101
|
Williams JE, Price WJ, Shafii B, Yahvah KM, Bode L, McGuire MA, McGuire MK. Relationships Among Microbial Communities, Maternal Cells, Oligosaccharides, and Macronutrients in Human Milk. J Hum Lact 2017; 33:540-551. [PMID: 28609134 DOI: 10.1177/0890334417709433] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Human milk provides all essential nutrients necessary for early life and is rich in nonnutrients, maternally derived (host) cells, and bacteria, but almost nothing is known about the interplay among these components. Research aim: The primary objective of this research was to characterize relationships among macronutrients, maternal cells, and bacteria in milk. METHODS Milk samples were collected from 16 women and analyzed for protein, lipid, fatty acid, lactose, and human milk oligosaccharide concentrations. Concentrations of maternal cells were determined using microscopy, and somatic cell counts were enumerated. Microbial ecologies were characterized using culture-independent methods. RESULTS Absolute and relative concentrations of maternal cells were mostly consistent within each woman as were relative abundances of bacterial genera, and there were many apparent relationships between these factors. For instance, relative abundance of Serratia was negatively associated with somatic cell counts ( r = -.47, p < .0001) and neutrophil concentration ( r = -.38, p < .0006). Concentrations of several oligosaccharides were correlated with maternally derived cell types as well as somatic cell counts; for example, lacto-N-tetraose and lacto-N-neotetraose were inversely correlated with somatic cell counts ( r = -.64, p = .0082; r = -.52, p = .0387, respectively), and relative abundance of Staphylococcus was positively associated with total oligosaccharide concentration ( r = .69, p = .0034). Complex relationships between milk nutrients and bacterial community profile, maternal cells, and milk oligosaccharides were also apparent. CONCLUSION These data support the possibility that profiles of maternally derived cells, nutrient concentrations, and the microbiome of human milk might be interrelated.
Collapse
Affiliation(s)
- Janet E Williams
- 1 Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| | - William J Price
- 2 Statistical Programs, University of Idaho, Moscow, ID, USA
| | - Bahman Shafii
- 2 Statistical Programs, University of Idaho, Moscow, ID, USA
| | - Katherine M Yahvah
- 1 Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| | - Lars Bode
- 3 Department of Pediatrics, Mother-Milk-Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, CA, USA
| | - Mark A McGuire
- 1 Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| | - Michelle K McGuire
- 4 Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MoMI CoRE), School of Medicine, University of California, San Diego, La Jolla, CA, USA.,5 School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
102
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
103
|
Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett 2017; 22:11. [PMID: 28717367 PMCID: PMC5508878 DOI: 10.1186/s11658-017-0042-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Human milk is a complex fluid that has developed to satisfy the nutritional requirements of infants. In addition to proteins, lipids, carbohydrates and other biologically active components, breast milk contains a diverse microbiome that is presumed to colonize the infant gastrointestinal tract and a heterogeneous population of cells with unclear physiological roles and health implications. Noteworthy cellular components of breast milk include progenitor/stem cells. This review summarizes the current state of knowledge of breast milk cells, including leukocytes, epithelial cells, stem cells and potentially probiotic bacteria.
Collapse
Affiliation(s)
- Malgorzata Witkowska-Zimny
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Ewa Kaminska-El-Hassan
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
104
|
Abstract
Cell and tissue specific somatic stem cells develop as dynamic populations of precursor cells to discrete tissue and organ differentiation during embryonic and fetal stages and their potential evolves with development. Some of their progeny are sequestered into separate cell niches of tissues as adult somatic stem cells at various times during organ development and differentiation These are diverse cell populations of stem and progenitor cells that respond to homeostatic needs for cell and tissue maintenance and the cycling of differentiated cells for physiological/ endocrinological changes. Nominally, multipotent stem cells in one or more niches follow specific lineages of differentiation that can be followed by diverse markers of differentiation. The activation of precursors appears to be stochastic and results in a population of heterogeneous progenitor cells. When variations in the functional need of the tissue or organ occurs, the progenitor cells exhibit flexibility in their differentiation capacity. Regulation of the progenitors is the result of signals from the stem cell niche that can cause adaptive changes in the behavior or function of the stem -progenitor cell lineage. A possible mechanism may be alteration in the differentiation capacity of the resident or introduced cells. Certain quiescent stem cells also serve as a potential cell reservoir for trauma induced cell regeneration through adaptive changes in differentiation of stem cells, progenitor cells and differentiated cells. If the stem-progenitor cell population is normally depleted or destroyed by trauma, differentiated cells from the niche microenvironment can restore the specific stem potency which suggests the process of dedifferentiation.
