101
|
Cho EH, Koh PO. Proteomic identification of proteins differentially expressed by melatonin in hepatic ischemia-reperfusion injury. J Pineal Res 2010; 49:349-55. [PMID: 20666976 DOI: 10.1111/j.1600-079x.2010.00799.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hepatic ischemia-reperfusion (I-R) injury induces hepatic dysfunction or failure. Melatonin is a potent free radical scavenger and a strong antioxidant. Although many studies have demonstrated the protective effect of melatonin in hepatic injury, the molecular mechanisms of this protection are unclear. We identified specific proteins that are differentially expressed by melatonin treatment in hepatic I-R injury. Adult mice were subjected to 1 hr of ischemia and 3 hr of reperfusion. Animals were treated with vehicle or melatonin (10 mg/kg, i.p.) 15 min prior to ischemia and just before reperfusion. Serum aspartate aminotransferase and alanine aminotransferase levels were higher in I-R group than in sham-operated group, and these increases were reduced by melatonin treatment. Proteins that were differentially expressed following melatonin treatment during hepatic I-R injury were detected using two-dimensional gel electrophoresis. Hepatic I-R injury induced down-regulation of glyoxalase I, glutaredoxin-3, spermidine synthase, proteasome subunit beta type-4, and dynamin like protein-1 (DLP-1). However, melatonin prevented the reductions in these proteins induced by I-R injury. Among the identified proteins, we focused on DLP-1, which is essential for the maintenance of mitochondrial and endoplasmic reticulum morphology. Western blot analysis confirmed that melatonin prevents the hepatic I-R injury-induced decrease in DLP-1. These results suggest that melatonin protects hepatic cells against hepatic I-R injury and that its protective effects involve the regulation of specific proteins.
Collapse
Affiliation(s)
- Eun-Hae Cho
- Department of Anatomy, College of Veterinary Medicine and Research Instituite of Life Science, Gyeongsang National University, Jinju, South Korea
| | | |
Collapse
|
102
|
Abstract
Excessive oxidative stress leaves a protein carbonylation fingerprint in biological systems. Carbonylation is an irreversible post-translational modification (PTM) that often leads to the loss of protein function and can be a component of multiple diseases. Protein carbonyl groups can be generated directly (by amino acids oxidation and the alpha-amidation pathway) or indirectly by forming adducts with lipid peroxidation products or glycation and advanced glycation end-products. Studies of oxidative stress are complicated by the low concentration of oxidation products and a wide array of routes by which proteins are carbonylated. The development of new selection and enrichment techniques coupled with advances in mass spectrometry are allowing the identification of hundreds of new carbonylated protein products from a broad range of proteins located at many sites in biological systems. The focus of this review is on the use of proteomics tools and methods to identify oxidized proteins along with specific sites of oxidative damage and the consequences of protein oxidation.
Collapse
Affiliation(s)
- Ashraf G. Madian
- Chemistry Department, Purdue University, West Lafayette, IN, USA, 47907
| | - Fred E. Regnier
- Chemistry Department, Purdue University, West Lafayette, IN, USA, 47907
| |
Collapse
|
103
|
Sasaki K, Hamazaki J, Koike M, Hirano Y, Komatsu M, Uchiyama Y, Tanaka K, Murata S. PAC1 gene knockout reveals an essential role of chaperone-mediated 20S proteasome biogenesis and latent 20S proteasomes in cellular homeostasis. Mol Cell Biol 2010; 30:3864-74. [PMID: 20498273 PMCID: PMC2916404 DOI: 10.1128/mcb.00216-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/25/2010] [Accepted: 05/17/2010] [Indexed: 01/21/2023] Open
Abstract
The 26S proteasome, a central enzyme for ubiquitin-dependent proteolysis, is a highly complex structure comprising 33 distinct subunits. Recent studies have revealed multiple dedicated chaperones involved in proteasome assembly both in yeast and in mammals. However, none of these chaperones is essential for yeast viability. PAC1 is a mammalian proteasome assembly chaperone that plays a role in the initial assembly of the 20S proteasome, the catalytic core of the 26S proteasome, but does not cause a complete loss of the 20S proteasome when knocked down. Thus, both chaperone-dependent and -independent assembly pathways exist in cells, but the contribution of the chaperone-dependent pathway remains unclear. To elucidate its biological significance in mammals, we generated PAC1 conditional knockout mice. PAC1-null mice exhibited early embryonic lethality, demonstrating that PAC1 is essential for mammalian development, especially for explosive cell proliferation. In quiescent adult hepatocytes, PAC1 is responsible for producing the majority of the 20S proteasome. PAC1-deficient hepatocytes contained normal amounts of the 26S proteasome, but they completely lost the free latent 20S proteasome. They also accumulated ubiquitinated proteins and exhibited premature senescence. Our results demonstrate the importance of the PAC1-dependent assembly pathway and of the latent 20S proteasomes for maintaining cellular integrity.
