101
|
Rahmati A, Mafi A, Soleymani F, Babaei Aghdam Z, Masihipour N, Ghezelbash B, Asemi R, Aschner M, Vakili O, Homayoonfal M, Asemi Z, Sharifi M, Azadi A, Mirzaei H, Aghadavod E. Circular RNAs: pivotal role in the leukemogenesis and novel indicators for the diagnosis and prognosis of acute myeloid leukemia. Front Oncol 2023; 13:1149187. [PMID: 37124518 PMCID: PMC10140500 DOI: 10.3389/fonc.2023.1149187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy and affected patients have poor overall survival (OS) rates. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) with a unique loop structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been identified exhibiting either up-regulation or down-regulation in AML patients compared with healthy controls. Recent studies have reported that circRNAs regulate leukemia cell proliferation, stemness, and apoptosis, both positively and negatively. Additionally, circRNAs could be promising biomarkers and therapeutic targets in AML. In this study, we present a comprehensive review of the regulatory roles and potentials of a number of dysregulated circRNAs in AML.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Masihipour
- Department of Medicine, Lorestan University of Medical Science, Lorestan, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| |
Collapse
|
102
|
CircPIM3 regulates taxol resistance in non-small cell lung cancer via miR-338-3p/TNFAIP8 axis. Anticancer Drugs 2023; 34:115-125. [PMID: 36539365 DOI: 10.1097/cad.0000000000001347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Numerous work has revealed the involvement of circular RNA (circRNA) in regulating chemotherapy resistance. Here, we investigate circPIM3 role in taxol (Tax) resistance in non-small cell lung cancer (NSCLC). CircPIM3, microRNA (miR)-338-3p and tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) expression were detected via quantitative real-time PCR, western blot or immunohistochemistry assay. Tax resistance was evaluated using cell counting kit-8, cell proliferation was measured by colony formation assay, cell cycle and apoptosis were examined via flow cytometry. The interplay between miR-338-3p and circPIM3 or TNFAIP8 was confirmed by dual-luciferase reporter assay. Finally, the effect of circPIM3 on Tax resistance in NSCLC in vivo was investigated by xenograft models. CircPIM3 and TNFAIP8 were upregulated in Tax-resistant NSCLC tissue and cell samples. Reducing circPIM3 expression inhibited Tax resistance, proliferation and induced cycle arrest and apoptosis in Tax-resistant NSCLC cells. Mechanically, circPIM3 absence led to downregulation of TNFAIP8 via absorbing miR-338-3p. Additionally, circPIM3 depletion increased Tax sensitivity of NSCLC in vivo. Silencing of circPIM3 suppressed Tax resistance in Tax-resistant NSCLC cells through regulation of the miR-338-3p/TNFAIP8 axis.
Collapse
|
103
|
Hsa_circ_0000520 Promotes Non-Small Cell Lung Cancer Progression through the miR-1258/AKT3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:3676685. [PMID: 36593867 PMCID: PMC9805391 DOI: 10.1155/2022/3676685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/09/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022]
Abstract
Background There are several previous studies suggesting that circular RNAs (circRNAs) are involved in tumorigenesis of non-small cell lung cancer (NSCLC). Nevertheless, the role of circRNA_0000520 (circ_0000520) in this disease has not yet been studied. Methods circ_0000520, microRNA (miR)-1258, and AKT serine/threonine kinase 3 (AKT3) mRNA expression levels were detected by qPCR. CCK-8, EdU, and Transwell assays were utilized to detect NSCLC cells' malignant biological behaviors. The targeted relationship between miR-1258 and AKT3 3'-UTR or circ_0000520 was verified through the dual-luciferase reporter gene assay. Western blotting was utilized to measure the AKT3 expression after circ_0000520 and miR-1258 were selectively regulated. Results circ_0000520 was upregulated in NSCLC. Highly expressed circ_0000520 is linked to the NSCLC patient's advanced TNM stage and lymph node metastasis. circ_0000520 overexpression facilitated NSCLC cell growth, migration, and invasion. miR-1258 was identified as the downstream target of circ_0000520. miR-1258 overexpression weakened the effect of circ_0000520 overexpression on NSCLC cells. miR-1258 targeted and inhibited AKT3. circ_0000520 positively regulated the AKT3 expression in NSCLC cells by sponging miR-1258. Conclusion circ_0000520 upregulates AKT3 by competitively binding with miR-1258 to facilitate NSCLC progression.
Collapse
|
104
|
Tan P, Sun H, Xu M, Liu X, Qin J, Nie J, Qin X, Wang S, Pan Y. Circular RNA circ0104103 inhibits colorectal cancer progression through interactions with HuR and miR-373-5p. Cancer Sci 2022; 114:1396-1409. [PMID: 36562402 PMCID: PMC10067388 DOI: 10.1111/cas.15695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence has suggested that circular RNAs (circRNAs) have vital functions during the initiation and progression of various diseases. However, circRNA potential mechanisms in colorectal cancer (CRC) are largely unknown. Here, we sought to investigate the role and underlying regulatory mechanism of circ0104103 in CRC. circ0104103 was validated by quantitative RT-PCR (qRT-PCR) and Sanger sequencing. Gain- and loss-of-function assays in cell lines and mouse xenograft models were utilized to investigate the effects of circ0104103 in CRC. RNA pull-down assays, RNA immunoprecipitation assays, bioinformatics analyses, RNA FISH, and luciferase reporter assays were used to elucidate the potential mechanism of circ0104103 in CRC. We identified circ0104103, which is strongly downregulated in CRC tissues and cell lines. Functional studies revealed that circ0104103 inhibited CRC cell growth, migration, and invasion both in vitro and in vivo. Mechanistically, circ0104103 binds to HuR, a functional RNA-binding protein commonly expressed in CRC. HuR binds to the 3'UTR of LACTB mRNA to facilitate stabilization and increase its expression. Moreover, circ0104103 was verified as a competing endogenous RNA (ceRNA) via negative regulation of miR-373-5p to increase LACTB expression, resulting in inhibiting the occurrence and progression of CRC. Taken together, our study revealed that circ0104103 acts as a tumor suppressor and may be a novel biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Pei Tan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Junjie Nie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaodan Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
105
|
Circ-CREBBP inhibits sperm apoptosis via the PI3K-Akt signaling pathway by sponging miR-10384 and miR-143-3p. Commun Biol 2022; 5:1339. [PMID: 36476986 PMCID: PMC9729231 DOI: 10.1038/s42003-022-04263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive diseases are becoming increasingly prominent, and sperm quality is an important indicator to reflect these diseases. Seminal plasma extracellular vesicles (SPEVs) are involved in sperm motility. However, their effects on sperm remain unclear. Here, we identified 222 differentially expressed circRNAs in SPEVs between boars with high or low sperm motility. We found that circ-CREBBP promoted sperm motility and inhibited sperm apoptosis by sponging miR-10384 and miR-143-3p. In addition, miR-10384 and miR-143-3p can regulate the expression of MCL1, CREB1 and CREBBP. Furthermore, we demonstrated that MCL1 interacted directly with BAX and that CREBBP interacted with CREB1 in sperm. We showed that inhibition of circ-CREBBP can reduce the expression of MCL1, CREB1 and CREBBP and increase the expression of BAX and CASP3, thus promoting sperm apoptosis. Our results suggest that circ-CREBBP may be a promising biomarker and therapeutic target for male reproductive diseases.
Collapse
|
106
|
Li H, Liu B, Xu X, Li S, Zhang D, Liu Q. Circ_SNX27 regulates hepatocellular carcinoma development via miR-637/FGFR1 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2832-2843. [PMID: 36029209 DOI: 10.1002/tox.23640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) serve as critical regulatory factors in cancer development. Nonetheless, the potential regulatory mechanism of circRNA sorting nexin 27 (circ_SNX27) in hepatocellular carcinoma (HCC) is still unknown. METHODS The circ_SNX27, microRNA-637 (miR-637), and fibroblast growth factor receptor 1 (FGFR1) levels were quantified by quantitative real-time polymerase chain reaction and western blot analysis. Next, function experiments were conducted using in vitro assays and in vivo senograft study. The relationship between miR-637 with circ_SNX27 or FGFR1 was uncovered by dual-luciferase reporter and RNA pull-down assays. RESULTS The circ_SNX27 and FGFR1 levels were up-regulated, but miR-637 content was reduced in HCC. Circ_SNX27 down-regulation inhibited HCC cell proliferation, motility, and invasion and promoted apoptosis in vitro, as well as weakened tumor growth in vivo. Circ_SNX27 served as a sponge of miR-637 to promote FGFR1 expression. MiR-637 reduction abolished the restrained effect of circ_SNX27 absence on HCC cell development. Moreover, miR-637 curbed HCC cell malignant phenotype by regulating FGFR1. CONCLUSION Circ_SNX27 contributed to HCC development via miR-637/FGFR1 axis, offering a new idea for the treatment of HCC.
Collapse
Affiliation(s)
- Hua Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingli Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingfeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
107
|
Hussen BM, Abdullah SR, Hama Faraj GS, Rasul MF, Salihi A, Ghafouri-Fard S, Taheri M, Mokhtari M. Exosomal circular RNA: a signature for lung cancer progression. Cancer Cell Int 2022; 22:378. [PMID: 36457039 PMCID: PMC9714134 DOI: 10.1186/s12935-022-02793-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Membrane vesicles having a diameter of 30-150 nm are known as exosomes. Several cancer types secrete exosomes, which may contain proteins, circular RNAs (circRNAs), microRNAs, or DNA. CircRNAs are endogenous RNAs that do not code for proteins and can create continuous and covalently closed loops. In cancer pathogenesis, especially metastasis, exosomal circRNAs (exo-circRNAs) have a crucial role mainly due to the frequently aberrant expression levels within tumors. However, neither the activities nor the regulatory mechanisms of exo-circRNAs in advancing lung cancer (LC) are obvious. A better understanding of the regulation and network connections of exo-circRNAs will lead to better treatment for LCs. The main objective of the current review is to highlight the functions and mechanisms of exo-circRNAs in LC and assess the relationships between exo-circRNA dysregulation and LC progression. In addition, underline the possible therapeutic targets based on exo-circRNA modulating.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Mokhtari
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
108
|
Song J, Zheng J, Liu X, Dong W, Yang C, Wang D, Ruan X, Zhao Y, Liu L, Wang P, Zhang M, Liu Y. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J Exp Clin Cancer Res 2022; 41:171. [PMID: 35538499 PMCID: PMC9086421 DOI: 10.1186/s13046-022-02374-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
RNA-binding proteins (RBPs) and circular RNAs (circRNAs) play important roles in glioblastoma multiforme (GBM). Aerobic glycolysis is a metabolic characteristic of GBM. However, the roles of RBPs and circRNAs in aerobic glycolysis in GBM remain unclear. The aim of this study is to explore the mechanisms by which RBPs and circRNAs regulate aerobic glycolysis in GBM cells.
