territories in the pharma landscape, and there is a huge medical need and a large potential pharmaceutical market for a NASH pharmacotherapy. Clinical efficacy superior to most other treatment options was shown by FXR agonists such as obeticholic acid (OCA) as they improved various metabolic features including liver steatosis as well as liver inflammation and fibrosis. But OCA's clinical success comes with some major liabilities such as pruritus, high-density lipoprotein cholesterol (HDLc) lowering, low-density lipoprotein cholesterol (LDLc) increase, and a potential for drug-induced liver toxicity. Some of these effects can be attributed to on-target effects exerted by FXR, but with others it is not clear whether it is FXR- or OCA-related. Therefore a quest for novel, proprietary FXR agonists is ongoing with the aim to increase FXR potency and selectivity over other proteins and to overcome at least some of the OCA-associated clinical side effects through an improved pharmacology. In this chapter we will discuss the historical and ongoing efforts in the identification and development of nonsteroidal, which largely means non-bile acid-type, FXR agonists for clinical use.
Collapse
Affiliation(s)
- Christian Gege
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Eva Hambruch
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Nina Hambruch
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Olaf Kinzel
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Claus Kremoser
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany.
| |
Collapse
|
116
|
Li Y, Lu LG. Therapeutic Roles of Bile Acid Signaling in Chronic Liver Diseases. J Clin Transl Hepatol 2018; 6:425-430. [PMID: 30637221 PMCID: PMC6328738 DOI: 10.14218/jcth.2018.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BAs) are the major metabolic product of cholesterol, having detergent-like activities and being responsible for absorption of lipid and lipid-soluble vitamins. In addition, it has been increasingly recognized that BAs are important signaling molecules, regulating energy metabolism and immunity. Under physiological circumstances, synthesis and transport of BAs are precisely regulated to maintain bile acid homeostasis. Disruption of bile acid homeostasis results in pathological cholestasis and metabolic liver diseases. During the last decades, BAs have been gradually recognized as an important therapeutic target for novel treatment in chronic liver diseases. This review will provide an update on the current understanding of synthesis, transport and regulation of BAs, with a focus on the therapeutic roles of bile acid signaling in chronic liver diseases.
Collapse
Affiliation(s)
| | - Lun-Gen Lu
- *Correspondence to: Lun-Gen Lu, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai 200080, China. Tel: +86-21-63240090, Fax: +86-21-63241377, E-mail:
| |
Collapse
|
117
|
Ðanić M, Stanimirov B, Pavlović N, Goločorbin-Kon S, Al-Salami H, Stankov K, Mikov M. Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front Pharmacol 2018; 9:1382. [PMID: 30559664 PMCID: PMC6287190 DOI: 10.3389/fphar.2018.01382] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6α-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives.
Collapse
Affiliation(s)
- Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Biosciences Research Precinct, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
118
|
Bernardi M, Caraceni P. Novel perspectives in the management of decompensated cirrhosis. Nat Rev Gastroenterol Hepatol 2018; 15:753-764. [PMID: 30026556 DOI: 10.1038/s41575-018-0045-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current approaches to the management of patients with decompensated cirrhosis are based on targeted strategies aimed at preventing or treating specific complications of the disease. The improved knowledge of the pathophysiological background of advanced cirrhosis, represented by a sustained systemic inflammation strictly linked to a circulatory dysfunction, provides a novel paradigm for the management of these patients, with the ambitious target of modifying the course of the disease by preventing the onset of complications and multiorgan failure; these interventions will eventually improve patients' quality of life, prolong survival and reduce health-care costs. Besides aetiological treatments, these goals could be achieved by persistently antagonizing key pathophysiological events, such as portal hypertension, abnormal bacterial translocation from the gut, liver damage, systemic inflammation, circulatory dysfunction and altered immunological responses. Interestingly, in addition to strategies based on new therapeutic agents, these targets can be tackled by employing drugs that are already used in patients with cirrhosis for different indications or in other clinical settings, including non-absorbable oral antibiotics, non-selective β-blockers, human albumin and statins. The scope of the present Review includes reporting updated information on the treatments that promise to influence the course of advanced cirrhosis and thus act as disease-modifying agents.
Collapse
Affiliation(s)
- Mauro Bernardi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
119
|
Vilaseca M, Guixé-Muntet S, Fernández-Iglesias A, Gracia-Sancho J. Advances in therapeutic options for portal hypertension. Therap Adv Gastroenterol 2018; 11:1756284818811294. [PMID: 30505350 PMCID: PMC6256317 DOI: 10.1177/1756284818811294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Portal hypertension represents one of the major clinical consequences of chronic liver disease, having a deep impact on patients' prognosis and survival. Its pathophysiology defines a pathological increase in the intrahepatic vascular resistance as the primary factor in its development, being subsequently aggravated by a paradoxical increase in portal blood inflow. Although extensive preclinical and clinical research in the field has been developed in recent decades, no effective treatment targeting its primary mechanism has been defined. The present review critically summarizes the current knowledge in portal hypertension therapeutics, focusing on those strategies driven by the disease pathophysiology and underlying cellular mechanisms.
Collapse
Affiliation(s)
- Marina Vilaseca
- Hepatic Hemodynamic Laboratory, IDIBAPS
Biomedical Research Institute, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Department of Biomedical Research, University of
Bern, Bern, Switzerland
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona
Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute,
CIBEREHD, Rosselló 149, 4th floor, 08036 Barcelona, Spain
| |
Collapse
|
120
|
The potential role of vascular alterations and subsequent impaired liver blood flow and hepatic hypoxia in the pathophysiology of non-alcoholic steatohepatitis. Med Hypotheses 2018; 122:188-197. [PMID: 30593409 DOI: 10.1016/j.mehy.2018.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of disease ranging from steatosis to steatohepatitis (NASH) and fibrosis, but the underlying pathophysiological mechanisms remain largely unknown. As there is currently no approved pharmacological therapy and the prevalence of NAFLD keeps increasing, understanding of its pathophysiology is crucial. We hypothesise that vascular alterations in early NAFLD play a role in the progression of the disease by inducing an increased intrahepatic vascular resistance and consequently relative hypoxia in the liver. Evidence of the detrimental effects of hypoxia in NAFLD has already been observed in liver surgery, where the outcomes of steatotic livers after ischaemia-reperfusion are worse than in healthy livers, and in obstructive sleep apnoea, which is an independent risk factor of NAFLD. Moreover, early histological damage in NAFLD is situated in the pericentral zone, which is also the first zone to be affected by a decreased oxygen tension because of the unique hepatic vacsular anatomy that causes the pericentral oxygen tension to be the lowest. Angiogenesis is also a characteristic of NAFLD, driven by hypoxia-induced mechanisms, as demonstrated in both animal models and in humans with NAFLD. Relative hypoxia is most probably induced by impaired blood flow to the liver, caused by increased intrahepatic vascular resistance. An increased intrahepatic vascular resistance early in the development of disease has been convincingly demonstrated in several animal models of NAFLD, whereas an increased portal pressure, a consequence of increased intrahepatic vascular resistance, has been proven in patients with NAFLD. Animal studies demonstrated a decreased intrahepatic effect of vasodilators and an increased reactivity to vasoconstrictors that results in an increased intrahepatic vascular resistance, thus the presence of a functional component. Pharmacological products that target vasoregulation can hence improve the intrahepatic vascular resistance and this might prevent or reverse progression of NAFLD, representing an important therapeutic option to study. Some of the drugs currently under evaluation in clinical trials for NASH have interesting properties related to the hepatic vasculature. Some other interesting drugs have been tested in animal models but further study in patients with NAFLD is warranted. In summary, in this paper we summarise the evidence that leads to the hypothesis that an increased intrahepatic vascular resistance and subsequent parenchymal hypoxia in early NAFLD is an important pathophysiological driving mechanism for the progression of the disease.