Collapse
Affiliation(s)
- Katsuhiro Sasaki
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Setagayaku, Tokyo 156-8506, Japan, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan, Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jun Hamazaki
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Setagayaku, Tokyo 156-8506, Japan, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan, Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Setagayaku, Tokyo 156-8506, Japan, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan, Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuko Hirano
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Setagayaku, Tokyo 156-8506, Japan, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan, Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaaki Komatsu
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Setagayaku, Tokyo 156-8506, Japan, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan, Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Setagayaku, Tokyo 156-8506, Japan, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan, Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keiji Tanaka
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Setagayaku, Tokyo 156-8506, Japan, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan, Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeo Murata
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Setagayaku, Tokyo 156-8506, Japan, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan, Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
104
|
Proteasome inhibitors: Dozens of molecules and still counting. Biochimie 2010; 92:1530-45. [PMID: 20615448 DOI: 10.1016/j.biochi.2010.06.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
The discovery of the proteasome in the late 80's as the core protease of what will be then called the ubiquitin-proteasome system, rapidly followed by the development of specific inhibitors of this enzyme, opened up a new era in biology in the 90's. Indeed, the first proteasome inhibitors were instrumental for understanding that the proteasome is a key actor in most, if not all, cellular processes. The recognition of the central role of this complex in intracellular proteolysis in turn fuelled an intense quest for novel compounds with both increased selectivity towards the proteasome and better bioavailability that could be used in fundamental research or in the clinic. To date, a plethora of molecules that target the proteasome have been identified or designed. The success of the proteasome inhibitor bortezomib (Velcade(®)) as a new drug for the treatment of Multiple Myeloma, and the ongoing clinical trials to evaluate the effect of several other proteasome inhibitors in various human pathologies, illustrate the interest for human health of these compounds.
Collapse
|
105
|
Heffeter P, Böck K, Atil B, Hoda MAR, Körner W, Bartel C, Jungwirth U, Keppler BK, Micksche M, Berger W, Koellensperger G. Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339. J Biol Inorg Chem 2010; 15:737-48. [PMID: 20221888 PMCID: PMC3371400 DOI: 10.1007/s00775-010-0642-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/06/2010] [Indexed: 11/26/2022]
Abstract
The ruthenium compound KP1019 has demonstrated promising anticancer activity in a pilot clinical trial. This study aims to evaluate the intracellular uptake/binding patterns of KP1019 and its sodium salt KP1339, which is currently in a phase I-IIa study. Although KP1339 tended to be moderately less cytotoxic than KP1019, IC(50) values in several cancer cell models revealed significant correlation of the cytotoxicity profiles, suggesting similar targets for the two drugs. Accordingly, both drugs activated apoptosis, indicated by caspase activation via comparable pathways. Drug uptake determined by inductively coupled plasma mass spectrometry (ICP-MS) was completed after 1 h, corresponding to full cytotoxicity as early as after 3 h of drug exposure. Surprisingly, the total cellular drug uptake did not correlate with cytotoxicity. However, distinct differences in intracellular distribution patterns suggested that the major targets for the two ruthenium drugs are cytosolic rather than nuclear. Consequently, drug-protein binding in cytosolic fractions of drug-treated cells was analyzed by native size-exclusion chromatography (SEC) coupled online with ICP-MS. Ruthenium-protein binding of KP1019- and KP1339-treated cells distinctly differed from the platinum binding pattern observed after cisplatin treatment. An adapted SEC-SEC-ICP-MS system identified large protein complexes/aggregates above 700 kDa as initial major binding partners in the cytosol, followed by ruthenium redistribution to the soluble protein weight fraction below 40 kDa. Taken together, our data indicate that KP1019 and KP1339 rapidly enter tumor cells, followed by binding to larger protein complexes/organelles. The different protein binding patterns as compared with those for cisplatin suggest specific protein targets and consequently a unique mode of action for the ruthenium drugs investigated.