Methods
RNA sequencing and circRNA microarray analysis were performed to identify RBPs and circRNAs for further study. Mass spectrometry validated the encoded protein and its interacting proteins. Quantitative reverse transcription PCR and western blot assays were used to determine the mRNA and protein expression, respectively. Furthermore, immunofluorescence and fluorescence in situ hybridization assays were used to determine the protein and RNA localization, respectively. Glucose and lactate measurement assays, Seahorse XF glycolysis stress assays and cell viability assays were conducted to investigate the effects on glycolysis and proliferation in GBM cells.
Results
We selected zinc finger CCHC-type and RNA-binding motif 1 (ZCRB1) and circRNA HEAT repeat containing 5B (circHEATR5B) as candidates for this study. These genes were expressed at low levels in GBM tissues and cells. Both ZCRB1 and circHEATR5B overexpression suppressed aerobic glycolysis and proliferation in GBM cells. ZCRB1 overexpression promoted the Alu element-mediated formation of circHEATR5B. In addition, circHEATR5B encoded a novel protein HEATR5B-881aa which interacted directly with Jumonji C-domain-containing 5 (JMJD5) and reduced its stability by phosphorylating S361. JMJD5 knockdown increased pyruvate kinase M2 (PKM2) enzymatic activity and suppressed glycolysis and proliferation in GBM cells. Finally, ZCRB1, circHEATR5B and HEATR5B-881aa overexpression inhibited GBM xenograft growth and prolonged the survival time of nude mice.
Conclusions
This study reveals a novel mechanism of regulating aerobic glycolysis and proliferation in GBM cells through the ZCRB1/circHEATR5B/HEATR5B-881aa/JMJD5/PKM2 pathway, which can provide novel strategies and potential targets for GBM therapy.
Collapse
|
109
|
Han K, Kang N, Yu X, Lu J, Ma Y. lncRNA NEAT1-let 7b-P21 axis mediates the proliferation of neural stem cells cultured in vitro promoted by radial extracorporeal shock wave. Regen Ther 2022; 21:139-147. [PMID: 35844294 PMCID: PMC9256974 DOI: 10.1016/j.reth.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 10/27/2022] Open
|
110
|
Li B, Zhou J, Luo Y, Tao K, Zhang L, Zhao Y, Lin Y, Zeng X, Yu H. Suppressing circ_0008494 inhibits HSCs activation by regulating the miR-185-3p/Col1a1 axis. Front Pharmacol 2022; 13:1050093. [PMID: 36467040 PMCID: PMC9713816 DOI: 10.3389/fphar.2022.1050093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2023] Open
Abstract
Background: Hepatic fibrosis (HF) is characterized by activation of hepatic stellate cells (HSCs) and extensive deposition of extracellular matrix components, especially collagens. However, effective antifibrotic therapies are still lacking. Recently, circular RNAs (circRNAs) have been identified as novel regulators of HF. Methods: circRNAs profile was screened by RNA sequencing and the location of circ_0008494 was confirmed by fluorescence in situ hybridization assay in human HF tissues. Bioinformatics analysis was used for result prediction and dual-luciferase reporter, together with AGO-RIP and biotin-coupled miRNA capture assays, were used to determine miR-185-3p/collagen type I alpha 1 chain (Col1a1) as the target of circ_0008494. A stable circ_0008494-interfering human HSCs cell line was constructed and used to determine the regulatory mechanism of circ_0008494/miR-185-3p/Col1a1 axis. Results: circ_0008494 was abundantly and significantly over-expressed in human HF tissues and located at the cytoplasm of HSCs. Together, dual-luciferase reporter, AGO-RIP and biotin-coupled miRNA capture assays confirmed that circ_0008494 acted as a sponge of miR-185-3p. Cell functional experiments and rescue assays demonstrated suppressing circ_0008494 could inhibit activation, proliferation, migration of HSCs and promote their apoptosis through miR-185-3p. In particular, the HF indicator, Col1a1, was validated as the direct target of miR-185-3p and the suppression of circ_0008494 inhibited the expression of Col1a1 by releasing miR-185-3p. Conclusion: Knocking down circ_0008494 inhibited HSCs activation through the miR-185-3p/Col1a1 axis. circ_0008494 could be a promising treatment target for HF.
Collapse
Affiliation(s)
- Binbin Li
- Department of Pathology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiaming Zhou
- Department of Pathology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Yuanyuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kegong Tao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lifen Zhang
- Department of Pathology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ying Zhao
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong Lin
- Department of Gastroenterology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongyu Yu
- Department of Pathology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
111
|
Hypoxia-induced circRNF13 promotes the progression and glycolysis of pancreatic cancer. Exp Mol Med 2022; 54:1940-1954. [PMID: 36369467 PMCID: PMC9723180 DOI: 10.1038/s12276-022-00877-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors. Rapid progression and distant metastasis are the main causes of patient death. Hypoxia is a hallmark of multiple cancers and is involved in tumor biology. However, little is known about the roles of circRNAs in glycolysis and hypoxia-mediated progression of PC. Here, the expression pattern of hypoxia-related circRNAs was analyzed using RNA sequencing. A unique circRNA termed circRNF13 was found to be upregulated in PC tissues and may be a potential prognostic indicator. HIF-1α and EIF4A3 are involved in regulating the biogenesis of circRNF13. Furthermore, circRNF13 was validated to exert a stimulative effect on cell proliferation, angiogenesis, invasion and glycolysis. Importantly, we found that circRNF13 promoted PDK3 levels by acting as a miR-654-3p sponge, thus promoting the PC malignant process. Collectively, our results reveal that hypoxia-induced circRNF13 mediated by HIF-1α and EIF4A3 promotes tumor progression and glycolysis in PC, indicating the potential of circRNF13 as a prognostic biomarker and therapeutic target for PC.
Collapse
|
112
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|
113
|
Abedi-Gaballu F, Kamal Kazemi E, Salehzadeh SA, Mansoori B, Eslami F, Emami A, Dehghan G, Baradaran B, Mansoori B, Cho WC. Metabolic Pathways in Breast Cancer Reprograming: An Insight to Non-Coding RNAs. Cells 2022; 11:2973. [PMID: 36230935 PMCID: PMC9563138 DOI: 10.3390/cells11192973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells reprogram their metabolisms to achieve high energetic requirements and produce precursors that facilitate uncontrolled cell proliferation. Metabolic reprograming involves not only the dysregulation in glucose-metabolizing regulatory enzymes, but also the enzymes engaging in the lipid and amino acid metabolisms. Nevertheless, the underlying regulatory mechanisms of reprograming are not fully understood. Non-coding RNAs (ncRNAs) as functional RNA molecules cannot translate into proteins, but they do play a regulatory role in gene expression. Moreover, ncRNAs have been demonstrated to be implicated in the metabolic modulations in breast cancer (BC) by regulating the metabolic-related enzymes. Here, we will focus on the regulatory involvement of ncRNAs (microRNA, circular RNA and long ncRNA) in BC metabolism, including glucose, lipid and glutamine metabolism. Investigation of this aspect may not only alter the approaches of BC diagnosis and prognosis, but may also open a new avenue in using ncRNA-based therapeutics for BC treatment by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Elham Kamal Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Seyed Ahmad Salehzadeh
- Department of Medicinal Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Behnaz Mansoori
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Farhad Eslami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Ali Emami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| | - Behzad Mansoori
- Cellular and Molecular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
114
|
Liu F, Qu R, Yang L, Shi G, Hao S, Hu C. Circular RNA Controls Tumor Occurrence and Development via Cell Cycle Regulation. Onco Targets Ther 2022; 15:993-1009. [PMID: 36134387 PMCID: PMC9484569 DOI: 10.2147/ott.s371629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
Circular RNAs (circRNAs) participate in the occurrence and development of various diseases through different mechanisms, such as by acting as a microRNA (miRNA) sponge, interacting with RNA-binding proteins, and regulating gene transcription and protein translation. For example, the abnormal expression of specific circRNAs in tumor cells can alter key regulatory factors and the cell cycle network, resulting in cell cycle disorders and the development and metastasis of tumors. Here, we summarize the mechanisms involved in the circRNA-mediated processes that lead to uncontrolled cell cycle and tumor cell proliferation. Extensive studies investigating the abnormal expression of circRNAs in different cancer types have been conducted. The unique characteristics of circRNAs and their ability to regulate the cell cycle through diverse mechanisms is extremely valuable in tumor diagnosis, treatment, and prognosis. Our review may assist in further understanding the circRNA-mediated regulation of the cell cycle in tumors and provide insights for research on circRNA-based therapeutic strategies and biological diagnosis for cancer.
Collapse
Affiliation(s)
- Fang Liu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Limin Yang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guang Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chunmei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
115
|
Razpotnik R, Vidmar R, Fonović M, Rozman D, Režen T. Circular RNA hsa_circ_0062682 Binds to YBX1 and Promotes Oncogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:4524. [PMID: 36139684 PMCID: PMC9497178 DOI: 10.3390/cancers14184524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of hepatocellular carcinoma (HCC). By implementing available transcriptomic analyses of HCC patients, we identified an upregulated circRNA hsa_circ_0062682. Stable perturbations of hsa_circ_0062682 in Huh-7 and SNU-449 cell lines influenced colony formation, migration, cell proliferation, sorafenib sensitivity, and additionally induced morphological changes in cell lines, indicating an important role of hsa_circ_0062682 in oncogenesis. Pathway enrichment analysis and gene set enrichment analysis of the transcriptome data from hsa_circ_0062682 knockdown explained the observed phenotypes and exposed transcription factors E2F1, Sp1, HIF-1α, and NFκB1 as potential downstream targets. Biotinylated oligonucleotide pulldown combined with proteomic analyses identified protein interaction partners of which YBX1, a known oncogene, was confirmed by RNA immunoprecipitation. Furthermore, we discovered a complex cell-type-specific phenotype in response to the oncogenic potential of hsa_circ_0062682. This finding is in line with different classes of HCC tumours, and more studies are needed to shed a light on the molecular complexity of liver cancer.