Collapse
|
121
|
Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O, Kobyliak N. Obeticholic Acid: A New Era in the Treatment of Nonalcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2018; 11:104. [PMID: 30314377 PMCID: PMC6315965 DOI: 10.3390/ph11040104] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
The main treatments for patients with nonalcoholic fatty liver disease (NAFLD) are currently based on lifestyle changes, including ponderal decrease and dietary management. However, a subgroup of patients with nonalcoholic steatohepatitis (NASH), who are unable to modify their lifestyle successfully, may benefit from pharmaceutical support. Several drugs targeting pathogenic mechanisms of NAFLD have been evaluated in clinical trials for the treatment of NASH. Farnesoid X receptor (FXR) is a nuclear key regulator controlling several processes of the hepatic metabolism. NAFLD has been proven to be associated with abnormal FXR activity. Obeticholic acid (OCA) is a first-in-class selective FXR agonist with anticholestatic and hepato-protective properties. Currently, OCA is registered for the treatment of primary biliary cholangitis. However, promising effects of OCA on NASH and its metabolic features have been reported in several studies.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 8810 Catanzaro, Italy.
| | - Tetyana Falalyeyeva
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC 29646, USA.
- School of Health Research, Clemson University, Clemson, SC 29646, USA.
| | - Olena Tsyryuk
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Pushkinska 22a, 01610 Kiev, Ukraine.
| |
Collapse
|
122
|
Wang H, He Q, Wang G, Xu X, Hao H. FXR modulators for enterohepatic and metabolic diseases. Expert Opin Ther Pat 2018; 28:765-782. [PMID: 30259754 DOI: 10.1080/13543776.2018.1527906] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR), a nuclear receptor mainly expressed in enterohepatic tissues, is a master for bile acid, lipid and glucose homeostasis. Additionally, it acts as a cell protector with unclear mechanism but may be implicated in combating against inflammation, fibrosis and cancers. FXR is thus accepted as a promising target particularly for the enterohepatic diseases, and numerous FXR modulators have been patented and developed. AREAS COVERED This review provides an update on the development of FXR modulators for enterohepatic diseases and offers an in-depth perspective on new strategies for the development of novel FXR modulators. EXPERT OPINION Despite the development of numerous FXR modulators, which culminated in the successful launch of obeticholic acid (OCA), it remains a matter of debate on how the function of FXR should be exploited for therapeutic purposes. The improvement for obesity achieved by either FXR agonists or antagonists is still in confusion. Whether the side effect of pruritus induced by OCA could be exempted for non-steroidal FXR agonists needs further validation. Apart from the development of conventional FXR ligands, emerging evidence support that restoration of FXR protein level may represent a new strategy in targeting FXR for enterohepatic and metabolic diseases.
Collapse
Affiliation(s)
- Hong Wang
- a State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics , China Pharmaceutical University , Nanjing , China
| | - Qingxian He
- a State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics , China Pharmaceutical University , Nanjing , China
| | - Guangji Wang
- a State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics , China Pharmaceutical University , Nanjing , China
| | - Xiaowei Xu
- a State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics , China Pharmaceutical University , Nanjing , China
| | - Haiping Hao
- a State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
123
|
Xu W, Liu P, Mu YP. Research progress on signaling pathways in cirrhotic portal hypertension. World J Clin Cases 2018; 6:335-343. [PMID: 30283796 PMCID: PMC6163134 DOI: 10.12998/wjcc.v6.i10.335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 02/05/2023] Open
Abstract
Portal hypertension (PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient’s quality of life and survival, such as upper gastrointestinal bleeding, ascites, and portosystemic encephalopathy. In recent years, advances in molecular biology have led to major discoveries in the pathological processes of PHT, including the signaling pathways that may be involved: PI3K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and farnesoid X receptor. However, the pathogenesis of PHT is complex and there are numerous pathways involved. Therefore, the targeting of signaling pathways for medical management is lagging. This article summarizes the progress that has been made in understanding the signaling pathways in PHT, and provides ideas for treatment of the disorder.
Collapse
Affiliation(s)
- Wen Xu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Yong-Ping Mu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| |
Collapse
|
124
|
Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies - Towards a molecular understanding. EBioMedicine 2018; 35:381-393. [PMID: 30236451 PMCID: PMC6161480 DOI: 10.1016/j.ebiom.2018.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Liver diseases constitute an important medical problem, and a number of these diseases, termed cholangiopathies, affect the biliary system of the liver. In this review, we describe the current understanding of the causes of cholangiopathies, which can be genetic, viral or environmental, and the few treatment options that are currently available beyond liver transplantation. We then discuss recent rapid progress in a number of areas relevant for decoding the disease mechanisms for cholangiopathies. This includes novel data from analysis of transgenic mouse models and organoid systems, and we outline how this information can be used for disease modeling and potential development of novel therapy concepts. We also describe recent advances in genomic and transcriptomic analyses and the importance of such studies for improving diagnosis and determining whether certain cholangiopathies should be viewed as distinct or overlapping disease entities.