Collapse
Affiliation(s)
- Petra Heffeter
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Katharina Böck
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Applied Life Sciences, BOKU, Vienna, Austria
| | - Bihter Atil
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Mir Ali Reza Hoda
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Wilfried Körner
- Institute for Geological Sciences, University of Vienna, Vienna, Austria
| | - Caroline Bartel
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Ute Jungwirth
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | | | - Michael Micksche
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria,
| | - Gunda Koellensperger
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Applied Life Sciences, BOKU, Vienna, Austria
| |
Collapse
|
106
|
Abstract
Thymoquinone, a naturally derived agent, has been shown to possess antioxidant, antiproliferative and proapoptotic activities. In the present study, we explored thymoquinone effects on the proteasomal complex, the major system involved in the removal of damaged, oxidized and misfolded proteins. In purified 20S complexes, subunit-dependent and composition-dependent inhibition was observed, and the chymotrypsin-like and trypsin-like activities were the most susceptible to thymoquinone treatment. U87 MG and T98G malignant glioma cells were treated with thymoquinone, and 20S and 26S proteasome activity was measured. Inhibition of the complex was evident in both cell lines, but predominantly in U87 MG cells, and was accompanied by accumulation of ubiquitin conjugates. Accumulation of p53 and Bax, two proteasome substrates with proapoptotic activity, was observed in both cell lines. Our results demonstrate that thymoquinone induces selective and time-dependent proteasome inhibition, both in isolated enzymes and in glioblastoma cells, and suggest that this mechanism could be implicated in the induction of apoptosis in cancer cells.
Collapse
|
107
|
Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 2010; 20:391-401. [PMID: 20427185 DOI: 10.1016/j.tcb.2010.03.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/15/2023]
Abstract
The 26S proteasome is a large multiprotein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation, and cell signal transduction. Concurrently, it is increasingly seen that malfunction of the ubiquitin proteasome system contributes to the pathogenesis of disease. The recent identification of four molecular chaperones, in addition to five previously identified chaperones, have provided mechanistic insight into how this cellular megastructure is assembled in the cell. These data, together with new insights into the structure and function of the proteasome, provide a much better understanding of this complex protease.
Collapse
|
108
|
Binger KJ, Griffin MDW, Heinemann SH, Howlett GJ. Methionine-oxidized amyloid fibrils are poor substrates for human methionine sulfoxide reductases A and B2. Biochemistry 2010; 49:2981-3. [PMID: 20218727 DOI: 10.1021/bi902203m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A common feature of many amyloid diseases is the appearance of oxidized, aggregated proteins. Methionine is one of the most readily oxidized amino acids, and its oxidative state is regulated in vivo by the methionine sulfoxide reductases (Msr). Here, we have explored the basis by which methionine oxidation is linked to amyloid disease by comparing the reduction of oxidized amyloid fibrils and monomer. We show that oxidized amyloid fibrils are not as effectively reduced by the Msr enzymes as the monomer. This work suggests a mechanism by which oxidized proteins and aggregates can accumulate as a part of degenerative disease.
Collapse
Affiliation(s)
- Katrina J Binger
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
109
|
Perluigi M, Di Domenico F, Blarzino C, Foppoli C, Cini C, Giorgi A, Grillo C, De Marco F, Butterfield DA, Schininà ME, Coccia R. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach. Proteome Sci 2010; 8:13. [PMID: 20298559 PMCID: PMC3161386 DOI: 10.1186/1477-5956-8-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background The UVB component of solar ultraviolet irradiation is one of the major risk factors for the development of skin cancer in humans. UVB exposure elicits an increased generation of reactive oxygen species (ROS), which are responsible for oxidative damage to proteins, DNA, RNA and lipids. In order to examine the biological impact of UVB irradiation on skin cells, we used a parallel proteomics approach to analyze the protein expression profile and to identify oxidatively modified proteins in normal human epithelial keratinocytes. Results The expression levels of fifteen proteins - involved in maintaining the cytoskeleton integrity, removal of damaged proteins and heat shock response - were differentially regulated in UVB-exposed cells, indicating that an appropriate response is developed in order to counteract/neutralize the toxic effects of UVB-raised ROS. On the other side, the redox proteomics approach revealed that seven proteins - involved in cellular adhesion, cell-cell interaction and protein folding - were selectively oxidized. Conclusions Despite a wide and well orchestrated cellular response, a relevant oxidation of specific proteins concomitantly occurs in UVB-irradiated human epithelial Keratinocytes. These modified (i.e. likely dysfunctional) proteins might result in cell homeostasis impairment and therefore eventually promote cellular degeneration, senescence or carcinogenesis.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences, "Sapienza" University of Rome - P.le A. Moro, 5 - 00185 Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, "Sapienza" University of Rome - P.le A. Moro, 5 - 00185 Rome, Italy