Collapse
Affiliation(s)
- Rok Razpotnik
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
116
|
Almouh M, Razmara E, Bitaraf A, Ghazimoradi MH, Hassan ZM, Babashah S. Circular RNAs play roles in regulatory networks of cell signaling pathways in human cancers. Life Sci 2022; 309:120975. [PMID: 36126723 DOI: 10.1016/j.lfs.2022.120975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
117
|
Yuan Y, Zhang X, Fan X, Peng Y, Jin Z. The emerging roles of circular RNA-mediated autophagy in tumorigenesis and cancer progression. Cell Death Dis 2022; 8:385. [PMID: 36104321 PMCID: PMC9474543 DOI: 10.1038/s41420-022-01172-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Abstract
AbstractCircular RNA (circRNA) is characterized by a specific covalently closed ring structure. The back-splicing of precursor mRNA is the main way of circRNA generation, and various cis/trans-acting elements are involved in regulating the process. circRNAs exhibit multiple biological functions, including serving as sponges of microRNAs, interacting with proteins to regulate their stabilities and abilities, and acting as templates for protein translation. Autophagy participates in many physiological and pathological processes, especially it plays a vital role in tumorigenesis and carcinoma progression. Increasing numbers of evidences have revealed that circRNAs are implicated in regulating autophagy during tumor development. Until now, the roles of autophagy-associated circRNAs in carcinoma progression and their molecular mechanisms remain unclear. Here, the emerging regulatory roles and mechanisms of circRNAs in autophagy were summarized. Furtherly, the effects of autophagy-associated circRNAs on cancer development were described. We also prospected the potential of autophagy-associated circRNAs as novel therapeutic targets of tumors and as biomarkers for cancer diagnosis and prognosis.
Collapse
|
118
|
Liu H, Yan Y, Lin J, He C, Liao H, Li H, Zhou Z, Wang J, Mao K, Xiao Z. Circular RNA circSFMBT2 downregulation by HBx promotes hepatocellular carcinoma metastasis via the miR-665/TIMP3 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:788-802. [PMID: 36159591 PMCID: PMC9463182 DOI: 10.1016/j.omtn.2022.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/02/2022] [Indexed: 04/30/2023]
Abstract
Hepatitis B virus X protein (HBx) is considered as an oncogene in tumorigenesis and progression of hepatocellular carcinoma (HCC). In recent years, the important role of circular RNAs (circRNAs) in HCC has been increasingly demonstrated. However, the regulatory mechanisms of HBx on circRNAs remains largely unknown. In this study, we identified that a novel circRNA, circSFMBT2, was markedly downregulated by HBx. Low expression of circSFMBT2 was correlated with poor prognosis and vascular invasion. Functionally, overexpression of circSFMBT2 significantly inhibited HCC metastasis both in vitro and in vivo. The mechanism of circSFMBT2 was to as a sponge of miR-665, which is a negative regulator of tissue inhibitor of metalloproteinases 3 (TIMP3). However, HBx downregulated circSFMBT2 via the interaction with DExH-box helicase 9 (DHX9), which binds to flanking circRNA-forming introns. In conclusion, circSFMBT2, which is downregulated by HBx, acts as a tumor suppressor to inhibit tumor metastasis through the miR-665/TIMP3 axis. Our study suggests that circSFMBT2 could be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Haohan Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Corresponding author Yongcong Yan, Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road #107, Guangzhou 510120, China.
| | - Jianhong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of General Surgery, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei 516600, China
- Corresponding author Kai Mao, Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road #107, Guangzhou 510120, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of General Surgery, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei 516600, China
- Corresponding author Zhiyu Xiao, Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road #107, Guangzhou 510120, China.
| |
Collapse
|
119
|
Small Extracellular Vesicles of M1-BV2 Microglia Induce Neuronal PC12 Cells Apoptosis via the Competing Endogenous Mechanism of CircRNAs. Genes (Basel) 2022; 13:genes13091603. [PMID: 36140770 PMCID: PMC9498615 DOI: 10.3390/genes13091603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Polarized microglia play a vital role in neurodegenerative diseases. However, the effects of polarized microglia-derived small extracellular vesicles (SEVs) on neuronal cells and the regulatory mechanisms of circular RNAs (circRNAs) in SEVs remain incompletely defined. In the present study, we carried out high-throughput sequencing and differential expression analysis of circRNAs in the SEVs of M0-phenotype BV2 microglia (M0-BV2) and polarized M1-phenotype BV2 microglia (M1-BV2). Hub circRNAs in the SEVs and their functions were screened using multiple bioinformatics methods. We further validated the effects of SEVs on neuronal PC12 cells by co-culturing M0-BV2 SEVs and M1-BV2 SEVs with neuronal PC12 cells. Among the differentially expressed circRNAs, the target mRNAs of six hub circRNAs (circ_0000705, circ_0001313, circ_0000229, circ_0001123, circ_0000621, and circ_0000735) were enriched in apoptosis-related biological processes. Furthermore, western blot and flow cytometry analysis demonstrated that M0-BV2 SEVs had no distinct effect on apoptosis of neuronal PC12 cells, while M1-BV2 SEVs remarkably increased the apoptosis of neuronal PC12 cells. We then constructed the competing endogenous RNA (ceRNA) networks of the six hub circRNAs. Taken together, the results suggest that polarized M1-BV2 microglia can induce apoptosis of neuronal PC12 cells through secreted SEVs, and this regulatory effect may be achieved by the circRNAs circ_0000705, circ_0001313, circ_0000229, circ_0001123, circ_0000621, and circ_0000735 through ceRNAs regulatory networks. These findings provide new potential targets for the treatment of neurodegenerative diseases.
Collapse
|
120
|
Wang K, Lin X. Circular RNA circMTO1 suppressed the progression of renal cell carcinoma progression by sponging miR-211 and miR-204. Mamm Genome 2022; 33:517-524. [PMID: 35092479 DOI: 10.1007/s00335-022-09944-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/11/2022] [Indexed: 12/01/2022]
Abstract
Despite considerable improvements in renal cell carcinoma (RCC) diagnostic and therapeutic strategy, the clinical prognosis of patients is far from satisfactory due to its recurrence and metastasis. Here, we attempted to explore the role of circMTO1 in RCC progression, and the underlying mechanism was further elucidated. We first detected the expression of circMTO1 in 90 pairs of RCC tissues and adjacent normal tissues using qRT-PCR. Besides, circMTO1, miR-211, miR-204 and KLF6 expression levels in RCC cells were also measured using qRT-PCR. MTT assay, cell migration, flow cytometry analysis, qRT-PCR and western blotting analysis were applied to evaluating the effect of circMTO1 in RCC cells. The bioinformatics analysis and the rescue experiment were devoted to the underlying mechanism. The results demonstrated CircMTO1 expression was significantly down-regulated in RCC tissues and cell lines. Besides, CircMTO1 inhibited cell proliferation, migration and invasion, induced apoptosis in RCC cells. In addition, CircMTO1 serves as a sponge for miR-211 and miR-204, KLF6 is a direct target of miR-211 and miR-204. Furthermore, circMTO1 and KLF6 overexpression rescued the suppression of miR-211/204 in RCC cell proliferation. In short, circMTO1 repressed RCC progression by regulating KLF6 via sponging miR-211 and miR-204, which may provide new idea of diagnosis and treatment in renal cell carcinoma.
Collapse
Affiliation(s)
- Ke Wang
- Department of Urology, The First People's Hospital of Xianyang, Xianyang, 712000, Shaanxi Province, China
| | - Xiaofeng Lin
- Department of Urology, People's Hospital of Wuqi County, Wuqi County Middle Street, Yan'an City, 717600, Shaanxi Province, China.
| |
Collapse
|
121
|
High dose androgen suppresses natural killer cytotoxicity of castration-resistant prostate cancer cells via altering AR/circFKBP5/miRNA-513a-5p/PD-L1 signals. Cell Death Dis 2022; 13:746. [PMID: 36038573 PMCID: PMC9424293 DOI: 10.1038/s41419-022-04956-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023]
Abstract
Most advanced prostate cancer (PCa) patients initially respond well to androgen deprivation therapy, but almost all eventually develop castration-resistant prostate cancer (CRPC). Early studies indicated the bipolar androgen therapy via a cycling of high dose and low dose of androgen to suppress PCa growth might be effective in a select patient population. The detailed mechanisms, however, remain unclear. Here we found the capacity of natural killer (NK) cells to suppress the CRPC cells could be suppressed by a high dose of dihydrotestosterone (DHT). Mechanism dissection indicates that transactivated AR can increase circularRNA-FKBP5 (circFKBP5) expression, which could sponge/inhibit miR-513a-5p that suppresses the PD-L1 expression via direct binding to its 3'UTR to negatively impact immune surveillance from NK cells. Preclinical data from in vitro cell lines and an in vivo mouse model indicate that targeting PD-L1 with sh-RNA or anti-PD-L1 antibody can enhance the high dose DHT effect to better suppress CRPC cell growth. These findings may help us to develop novel therapies via combination of high dose androgen with PD-1/PD-L1 checkpoint inhibitors to better suppress CRPC progression.
Collapse
|
122
|
Circular RNA hsa_circ_0007367 promotes the progression of pancreatic ductal adenocarcinoma by sponging miR-6820-3p and upregulating YAP1 expression. Cell Death Dis 2022; 13:736. [PMID: 36008392 PMCID: PMC9411600 DOI: 10.1038/s41419-022-05188-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023]
Abstract
Circular RNAs (circRNAs) play critical regulatory roles in cancer biological processes. Nevertheless, the contributions and underlying mechanisms of circRNAs to pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. Dysregulated circRNAs between cancerous tissues and matched adjacent normal tissues were identified by circRNA microarray in PDAC. The biological effect of hsa_circ_007367 both in vitro and in vivo was demonstrated by gain- and loss-of-function experiments. Further, dual-luciferase reporter and RNA pull-down assays were performed to confirm the interaction among hsa_circ_007367, miR-6820-3p, and Yes-associated protein 1 (YAP1). The expression of hsa_circ_007367 and YAP1 were detected by in situ hybridization (ISH) and immunohistochemistry (IHC) using tissue microarray (TMA) in 128 PDAC samples. We first identified that a novel circRNA, hsa_circ_0007367, was markedly upregulated in PDAC tissues and cells. Functionally, in vivo and in vitro data indicated that hsa_circ_0007367 promotes the proliferation and metastasis of PDAC. Mechanistically, we confirmed that hsa_circ_0007367 could facilitate the expression of YAP1, a well-known oncogene, by sponging miR-6820-3p, which function as a tumor suppresser in PDAC cells. The results of ISH and IHC demonstrated that hsa_circ_0007367 and YAP1 were upregulated in PDAC tissues. Furthermore, clinical data showed that higher hsa_circ_0007367 expression was correlated with advanced histological grade and lymph node metastasis in PDAC patients. In conclusion, our findings reveal that hsa_circ_0007367 acts as an oncogene via modulating miR-6820-3p/YAP1 axis to promote the progression of PDAC, and suggest that hsa_circ_0007367 may serve as a potential therapeutic target for treatment of PDAC.