Collapse
Affiliation(s)
- Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong.
| | - Rachel S Yiu
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
125
|
Peeraphatdit T(B, Simonetto DA, Shah VH. Exploring new treatment paradigms for alcoholic hepatitis by extrapolating from NASH and cholestasis. J Hepatol 2018; 69:275-277. [PMID: 29792896 PMCID: PMC6258016 DOI: 10.1016/j.jhep.2018.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | - Douglas A. Simonetto
- Gastroenterology Research Unit, Mayo Clinic, 200 First Street, SW, Rochester, MN USA
| | - Vijay H. Shah
- Gastroenterology Research Unit, Mayo Clinic, 200 First Street, SW, Rochester, MN USA
| |
Collapse
|
126
|
Systemic Inflammation and Acute-on-Chronic Liver Failure: Too Much, Not Enough. Can J Gastroenterol Hepatol 2018; 2018:1027152. [PMID: 30155448 PMCID: PMC6093057 DOI: 10.1155/2018/1027152] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
ACLF is a specific, but complex and multifactorial form of acute decompensation of cirrhosis and is characterized by an extraordinary dynamic natural course, rapidly evolving organ failure, and high short-term mortality. Dysbalanced immune function is central to its pathogenesis and outcome with an initial excessive systemic inflammatory response that drives organ failure and mortality. Later in its course, immuno-exhaustion/immunoparalysis prevails predisposing the patient to secondary infectious events and reescalation in end-organ dysfunction and mortality. The management of patients with ACLF is still poorly defined. However, as its pathophysiology is gradually being unravelled, potential therapeutic targets emerge that warrant further study such as restoring or substituting albumin via plasma exchange or via albumin dialysis and evaluating usefulness of TLR4 antagonists, modulators of gut dysbiosis (pre- or probiotics), and FXR-agonists.
Collapse
|
127
|
Abstract
Primary biliary cholangitis is a progressive, autoimmune disease of the interlobular bile ducts, leading to secondary damage of hepatocytes that may progress to cirrhosis and liver failure. Until recently, the only approved treatment was ursodeoxycholic acid. However, 40% of patients do not have an adequate response. Obeticholic acid was approved for treatment as add-on therapy in this group of patients. Off-label use of fibrates has also been reported to be effective. Several new therapies are in development and may further add to the treatment options available to patients with primary biliary cholangitis.
Collapse
Affiliation(s)
- Kimberly A Wong
- Department of Internal Medicine, UC Davis School of Medicine, 4150 V Street, PSSB 3000, Sacramento, CA 95817, USA
| | - Runalia Bahar
- Department of Internal Medicine, UC Davis School of Medicine, 4150 V Street, PSSB 3000, Sacramento, CA 95817, USA
| | - Chung H Liu
- Division of Gastroenterology and Hepatology, UC Davis School of Medicine, 4150 V Street, PSSB 3500, Sacramento, CA 95817, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, UC Davis School of Medicine, 4150 V Street, PSSB 3500, Sacramento, CA 95817, USA.
| |
Collapse
|
128
|
Abstract
Primary biliary cholangitis is an archetypal autoimmune disease that causes cholestasis, fibrosis, and liver failure. Ursodeoxycholic acid and obeticholic acid are approved for its treatment. Not all patients respond, some are intolerant, many have ongoing symptoms, and new therapies are required. Herein we describe drugs in development and potential future biological targets. We consider compounds acting on the farnesoid X receptor/fibroblast growth factor 19 pathway, fibrates and other agonists of the peroxisome proliferator-activated receptor family, transmembrane-G-protein-receptor-5 agonists, and several immunological agents. We also consider the roles of bile acid reuptake inhibitors, nalfurafine, and fibrates in pruritus management.
Collapse
Affiliation(s)
- Gwilym J Webb
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Gideon M Hirschfield
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
129
|
Wei Y, Lu Y, Zhu Y, Zheng W, Guo F, Yao B, Xu S, Wang Y, Jin L, Li Y. Structural basis for the hepatoprotective effects of antihypertensive 1,4-dihydropyridine drugs. Biochim Biophys Acta Gen Subj 2018; 1862:2261-2270. [PMID: 30048741 DOI: 10.1016/j.bbagen.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The 1,4-dihydropyridines (DHPs) are one of the most frequently prescribed classes of antihypertensive monotherapeutic agents worldwide. In addition to treating hypertension, DHPs also exert other beneficial effects, including hepatoprotective effects. However, the mechanism underlying the hepatoprotection remains unclear. METHODS Biochemical AlphaScreen and cell-based reporter assays were employed to detect the activities of DHPs towards FXR. A crystallographic analysis was adopted to study the binding modes of four DHPs in complex with FXR. Acetaminophen (APAP)-treated wild-type and FXR knockout mice were used to investigate the functional dependence of the effects of the selected DHPs on FXR. RESULTS A series of DHPs were uncovered as FXR ligands with different activities for FXR, suggesting FXR might serve as an alternative drug target for DHPs. The structural analysis illustrated the specific three-blade propeller binding modes of four DHPs to FXR and explained the detailed mechanisms by which DHPs bind to and are recognized by FXR. The results in mice demonstrated that cilnidipine protected the liver from APAP-induced injury in an FXR-dependent manner. CONCLUSIONS This study reports the crystal structures of FXR in complex with four DHPs, and confirms that DHPs exert hepatoprotection by targeting FXR. GENERAL SIGNIFICANCE Our research not only reveals valuable insight for the design and development of next-generation Ca2+ blocker drugs to provide safer and more effective treatments for cardiovascular disorders but also provides a novel and safe structural template for the development of drugs targeting FXR. Moreover, DHPs might be potentially repurposed to treat FXR-mediated diseases other than hypertension.
Collapse
Affiliation(s)
- Yijuan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Weili Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Benqiang Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuangshuang Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Yumeng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China.