Collapse
Affiliation(s)
- Kenyon S Tweedell
- Department of Biological Sciences, University of Notre Dame, Notre Dame IN 46556 USA
| |
Collapse
|
105
|
Mammary Gland Cell Culture of Macaca fascicularis as a Reservoir for Stem Cells. HAYATI JOURNAL OF BIOSCIENCES 2017. [DOI: 10.1016/j.hjb.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
106
|
Bagnell CA, Ho TY, George AF, Wiley AA, Miller DJ, Bartol FF. Maternal lactocrine programming of porcine reproductive tract development. Mol Reprod Dev 2017; 84:957-968. [PMID: 28407326 DOI: 10.1002/mrd.22815] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/05/2017] [Indexed: 12/27/2022]
Abstract
The lactocrine hypothesis for maternal programming of female reproductive tract development is based on the idea that non-nutritive, milk-borne bioactive factors (MbFs), delivered from mother to offspring during nursing, play a role in determining the trajectory of development with long-term consequences in the adult. Porcine female reproductive tract development is completed postnatally, and the period during which maternal support of neonatal growth derives exclusively from colostrum/milk defines a window of opportunity for lactocrine programming of reproductive tissues. Beyond nutrition, milk serves as a delivery system for a variety of bioactive factors. Porcine relaxin is a prototypical MbF. Present in colostrum at highest concentrations at birth, relaxin is transmitted into the circulation of nursing piglets where it can act on Relaxin receptors found in neonatal female reproductive tract tissues. This process is facilitated by the physiology of the maternal-neonatal dyad and the fact that the neonatal gastrointestinal tract is open to absorb macromolecules for a period of time postnatally. Age at first nursing and duration of nursing from birth are also important for porcine female reproductive tract development. These parameters affect both the quality and quantity of colostrum consumed. Disruption of lactocrine signaling by feeding milk replacer from birth altered porcine uterine, cervical, and testicular development by postnatal Day 2. Moreover, insufficient colostrum consumption in nursing piglets can impair uterine capacity to support viable litters of optimal size in adulthood. In the pig, lactocrine signaling supports neonatal organizational events associated with normal reproductive development and may program adult uterine capacity.
Collapse
Affiliation(s)
- Carol A Bagnell
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey
| | - Teh-Yuan Ho
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey
| | - Ashley F George
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey
| | - Anne A Wiley
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama
| | - Dori J Miller
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama
| |
Collapse
|
107
|
Cacho NT, Lawrence RM. Innate Immunity and Breast Milk. Front Immunol 2017; 8:584. [PMID: 28611768 PMCID: PMC5447027 DOI: 10.3389/fimmu.2017.00584] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.
Collapse
Affiliation(s)
- Nicole Theresa Cacho
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Robert M Lawrence
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
108
|
Briere CE, Jensen T, McGrath JM, Young EE, Finck C. Stem-Like Cell Characteristics from Breast Milk of Mothers with Preterm Infants as Compared to Mothers with Term Infants. Breastfeed Med 2017; 12:174-179. [PMID: 28277748 DOI: 10.1089/bfm.2017.0002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Breast milk stem cells are hypothesized to be involved in infant health and development. Our research team is the first known team to enroll mothers of hospitalized preterm infants during the first few weeks of lactation and compare stem cell phenotypes and gene expression to mothers of healthy full-term infants. SETTINGS Participants were recruited from a Level IV Neonatal Intensive Care Unit (preterm dyads) and the community (full-term dyads) in the northeastern United States. PARTICIPANTS Mothers of hospitalized preterm infants (<37 weeks gestational age at birth) and mothers of healthy full-term infants (>39 weeks gestational age at birth). RESULTS Breast milk stem-like cell populations were identified in both preterm and full-term breast milk samples. The data suggest variability in the proportion of stem cell phenotypes present, as well as statistically significant differential expression (both over- and underexpression) of stem cell-specific genetic markers when comparing mothers' milk for preterm and full-term births. CONCLUSIONS Our findings indicate that (1) stem cells are present in preterm breast milk; (2) differential expression of stem cell-specific markers can be detected in preterm and full-term breast milk samples; and (3) the percentage of cells expressing the various stem cell-specific markers differs when preterm and full-term breast milk samples are compared.
Collapse
Affiliation(s)
- Carrie-Ellen Briere
- 1 Department of Nursing Research, Connecticut Children's Medical Center , Hartford, Connecticut.,2 School of Nursing, University of Connecticut , Storrs, Connecticut
| | - Todd Jensen
- 3 Department of Pediatrics, UConn Health , Farmington, Connecticut
| | - Jacqueline M McGrath
- 1 Department of Nursing Research, Connecticut Children's Medical Center , Hartford, Connecticut.,2 School of Nursing, University of Connecticut , Storrs, Connecticut
| | - Erin E Young
- 2 School of Nursing, University of Connecticut , Storrs, Connecticut.,4 Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut.,5 Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - Christine Finck
- 3 Department of Pediatrics, UConn Health , Farmington, Connecticut.,6 Department of Surgery, Connecticut Children's Medical Center , Hartford, Connecticut
| |
Collapse
|
109
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
110
|
Shinagawa-Ohama R, Mochizuki M, Tamaki Y, Suda N, Nakahara T. Heterogeneous Human Periodontal Ligament-Committed Progenitor and Stem Cell Populations Exhibit a Unique Cementogenic Property Under In Vitro and In Vivo Conditions. Stem Cells Dev 2017; 26:632-645. [PMID: 28136695 DOI: 10.1089/scd.2016.0330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.