Collapse
|
123
|
He F, Guo Q, Jiang GX, Zhou Y. Comprehensive analysis of m6A circRNAs identified in colorectal cancer by MeRIP sequencing. Front Oncol 2022; 12:927810. [PMID: 36059637 PMCID: PMC9437624 DOI: 10.3389/fonc.2022.927810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
PurposeTo characterize the entire profile of m6A modifications and differential expression patterns for circRNAs in colorectal cancer (CRC).MethodsFirst, High-throughput MeRIP-sequencing and RNA-sequencing was used to determine the difference in m6A methylome and expression of circRNA between CRC tissues and tumor-adjacent normal control (NC) tissues. Then, GO and KEGG analysis detected pathways involved in differentially methylated and differentially expressed circRNAs (DEGs). The correlations between m6A status and expression level were calculated using a Pearson correlation analysis. Next, the networks of circRNA-miRNA-mRNA were visualized using the Target Scan and miRanda software. Finally, We describe the relationship of distance between the m6A peak and internal ribosome entry site (IRES) and protein coding potential of circRNAs.ResultsA total of 4340 m6A peaks of circRNAs in CRC tissue and 3216 m6A peaks of circRNAs in NC tissues were detected. A total of 2561 m6A circRNAs in CRC tissues and 2129 m6A circRNAs in NC tissues were detected. Pathway analysis detected that differentially methylated and expressed circRNAs were closely related to cancer. The conjoint analysis of MeRIP-seq and RNA-seq data discovered 30 circRNAs with differentially m6A methylated and synchronously differential expression. RT-qPCR showned circRNAs (has_circ_0032821, has_circ_0019079, has_circ_0093688) were upregulated and circRNAs (hsa_circ_0026782, hsa_circ_0108457) were downregulated in CRC. In the ceRNA network, the 10 hyper-up circRNAs were shown to be associated with 19 miRNAs and regulate 16 mRNAs, 14 hypo-down circRNAs were associated with 30 miRNAs and regulated 27 mRNAs. There was no significant correlation between the level of m6A and the expression of circRNAs. The distance between the m6A peak and IRES was not significantly related to the protein coding potential of circRNAs.ConclusionOur study found that there were significant differences in the m6A methylation patterns of circRNAs between CRC and NC tissues. M6A methylation may affect circRNA-miRNA-mRNA co-expression in CRC and further affect the regulation of cancer-related target genes.
Collapse
Affiliation(s)
- Feng He
- The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Qin Guo
- The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Guo-xiu Jiang
- The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yan Zhou
- National Health Commission (NHC), Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- *Correspondence: Yan Zhou,
| |
Collapse
|
124
|
Liu C, Hou X, Mo K, Li N, An C, Liu G, Pan Z. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J Clin Lab Anal 2022; 36:e24658. [PMID: 35989522 PMCID: PMC9550980 DOI: 10.1002/jcla.24658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background All chronic liver diseases could lead to liver fibrosis. Accurate diagnosis and stage of fibrosis were important for the medical determination, management, and therapy. Liver biopsy was considered to be the gold criteria of fibrosis diagnosis. However, liver biopsy was an invasive method with some drawbacks. Non‐invasive tests for liver fibrosis included radiologic method and serum‐based test. Radiologic examination was influenced by obesity, cost, and availability. Serum‐based test was widely used in the screening and diagnostic of liver fibrosis. However, the accuracy was still needed to be improved. Methods Recent studies showed serum non‐coding RNAs: microRNA, long non‐coding RNA(lncRNA), and circular RNA(circRNA), which have the potentiality to be non‐invasive markers for liver fibrosis. The recent progress was summarized in this review. Results These studies showed serum non‐coding RNAs exerted a good diagnostic performance for liver fibrosis. A panel that included several non‐coding RNAs could increase the accuracy of single marker. Conclusions Serum microRNAs, lncRNAs, and circRNAs could be potential non‐invasive markers for diagnosis and stage of liver fibrosis. More high‐quality clinical study is needed for further research.
Collapse
Affiliation(s)
- Chao Liu
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Xueyun Hou
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Kaixin Mo
- Clinical Laboratory, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Nannan Li
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Cheng An
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Guijian Liu
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Zongdai Pan
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
125
|
Huang S, Zhong J, Qi Q, Liu G, Gong M. CircRNA expression profile and potential role of hsa_circ_0040039 in intervertebral disc degeneration. Medicine (Baltimore) 2022; 101:e30035. [PMID: 35960109 PMCID: PMC9371492 DOI: 10.1097/md.0000000000030035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Circular RNAs (circRNAs) play an critical role in the pathological processes associated with IDD. However, the potential roles of circRNAs in IDD remain largely unclear. Here, we identify the circRNAs expression profiles and elucidate the potential role of candidate circRNAs in the pathogenesis of intervertebral disc degeneration (IDD) through microarray data and bioinformatics analyses. METHODS We obtained the datasets of microarrays (GSE67566 and GSE116726) from the Gene Expression Omnibus database. The differentially expressed circRNAs and miRNAs were identified using the Limma R package. The target miRNAs and target genes of the candidate circRNAs were predicted using an online tool. Functional enrichment analyses of the target genes were performed using the clusterProfiler R package. A protein-protein interaction (PPI) network was constructed using STRING. RESULTS A total of 104 differentially expressed circRNAs were identified between the IDD and the control groups, including 41 upregulated circRNAs and 63 downregulated circRNAs (cutoff criteria (|log2 fold change| > 2, P < .05)). Hsa_circ_0040039, which was the most upregulated circRNA (log2 fold change = 2.95), was selected for further analysis. The regulatory circRNA-miRNA-mRNA network comprised hsa_circ_0040039, 2 target miRNAs (hsa-miR-424-5p and hsa-miR-15b-5p), and 77 target genes. Functional enrichment analysis showed that the 77 promising target genes are mainly enriched in the ubiquitin proteasome system and Wnt signaling pathway. Further, the PPI network showed that the top 3 hub genes are BRTC, SIAH1, and UBE2V1. CONCLUSIONS A total of 104 differentially expressed circRNAs were identified between the IDD and control groups. Hsa_circ_0040039 may serve as a sponge of hsa-miR-424-5p and hsa-miR-15b-5p, to regulate the expression of downstream genes (such as BRTC, SIAH1, and UBE2V1); thus, it may be involved in IDD-associated pathological processes via the Wnt/β-catenin signaling pathway. Further studies are required to confirm the potential roles of hsa_circ_0040039 in IDD.
Collapse
Affiliation(s)
- Sheng Huang
- Department of Orthopaedics, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junlong Zhong
- Department of Orthopaedics, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qihua Qi
- Department of Orthopaedics, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gangan Liu
- Department of Orthopaedics, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Gong
- Department of Spine Surgery, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Ming Gong, MD, Department of Spine Surgery, People’s Hospital of Longhua, Shenzhen, China (e-mail addresses: )
| |
Collapse
|
126
|
Ma C, Shi ZH, Han XY, Liu C, Yan B, Du JL. Targeting circRNA-MAP4K2 for the treatment of diabetes-induced retinal vascular dysfunction. Aging (Albany NY) 2022; 14:6255-6268. [PMID: 35963645 PMCID: PMC9417218 DOI: 10.18632/aging.204215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Diabetic retinopathy (DR) is an important ocular vascular disease in working-age adults. However, the molecular mechanism underlying retinal vascular dysfunction is still not fully understood in DR. Circular RNAs have been recognized as the crucial regulators in many biological processes and human diseases. Herein, we determined the role of circular RNA-MAP4K2 (cMAP4K2) in diabetes-induced retinal vascular dysfunction. The results showed that high glucose treatment led to increased levels of cMAP4K2 expression in vitro and in vivo. Silencing of cMAP4K2 could reduce endothelial cell viability, proliferation, migration, and tube formation in vitro and alleviate retinal vascular dysfunction in vivo as shown by decreased vascular leakage and inflammation. By contrast, cMAP4K2 overexpression had an opposite effect on retinal vascular dysfunction. Mechanistically, cMAP4K2 acted as miR-377 sponge to affect the biological activity of miR-377, which led to increased expression of vascular endothelial growth factor A (VEGFA). Clinically, cMAP4K2 expression was significantly up-regulated in the clinical sample of DR patients. Collectively, cMAP4K2 is shown as a potential target for the diagnosis and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Cong Ma
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ze-Hui Shi
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Han
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang Liu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biao Yan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Ling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
127
|
Li H, Xu L, Yi P, Li L, Yan T, Xie L, Zhu Z. High-throughput circular RNA sequencing reveals the profiles of circular RNA in non-cirrhotic hepatocellular carcinoma. BMC Cancer 2022; 22:857. [PMID: 35931993 PMCID: PMC9356431 DOI: 10.1186/s12885-022-09909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
Background Liver cirrhosis is a well-known risk factor for hepatocellular carcinoma (HCC). However, some HCC cases can also originate from non-cirrhotic livers. The aim of this study was to identify key circular RNAs (circRNAs) associated with the tumorigenesis of non-cirrhotic liver disease. Methods The differently expressed circRNAs between non-cirrhotic and cirrhotic HCCs were assessed with use of high-throughput circRNAs sequencing and validated with quantitative reverse transcription polymerase chain reaction (qRT-PCR). Potential biological functions of these dysregulated circRNAs were predicted with use of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A circRNA-miRNA-mRNA regulation network was constructed as achieved with use of miRanda software and visualized using Cytoscape software. Biological functions of the four most prominent dysregulated circRNAs identified were confirmed by in vitro experiments. Moreover, possible translations of these dysregulated circRNAs were also predicted. Results A total of 393 dysregulated circRNAs were identified between non-cirrhotic and cirrhotic HCC, including 213 that were significantly up-regulated and 180 significantly down-regulated circRNAs. Expression levels of the six most prominent dysregulated circRNAs were further validated using qRT-PCR. Many tumor related miRNAs were involved in the circRNA-miRNA-mRNA networks, including miR-182-5p, miR-561-3p, miR-125a-5p, miR-145, miR-23b-3p and miR-30e-3p, and downstream mRNAs of dysregulated circRNAs were significantly related with biological processes involved in the progression of tumors, including proliferation, migration, differentiation, and focal adhesion. Results from the in vitro experiments demonstrated that the most prominent dysregulated circRNAs exerted notable effects upon the proliferation and migration of HCC cells. Finally, we also identified 19 dysregulated circRNAs having potential for the coding of functional peptides. Conclusion The results of this present study indicate that circRNAs may play important roles in tumorigenesis of non-cirrhotic HCC. Such findings provide some novel insights and pave the way for the development of future studies directed at investigating the initiation and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09909-2.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Liver Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Liangliang Xu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengsheng Yi