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
130
|
Liu X, Guo GL, Kong B, Hilburn DB, Hubchak SC, Park S, LeCuyer B, Hsieh A, Wang L, Fang D, Green RM. Farnesoid X receptor signaling activates the hepatic X-box binding protein 1 pathway in vitro and in mice. Hepatology 2018; 68:304-316. [PMID: 29377207 PMCID: PMC6033648 DOI: 10.1002/hep.29815] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
UNLABELLED Bile acids are endogenous ligands of the nuclear receptor, farnesoid X receptor (FXR), and pharmacological FXR modulators are under development for the treatment of several liver disorders. The inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) pathway of the unfolded protein response (UPR) is a protective cellular signaling pathway activated in response to endoplasmic reticulum (ER) stress. We investigated the role of FXR signaling in activation of the hepatic XBP1 pathway. Mice were treated with deoxycholic acid (DCA), cholestyramine, GW4064, or underwent bile duct ligation (BDL), and hepatic UPR activation was measured. Huh7-Ntcp and HepG2 cells were treated with FXR agonists, inhibitor, small interfering RNA (siRNA), or small heterodimer partner (SHP) siRNA to determine the mechanisms of IRE1α/XBP1 pathway activation. DCA feeding and BDL increased and cholestyramine decreased expression of hepatic XBP1 spliced (XBP1s). XBP1 pathway activation increased in Huh7-Ntcp and HepG2 cells treated with bile acids, 6α-ethyl-chenodeoxycholic acid (6-ECDCA) or GW4064. This effect decreased with FXR knockdown and treatment with the FXR inhibitor guggulsterone. FXR agonists increased XBP1 splicing and phosphorylated IRE1α (p-IRE1α) expression. Overexpression of SHP similarly increased XBP1 splicing, XBP1s, and p-IRE1α protein expression. SHP knockdown attenuated FXR agonist-induced XBP1s and p-IRE1α protein expression. Co-immunoprecipitation (Co-IP) assays demonstrate a physical interaction between overexpressed green fluorescent protein (GFP)-SHP and FLAG-IRE1α in HEK293T cells. Mice treated with GW4064 had increased, and FXR and SHP null mice had decreased, basal Xbp1s gene expression. CONCLUSION FXR signaling activates the IRE1α/XBP1 pathway in vivo and in vitro. FXR pathway activation increases XBP1 splicing and enhances p-IRE1α expression. These effects are mediated, at least in part, by SHP. IRE1α/XBP1 pathway activation by bile acids and pharmacological FXR agonists may be protective during liver injury and may have therapeutic implications for liver diseases. (Hepatology 2018;68:304-316).
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Bo Kong
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ
| | - David B. Hilburn
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Susan C. Hubchak
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Seong Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Brian LeCuyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Antony Hsieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Li Wang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT,Veterans Affairs Connecticut Healthcare System, West Haven, CT
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| |
Collapse
|
131
|
Goto T, Itoh M, Suganami T, Kanai S, Shirakawa I, Sakai T, Asakawa M, Yoneyama T, Kai T, Ogawa Y. Obeticholic acid protects against hepatocyte death and liver fibrosis in a murine model of nonalcoholic steatohepatitis. Sci Rep 2018; 8:8157. [PMID: 29802399 PMCID: PMC5970222 DOI: 10.1038/s41598-018-26383-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/17/2018] [Indexed: 02/08/2023] Open
Abstract
Accumulating evidence has suggested that farnesoid X receptor (FXR) agonists, such as obeticholic acid (OCA) are therapeutically useful for non-alcoholic steatohepatitis (NASH). However, it is still unclear how FXR agonists protect against NASH and which cell type is the main target of FXR agonists. In this study, we examined the effects of OCA on the development of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice that progressively developed hepatic steatosis and NASH on Western diet (WD). Treatment with OCA effectively prevented chronic inflammation and liver fibrosis in WD-fed MC4R-KO mice with only marginal effect on body weight and hepatic steatosis. Hepatic crown-like structure (hCLS) is a unique histological structure characteristic of NASH, which triggers hepatocyte death-induced interstitial fibrosis. Intriguingly, treatment with OCA markedly reduced hCLS formation even after MC4R-KO mice developed NASH, thereby inhibiting the progression of liver fibrosis. As its mechanism of action, OCA suppressed metabolic stress-induced p53 activation and cell death in hepatocytes. Our findings in this study highlight the role of FXR in hepatocytes in the pathogenesis of NASH. Collectively, this study demonstrates the anti-fibrotic effect of OCA in a murine model of NASH with obesity and insulin resistance, which suggests the clinical implication for human NASH.
Collapse
Affiliation(s)
- Toshihiro Goto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Specialty Medicine Group, Drug Development Research Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Michiko Itoh
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Sayaka Kanai
- Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ibuki Shirakawa
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Sakai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Asakawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Yoneyama
- Omics Group, Genomic Science Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Toshihiro Kai
- Omics Group, Genomic Science Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
132
|
Abstract
Portal hypertension is one cause and a part of a dynamic process triggered by chronic liver disease, mostly induced by alcohol or incorrect nutrition and less often by viral infections and autoimmune or genetic disease. Adequate staging - continuously modified by current knowledge - should guide the prevention and treatment of portal hypertension with defined endpoints. The main goals are interruption of etiology and prevention of complications followed, if necessary, by treatment of these. For the past few decades, shunts, mostly as intrahepatic stent bypass between portal and hepatic vein branches, have played an important role in the prevention of recurrent bleeding and ascites formation, although their impact on survival remains ambiguous. Systemic drugs, such as non-selective beta-blockers, statins, or antibiotics, reduce portal hypertension by decreasing intrahepatic resistance or portal tributary blood flow or by blunting inflammatory stimuli inside and outside the liver. Here, the interactions among the gut, liver, and brain are increasingly examined for new therapeutic options. There is no general panacea. The interruption of initiating factors is key. If not possible or if not possible in a timely manner, combined approaches should receive more attention before considering liver transplantation.
Collapse
Affiliation(s)
| | | | - Jonel Trebicka
- Department of Internal Medicine, University of Bonn, Bonn, Germany.,European Foundation for Study of Chronic Liver Failure, Barcelona, Spain
| |
Collapse
|
133
|
García-Lezana T, Raurell I, Bravo M, Torres-Arauz M, Salcedo MT, Santiago A, Schoenenberger A, Manichanh C, Genescà J, Martell M, Augustin S. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis. Hepatology 2018; 67:1485-1498. [PMID: 29113028 DOI: 10.1002/hep.29646] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED Portal hypertension (PH) drives most of the clinical complications in chronic liver diseases. However, its progression in nonalcoholic steatohepatitis (NASH) and its association with the intestinal microbiota (IM) have been scarcely studied. Our aim was to investigate the role of the IM in the mechanisms leading to PH in early NASH. The experimental design was divided in two stages. In stage 1, Sprague-Dawley rats were fed for 8 weeks a high-fat, high-glucose/fructose diet (HFGFD) or a control diet/water (CD). Representative rats were selected as IM donors for stage 2. In stage 2, additional HFGFD and CD rats underwent intestinal decontamination, followed by IM transplantation with feces from opposite-diet donors (heterologous transplant) or autologous fecal transplant (as controls), generating four groups: CD-autotransplanted, CD-transplanted, HFGFD-autotransplanted, HFGFD-transplanted. After IM transplantation, the original diet was maintained for 12-14 days until death. HFGFD rats developed obesity, insulin resistance, NASH without fibrosis but with PH, intrahepatic endothelial dysfunction, and IM dysbiosis. In HFGFD rats, transplantation with feces from CD donors caused a significant reduction of PH to levels comparable to CD without significant changes in NASH histology. The reduction in PH was due to a 31% decrease of intrahepatic vascular resistance compared to the HFGFD-autotransplanted group (P < 0.05). This effect occurs through restoration of the sensitivity to insulin of the hepatic protein kinase B-dependent endothelial nitric oxide synthase signaling pathway. CONCLUSION The IM exerts a direct influence in the development of PH in rats with diet-induced NASH and dysbiosis; PH, insulin resistance, and endothelial dysfunction revert when a healthy IM is restored. (Hepatology 2018;67:1485-1498).