Collapse
Affiliation(s)
- Rei Shinagawa-Ohama
- 1 Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry , Saitama, Japan .,2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Mai Mochizuki
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Yuichi Tamaki
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Naoto Suda
- 1 Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry , Saitama, Japan
| | - Taka Nakahara
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| |
Collapse
|
111
|
Qu Y, Han B, Gao B, Bose S, Gong Y, Wawrowsky K, Giuliano AE, Sareen D, Cui X. Differentiation of Human Induced Pluripotent Stem Cells to Mammary-like Organoids. Stem Cell Reports 2017; 8:205-215. [PMID: 28132888 PMCID: PMC5312254 DOI: 10.1016/j.stemcr.2016.12.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can give rise to multiple cell types and hold great promise in regenerative medicine and disease-modeling applications. We have developed a reliable two-step protocol to generate human mammary-like organoids from iPSCs. Non-neural ectoderm-cell-containing spheres, referred to as mEBs, were first differentiated and enriched from iPSCs using MammoCult medium. Gene expression profile analysis suggested that mammary gland function-associated signaling pathways were hallmarks of 10-day differentiated mEBs. We then generated mammary-like organoids from 10-day mEBs using 3D floating mixed gel culture and a three-stage differentiation procedure. These organoids expressed common breast tissue, luminal, and basal markers, including estrogen receptor, and could be induced to produce milk protein. These results demonstrate that human iPSCs can be directed in vitro toward mammary lineage differentiation. Our findings provide an iPSC-based model for studying regulation of normal mammary cell fate and function as well as breast disease development.
Collapse
Affiliation(s)
- Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA
| | - Shikha Bose
- Department of Pathology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yiping Gong
- Department of Breast Surgery, Hubei Cancer Hospital, Wuhan 430079, China
| | - Kolja Wawrowsky
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA
| | - Dhruv Sareen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; The David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA 90048, USA.
| |
Collapse
|
112
|
Binns C, Lee MK, Kagawa M. Ethical Challenges in Infant Feeding Research. Nutrients 2017; 9:E59. [PMID: 28085057 PMCID: PMC5295103 DOI: 10.3390/nu9010059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 01/14/2023] Open
Abstract
Infants have a complex set of nutrient requirements to meet the demands of their high metabolic rate, growth, and immunological and cognitive development. Infant nutrition lays the foundation for health throughout life. While infant feeding research is essential, it must be conducted to the highest ethical standards. The objective of this paper is to discuss the implications of developments in infant nutrition for the ethics of infant feeding research and the implications for obtaining informed consent. A search was undertaken of the papers in the medical literature using the PubMed, Science Direct, Web of Knowledge, Proquest, and CINAHL databases. From a total of 9303 papers identified, the full text of 87 articles that contained discussion of issues in consent in infant feeding trials were obtained and read and after further screening 42 papers were included in the results and discussion. Recent developments in infant nutrition of significance to ethics assessment include the improved survival of low birth weight infants, increasing evidence of the value of breastfeeding and evidence of the lifelong importance of infant feeding and development in the first 1000 days of life in chronic disease epidemiology. Informed consent is a difficult issue, but should always include information on the value of preserving breastfeeding options. Project monitoring should be cognisant of the long term implications of growth rates and early life nutrition.
Collapse
Affiliation(s)
- Colin Binns
- John Curtin Distinguished Emeritus Professor of Public Health, Curtin University, Perth 6845, Australia.
| | - Mi Kyung Lee
- Department, School of Health Professions, Murdoch University, Perth 6150, Australia.
| | - Masaharu Kagawa
- Institute of Nutrition Sciences, Kagawa Nutrition University, Saitama 350-0214, Japan.
| |
Collapse
|
113
|
Abstract
BACKGROUND The benefits of breast milk are well described, yet the mechanistic details related to how breast milk protects against acute and chronic diseases and optimizes neurodevelopment remain largely unknown. Recently, breast milk was found to contain stem cells that are thought to be involved in infant development. PURPOSE The purpose of this review was to synthesize all available research involving the characterization of breast milk stem cells to provide a basis of understanding for what is known and what still needs further exploration. METHODS/SEARCH STRATEGY The literature search was conducted between August and October 2015 using the CINAHL, PubMed, and reference list searching. Nine studies addressed characterization of human breast milk stem cells. FINDINGS/RESULTS Five research teams in 4 countries have published studies on breast milk stem cells. Current research has focused on characterizing stem cells in full-term breast milk. The amount, phenotype, and expression of breast milk stem cells are known to vary between mothers, and they have been able to differentiate into all 3 germ layers (expressing pluripotent characteristics). IMPLICATIONS FOR PRACTICE There is much to learn about breast milk stem cells. Given the potential impact of this research, healthcare professionals should be aware of their presence and ongoing research to determine benefits for infants. IMPLICATIONS FOR RESEARCH Extensive research is needed to further characterize stem cells in breast milk (full-term and preterm), throughout the stages of lactation, and most importantly, their role in the health of infants, and potential for use in regenerative therapies.