| | - Carla Blarzino
- Department of Biochemical Sciences, "Sapienza" University of Rome - P.le A. Moro, 5 - 00185 Rome, Italy
| | - Cesira Foppoli
- CNR Institute of Molecular Biology and Pathology - P.le A. Moro, 5 - 00185 Rome, Italy
| | - Chiara Cini
- Department of Biochemical Sciences, "Sapienza" University of Rome - P.le A. Moro, 5 - 00185 Rome, Italy.,CNR Institute of Molecular Biology and Pathology - P.le A. Moro, 5 - 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, "Sapienza" University of Rome - P.le A. Moro, 5 - 00185 Rome, Italy
| | - Caterina Grillo
- Department of Biochemical Sciences, "Sapienza" University of Rome - P.le A. Moro, 5 - 00185 Rome, Italy
| | - Federico De Marco
- Laboratory of Virology, IFO - Regina Elena National Cancer Institute - V. Messi d'Oro, 156 - 00156 Rome, Italy
| | - David A Butterfield
- Department of Chemistry, Center of Membrane Science, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Maria E Schininà
- Department of Biochemical Sciences, "Sapienza" University of Rome - P.le A. Moro, 5 - 00185 Rome, Italy
| | - Raffaella Coccia
- Department of Biochemical Sciences, "Sapienza" University of Rome - P.le A. Moro, 5 - 00185 Rome, Italy
| |
Collapse
|
110
|
Activation of proteasome by insulin-like growth factor-I may enhance clearance of oxidized proteins in the brain. Mech Ageing Dev 2010; 130:793-800. [PMID: 19896963 DOI: 10.1016/j.mad.2009.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/20/2022]
Abstract
The insulin-like growth factor type 1 (IGF-I) plays an important role in neuronal physiology. Reduced IGF-I levels are observed during aging and this decrease may be important to age-related changes in the brain. We studied the effects of IGF-I on total protein oxidation in brain tissues and in cell cultures. Our results indicate that in frontal cortex the level of oxidized proteins is significantly reduced in transgenic mice designed to overproduce IGF-I compared with wild-type animals. The frontal cortex of IGF-I-overproducing mice exhibited high chymotrypsin-like activity of the 20S and 26S proteasomes. The proteasome can also be activated in response to IGF-I in cell cultures. Kinetic studies revealed peak activation of the proteasome within 15 min following IGF-I stimulation. The effects of IGF-I on proteasome were not observed in R(-) cells lacking the IGF-I receptor. Experiments using specific kinase inhibitors suggested that activation of proteasome by IGF-I involves phosphatidyl inositol 3-kinase and mammalian target of rapamycin signaling. IGF-I also attenuated the increase in protein carbonyl content induced by proteasome inhibition. Thus, appropriate levels of IGF-I may be important for the elimination of oxidized proteins in the brain in a process mediated by activation of the proteasome.
Collapse
|
111
|
Rodriguez K, Gaczynska M, Osmulski PA. Molecular mechanisms of proteasome plasticity in aging. Mech Ageing Dev 2010; 131:144-55. [PMID: 20080121 PMCID: PMC2849732 DOI: 10.1016/j.mad.2010.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 12/24/2009] [Accepted: 01/09/2010] [Indexed: 11/15/2022]
Abstract
The ubiquitin-proteasome pathway plays a crucial role in regulation of intracellular protein turnover. Proteasome, the central protease of the pathway, encompasses multi-subunit assemblies sharing a common catalytic core supplemented by regulatory modules and localizing to different subcellular compartments. To better comprehend age-related functions of the proteasome we surveyed content, composition and catalytic properties of the enzyme in cytosolic, microsomal and nuclear fractions obtained from mouse livers subjected to organismal aging. We found that during aging subunit composition and subcellular distribution of proteasomes changed without substantial alterations in the total level of core complexes. We observed that the general decline in proteasomes functions was limited to nuclear and cytosolic compartments. Surprisingly, the observed changes in activity and specificity were linked to the amount of the activator module and distinct composition of the catalytic subunits. In contrast, activity, specificity and composition of the microsomal-associated proteasomes remained mostly unaffected by aging; however their relative contribution to the total activity was substantially elevated. Unexpectedly, the nuclear proteasomes were affected most profoundly by aging possibly triggering significant changes in cellular signaling and transcription. Collectively, the data indicate an age-related refocusing of proteasome from the compartment-specific functions towards general protein maintenance.