- Department of Hepato-Biliary-Pancreas, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xie
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhijun Zhu
- Department of Liver Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
128
|
Tanuj GN, Khan O, Malla WA, Rajak KK, Chandrashekar S, Kumar A, Dhara S, Gupta PK, Mishra BP, Dutt T, Gandham R, Sajjanar B. Integrated analysis of long-noncoding RNA and circular RNA expression in Peste-des-Petits-Ruminants Virus (PPRV) infected marmoset B lymphocyte (B95a) cells. Microb Pathog 2022; 170:105702. [DOI: 10.1016/j.micpath.2022.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
|
129
|
Li X, Fang J, Wei G, Chen Y, Li D. CircMMP9 accelerates the progression of hepatocellular carcinoma through the miR-149/ CCND2 axis. J Gastrointest Oncol 2022; 13:1875-1888. [PMID: 36092323 PMCID: PMC9459201 DOI: 10.21037/jgo-22-677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND This study aimed to verify the hypothesis that circular RNA MMP9 (circMMP9) promotes hepatocellular carcinoma (HCC) progression through targeting miR-149 and regulating cyclin D2 (CCND2) expression. METHODS Expression of circMMP9, miR-149 and CCND2 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or protein blotting. Cell Counting Kit-8 (CCK-8) was used to evaluate cell proliferation. The HCC cell migration and invasion were evaluated using wound healing and transwell assays. The interaction among circMMP9, miR-149, and CCND2 was evaluated using luciferase, RNA-pull down, and RNA immunoprecipitation (RIP) assays, respectively. Cell apoptosis and cycle were examined by flow cytometry. A subcutaneous HCC xenograft mouse model was established for analyzing the role of circMMP9 in regulating the progression of HCC in vivo. RESULTS The expression of circMMP9 was elevated in HCC tissues and its high expression correlated with poor prognosis (P<0.05). Knockdown of circMMP9 restrained the proliferation, migration, and invasion of HCC cells and led to arrested cell cycle and increased apoptosis (all P<0.05). Furthermore, knockdown of circMMP9 attenuated HCC growth in vivo (P<0.05). Mechanically, circMMP9 acted as a sponge for miR-149 and enhanced CCND2 expression in HCC cells (P<0.05). Inhibition of miR-149 or overexpression of CCND2 abrogated knockdown of circMMP9-mediated alleviation of the malignant phenotypes of HCC (P<0.05). CONCLUSIONS For the first time, we demonstrated that circMMP9 exacerbated HCC progression through the miR-149/CCND2 axis, which suggested that circMMP9 could be potentially targeted for HCC treatment.
Collapse
Affiliation(s)
- Xiaolou Li
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jiankai Fang
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Guangmin Wei
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Outpatient Department, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Dongliang Li
- Department of Hepatobiliary Medicine, the 900th Hospital of Joint Logistics Support Forces of the Chinese PLA, Fuzhou, China
| |
Collapse
|
130
|
Du Y, Ding Y, Shi T, He W, Mei Z, Feng X, Zhang X, Jie Z. Suppression of circXPO1 attenuates cigarette smoke-induced inflammation and cellular senescence of alveolar epithelial cells in chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 111:109086. [PMID: 35907337 DOI: 10.1016/j.intimp.2022.109086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Smoking is an essential facet of the pathogenesis of chronic obstructive pulmonary disease (COPD), which is typically characterized by inflammation and cellular senescence of alveolar epithelial cells. In this study, we investigated the function and fundamental mechanism of a novel circular RNA XPO1 (circXPO1) in cigarette smoke (CS)-induced inflammation and cellular senescence of alveolar epithelial cells. We found that circXPO1 was overexpressed in the lungs of CS-exposed mice and the CS extract (CSE)-treated alveolar epithelial cell line MLE12. Suppression of circXPO1 inhibited CSE-induced inflammatory cytokine production and cellular senescence. In vivo assays also demonstrated that circXPO1 knockdown attenuates CS-induced inflammation and senescence in the mouse lungs. Mechanistically, circXPO1 can directly bind to miR-23b-3p, preventing miR-23b-3p from binding to its target TGF-β-activated kinase 1/MAP3K7 binding protein 3 (TAB3)mRNA. In addition, under CSE conditions, miR-23b-3p overexpression recapitulated the prophylactic effects of circXPO1 knockdown. Inhibition of miR-23b-3p attenuated the function of circXPO1 knockdown in CSE-treated MLE12 cells. These results reveal that circXPO1 plays a role in the pathogenesis of COPD by modulating TAB3 through sponging miR-23b-3p.
Collapse
Affiliation(s)
- Yong Du
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Yi Ding
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Wei He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zhoufang Mei
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xintong Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xiaohua Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China.
| |
Collapse
|
131
|
Ma L, He LN, Kang S, Gu B, Gao S, Zuo Z. Advances in detecting N6-methyladenosine modification in circRNAs. Methods 2022; 205:234-246. [PMID: 35878749 DOI: 10.1016/j.ymeth.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with covalently single-stranded closed loop structures derived from back-splicing event of linear precursor mRNAs (pre-mRNAs). N6-methyladenosine (m6A), the most abundant epigenetic modification in eukaryotic RNAs, has been shown to play a crucial role in regulating the fate and biological function of circRNAs, and thus affecting various physiological and pathological processes. Accurate identification of m6A modification in circRNAs is an essential step to fully elucidate the crosstalk between m6A and circRNAs. In recent years, the rapid development of high-throughput sequencing technology and bioinformatic methodology has propelled the establishment of a multitude of approaches to detect circRNAs and m6A modification, including in vitro-based and in silico methods. Based on this, the research community has started on a new journey to develop methods for identification of m6A modification in circRNAs. In this review, we provide a comprehensive review and evaluation of the existing methods responsible for detecting circRNAs, m6A modification, and especially, m6A modification in circRNAs, which mainly focused on those developed based on high-throughput technologies and methodology of bioinformatics. This handy reference can help researchers figure out towards which direction this field will go.
Collapse
Affiliation(s)
- Lixia Ma
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China
| | - Li-Na He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shiyang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bianli Gu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China
| | - Shegan Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China.
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
132
|
Xu Z, Chen S, Liu R, Chen H, Xu B, Xu W, Chen M. Circular RNA circPOLR2A promotes clear cell renal cell carcinoma progression by facilitating the UBE3C-induced ubiquitination of PEBP1 and, thereby, activating the ERK signaling pathway. Mol Cancer 2022; 21:146. [PMID: 35840930 PMCID: PMC9284792 DOI: 10.1186/s12943-022-01607-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has demonstrated that circular RNAs (circRNAs) are implicated in cancer progression. However, the aberrant expression and biological functions of circRNAs in clear cell renal cell carcinoma (cRCC) remain largely elusive. Method Differentially expressed circRNAs in cRCC were filtered via bioinformatics analysis. Aberrant circPOLR2A expression was validated in cRCC tissues and cell lines via qRT-PCR. Sanger sequencing was used to identify the backsplicing site of circPOLR2A. In vitro and in vivo functional experiments were performed to evaluate the role of circPOLR2A in cRCC malignancy. RNA pull-down, mass spectrometry, RIP, FISH and immunofluorescence assays were used to identify and validate the circPOLR2A-interacting proteins. Ubiquitination modification and interaction between proteins were detected via Co-IP and western blotting. The m6A modification in circPOLR2A was validated by the meRIP assay. Results Bioinformatics analysis revealed that circPOLR2A was highly expressed in cRCC tissues and metastatic cRCC tissues. CircPOLR2A expression was associated with tumor size and TNM stage in cRCC patients. In vitro and in vivo functional assays revealed that circPOLR2A accelerated cRCC cell proliferation, migration, invasion and angiogenesis, while inhibiting apoptosis. Further mechanistic research suggested that circPOLR2A could interact with UBE3C and PEBP1 proteins, and that UBE3C could act as a specific ubiquitin E3 ligase for the PEBP1 protein. The UBE3C/circPOLR2A/PEBP1 protein-RNA ternary complex enhanced the UBE3C-mediated ubiquitination and degradation of the PEBP1 protein which could inactivate the ERK signaling pathway. Rescue experiments revealed that the PEBP1 protein was the functional downstream target of circPOLR2A. Furthermore, m6A modification in circPOLR2A was confirmed, and the m6A reader YTHDF2 could regulate circPOLR2A expression. Conclusion Our study demonstrated that circPOLR2A modulated the UBE3C-mediated ubiquitination and degradation of the PEBP1 protein, and further activated the ERK pathway during cRCC progression and metastasis. The m6A reader, YTHDF2, regulated circPOLR2A expression in cRCC. Hence, circPOLR2A could be a potential target for the diagnosis and treatment of cRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01607-8.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Ruiji Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Hui Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Weizhang Xu
- Department of Urology, Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, No.42 Baiziting Road, Nanjing, 210000, People's Republic of China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China. .,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China. .,Department of Urology, Nanjing Lishui District People's Hospital, No.86 Chongwen Road, Nanjing, 211200, People's Republic of China.
| |
Collapse
|
133
|
Bai C, Yang W, Ouyang R, Li Z, Zhang L. Study of hsa_circRNA_000121 and hsa_circRNA_004183 in papillary thyroid microcarcinoma. Open Life Sci 2022; 17:726-734. [PMID: 35891968 PMCID: PMC9281586 DOI: 10.1515/biol-2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
We detected the expressions of hsa_circRNA_000121 and hsa_circRNA_ 004183 in papillary thyroid microcarcinoma (PTMC) and explored their relationship with the invasiveness of PTMC. PTMC patients with (n = 30; metastasis group) and without lymph node metastasis (n = 30; nonmetastasis group) were included. The levels of hsa_circRNA_000121, hsa_circRNA_004183, hsa-miR-4763, hsa-miR-6775, sarcoma gene (SRC), and MMP-14 were detected with real-time polymerase chain reaction. Receiver-operating characteristic (ROC) analyzed the diagnostic value of hsa_circRNA_000121 and hsa_circRNA_004183. Binary logistic regression analysis evaluated the relationship of gene expression with PTMC invasiveness. In PTMC tissue samples, compared with the metastasis group, the expression of hsa_circRNA_000121, hsa_circRNA_004183, SRC, and MMP-14 in the nonmetastasis group decreased, while the expression of hsa-miR-4763 and hsa-miR-6775 increased. In peripheral blood, compared with the metastasis group, the expression of hsa_circ_000121 and hsa_circRNA_004183 in the nonmetastasis group decreased. Both hsa_circRNA_000121 and hsa_circRNA_004183 had good sensitivity and specificity for diagnosing PTMC lymph node metastasis, with a cut-off value of 0.796 and 0.938, respectively. However, the gene expressions were not significantly associated with PTMC lymph node metastasis. Hsa_circRNA_000121 may upregulate SRC expression through hsa-miR-4763, while hsa_circRNA 000121 may upregulate MMP-14 expression through hsa-miR-6775, thereby promoting the aggressiveness of PTMC and ultimately leading to cervical lymph node metastasis. hsa_circRNA_000121 and hsa_circRNA_004183 may become potential biomarkers of PTMC aggressiveness.