Collapse
|
114
|
Floris I, Kraft JD, Altosaar I. Roles of MicroRNA across Prenatal and Postnatal Periods. Int J Mol Sci 2016; 17:ijms17121994. [PMID: 27916805 PMCID: PMC5187794 DOI: 10.3390/ijms17121994] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between mother and offspring in mammals starts at implantation via the maternal-placental-fetal axis, and continues postpartum via milk targeted to the intestinal mucosa. MicroRNAs (miRNAs), short, noncoding single-stranded RNAs, of about 22 nucleotides in length, are actively involved in many developmental and physiological processes. Here we highlight the role of miRNA in the dynamic signaling that guides infant development, starting from implantation of conceptus and persisting through the prenatal and postnatal periods. miRNAs in body fluids, particularly in amniotic fluid, umbilical cord blood, and breast milk may offer new opportunities to investigate physiological and/or pathological molecular mechanisms that portend to open novel research avenues for the identification of noninvasive biomarkers.
Collapse
Affiliation(s)
- Ilaria Floris
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Jamie D Kraft
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Illimar Altosaar
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
115
|
Leptin Levels Are Higher in Whole Compared to Skim Human Milk, Supporting a Cellular Contribution. Nutrients 2016; 8:nu8110711. [PMID: 27834797 PMCID: PMC5133097 DOI: 10.3390/nu8110711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Human milk (HM) contains a plethora of metabolic hormones, including leptin, which is thought to participate in the regulation of the appetite of the developing infant. Leptin in HM is derived from a combination of de novo mammary synthesis and transfer from the maternal serum. Moreover, leptin is partially lipophilic and is also present in HM cells. However, leptin has predominately been measured in skim HM, which contains neither fat nor cells. We optimised an enzyme-linked immunosorbent assay for leptin measurement in both whole and skim HM and compared leptin levels between both HM preparations collected from 61 lactating mothers. Whole HM leptin ranged from 0.2 to 1.47 ng/mL, whilst skim HM leptin ranged from 0.19 to 0.9 ng/mL. Whole HM contained, on average, 0.24 ± 0.01 ng/mL more leptin than skim HM (p < 0.0001, n = 287). No association was found between whole HM leptin and fat content (p = 0.17, n = 287), supporting a cellular contribution to HM leptin. No difference was found between pre- and post-feed samples (whole HM: p = 0.29, skim HM: p = 0.89). These findings highlight the importance of optimising HM leptin measurement and assaying it in whole HM to accurately examine the amount of leptin received by the infant during breastfeeding.
Collapse
|
116
|
Abd Allah SH, Shalaby SM, El-Shal AS, El Nabtety SM, Khamis T, Abd El Rhman SA, Ghareb MA, Kelani HM. Breast milk MSCs: An explanation of tissue growth and maturation of offspring. IUBMB Life 2016; 68:935-942. [DOI: 10.1002/iub.1573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Somia H. Abd Allah
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Sally M. Shalaby
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Amal S. El-Shal
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Sameh M. El Nabtety
- Pharmacology Department, Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - Tarek Khamis
- Pharmacology Department, Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - Shimaa A. Abd El Rhman
- Histology and Cell Biology Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Mahmoud A. Ghareb
- Gynecology & Obestetric Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Hesham M. Kelani
- ENT Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
117
|
Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. Int J Mol Sci 2016; 17:ijms17060982. [PMID: 27338364 PMCID: PMC4926512 DOI: 10.3390/ijms17060982] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jingli Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yang Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jin Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Bo Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
118
|
Human Milk Cells Contain Numerous miRNAs that May Change with Milk Removal and Regulate Multiple Physiological Processes. Int J Mol Sci 2016; 17:ijms17060956. [PMID: 27322254 PMCID: PMC4926489 DOI: 10.3390/ijms17060956] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Human milk (HM) is a complex biofluid conferring nutritional, protective and developmental components for optimal infant growth. Amongst these are maternal cells, which change in response to feeding and were recently shown to be a rich source of miRNAs. We used next generation sequencing to characterize the cellular miRNA profile of HM collected before and after feeding. HM cells conserved higher miRNA content than the lipid and skim HM fractions or other body fluids, in accordance with previous studies. In total, 1467 known mature and 1996 novel miRNAs were identified, with 89 high-confidence novel miRNAs. HM cell content was higher post-feeding (p < 0.05), and was positively associated with total miRNA content (p = 0.014) and species number (p < 0.001). This coincided with upregulation of 29 known and 2 novel miRNAs, and downregulation of 4 known and 1 novel miRNAs post-feeding, but no statistically significant change in expression was found for the remaining miRNAs. These findings suggest that feeding may influence the miRNA content of HM cells. The most highly and differentially expressed miRNAs were key regulators of milk components, with potential diagnostic value in lactation performance. They are also involved in the control of body fluid balance, thirst, appetite, immune response, and development, implicating their functional significance for the infant.