Collapse
Affiliation(s)
- Karl Rodriguez
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Maria Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Pawel A. Osmulski
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| |
Collapse
|
112
|
Depuydt G, Vanfleteren JR, Braeckman BP. Protein metabolism and lifespan in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:81-107. [PMID: 20886759 DOI: 10.1007/978-1-4419-7002-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lifespan of the versatile model system Caenorhabditis elegans can be extended by a decrease of insulin/IGF-1 signaling, TOR signaling, mitochondrial function, protein synthesis and dietary intake. The exact molecular mechanisms by which these modulations confer increased life expectancy are yet to be determined but increased stress resistance and improved protein homeostasis seem to be of major importance. In this chapter, we explore the interactions among several genetic pathways and cellular functions involved in lifespan extension and their relation to protein homeostasis in C. elegans. Several of these processes have been associated, however some relevant data are conflicting and further studies are needed to clarify these interactions. In mammals, protein homeostasis is also implicated in several neurodegenerative diseases, many of which can be modeled in C. elegans.
Collapse
Affiliation(s)
- Geert Depuydt
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
113
|
Jung T, Höhn A, Grune T. Lipofuscin: detection and quantification by microscopic techniques. Methods Mol Biol 2010; 594:173-93. [PMID: 20072918 DOI: 10.1007/978-1-60761-411-1_13] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since lipofuscin, the so-called "aging pigment", turned out to play a fundamental role in the aging process, particularly in the postmitotic senescence of muscle or neuronal cells, it became a focus of aging and stress research. During normal aging, lipofuscin accumulates in a nearly linear way, whereas its rate of formation can increase in the final stages of senescence or in the progress of several pathologic processes. Thus, both in senescence and pathologic processes, lipofuscin can be used as a detectable "marker" to estimate the remaining lifetime of single cells, the amount of long-term oxidative stress cells were subjected to or to quantify and qualify a pathologic progress in vivo or in vitro. To enable this, a quick and easy applicable method of detection and quantification of lipofuscin has to be used, as is provided by fluorescence microscopy determining the autofluorescence via of the "aging pigment". In this review, we take a look at different methods of detection and quantification of lipofuscin in single cells by using its physical or chemical features.
Collapse
Affiliation(s)
- Tobias Jung
- Institute for Biological Chemistry and Nutrition, Biofunctionality and Food Safety (140F), University of Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|
114
|
Kurepa J, Wang S, Li Y, Smalle J. Proteasome regulation, plant growth and stress tolerance. PLANT SIGNALING & BEHAVIOR 2009; 4:924-7. [PMID: 19826220 PMCID: PMC2801354 DOI: 10.4161/psb.4.10.9469] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 05/19/2023]
Abstract
Plant cells contain a mixture of 26S and 20S proteasomes that mediate ubiquitin-dependent and ubiquitin-independent proteolysis, respectively. The 26S proteasome contains the 20S proteasome and one or two regulatory particles that are required for ubiquitin-dependent degradation. Comparative analyses of Arabidopsis proteasome mutants revealed that a decrease in 26S proteasome biogenesis causes heat shock hypersensitivity and reduced cell division rates that are compensated by increased cell expansion. Loss of 26S proteasome function also leads to an increased 20S proteasome biogenesis, which in turn enhances the cellular capacity to degrade oxidized proteins and thus increases oxidative stress tolerance. These findings suggest the intriguing possibility that 26S and 20S proteasome activities are regulated to control plant development and stress responses. This mini-review highlights some of the recent studies on proteasome regulation in plants.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
115
|