Collapse
Affiliation(s)
- Teresa García-Lezana
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Imma Raurell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Miren Bravo
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Torres-Arauz
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Alba Santiago
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | | | - Chaysavanh Manichanh
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Joan Genescà
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - María Martell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Augustin
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
134
|
Origins of Portal Hypertension in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2018; 63:563-576. [PMID: 29368124 DOI: 10.1007/s10620-017-4903-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) advanced to cirrhosis is often complicated by clinically significant portal hypertension, which is primarily caused by increased intrahepatic vascular resistance. Liver fibrosis has been identified as a critical determinant of this process. However, there is evidence that portal venous pressure may begin to rise in the earliest stages of NAFLD when fibrosis is far less advanced or absent. The biological and clinical significance of these early changes in sinusoidal homeostasis remains unclear. Experimental and human observations indicate that sinusoidal space restriction due to hepatocellular lipid accumulation and ballooning may impair sinusoidal flow and generate shear stress, increasingly disrupting sinusoidal microcirculation. Sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells are key partners of hepatocytes affected by NAFLD in promoting endothelial dysfunction through enhanced contractility, capillarization, adhesion and entrapment of blood cells, extracellular matrix deposition, and neovascularization. These biomechanical and rheological changes are aggravated by a dysfunctional gut-liver axis and splanchnic vasoregulation, culminating in fibrosis and clinically significant portal hypertension. We may speculate that increased portal venous pressure is an essential element of the pathogenesis across the entire spectrum of NAFLD. Improved methods of noninvasive portal venous pressure monitoring will hopefully give new insights into the pathobiology of NAFLD and help efforts to identify patients at increased risk for adverse outcomes. In addition, novel drug candidates targeting reversible components of aberrant sinusoidal circulation may prevent progression in NAFLD.
Collapse
|
135
|
Hameed B, Terrault NA, Gill RM, Loomba R, Chalasani N, Hoofnagle JH, Van Natta ML. Clinical and metabolic effects associated with weight changes and obeticholic acid in non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2018; 47:645-656. [PMID: 29333665 PMCID: PMC5931362 DOI: 10.1111/apt.14492] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/17/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND In a 72-week, randomised controlled trial of obeticholic acid (OCA) in non-alcoholic steatohepatitis (NASH), OCA was superior to placebo in improving serum ALT levels and liver histology. OCA therapy also reduced weight. AIMS Because weight loss by itself can improve histology, to perform a post hoc analysis of the effects of weight loss and OCA treatment in improving clinical and metabolic features of NASH. METHODS The analysis was limited to the 200 patients with baseline and end-of-treatment liver biopsies. Weight loss was defined as a relative decline from baseline of 2% or more at treatment end. RESULTS Weight loss occurred in 44% (45/102) of OCA and 32% (31/98) of placebo-treated patients (P = 0.08). The NAFLD Activity score (NAS) improved more in those with than without weight loss in both the OCA- (-2.4 vs -1.2, P<0.001) and placebo-treated patients (-1.2 vs -0.5, P = 0.03). ALT levels also improved in those with vs without weight loss in OCA- (-43 vs -34 U/L, P = 0.12) and placebo-treated patients (-29 vs -10 U/L, P = 0.02). However, among those who lost weight, OCA was associated with opposite effects from placebo on changes in alkaline phosphatase (+21 vs -12 U/L, P<0.001), total (+13 vs -14 mg/dL, P = 0.02) and LDL cholesterol (+18 vs -12 mg/dL, P = 0.01), and HbA1c (+0.1 vs -0.4%, P = 0.01). CONCLUSIONS OCA leads to weight loss in up to 44% of patients with NASH, and OCA therapy and weight loss have additive benefits on serum aminotransferases and histology. However, favourable effects of weight loss on alkaline phosphatase, lipids and blood glucose seen in placebo-treated patients were absent or reversed on OCA treatment. These findings stress the importance of assessing concomitant metabolic effects of new therapies of NASH. Clinical trial number: NCT01265498.
Collapse
Affiliation(s)
- B Hameed
- University of California San Francisco, San Francisco, CA, USA
| | - N A Terrault
- University of California San Francisco, San Francisco, CA, USA
| | - R M Gill
- University of California San Francisco, San Francisco, CA, USA
| | - R Loomba
- University of California San Diego, San Diego, CA, USA
| | - N Chalasani
- Indiana University School, Indianapolis, IN, USA
| | - J H Hoofnagle
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | |
Collapse
|
136
|
Gitto S, Guarneri V, Sartini A, Andreone P. The use of obeticholic acid for the management of non-viral liver disease: current clinical practice and future perspectives. Expert Rev Gastroenterol Hepatol 2018; 12:165-171. [PMID: 29082798 DOI: 10.1080/17474124.2018.1399060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Farnesoid X nuclear receptor is involved in the regulation of lipid and glucose metabolism, though mainly in the homeostasis of bile acids. Indeed, the agonists of farnesoid X nuclear receptor represent promising drugs. Areas covered: Obeticholic acid, a novel semisynthetic analogue of the naturally occurring bile acid, has led to encouraging preliminary results in both cholestatic and metabolic liver disease. In patients with primary biliary cholangitis, obeticholic acid determines a significant biochemical improvement although the effects on liver fibrosis are lacking. Obeticholic acid has been suggested for the treatment of nonalcoholic liver disease with good laboratory results. In cirrhotic animal models, the drug seems to reduce both portal hypertension and gut bacterial translocation. Expert commentary: The use of obeticholic acid for the treatment of primary biliary cholangitis shows satisfying results. However, some open questions remain unresolved. Herein, we provide an overview of the current knowledge about the use of obeticholic acid in the field of nonviral chronic liver diseases. We tried to give a global point of view using a translational approach.