Collapse
|
119
|
Alsaweed M, Hepworth AR, Lefèvre C, Hartmann PE, Geddes DT, Hassiotou F. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation. J Cell Biochem 2016; 116:2397-407. [PMID: 25925799 PMCID: PMC5042114 DOI: 10.1002/jcb.25207] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column‐based phenol‐free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. J. Cell. Biochem. 116: 2397–2407, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohammed Alsaweed
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia.,College of Applied Medical Sciences, Majmaah University, Almajmaah, Riyadh, Saudi Arabia
| | - Anna R Hepworth
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Christophe Lefèvre
- Centre for Biotechnology and Interdisciplinary Sciences, Deakin University, Victoria, Australia
| | - Peter E Hartmann
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Donna T Geddes
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Foteini Hassiotou
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
120
|
Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:84. [PMID: 27225481 PMCID: PMC4881184 DOI: 10.1186/s13046-016-0359-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/09/2016] [Indexed: 01/11/2023]
Abstract
The transcription factor Yin Yang 1 (YY1) is frequently overexpressed in cancerous tissues compared to normal tissues and has regulatory roles in cell proliferation, cell viability, epithelial-mesenchymal transition, metastasis and drug/immune resistance. YY1 shares many properties with cancer stem cells (CSCs) that drive tumorigenesis, metastasis and drug resistance and are regulated by overexpression of certain transcription factors, including SOX2, OCT4 (POU5F1), BMI1 and NANOG. Based on these similarities, it was expected that YY1 expression would be associated with SOX2, OCT4, BMI1, and NANOG’s expressions and activities. Data mining from the proteomic tissue-based datasets from the Human Protein Atlas were used for protein expression patterns of YY1 and the four CSC markers in 17 types of cancer, including both solid and hematological malignancies. A close association was revealed between the frequency of expressions of YY1 and SOX2 as well as SOX2 and OCT4 in all cancers analyzed. Two types of dynamics were identified based on the nature of their association, namely, inverse or direct, between YY1 and SOX2. These two dynamics define distinctive patterns of BMI1 and OCT4 expressions. The relationship between YY1 and SOX2 expressions as well as the expressions of BMI1 and OCT4 resulted in the classification of four groups of cancers with distinct molecular signatures: 1) Prostate, lung, cervical, endometrial, ovarian and glioma cancers (YY1loSOX2hiBMI1hiOCT4hi) 2) Skin, testis and breast cancers (YY1hiSOX2loBMI1hiOCT4hi) 3) Liver, stomach, renal, pancreatic and urothelial cancers (YY1loSOX2loBMI1hiOCT4hi) and 4) Colorectal cancer, lymphoma and melanoma (YY1hiSOX2hiBMI1loOCT4hi). A regulatory loop is proposed consisting of the cross-talk between the NF-kB/PI3K/AKT pathways and the downstream inter-regulation of target gene products YY1, OCT4, SOX2 and BMI1.
Collapse
|
121
|
Abdelbaset-Ismail A, Pedziwiatr D, Suszyńska E, Sluczanowska-Glabowska S, Schneider G, Kakar SS, Ratajczak MZ. Vitamin D3 stimulates embryonic stem cells but inhibits migration and growth of ovarian cancer and teratocarcinoma cell lines. J Ovarian Res 2016; 9:26. [PMID: 27091127 PMCID: PMC4835879 DOI: 10.1186/s13048-016-0235-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deficiency in Vitamin D3 (cholecalciferol) may predispose to some malignancies, including gonadal tumors and in experimental models vitamin D3 has been proven to inhibit the growth of cancer cells. To learn more about the potential role of vitamin D3 in cancerogenesis, we evaluated the expression and functionality of the vitamin D receptor (VDR) and its role in metastasis of ovarian cancer cells and of murine and human teratocarcinoma cell lines. METHODS In our studies we employed murine embrynic stem cells (ESD3), murine (P19) and human (NTERA-2) teratocarcimona cells lines, human ovarian cancer cells (A2780) as well as purified murine and human purified very small embryonic like stem cells (VSELs). We evaluated expression of Vitamin D3 receptor (VDR) in these cells as well as effect of vitamin D3 exposure on cell proliferation and migration. RESULTS We here provide also more evidence for the role of vitamin D3 in germline-derived malignancies, and this evidence supports the proposal that vitamin D3 treatment inhibits growth and metastatic potential of several germline-derived malignancies. We also found that the ESD3 murine immortalized embryonic stem cell line and normal, pluripotent, germline-marker-positive very small embryonic-like stem cells (VSELs) isolated from adult tissues are stimulated by vitamin D3, which suggests that vitamin D3 affects the earliest stages of embryogenesis. CONCLUSIONS We found that however all normal and malignant germ-line derived cells express functional VDR, Vitamin D3 differently affects their proliferation and migration. We postulate that while Vitamin D3 as anticancer drug inhibits proliferation of malignant cells, it may protect normal stem cells that play an important role in development and tissue/organ regeneration.