Malhotra D, Thimmulappa R, Vij N, Navas-Acien A, Sussan T, Merali S, Zhang L, Kelsen SG, Myers A, Wise R, Tuder R, Biswal S. Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am J Respir Crit Care Med 2009; 180:1196-207. [PMID: 19797762 DOI: 10.1164/rccm.200903-0324oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Nuclear factor erythroid 2-related factor 2 (Nrf2), an important regulator of lung antioxidant defenses, declines in chronic obstructive pulmonary disease (COPD). However, Nrf2 also regulates the proteasome system that degrades damaged and misfolded proteins. Because accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and ER stress-induced apoptosis, Nrf2 may potentially prevent ER stress-mediated apoptosis in COPD. OBJECTIVES To determine whether Nrf2-regulated proteasome function affects ER stress-mediated apoptosis in COPD. METHODS We assessed the expression of Nrf2, Nrf2-dependent proteasomal subunits, proteasomal activity, markers of ER stress, and apoptosis in emphysematous lungs of mice exposed to cigarette smoke (CS) as well as peripheral lung tissues from normal control subjects and patients with COPD. MEASUREMENTS AND MAIN RESULTS Compared with wild-type mice, emphysematous lungs of CS-exposed Nrf2-deficient mice exhibited markedly lower proteasomal activity and elevated markers of ER stress and apoptosis. Furthermore, compared with normal control subjects, lungs of patients with mild and advanced COPD showed a marked decrease in the expression of Nrf2-regulated proteasomal subunits and total proteasomal activity. However, they were associated with greater levels of ER stress and apoptosis markers. In vitro studies have demonstrated that enhancing proteasomal activity in Beas2B cells either by sulforaphane, an activator of Nrf2, or overexpression of Nrf2-regulated proteasomal subunit PSMB6, significantly inhibited cigarette smoke condensate (CSC)-induced ER stress and cell death. CONCLUSIONS Impaired Nrf2 signaling causes significant decline in proteasomal activity and heightens ER stress response in lungs of patients with COPD and CS-exposed mice. Accordingly, pharmacological approaches that augment Nrf2 activity may protect against COPD progression by both up-regulating antioxidant defenses and relieving ER stress.
Collapse
Affiliation(s)
- Deepti Malhotra
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I. Mitochondrial dysfunction increases allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:5379-87. [PMID: 19786549 DOI: 10.4049/jimmunol.0900228] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prevalence of allergies and asthma among the world's population has been steadily increasing due to environmental factors. It has been described that exposure to ozone, diesel exhaust particles, or tobacco smoke exacerbates allergic inflammation in the lungs. These environmental oxidants increase the levels of cellular reactive oxygen species (ROS) and induce mitochondrial dysfunction in the airway epithelium. In this study, we investigated the involvement of preexisting mitochondrial dysfunction in the exacerbation of allergic airway inflammation. After cellular oxidative insult induced by ragweed pollen extract (RWE) exposure, we have identified nine oxidatively damaged mitochondrial respiratory chain-complex and associated proteins. Out of these, the ubiquinol-cytochrome c reductase core II protein (UQCRC2) was found to be implicated in mitochondrial ROS generation from respiratory complex III. Mitochondrial dysfunction induced by deficiency of UQCRC2 in airway epithelium of sensitized BALB/c mice prior the RWE challenge increased the Ag-induced accumulation of eosinophils, mucin levels in the airways, and bronchial hyperresponsiveness. Deficiency of UQCRC1, another oxidative damage-sensitive complex III protein, did not significantly alter cellular ROS levels or the intensity of RWE-induced airway inflammation. These observations suggest that preexisting mitochondrial dysfunction induced by oxidant environmental pollutants is responsible for the severe symptoms in allergic airway inflammation. These data also imply that mitochondrial defects could be risk factors and may be responsible for severe allergic disorders in atopic individuals.
Collapse
Affiliation(s)
- Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
117
|
Eleuteri AM, Amici M, Bonfili L, Cecarini V, Cuccioloni M, Grimaldi S, Giuliani L, Angeletti M, Fioretti E. 50 Hz extremely low frequency electromagnetic fields enhance protein carbonyl groups content in cancer cells: effects on proteasomal systems. J Biomed Biotechnol 2009; 2009:834239. [PMID: 19672456 PMCID: PMC2722031 DOI: 10.1155/2009/834239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/14/2009] [Accepted: 06/05/2009] [Indexed: 11/17/2022] Open
Abstract
Electromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of oxidized proteins. Caco 2 cells were exposed, for 24-72 hours, to 1 mT, 50 Hz electromagnetic fields. The treatment induced a time-dependent increase both in cell growth and in protein oxidation, more evident in the presence of TPA, while no changes in cell viability were detected. Exposing the cells to 50 Hz electromagnetic fields caused a global activation of the 20S proteasome catalytic components, particularly evident at 72 hours exposure and in the presence of TPA. The finding that EGCG, a natural antioxidant compound, counteracted the field-related pro-oxidant effects demonstrates that the increased proteasome activity was due to an enhancement in intracellular free radicals.