Collapse
Affiliation(s)
- Stefano Gitto
- a Department of Medical and Surgical Sciences , University of Bologna and Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
- b Centro di Ricerca per lo Studio delle Epatiti, Dipartimento di Scienze Mediche e Chirurgiche , University of Bologna , Bologna , Italy
| | - Valeria Guarneri
- a Department of Medical and Surgical Sciences , University of Bologna and Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
- b Centro di Ricerca per lo Studio delle Epatiti, Dipartimento di Scienze Mediche e Chirurgiche , University of Bologna , Bologna , Italy
| | - Alessandro Sartini
- c Department of Gastroenterology , University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena , Modena , Italy
| | - Pietro Andreone
- a Department of Medical and Surgical Sciences , University of Bologna and Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
- b Centro di Ricerca per lo Studio delle Epatiti, Dipartimento di Scienze Mediche e Chirurgiche , University of Bologna , Bologna , Italy
| |
Collapse
|
137
|
Steiner CA, Higgins PDR. Anti-Fibrotic Therapies from Other Organs: What the Gut Can Learn from the Liver, Skin, Lung and Heart. FIBROSTENOTIC INFLAMMATORY BOWEL DISEASE 2018:347-385. [DOI: 10.1007/978-3-319-90578-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
138
|
Gabbia D, Pozza AD, Albertoni L, Lazzari R, Zigiotto G, Carrara M, Baldo V, Baldovin T, Floreani A, Martin SD. Pregnane X receptor and constitutive androstane receptor modulate differently CYP3A-mediated metabolism in early- and late-stage cholestasis. World J Gastroenterol 2017; 23:7519-7530. [PMID: 29204052 PMCID: PMC5698245 DOI: 10.3748/wjg.v23.i42.7519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To ascertain whether cholestasis affects the expression of two CYP3A isoforms (CYP3A1 and CYP3A2) and of pregnane X receptor (PXR) and constitutive androstane receptor (CAR).
METHODS Cholestasis was induced by bile duct ligation in 16 male Wistar rats; whereas 8 sham-operated rats were used as controls. Severity of cholestasis was assessed on histological examination of liver sections, and serum concentrations of albumin, AST, ALT, GGT, ALPK and bilirubin. Gene and protein expressions of PXR, CAR, CYP3A1 and CYP3A2 were assessed by means of qRT-PCR and Western blot, respectively. Alterations in CYP3A activity were measured by calculating the kinetic parameters of 4-OH and 1’-OH-midazolam hydroxylation, marker reactions for CYP3A enzymes.
RESULTS The mRNA and protein expression of CYP3A1 increased significantly in mild cholestasis (P < 0.01). At variance, mRNA and protein expression of CYP3A2 didn’t change in mild cholestasis, whereas the expression and activity of both CYP3A1 and CYP3A2 decreased dramatically when cholestasis became severe. Consistently with these observations, the nuclear expression of both PXR and CAR, which was measured because they both translocate into the cell nucleus after their activation, virtually disappeared in the late stage of cholestatic injury, after an initial increase. These results indicate that early- and late-stage cholestasis affects CYP3A-mediated drug metabolism differently, probably as consequence of the different activation of PXR and CAR.
CONCLUSION Early- and late-stage cholestasis affects CYP3A-mediated drug metabolism differently. PXR and CAR might be targeted therapeutically to promote CYP3A-mediated liver detoxification.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Arianna Dalla Pozza
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Laura Albertoni
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova 35131, Italy
| | - Roberta Lazzari
- Department of Cardiac, Thoracic, and Vascular Sciences, Hygiene and Public Health Unit, University of Padova, Padova 35131, Italy
| | - Giorgia Zigiotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Vincenzo Baldo
- Department of Cardiac, Thoracic, and Vascular Sciences, Hygiene and Public Health Unit, University of Padova, Padova 35131, Italy
| | - Tatjana Baldovin
- Department of Cardiac, Thoracic, and Vascular Sciences, Hygiene and Public Health Unit, University of Padova, Padova 35131, Italy
| | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35131, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| |
Collapse
|
139
|
Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Citation(s) in RCA: 1019] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Progressive liver fibrosis, induced by chronic viral and metabolic disorders, leads to more than one million deaths annually via development of cirrhosis, although no antifibrotic therapy has been approved to date. Transdifferentiation (or "activation") of hepatic stellate cells is the major cellular source of matrix protein-secreting myofibroblasts, the major driver of liver fibrogenesis. Paracrine signals from injured epithelial cells, fibrotic tissue microenvironment, immune and systemic metabolic dysregulation, enteric dysbiosis, and hepatitis viral products can directly or indirectly induce stellate cell activation. Dysregulated intracellular signaling, epigenetic changes, and cellular stress response represent candidate targets to deactivate stellate cells by inducing reversion to inactivated state, cellular senescence, apoptosis, and/or clearance by immune cells. Cell type- and target-specific pharmacological intervention to therapeutically induce the deactivation will enable more effective and less toxic precision antifibrotic therapies.
Collapse
|
140
|
Arab JP, Barrera F, Arrese M. Bile Acids and Portal Hypertension. Ann Hepatol 2017; 16 Suppl 1:S83-S86. [PMID: 29080345 DOI: 10.5604/01.3001.0010.5500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/04/2023]
Abstract
The recent discovery of bile acid (BA) receptors and a better delineation of the multiple roles of BAs in relevant biological processes have revamped BA research. The vasoactive actions of BAs were recognized more than three decades ago but the underlying mechanisms of the BA-induced vasorelaxation are now being clarified. Recent evidence shows that the BA receptors FXR and TGR5 are expressed in endothelial cells and may have important effects on both systemic and portal circulation. The availability of genetically engineered mice with ablation of BA receptors and the development of BA receptor agonists has allowed to explore the modulation of XR and, in a lesser extent, of TGR5 in the setting of portal hypertension (PHT) with promising results. In this review, we summarize recent data on how BA-dependent pathways influence several processes that impact in PHT and the preclinical data showing that pharmacological modulation of those pathways may hold promise in the treatment of PHT.
Collapse
Affiliation(s)
- Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina. Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Francisco Barrera
- Departamento de Gastroenterología, Escuela de Medicina. Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina. Pontificia Universidad Católica de Chile. Santiago, Chile
| |
Collapse
|
141
|
Voiosu A, Wiese S, Voiosu T, Bendtsen F, Møller S. Bile acids and cardiovascular function in cirrhosis. Liver Int 2017; 37:1420-1430. [PMID: 28222247 DOI: 10.1111/liv.13394] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 02/13/2023]
Abstract
Cirrhotic cardiomyopathy and the hyperdynamic syndrome are clinically important complications of cirrhosis, but their exact pathogenesis is still partly unknown. Experimental models have proven the cardiotoxic effects of bile acids and recent studies of their varied receptor-mediated functions offer new insight into their involvement in cardiovascular dysfunction in cirrhosis. Bile acid receptors such as farnesoid X-activated receptor and TGR5 are currently under investigation as potential therapeutic targets in a variety of pathological conditions. These receptors have also recently been identified in cardiomyocytes, vascular endothelial cells and smooth muscle cells where they seem to play an important role in cellular metabolism. Chronic cholestasis leading to abnormal levels of circulating bile acids alters the normal signalling pathways and contributes to the development of profound cardiovascular disturbances. This review summarizes the evidence regarding the role of bile acids and their receptors in the generation of cardiovascular dysfunction in cirrhosis.