Collapse
Affiliation(s)
- Ahmed Abdelbaset-Ismail
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Daniel Pedziwiatr
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Ewa Suszyńska
- />Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | | | - Gabriela Schneider
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Sham S. Kakar
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Mariusz Z. Ratajczak
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- />Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
122
|
Regulatory roles of Oct proteins in the mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:812-9. [PMID: 27044595 DOI: 10.1016/j.bbagrm.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
Abstract
The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
123
|
Sharp JA, Lefèvre C, Watt A, Nicholas KR. Analysis of human breast milk cells: gene expression profiles during pregnancy, lactation, involution, and mastitic infection. Funct Integr Genomics 2016; 16:297-321. [PMID: 26909879 DOI: 10.1007/s10142-016-0485-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 12/22/2022]
Abstract
The molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step toward understanding why some women display poor lactation outcomes. Here, we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from five time points (24 h prepartum during the colostrum period, midlactation, two involutions, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (e.g., CEL, OLAH, FOLR1, BTN1A1, and ARG2), while milk cells collected during involution showed a significant downregulation of milk synthesis genes and activation of involution associated genes (e.g., STAT3, NF-kB, IRF5, and IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, while maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.
Collapse
Affiliation(s)
- Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
| | - Christophe Lefèvre
- Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, Melbourne, 3000, Australia
| | - Ashalyn Watt
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Kevin R Nicholas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
124
|
Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci Rep 2016; 6:20680. [PMID: 26854194 PMCID: PMC4745068 DOI: 10.1038/srep20680] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022] Open
Abstract
Human milk (HM) contains regulatory biomolecules including miRNAs, the origin and functional significance of which are still undetermined. We used TaqMan OpenArrays to profile 681 mature miRNAs in HM cells and fat, and compared them with maternal peripheral blood mononuclear cells (PBMCs) and plasma, and bovine and soy infant formulae. HM cells and PBMCs (292 and 345 miRNAs, respectively) had higher miRNA content than HM fat and plasma (242 and 219 miRNAs, respectively) (p < 0.05). A strong association in miRNA profiles was found between HM cells and fat, whilst PBMCs and plasma were distinctly different to HM, displaying marked inter-individual variation. Considering the dominance of epithelial cells in mature milk of healthy women, these results suggest that HM miRNAs primarily originate from the mammary epithelium, whilst the maternal circulation may have a smaller contribution. Our findings demonstrate that unlike infant formulae, which contained very few human miRNA, HM is a rich source of lactation-specific miRNA, which could be used as biomarkers of the performance and health status of the lactating mammary gland. Given the recently identified stability, uptake and functionality of food- and milk-derived miRNA in vivo, HM miRNA are likely to contribute to infant protection and development.
Collapse
Affiliation(s)
- Mohammed Alsaweed
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia.,College of Applied Medical Sciences, Majmaah University, Almajmaah, Riyadh, Saudi Arabia
| | - Ching Tat Lai
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter E Hartmann
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Donna T Geddes
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
125
|
Kaingade PM, Somasundaram I, Nikam AB, Sarang SA, Patel JS. Assessment of Growth Factors Secreted by Human Breastmilk Mesenchymal Stem Cells. Breastfeed Med 2016; 11:26-31. [PMID: 26670023 DOI: 10.1089/bfm.2015.0124] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Human breastmilk is a dynamic, multifaceted biological fluid containing nutrients, bioactive substances, and growth factors. It is effective in supporting growth and development of an infant. As breastmilk has been found to possess mesenchymal stem cells, the importance of the components of breastmilk and their physiological roles is increasing day by day. The present study was intended to identify the secretions of growth factors, mainly vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), from human breastmilk mesenchymal stem cells under basal conditions of in vitro cell culture using synthetic media and human cord serum. MATERIALS AND METHODS The growth factors were analyzed with the enzyme-linked immunosorbent assay technique. RESULTS The cultured mesenchymal stem cells of breastmilk without serum revealed significant differences in secretions of the VEGF and HGF growth factors (8.55 ± 2.26402 pg/mL and 230.8 ± 45.9861 pg/mL, respectively) compared with mesenchymal stem cells of breastmilk with serum (21.31 ± 4.69 pg/mL and 2,404.42 ± 481.593 pg/mL, respectively). CONCLUSIONS Results obtained from our study demonstrate that both VEGF and HGF are secreted in vitro by human breastmilk mesenchymal stem cells. The roles of VEGF and HGF in surfactant secretion, pulmonary maturation, and neonatal maturity have been well established. Thus, we emphasize that breastmilk-derived MSCs could be a potent therapeutic source in treating neonatal diseases. Besides, due to its immense potency, the study also emphasizes the importance of breastfeeding, which is promoted by organizations like the World Heatlh Organization and UNICEF.