Collapse
Affiliation(s)
- Chao Bai
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Wenwen Yang
- The Second Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Ru Ouyang
- Department of Endocrinology, Sanya Central Hospital, No. 1154, Jiefang 4th Road, Tianya District, Sanya 572000, China
| | - Zongbao Li
- Department of Endocrinology, Sanya Central Hospital, No. 1154, Jiefang 4th Road, Tianya District, Sanya 572000, China
| | - Li Zhang
- Department of Endocrinology, Sanya Central Hospital, No. 1154, Jiefang 4th Road, Tianya District, Sanya 572000, China
| |
Collapse
|
134
|
Hu H, Huang W, Zhang H, Li J, Zhang Q, Miao YR, Hu FF, Gan L, Su Z, Yang X, Guo AY. A miR-9-5p/FOXO1/CPEB3 Feed-Forward Loop Drives the Progression of Hepatocellular Carcinoma. Cells 2022; 11:cells11132116. [PMID: 35805200 PMCID: PMC9265408 DOI: 10.3390/cells11132116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, but its regulatory mechanism remains unclear and potential clinical biomarkers are still lacking. Co-regulation of TFs and miRNAs in HCC and FFL module studies may help to identify more precise and critical driver modules in HCC development. Here, we performed a comprehensive gene expression and regulation analysis for HCC in vitro and in vivo. Transcription factor and miRNA co-regulatory networks for differentially expressed genes between tumors and adjacent tissues revealed the critical feed-forward loop (FFL) regulatory module miR-9-5p/FOXO1/CPEB3 in HCC. Gain- and loss-of-function studies demonstrated that miR-9-5p promotes HCC tumor proliferation, while FOXO1 and CPEB3 inhibit hepatocarcinoma growth. Furthermore, by luciferase reporter assay and ChIP-Seq data, CPEB3 was for the first time identified as a direct downstream target of FOXO1, negatively regulated by miR-9-5p. The miR-9-5p/FOXO1/CPEB3 FFL was associated with poor prognosis, and promoted cell growth and tumor progression of HCC in vitro and in vivo. Our study identified for the first time the existence of miR-9-5p/FOXO1/CPEB3 FFL and revealed its regulatory role in HCC progression, which may represent a new potential target for cancer therapy.
Collapse
Affiliation(s)
- Hui Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hong Zhang
- Department of Gastroenterology, Wuhan Third Hospital, Wuhan 430060, China;
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
| | - Qiong Zhang
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Ya-Ru Miao
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Fei-Fei Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
| | - Zhenhong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Medical College, Hubei Polytechnic University, Huangshi 435000, China;
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
- Correspondence: (X.Y.); (A.-Y.G.)
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
- Correspondence: (X.Y.); (A.-Y.G.)
| |
Collapse
|
135
|
Zheng D, Tahir RA, Yan Y, Zhao J, Quan Z, Kang G, Han Y, Qing H. Screening of Human Circular RNAs as Biomarkers for Early Onset Detection of Alzheimer’s Disease. Front Neurosci 2022; 16:878287. [PMID: 35864990 PMCID: PMC9296062 DOI: 10.3389/fnins.2022.878287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a distinctive type of endogenous non-coding RNAs, and their regulatory roles in neurological disorders have received immense attention. CircRNAs significantly contribute to the regulation of gene expression and progression of neurodegenerative disorders including Alzheimer’s disease (AD). The current study aimed to identify circRNAs as prognostic and potential biomarkers in AD. The differentially expressed circRNAs among subjective cognitive decline, amnestic mild cognitive impairment, and age-matched normal donors were determined through Arraystar Human circRNA Array V2 analysis. The annotations of circRNAs-microRNA interactions were predicted by employing Arraystar’s homemade microRNAs (miRNA) target prediction tool. Bioinformatics analyses comprising gene ontology enrichment, KEGG pathway, and network analysis were conducted. Microarray analysis revealed the 33 upregulated and 11 downregulated differentially expressed circRNAs (FC ≥ 1.5 and p-values ≤ 0.05). The top 10 differentially expressed upregulated and downregulated circRNAs have been chosen for further expression validation through quantitative real-time PCR and subsequently, hsa-circRNA_001481 and hsa_circRNA_000479 were confirmed experimentally. Bioinformatics analyses determined the circRNA-miRNA-mRNA interactions and microRNA response elements to inhibit the expression of miRNAs and mRNA targets. Gene ontology enrichment and KEGG pathways analysis revealed the functional clustering of target mRNAs suggesting the functional verification of these two promising circRNAs. It is concluded that human circRNA_001481 and circRNA_000479 could be utilized as potential biomarkers for the early onset detection of AD and the development of effective therapeutics.
Collapse
Affiliation(s)
- Da Zheng
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Rana Adnan Tahir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Guixia Kang
- Key Lab of Universal Wireless Communications of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ying Han
- Biomedical Engineering Institute, Hainan University, Haikou, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- *Correspondence: Ying Han,
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Hong Qing, , orcid.org/0000-0003-0216-4044
| |
Collapse
|
136
|
Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, Fu M, Shi H, Cai H, Qian H, Xu W, Zhang X. Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1. Mol Cancer 2022; 21:141. [PMID: 35780119 PMCID: PMC9250212 DOI: 10.1186/s12943-022-01606-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing studies suggest that circular RNAs (circRNAs) are critical regulators of cancer development and progression. However, the biological roles and mechanisms of circRNAs in gastric cancer (GC) remain largely unknown. METHODS We identified the differentially expressed circRNAs in GC by analyzing Gene Expression Omnibus (GEO) datasets. We explored the biological roles of circRNAs in GC by in vitro functional assays and in vivo animal studies. We performed tagged RNA affinity purification (TRAP), RNA immunoprecipitation (RIP), mass spectrometry (MS), RNA sequencing, luciferase reporter assays, and rescue experiments to investigate the mechanism of circRNAs in GC. RESULTS Downregulated expression of circular RNA EIF4G3 (circEIF4G3; hsa_circ_0007991) was found in GC and was associated with poor clinical outcomes. Overexpression of circEIF4G3 suppressed GC growth and metastasis through the inhibition of β-catenin signaling, whereas knockdown of circEIF4G3 showed the opposite effects. Mechanistic studies revealed that circEIF4G3 bound to δ-catenin protein to promote its TRIM25-mediated ubiquitin degradation and interacted with miR-4449 to upregulate SIK1 expression. CONCLUSION Our findings uncovered a tumor suppressor function of circEIF4G3 in GC through the regulation of δ-catenin protein stability and miR-4449/SIK1 axis. CircEIF4G3 may act as a promising prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xueyan Zang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, China
| | - Yanke Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Medical College of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Medical College of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Hui Qian
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Xu Zhang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Medical College of Jiangsu University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
137
|
Impact of Amarogentin on Gastric Carcinoma Cell Multiplication, Apoptosis and Migration via circKIF4A/miR-152-3p. J Immunol Res 2022; 2022:2156204. [PMID: 35747689 PMCID: PMC9213178 DOI: 10.1155/2022/2156204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The active ingredients extracted from natural plants have anti-GC actions and can slow down gastric carcinoma (GC) progression. To investigate the impact of Amarogentin (AG) on GC cell multiplication, apoptosis and migration and the possible mechanisms. Methods qRT-PCR quantification of circKIF4A and miR-152-3p in GC tissues and normal counterparts as well as HGC-27 (human GC cell strain) and GES-1 (human gastric mucosal epithelial cell strain) was performed. HGC-27 cells were intervened by AG of various concentrations. si-NC, si-circKIF4A were further transfected into HGC-27 cells. Besides, pcDNA and pcDNA-circKIF4A were transfected into HGC-27 cells, after which 60 mmol/L AG was added for intervention. Cell multiplication, clone formation, as well as apoptosis and migration measurements were made by MTT, plate clone formation, flow cytometry and Transwell assays, respectively; Double luciferase reporter assay was performed for targeting relationship identification between circKIF4A and miR-152-3p; Western blots were carried out to measure Bax and Bcl-2 protein levels. Results circKIF4A increased (P <0.05) and miR-152-3p decreased (P <0.05) in GC tissues and cell strains. Concentration-dependently, AG intervention contributed to enhanced cell multiplication inhibitory rate, apoptosis rate, miR-152-3p expression and Bax protein level (P <0.05), together with declined number of cell clones formed, migrating cells, circKIF4A expression and Bcl-2 protein level (P <0.05). After transfection of si-circKIF4A, cell multiplication inhibition rate, apoptosis rate and Bax protein level enhanced (P <0.05), while cell clones formed and migrating cells as well as Bcl-2 protein level reduced (P <0.05). miR-152-3p can be controlled by circKIF4A; pcDNA-circKIF4A transfection antagonized AG's effects on HGC-27 cell multiplication, clone formation, apoptosis and migration. Conclusion AG can decrease GC multiplication, clone formation and migration and induce apoptosis via modulating circKIF4A/miR-152-3p expression.