Collapse
Affiliation(s)
- A M Eleuteri
- Department of Biology M.C.A., University of Camerino, 62032 Camerino (MC), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Hamel FG. Preliminary report: inhibition of cellular proteasome activity by free fatty acids. Metabolism 2009; 58:1047-9. [PMID: 19423142 DOI: 10.1016/j.metabol.2009.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 04/10/2009] [Accepted: 04/13/2009] [Indexed: 11/28/2022]
Abstract
There is evidence in animal studies that free fatty acids (FFA) can decrease protein degradation, but the exact mechanism is not known. We have shown that FFA can inhibit proteasome activity in vitro by interacting with insulin-degrading enzyme. Here we show that FFA can also inhibit the proteasome in whole cells. HepG2 cells were treated with various FFA, and proteasome activity was measured using a cell-permeable substrate for the chymotrypsin-like activity. Octanoic acid, a medium-chain fatty acid, did not affect proteasome activity. However, oleic and linoleic acids inhibited the chymotrypsin-like activity up to 80%, with approximate IC50s of 80 and 40 micromol/L, respectively. Insulin also inhibited but was not additive with the FFA, suggesting that they work through the same mechanism. These results show that the proteasome can be inhibited by FFA in whole cells and suggest that insulin-degrading enzyme may mediate this effect. This mechanism may be applicable to whole animals and represents a means to integrate hormonal and nutrient signals on the control of protein degradation.
Collapse
|
119
|
Dunlop RA, Brunk UT, Rodgers KJ. Oxidized proteins: mechanisms of removal and consequences of accumulation. IUBMB Life 2009; 61:522-7. [PMID: 19391165 DOI: 10.1002/iub.189] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elevated levels of oxidized proteins are reported in diseased tissue from age-related pathologies such as atherosclerosis, neurodegenerative disorders, and cataract. Unlike the precise mechanisms that exist for the repair of nucleic acids, lipids, and carbohydrates, the primary pathway for the repair of oxidized proteins is complete catabolism to their constitutive amino acids. This process can be inefficient as is evidenced by their accumulation. It is generally considered that damaged proteins are degraded by the proteasome; however, this is only true for mildly oxidized proteins, because substrates must be unfolded to enter the narrow catalytic core. Rather, evidence suggests that moderately or heavily oxidized proteins are endocytosed and enter the endosomal/lysosomal system, indicating co-operation between the proteasomes and the lysosomes. Heavily modified substrates are incompletely degraded and accumulate within the lysosomal compartments resulting in the formation of lipofuscin-like, autofluorescent aggregates. Accumulation eventually results in impaired turnover of large organelles such as proteasomes and mitochondria, lysosomal destablization, leakage of proteases into the cytosol and apoptosis. In this review, we summarize reports published since our last assessments of the field of oxidized protein degradation including a role for modified proteins in the induction of apoptosis.
Collapse
Affiliation(s)
- Rachael A Dunlop
- Cell Biology Group, Heart Research Institute, Camperdown, NSW, Australia.
| | | | | |
Collapse
|
120
|
Tanaka K. The proteasome: overview of structure and functions. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:12-36. [PMID: 19145068 PMCID: PMC3524306 DOI: 10.2183/pjab.85.12] [Citation(s) in RCA: 578] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The proteasome is a highly sophisticated protease complex designed to carry out selective, efficient and processive hydrolysis of client proteins. It is known to collaborate with ubiquitin, which polymerizes to form a marker for regulated proteolysis in eukaryotic cells. The highly organized proteasome plays a prominent role in the control of a diverse array of basic cellular activities by rapidly and unidirectionally catalyzing biological reactions. Studies of the proteasome during the past quarter of a century have provided profound insights into its structure and functions, which has appreciably contributed to our understanding of cellular life. Many questions, however, remain to be elucidated.
Collapse
Affiliation(s)
- Keiji Tanaka
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Japan.
| |
Collapse
|
121
|
Bonfili L, Cecarini V, Amici M, Cuccioloni M, Angeletti M, Keller JN, Eleuteri AM. Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J 2008; 275:5512-26. [DOI: 10.1111/j.1742-4658.2008.06696.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|