Collapse
Affiliation(s)
- Pankaj Mahipatrao Kaingade
- 1 Department of Biochemistry, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology , Changa, Gujarat, India
| | - Indumathi Somasundaram
- 2 Department of Stem Cell and Regenerative Medicine, National Institute of Nutrition , Secunderabad, Andhra Pradesh, India
| | - Amar Babaso Nikam
- 1 Department of Biochemistry, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology , Changa, Gujarat, India
| | - Shabari Amit Sarang
- 3 Regenerative Medicine Group, Reliance Life Sciences Pvt. Ltd. , Mumbai, Maharashtra, India
| | - Jagdish Shantilal Patel
- 1 Department of Biochemistry, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology , Changa, Gujarat, India
| |
Collapse
|
126
|
Hoashi M, Meche L, Mahal LK, Bakacs E, Nardella D, Naftolin F, Bar-Yam N, Dominguez-Bello MG. Human Milk Bacterial and Glycosylation Patterns Differ by Delivery Mode. Reprod Sci 2015; 23:902-7. [PMID: 26711314 DOI: 10.1177/1933719115623645] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mammals have evolved to nourish their offspring exclusively with maternal milk for around half of the lactation period, a crucial developmental window. In view of oral-breast contact during lactation and the differences in oral microbiota between cesarean section (C-section) and vaginally delivered infants, we expected differences in milk composition by delivery mode. We performed a cross-sectional study of banked human milk and found changes related to time since delivery in bacterial abundance and glycosylation patterns only in milk from women who delivered vaginally. The results warrant further research into the effects of delivery mode on milk microbes, milk glycosylation, and postpartum infant development.
Collapse
Affiliation(s)
- Marina Hoashi
- Bioinformatics Program, New York University Tandon School of Engineering, New York, NY, USA Division of Translational Medicine, New York University School of Medicine, New York, NY, USA
| | - Lawrence Meche
- Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, NY, USA
| | - Lara K Mahal
- Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, NY, USA
| | - Elizabeth Bakacs
- Division of Translational Medicine, New York University School of Medicine, New York, NY, USA
| | - Deanna Nardella
- Division of Translational Medicine, New York University School of Medicine, New York, NY, USA
| | - Frederick Naftolin
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Naomi Bar-Yam
- Mothers' Milk Bank Northeast, Newton Upper Falls, MA, USA
| | - Maria G Dominguez-Bello
- Division of Translational Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
127
|
Seymour T, Twigger AJ, Kakulas F. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain. Int J Mol Sci 2015; 16:27288-301. [PMID: 26580604 PMCID: PMC4661882 DOI: 10.3390/ijms161126024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) attracted considerable interest with the successful isolation of embryonic stem cells (ESCs) from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs) OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC), which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies.
Collapse
Affiliation(s)
- Tracy Seymour
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
- School of Medicine and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, the University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Alecia-Jane Twigger
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
| |
Collapse
|
128
|
MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13981-4020. [PMID: 26529003 PMCID: PMC4661628 DOI: 10.3390/ijerph121113981] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance.
Collapse
|
129
|
Bose B, Shenoy PS. Aging induced loss of stemness with concomitant gain of myogenic properties of a pure population of CD34(+)/CD45(-) muscle derived stem cells. Int J Biochem Cell Biol 2015; 70:1-12. [PMID: 26655331 DOI: 10.1016/j.biocel.2015.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/18/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022]
Abstract
Aging is accompanied by the functional decline of cells, tissues, and organs, as well as, a striking increase in susceptibility to a wide range of diseases. Within a tissue, both differentiated cells and adult stem cells are susceptible to intrinsic and extrinsic changes while aging. Muscle derived stem cells (MDSCs) are tissue specific stem cells which have been studied well for their multipotential nature. Although there are reports relating to diminished function and regenerative capacity of aged MDSCs as compared to their young counterparts, not much has been reported relating to the concomitant gain in unipotent nature of aged MDSCs. In this study, we report an inverse correlation between aging and expression of adult/mesenchymal stem cell markers and a direct correlation between aging and myogenecity in MDSCs. Aged MDSCs were able to generate a greater number of dystrophin positive myofibres, as compared to, the young MDSCs when transplanted in muscle of dystrophic mice. Our data, therefore, suggests that aging stress adds to the decline in stem cell characteristics with a concomitant increase in unipotency, in terms of, myogenecity of MDSCs. This study, hence, also opens the possibilities of using unipotent aged MDSCs as potential candidates for transplantation in patients with muscular dystrophies.
Collapse
Affiliation(s)
- Bipasha Bose
- School of Biological Sciences, Nanyang Technological University, 60, Nanyang Drive, Singapore 637551, Singapore.
| | - P Sudheer Shenoy
- School of Biological Sciences, Nanyang Technological University, 60, Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
130
|
Gavaldà-Navarro A, Hondares E, Giralt M, Mampel T, Iglesias R, Villarroya F. Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Sci Rep 2015; 5:13717. [PMID: 26329882 PMCID: PMC4557064 DOI: 10.1038/srep13717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022] Open
Abstract
FGF21 is a hormonal factor with important functions in the control of metabolism. FGF21 is found in rodent and human milk. Radiolabeled FGF21 administered to lactating dams accumulates in milk and is transferred to neonatal gut. The small intestine of neonatal (but not adult) mice highly expresses β-Klotho in the luminal area. FGF21-KO pups fed by FGF21-KO dams showed decreased expression and circulating levels of incretins (GIP and GLP-1), reduced gene expression of intestinal lactase and maltase-glucoamylase, and low levels of galactose in plasma, all associated with a mild decrease in body weight. When FGF21-KO pups were nursed by wild-type dams (expressing FGF21 in milk), intestinal peptides and digestive enzymes were up-regulated, lactase enzymatic activity was induced, and galactose levels and body weight were normalized. Neonatal intestine explants were sensitive to FGF21, as evidenced by enhanced ERK1/2 phosphorylation. Oral infusion of FGF21 into neonatal pups induced expression of intestinal hormone factors and digestive enzymes, lactase activity and lactose absorption. These findings reveal a novel role of FGF21 as a hormonal factor contributing to neonatal intestinal function via its presence in maternal milk. Appropriate signaling of FGF21 to neonate is necessary to ensure optimal digestive and endocrine function in developing intestine.