Collapse
|
138
|
Wei SH, Liu M, Hu J, Zhang CY. Target-Initiated Cascade Signal Amplification Lights up a G-Quadruplex for a Label-Free Detection of Circular Ribonucleic Acids. Anal Chem 2022; 94:9193-9200. [PMID: 35703015 DOI: 10.1021/acs.analchem.2c01901] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circular ribonucleic acids (circRNAs) are a type of RNA that originates through back-splicing events from linear primary transcripts. CircRNAs display high structural resistance and tissue specificity. Accurate quantification of the circRNA expression level is of vital importance to disease diagnosis. Herein, we construct a label-free fluorescent biosensor for ultrasensitive analysis of circRNAs based on the integration of target-initiated cascade signal amplification strategy with a light-up G-quadruplex. This assay involves only one assistant probe that targets the circRNA-specific back-splice junction. When circRNA is present, it hybridizes with the assistant probe to initiate the duplex-specific nuclease (DSN)-catalyzed cyclic cleavage reaction, producing abundant triggers with 3'OH termini. Then, terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of dGTP and dATP at the 3'-OH termini of the resultant triggers to obtain abundant long G-rich DNA sequences that can form efficient G-quadruplex products. The addition of Thioflavin T (ThT) can light up G-quadruplex, generating an enhanced fluorescence. This assay may be performed isothermally without the involvement of any nucleic acid templates, exogenous primers, and specific labeled probes. Importantly, this biosensor can discriminate target circRNA from one-base mismatched circRNA and exhibits good performance in human serum. Moreover, it can accurately detect circRNA in cancer cells at a single-cell level and even differentiate the circRNA levels in the tissues of healthy persons and nonsmall cell lung cancer (NSCLC) patients, with promising applications in circRNA-related cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Shu-Hua Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
139
|
Li Y, Li R, Cheng D, Fu X, Fu L, Peng S. The potential of CircRNA1002 as a biomarker in hepatitis B virus-related hepatocellular carcinoma. PeerJ 2022; 10:e13640. [PMID: 35782101 PMCID: PMC9248787 DOI: 10.7717/peerj.13640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Background Although hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, there is a lack of effective diagnostic measures. Circular RNAs (circRNAs) can be used as biomarkers for monitoring the occurrence and development of HCC. However, a convenient and reliable serum circRNA biomarker is not currently available. Materials & Methods CircRNA expression profiles were explored using high-throughput sequencing technology, and targeted circRNAs and mRNAs were validated by quantitative reverse transcription PCR (RT-qPCR). The biological functions of circRNAs were investigated using Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Downstream miRNAs and mRNAs of dysregulated circRNAs were predicted using TargetScan, miRanda, and miRDB; then circRNA-miRNA-mRNA interaction networks were constructed based on sequencing data and the Cancer Genome Atlas (TCGA). Results A total of 50,327 circRNAs were identified, with 1,187 circRNAs significantly differentially expressed between hepatitis B virus (HBV)-related HCC and HBV asymptomatic carriers. Among these circRNAs, four (circRNA1002, circRNA7941, circRNA 39338, and circRNA44142) were validated by RT-qPCR as being statistically different either in HCC tissue or serum samples. circRNA1002 was significantly down-regulated in both HCC serum and tissue, indicating its reliability. Bioinformatics analysis showed that circRNA1002-associated genes were enriched in GO terms relating to hormone pathway and cell-cell interaction processes, which are involved in the progression of HCC. Conclusion Our circRNA analysis of HCC patients and HBV asymptomatic carriers showed that circRNA1002 may be a reliable serum biomarker for HCC. These results could provide an improved assay for the early detection of HCC.
Collapse
Affiliation(s)
- Ying Li
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Ronghua Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Da Cheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Xiaoyu Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| |
Collapse
|
140
|
Li B, Ge YZ, Yan WW, Gong B, Cao K, Zhao R, Li C, Zhang YW, Jiang YH, Zuo S. DNASE1L3 inhibits proliferation, invasion and metastasis of hepatocellular carcinoma by interacting with β-catenin to promote its ubiquitin degradation pathway. Cell Prolif 2022; 55:e13273. [PMID: 35748106 PMCID: PMC9436914 DOI: 10.1111/cpr.13273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
As a member of the deoxyribonuclease 1 family, DNASE1L3 plays a significant role both inside and outside the cell. However, the role of DNASE1L3 in hepatocellular carcinoma (HCC) and its molecular basis remains to be further investigated. In this study, we report that DNASE1L3 is downregulated in clinical HCC samples and evaluate the relationship between its expression and HCC clinical features. In vivo and in vitro experiments showed that DNASE1L3 negatively regulates the proliferation, invasion and metastasis of HCC cells. Mechanistic studies showed that DNASE1L3 recruits components of the cytoplasmic β‐catenin destruction complex (GSK‐3β and Axin), promotes the ubiquitination degradation of β‐catenin, and inhibits its nuclear transfer, thus, decreasing c‐Myc, P21 and P27 level. Ultimately, cell cycle and EMT signals are restrained. In general, this study provides new insight into the mechanism for HCC and suggests that DNASE1L3 can become a considerable target for HCC.
Collapse
Affiliation(s)
- Bo Li
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu-Zhen Ge
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei-Wei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Li
- Department of General Surgery, The First People's Hospital of Fuquan, Fuquan, Guizhou, China
| | - Ye-Wei Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi-Heng Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
141
|
Wu M, Han Y, Gong X, Wan K, Liu Y, Zhou Y, Zhang L, Tang G, Fang H, Chen B, Yang F, Zhao Q, Wang G, Zhanghuang C, Zhang Y. Novel Insight of CircRNAs in Cervical Cancer: Potential Biomarkers and Therapeutic Target. Front Med (Lausanne) 2022; 9:759928. [PMID: 35814779 PMCID: PMC9260044 DOI: 10.3389/fmed.2022.759928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/23/2022] [Indexed: 01/01/2023] Open
Abstract
Cervical cancer (CC) is a prominent cancer around the globe, with a high incidence, and fatality rate. Numerous recent investigations have shown that various non-coding RNAs are associated with the progression of CC. Circular RNAs, a novel class of non-coding RNAs, have a single chain covalent closed-loop structure and are involved in cell growth and other physiological processes. These dysregulated circRNAs seem to have environment-specific functions. They have been demonstrated in certain studies to have a dual involvement in oncogene production and tumor inhibition in different cell settings. Simultaneously, some evidence indicates that circRNAs are abnormally expressed in CC and contributes to its progression. Thus, the distinctive expression profile of circRNAs is associated with the diagnosis, prognosis, and treatment outcomes of CC. We summarized numerous CC-specific circles and their function in revealing the molecular processes of carcinogenesis and progression in CC in this review. Taken together, these data suggest that circRNA may be used as an early detection biomarker and potential therapeutic target in patients with CC.
Collapse
Affiliation(s)
- Maomao Wu
- Department of Pharmacy, Anhui Chest Hospital, Hefei, China
| | - Yanxun Han
- Department of Otolaryngology – Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Ke Wan
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Otolaryngology – Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhou
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lizhi Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Guozheng Tang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacy, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Bangjie Chen
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Qing Zhao
- Department of Pharmacy, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Genbao Wang
- Department of Pharmacy, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
- Genbao Wang,
| | - Chenghao Zhanghuang
- Department of Urology, Kunming Children’s Hospital, Kunming, China
- *Correspondence: Chenghao Zhanghuang,
| | - Yunling Zhang
- Department of Pharmacy, Anhui Chest Hospital, Hefei, China
- Yunling Zhang,
| |
Collapse
|
142
|
circRNA circ_0055724 Inhibits Trophoblastic Cell Line HTR-8/SVneo’s Invasive and Migratory Abilities via the miR-136/N-Cadherin Axis. DISEASE MARKERS 2022; 2022:9390731. [PMID: 35783018 PMCID: PMC9242821 DOI: 10.1155/2022/9390731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Preeclampsia (PE) is one of the major causes of morbidity and mortality in pregnancy. According to recent research, circular RNAs (circRNA) may act as sponges for microRNAs (miRNAs) and modulate gene expression. Low expression of hsa_circ_0055724 (circ_0055724) in PE tissues was recently reported in literatures. However, its mechanism and function have not been reported. Therefore, we were committed to investigating the role and mechanism of circ_0055724 in PE. Our study first verified the low expression of circ_0055724 in PE tissues. Overexpression or knockdown of circ_0055724 enhances/weakens the trophoblast cell survival, migration, and invasion. Furthermore, CircInteractome predicted the binding sites of circ_0055724 and miR-136, while Starbase predicted miR-136 targeted N-cadherin. Luciferase reporter gene assay confirmed that circ_0055724 directly interacts with miR-136 and miR-136 directly interacts with N-cadherin. More results indicated that high expression of miR-136 and low expression of N-cadherin appeared in PE. Increased expression of circ_0055724 resulted in decreased miR-136 but increased N-cadherin expression. Hence, circ_0055724 and N-cadherin were positively correlated, while circ_0055724 and miR-136 had a negative correlation. In terms of mechanism, circ_0055724 may induce the expression of N-cadherin and regulate the proliferation, migration, and invasion of trophoblast cells through decreasing miR-136, which can be a promising biomarker for early diagnosis and prognosis of patients with PE.
Collapse
|
143
|
Meng H, Niu R, Huang C, Li J. Circular RNA as a Novel Biomarker and Therapeutic Target for HCC. Cells 2022; 11:cells11121948. [PMID: 35741077 PMCID: PMC9222032 DOI: 10.3390/cells11121948] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Circular RNA (circRNA) is a kind of endogenous non-coding RNA (ncRNA), which is produced by the reverse splicing of precursor mRNA (pre mRNA). It is widely expressed in a variety of biological cells. Due to the special formation mode, circRNA does not have a 5′ terminal cap and 3′ poly (A) tail structure. Compared with linear RNA, circRNA is more stable to exonuclease and ribonuclease. In addition, circRNA is structurally conserved, has a stable sequence and is tissue-specific. With the development of high-throughput sequencing and bioinformatics technology, more and more circRNAs have been found. CircRNA plays an important pathophysiological role in the occurrence and development of alcoholic liver injury (ALI), hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases. Our group has been committed to the research of liver disease diagnosis and treatment targets. We review the function and mechanism of circRNA in ALI, HF and HCC, expecting to provide new ideas for the diagnosis, treatment, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
| | - Ruowen Niu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- Correspondence: (C.H.); (J.L.)