Collapse
Affiliation(s)
- Andrei Voiosu
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Signe Wiese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theodor Voiosu
- Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Flemming Bendtsen
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Gastro Unit, Medical Division, Hvidovre Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
142
|
Greuter T, Malhi H, Gores GJ, Shah VH. Therapeutic opportunities for alcoholic steatohepatitis and nonalcoholic steatohepatitis: exploiting similarities and differences in pathogenesis. JCI Insight 2017; 2:95354. [PMID: 28878132 DOI: 10.1172/jci.insight.95354] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH) are among the most frequent causes of chronic liver disease in the United States. Although the two entities are triggered by different etiologies - chronic alcohol consumption (ASH) and obesity-associated lipotoxicity (NASH) - they share overlapping histological and clinical features owing to common pathogenic mechanisms. These pathogenic processes include altered hepatocyte lipid metabolism, organelle dysfunction (i.e., ER stress), hepatocyte apoptosis, innate immune system activation, and hepatic stellate cell activation. Nonetheless, there are several disease-specific molecular signaling pathways, such as differential pathway activation downstream of TLR4 (MyD88-dependence in NASH versus MyD88-independence in ASH), inflammasome activation and IL-1β signaling in ASH, insulin resistance and lipotoxicity in NASH, and dysregulation of different microRNAs, which clearly highlight that ASH and NASH are two distinct biological entities. Both pathogenic similarities and differences have therapeutic implications. In this Review, we discuss these pathogenic mechanisms and their therapeutic implications for each disease, focusing on both shared and distinct targets.
Collapse
Affiliation(s)
- Thomas Greuter
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmeet Malhi
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J Gores
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
143
|
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of worldwide cancer mortality. HCC almost exclusively develops in patients with chronic liver disease, driven by a vicious cycle of liver injury, inflammation and regeneration that typically spans decades. Increasing evidence points towards a key role of the bacterial microbiome in promoting the progression of liver disease and the development of HCC. Here, we will review mechanisms by which the gut microbiota promotes hepatocarcinogenesis, focusing on the leaky gut, bacterial dysbiosis, microbe-associated molecular patterns and bacterial metabolites as key pathways that drive cancer-promoting liver inflammation, fibrosis and genotoxicity. On the basis of accumulating evidence from preclinical studies, we propose the intestinal-microbiota-liver axis as a promising target for the simultaneous prevention of chronic liver disease progression and HCC development in patients with advanced liver disease. We will review in detail therapeutic modalities and discuss clinical settings in which targeting the gut-microbiota-liver axis for the prevention of disease progression and HCC development seems promising.
Collapse
Affiliation(s)
- Le-Xing Yu
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
- Institute of Human Nutrition, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| |
Collapse
|
144
|
Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury - What is the link? J Hepatol 2017; 67:619-631. [PMID: 28712691 DOI: 10.1016/j.jhep.2017.04.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
The main trigger for liver injury in acquired cholestatic liver disease remains unclear. However, the accumulation of bile acids (BAs) undoubtedly plays a role. Recent progress in deciphering the pathomechanisms of inborn cholestatic liver diseases, decoding mechanisms of BA-induced cell death, and generating modern BA-derived drugs has improved the understanding of the regulation of BA synthesis and transport. Now is the appropriate time to reassess current knowledge about the specific role of BAs in hepatobiliary injury.
Collapse
Affiliation(s)
- Peter Fickert
- Department of Gastroenterology and Hepatology, Medical University Graz, Austria.
| | - Martin Wagner
- Department of Gastroenterology and Hepatology, Medical University Graz, Austria
| |
Collapse
|
145
|
Jhaveri MA, Kowdley KV. New developments in the treatment of primary biliary cholangitis - role of obeticholic acid. Ther Clin Risk Manag 2017; 13:1053-1060. [PMID: 28860789 PMCID: PMC5572954 DOI: 10.2147/tcrm.s113052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune cholestatic liver disease that predominantly affects women in early to middle age. It is typically associated with autoantibodies to mitochondrial antigens and results in immune-mediated destruction of small and medium-sized intrahepatic bile ducts leading to cholestasis, hepatic fibrosis and may progress to cirrhosis or hepatic failure and, in some cases, hepatocellular carcinoma. The clinical presentation and the natural history of PBC have improved over the years due to recognition of earlier widespread use of ursodeoxycholic acid (UDCA); about one-third of patients show suboptimal biochemical response to UDCA with poor prognosis. Until recently, UDCA was the only US Food and Drug Administration approved agent for this disease for more than two decades; obeticholic acid was approved in 2016 for treatment of patients with PBC with a suboptimal response or intolerance to UDCA. Currently, liver transplantation is the most effective treatment modality for PBC patients with end-stage liver disease. This review will focus on the recent advances in therapy of primary biliary cholangitis, with emphasis on obeticholic acid.
Collapse
Affiliation(s)
- Manan A Jhaveri
- Liver Care Network, Swedish Medical Center, Seattle, WA, USA
| | - Kris V Kowdley
- Liver Care Network, Swedish Medical Center, Seattle, WA, USA
| |
Collapse
|
146
|
Issa D, Wattacheril J, Sanyal AJ. Treatment options for nonalcoholic steatohepatitis - a safety evaluation. Expert Opin Drug Saf 2017. [PMID: 28641031 DOI: 10.1080/14740338.2017.1343299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION There is an urgent as yet unmet need to develop highly effective and safe therapeutics for nonalcoholic fatty liver disease (NAFLD). The remarkable progress in understanding NAFLD pathogenesis allowed the identification of injury pathways which may be recruited as therapy targets. Areas covered: This article reviews the safety and tolerability data of the NAFLD therapies and explains the mechanistic basis for each of the established and investigational drugs. Treatment targets include: weight loss, anti-metabolic agents such as lipid lowering and anti-diabetic drugs, inflammation, fibrosis and others such as targeting gut microbiota, immune modulation and apoptosis. Expert opinion: Current therapies continue to remain suboptimal. Weight loss is effective but hard to achieve. Traditional and endoscopic bariatric procedures are promising although more randomized trials are needed and the long-term safety remains to be established. Clinical trials have demonstrated the efficacy of several drugs for the treatment of NASH. Of these, there remains some uncertainty about the long-term safety of vitamin E. Pioglitazone is associated with osteopenia, fluid retention and weight gain. Obeticholic acid causes pruritus in a substantial proportion of subjects and elafibranor has been associated with transient rises in creatinine. Several exciting therapies are under development and results of clinical and post-marketing trials will help elucidate their safety.