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- Correspondence: (C.H.); (J.L.)
| |
Collapse
|
144
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
145
|
Liu Y, Wang L, Liu W. Roles of circRNAs in the Tumorigenesis and Metastasis of HCC: A Mini Review. Cancer Manag Res 2022; 14:1847-1856. [PMID: 35668744 PMCID: PMC9166687 DOI: 10.2147/cmar.s362594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with loop structures that are stable and widely distributed in different tumor tissues. The development of high-throughput sequencing and in silico tools has enabled the discovery of numerous functional circRNAs. Hepatocellular carcinoma (HCC) is a malignant tumor, and the mechanism involved in its progression has remained unclear. In recent years, an increasing number of circRNAs have been identified in HCC, contributing to tumorigenesis and metastasis and with the potential role as biomarkers through competitive endogenous RNAs (ceRNAs) as miRNA sponges or by interacting with RNA binding proteins (RBPs). In this review, we summarize the regulatory roles of circRNAs in HCC development as well as the use of bioinformatics tools in the annotation and prioritization of circRNA and highlight the participation of exosomal circRNAs in HCC metastasis and drug resistance.
Collapse
Affiliation(s)
- Yichen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Lei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| |
Collapse
|
146
|
CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. Cell Death Dis 2022; 13:517. [PMID: 35654787 PMCID: PMC9163066 DOI: 10.1038/s41419-022-04913-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) have been increasingly linked to cancer progression. However, the detailed biological functions of circRNAs in prostate cancer (PCa) remain unclear. Using high-throughput circRNA sequencing, we previously identified 18 urine extracellular vesicle circRNAs that were increased in patients with PCa compared with those with benign prostatic hyperplasia. Spearman correlation analysis of the expression levels of the 18 circRNAs between the tumor tissue and matched urine extracellular vesicles in 30 PCa patients showed that circSCAF8 had the highest R2 (R2 = 0.635, P < 0.001). The Cox proportional hazards regression model was used to estimate the effect of circSCAF8 on progression-free survival. The in vitro and in vivo functional experiments were implemented to investigate the effects of circSCAF8 on the phenotype of PCa. We found that the knockdown of circSCAF8 in PCa cells suppressed the proliferation, migration, and invasion ability, while overexpression of circSCAF8 had the opposite effects. Similar results were observed in vivo. In a cohort of 85 patients who had undergone radical prostatectomy, circSCAF8 expression in PCa tissues was a powerful predictor of progression-free survival (HR = 2.14, P = 0.022). Mechanistically, circSCAF8 can function by binding to both miR-140-3p and miR-335 to regulate LIF expression and activate the LIF-STAT3 pathway that leads to the growth and metastasis of PCa. Collectively, our findings demonstrate that circSCAF8 contributes to PCa progression through the circSCAF8-miR-140-3p/miR-335-LIF pathway.
Collapse
|
147
|
CircCEMIP promotes anoikis-resistance by enhancing protective autophagy in prostate cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:188. [PMID: 35655258 PMCID: PMC9161511 DOI: 10.1186/s13046-022-02381-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Background Circular RNAs (circRNAs) are essential participants in the development and progression of various malignant tumors. Previous studies have shown that cell migration-inducing protein (CEMIP) accelerates prostate cancer (PCa) anoikis resistance (AR) by activating autophagy. This study focused on the effect of circCEMIP on PCa metastasis. Methods This study gradually revealed the role of circ_0004585 in PCa anoikis resistance via quantitative real-time PCR (qRT-PCR) analysis, western blotting, pull-down assays, and dual fluorescence reporter assays. Results Functionally, circ_0004585 promoted PCa cells invasion and metastasis both in vitro and in vivo. Mechanistically, circ_0004585 directly interacted with miR-1248 to upregulate target gene expression. Furthermore, target prediction and dual-luciferase reporter assays identified transmembrane 9 superfamily member 4 (TM9SF4) as a potential miR-1248 target. Pathway analysis revealed that TM9SF4 activated autophagy to promote PCa cells anoikis resistance via mTOR phosphorylation. Conclusions These results demonstrated that circ_0004585 played an oncogenic role during PCa invasion and metastasis by targeting the miR-1248/TM9SF4 axis while providing new insight into therapeutic strategy development for metastatic PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02381-7.
Collapse
|
148
|
Zhang C, Kang Y, Kong F, Yang Q, Chang D. Hotspots and development frontiers of circRNA based on bibliometric analysis. Noncoding RNA Res 2022; 7:77-88. [PMID: 35387281 PMCID: PMC8956961 DOI: 10.1016/j.ncrna.2022.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Background and purpose Circular RNAs (circRNAs) are a big group of members of the noncoding RNA family following long non-coding RNA and microRNA. They play a regulatory role in many biological processes. Analyzing their current research status and future development trends is conducive to a more comprehensive understanding of circRNAs and contributes to the dedication to the biological field. Methods The literature on circRNA from 2000 to 2021 in the Web of Science Core Collection of the Web of Science database with “circular RNA” as the subject was searched. R Studio's Bibliometrix package and biblioshiny software were used for publication trend analysis, citation analysis, keyword analysis, author analysis, research institution analysis, source analysis, country analysis, and collaboration analysis for all documents and highly cited documents. Results From 2000 to 2021, 3,186 circRNA-related articles were published worldwide, of which 193 were highly cited. The number of published articles had shown an explosive increase after 2013. These articles were mainly from Chinese research institutions and authors, but the country with the highest average number of citations per year in highly cited documents was Germany. Scientific research institutions came from countries represented by Germany, USA, China, Australia and Canada all had different degrees of cooperation. The theme and key points of the research had evolved over time from expression to the role and mechanism of circRNA in diseases, especially in cancer. CDR1as, circFOXO3, circHIPK3, circITCH, circMTO1, circSMARCA5 and circZNF609 are circRNAs that are mainly studied currently, their studies mainly involve cell biology, biological functions and cancer. The future research direction and trend would still be the application of circRNA in diseases. Conclusion The basic situation and development trend of circRNA related research we described provide a direction for future research. The study systematically analyzed all articles and highly cited (H-cited) articles related to circRNA published in the past 20 years based on bibliometric analysis; The main research content include main information, the number of articles published each year, the annual citations, the main keywords, the sources, the authors, the institutions and countries, the evolution and trend of the themes, the cooperation relationship of the studies, circRNAs that are mainly studied currently, etc. The article is going to describe the basic situation and development trend of circRNA related research and provide direction for research in this field by revealing these contents.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Yindong Kang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Feiyan Kong
- Department of Urology, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine, Beijing, 100072, China
| | - Qi Yang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
- Corresponding author.
| | - Dehui Chang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
- Corresponding author.
| |
Collapse
|
149
|
Wang Y, Liu Y, Zhang T, Guan G, Mao T, Liu H, Zhang J, Lu F, Chen X. LncCDCA3L inhibits cell proliferation via a novel RNA structure-based crosstalk with CDCA3 in hepatocellular carcinoma. Liver Int 2022; 42:1432-1446. [PMID: 35230745 DOI: 10.1111/liv.15225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS The molecular mechanisms underlying hepatocellular carcinoma (HCC) remain poorly understood. In this study, we investigated cell division cycle-associated 3 (CDCA3) expression status and characterized a CDCA3-related long non-coding RNA (lncRNA) in HCC. METHODS RT-qPCR and western blot were used to determine CDCA3 expression level in HCC clinical specimens. 5' and 3'-RACE, RNAscope, RNA pull-down, CRISPR/Cas9-based RNA immunoprecipitation (CRIP) and site-directed mutation experiments were used to characterize lncCDCA3L and investigate its function target. Chi-square test and Kaplan-Meier analysis were used to assess lncCDCA3L clinical significance. The effects of lncCDCA3L on HCC development were assessed by overexpression in vitro and in vivo. RESULTS In this study, we found CDCA3 was a potential oncogenic factor in HCC and characterized the lncCDCA3L, which could inhibit CDCA3. LncCDCA3L is significantly downregulated in HCC and its expression level is associated with tumour size and can act as an independent risk factor affecting postoperative survival time in HCC patients. Mechanistically, lncCDCA3L can repress CDCA3 protein level and inhibit hepatocarcinogenesis by directly binding to CDCA3 mRNA at 1423-1455 region via a novel manner based on a hairpin structure motif. CONCLUSIONS Our study collectively unveiled the molecular mechanisms of how lncCDCA3L repressed the tumourigenic properties of HCC cells and exhibited a tumour suppressor character in HCC in a CDCA3-dependent manner. The findings here support lncCDCA3L can be used as a candidate prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Yongfeng Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China.,Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongzhen Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China.,Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Tianhao Mao
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Hui Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jing Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China.,Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| |
Collapse
|
150
|
Sun X, Zhao X, Xu S, Zhou Y, Jia Z, Li Y. CircSRSF4 Enhances Proliferation, Invasion, and Migration to Promote the Progression of Osteosarcoma via Rac1. Int J Mol Sci 2022; 23:ijms23116200. [PMID: 35682879 PMCID: PMC9180939 DOI: 10.3390/ijms23116200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: At present, cancer cell metastasis is the main cause of death in patients with malignant tumors, and up to 23% of osteosarcoma patients have died due to lung and lymph node metastasis. Therefore, finding new molecules involved in tumor development can provide new strategies for the diagnosis and treatment of osteosarcoma patients. Circular RNAs (circRNAs) are a type of RNA molecule that are connected head-to-tail to form a closed ring. There is increasing evidence that circRNAs are RNA molecules with many biological functions in various diseases. However, the role and mechanism of circRNAs in osteosarcoma have rarely been reported. (2) Methods: The expression of circSRSF4 in osteosarcoma tissues and cell lines was detected by quantitative real-time PCR (RT-qPCR), and the result of high-throughput sequencing was verified. In order to explore the effect of circSRSF4 on tumor proliferation, invasion, and migration, a dual-luciferase reporter assay, RNA binding protein immunoprecipitation assay, cell counting kit-8 (CCK-8), transwell assay, scratch wound healing assay, Western blot analysis, and other experiments were carried out in vitro. Rescue experiments and a xenograft model confirmed that circSRSF4 directly acted on miR-224 to regulate Rac1 expression. (3) Results: The expression of circSRSF4 was significantly higher in osteosarcoma tissues and cell lines. Down-regulating the expression of circSRSF4 in vitro significantly inhibited the proliferation, invasion, and migration of cells, and also reduced the expression of Rac1, while the overexpression of Rac1 and miR-224 inhibition could reverse these effects. The inhibition of circSRSF4 expression in vivo also attenuated tumor growth. A mechanistic study showed that circSRSF4 can be used as an miR-224 sponge to up-regulate the expression of Rac1, thereby promoting the development of osteosarcoma. (4) Conclusions: CircSRSF4 acting as a ceRNA promotes the malignant behavior of osteosarcoma through the circSRSF4/miR-224/Rac1 axis, which provides a new theoretical basis for the clinical prevention and treatment of osteosarcoma and the study of related markers and intervention targets.
Collapse
|