Collapse
Affiliation(s)
- Danny Issa
- a Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine , Virginia Commonwealth University School of Medicine , Richmond , VA , USA
| | - Julia Wattacheril
- b Center for Liver Disease and Transplantation and Division of Digestive and Liver Diseases, Department of Medicine , Columbia University College of Physicians and Surgeons , New York , NY , USA
| | - Arun J Sanyal
- a Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine , Virginia Commonwealth University School of Medicine , Richmond , VA , USA
| |
Collapse
|
147
|
Arab JP, Martin-Mateos RM, Shah VH. Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int 2017; 12:24-33. [PMID: 28550391 DOI: 10.1007/s12072-017-9798-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
The term gut-liver axis is used to highlight the close anatomical and functional relationship between the intestine and the liver. The intestine has a highly specialized epithelial membrane which regulates transport across the mucosa. Due to dysbiosis, impairment of the intestinal barrier and altered immunity status, bacterial products can reach the liver through the portal vein, where they are recognized by specific receptors, activate the immune system and lead to a proinflammatory response. Gut microbiota and bacterial translocation play an important role in the pathogenesis of chronic liver diseases, including alcoholic and non-alcoholic fatty liver disease, cirrhosis, and its complications, such as portal hypertension, spontaneous bacterial peritonitis and hepatic encephalopaty. The gut microbiota also plays a critical role as a modulator of bile acid metabolism which can also influence intestinal permeability and portal hypertension through the farnesoid-X receptor. On the other hand, cirrhosis and portal hypertension affect the microbiota and increase translocation, leading to a "chicken and egg" situation, where translocation increases portal pressure, and vice versa. A myriad of therapies targeting gut microbiota have been evaluated specifically in patients with chronic liver disease. Further studies targeting intestinal microbiota and its possible hemodynamic and metabolic effects are needed. This review summarizes the current knowledge about the role of gut microbiota in the pathogenesis of chronic liver diseases and portal hypertension.
Collapse
Affiliation(s)
- Juan P Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA.,Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rosa M Martin-Mateos
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA.
| |
Collapse
|
148
|
Schwabl P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf) 2017; 5:90-103. [PMID: 28533907 PMCID: PMC5421460 DOI: 10.1093/gastro/gox011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective β-blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this context and address potentially interesting therapeutic options for the future.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
149
|
Verbeke L, Nevens F, Laleman W. Steroidal or non-steroidal FXR agonists - Is that the question? J Hepatol 2017; 66:680-681. [PMID: 28131795 DOI: 10.1016/j.jhep.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Len Verbeke
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Belgium.
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Belgium
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Belgium
| |
Collapse
|
150
|
Schwabl P, Hambruch E, Seeland BA, Hayden H, Wagner M, Garnys L, Strobel B, Schubert TL, Riedl F, Mitteregger D, Burnet M, Starlinger P, Oberhuber G, Deuschle U, Rohr-Udilova N, Podesser BK, Peck-Radosavljevic M, Reiberger T, Kremoser C, Trauner M. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol 2017; 66:724-733. [PMID: 27993716 DOI: 10.1016/j.jhep.2016.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Steroidal farnesoid X receptor (FXR) agonists demonstrated potent anti-fibrotic activities and lowered portal hypertension in experimental models. The impact of the novel non-steroidal and selective FXR agonist PX20606 on portal hypertension and fibrosis was explored in this study. METHODS In experimental models of non-cirrhotic (partial portal vein ligation, PPVL, 7days) and cirrhotic (carbon tetrachloride, CCl4, 14weeks) portal hypertension, PX20606 (PX,10mg/kg) or the steroidal FXR agonist obeticholic acid (OCA,10mg/kg) were gavaged. We then measured portal pressure, intrahepatic vascular resistance, liver fibrosis and bacterial translocation. RESULTS PX decreased portal pressure in non-cirrhotic PPVL (12.6±1.7 vs. 10.4±1.1mmHg; p=0.020) and cirrhotic CCl4 (15.2±0.5 vs. 11.8±0.4mmHg; p=0.001) rats. In PPVL animals, we observed less bacterial translocation (-36%; p=0.041), a decrease in lipopolysaccharide binding protein (-30%; p=0.024) and splanchnic tumour necrosis factor α levels (-39%; p=0.044) after PX treatment. In CCl4 rats, PX decreased fibrotic Sirius Red area (-43%; p=0.005), hepatic hydroxyproline (-66%; p<0.001), and expression of profibrogenic proteins (Col1a1, α smooth muscle actin, transforming growth factor β). CCl4-PX rats had significantly lower transaminase levels and reduced hepatic macrophage infiltration. Moreover, PX induced sinusoidal vasodilation (upregulation of cystathionase, dimethylaminohydrolase (DDAH)1, endothelial nitric oxide synthase (eNOS), GTP-cyclohydrolase1) and reduced intrahepatic vasoconstriction (downregulation of endothelin-1, p-Moesin). In cirrhosis, PX improved endothelial dysfunction (decreased von-Willebrand factor) and normalized overexpression of vascular endothelial growth factor, platelet-derived growth factor and angiopoietins. While short-term 3-day PX treatment reduced portal pressure (-14%; p=0.041) by restoring endothelial function, 14week PX therapy additionally inhibited sinusoidal remodelling and decreased portal pressure to a greater extent (-22%; p=0.001). In human liver sinusoidal endothelial cells, PX increased eNOS and DDAH expression. CONCLUSIONS The non-steroidal FXR agonist PX20606 ameliorates portal hypertension by reducing liver fibrosis, vascular remodelling and sinusoidal dysfunction. LAY SUMMARY The novel drug PX20606 activates the bile acid receptor FXR and shows beneficial effects in experimental liver cirrhosis: In the liver, it reduces scarring and inflammation, and also widens blood vessels. Thus, PX20606 leads to an improved blood flow through the liver and decreases hypertension of the portal vein. Additionally, PX20606 improves the altered intestinal barrier and decreases bacterial migration from the gut.
Collapse
Affiliation(s)
- Philipp Schwabl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Eva Hambruch
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Berit A Seeland
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hubert Hayden
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Wagner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Garnys
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bastian Strobel
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Tim-Lukas Schubert
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian Riedl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dieter Mitteregger
- Vienna Medical Innovation Center (VMIC), Group Practice LABORS.at, Vienna, Austria
| | - Michael Burnet
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | | | - Georg Oberhuber
- Dept. of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Deuschle
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Nataliya Rohr-Udilova
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Dept. of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Markus Peck-Radosavljevic
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claus Kremoser
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Michael Trauner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|