Collapse
Affiliation(s)
- Aleix Gavaldà-Navarro
- Departament de Bioquimica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Elayne Hondares
- Departament de Bioquimica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Marta Giralt
- Departament de Bioquimica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Teresa Mampel
- Departament de Bioquimica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Roser Iglesias
- Departament de Bioquimica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Francesc Villarroya
- Departament de Bioquimica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
131
|
Boddy AM, Fortunato A, Wilson Sayres M, Aktipis A. Fetal microchimerism and maternal health: a review and evolutionary analysis of cooperation and conflict beyond the womb. Bioessays 2015; 37:1106-18. [PMID: 26316378 PMCID: PMC4712643 DOI: 10.1002/bies.201500059] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of fetal cells has been associated with both positive and negative effects on maternal health. These paradoxical effects may be due to the fact that maternal and offspring fitness interests are aligned in certain domains and conflicting in others, which may have led to the evolution of fetal microchimeric phenotypes that can manipulate maternal tissues. We use cooperation and conflict theory to generate testable predictions about domains in which fetal microchimerism may enhance maternal health and those in which it may be detrimental. This framework suggests that fetal cells may function both to contribute to maternal somatic maintenance (e.g. wound healing) and to manipulate maternal physiology to enhance resource transmission to offspring (e.g. enhancing milk production). In this review, we use an evolutionary framework to make testable predictions about the role of fetal microchimerism in lactation, thyroid function, autoimmune disease, cancer and maternal emotional, and psychological health. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA, USA
| | - Angelo Fortunato
- Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Wilson Sayres
- Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA, USA.,Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
132
|
Steele S, Foell J, Martyn J, Freitag A. More than a lucrative liquid: the risks for adult consumers of human breast milk bought from the online market. J R Soc Med 2015; 108:208-9. [PMID: 26085557 DOI: 10.1177/0141076815588539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sarah Steele
- Global Health, Policy and Innovation Unit, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
| | - Jens Foell
- Global Health, Policy and Innovation Unit, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK Richford Gate Medical Practice, Richford Street, London W67HY, UK
| | - Jeanine Martyn
- Lifespan, 167 Point Street, Providence, Rhode Island 02903, USA
| | - Andreas Freitag
- National Clinical Guideline Centre, Royal College of Physicians, London NW1 4LE, UK
| |
Collapse
|
133
|
Twigger AJ, Hepworth AR, Lai CT, Chetwynd E, Stuebe AM, Blancafort P, Hartmann PE, Geddes DT, Kakulas F. Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci Rep 2015; 5:12933. [PMID: 26255679 PMCID: PMC4542700 DOI: 10.1038/srep12933] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/15/2015] [Indexed: 01/11/2023] Open
Abstract
Breastmilk is a rich source of cells with a heterogeneous composition comprising early-stage stem cells, progenitors and more differentiated cells. The gene expression profiles of these cells and their associations with characteristics of the breastfeeding mother and infant are poorly understood. This study investigated factors associated with the cellular dynamics of breastmilk and explored variations amongst women. Genes representing different breastmilk cell populations including mammary epithelial and myoepithelial cells, progenitors, and multi-lineage stem cells showed great variation in expression. Stem cell markers ESRRB and CK5, myoepithelial marker CK14, and lactocyte marker α-lactalbumin were amongst the genes most highly expressed across all samples tested. Genes exerting similar functions, such as either stem cell regulation or milk production, were found to be closely associated. Infant gestational age at delivery and changes in maternal bra cup size between pre-pregnancy and postpartum lactation were associated with expression of genes controlling stemness as well as milk synthesis. Additional correlations were found between genes and dyad characteristics, which may explain abnormalities related to low breastmilk supply or preterm birth. Our findings highlight the heterogeneity of breastmilk cell content and its changes associated with characteristics of the breastfeeding dyad that may reflect changing infant needs.
Collapse
Affiliation(s)
- Alecia-Jane Twigger
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Anna R Hepworth
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Ching Tat Lai
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Ellen Chetwynd
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina, 3010 Old Clinic Building, CB 7615, Chapel Hill, NC 27599, USA
| | - Alison M Stuebe
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina, 3010 Old Clinic Building, CB 7615, Chapel Hill, NC 27599, USA
| | - Pilar Blancafort
- 1] Department of Pharmacology, School of Medicine, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, USA [2] Cancer Epigenetics group, the Harry Perkins Institute of Medical Research, and School of Anatomy, Physiology and human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Peter E Hartmann
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Donna T Geddes
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
134
|
Seymour T, Nowak A, Kakulas F. Targeting Aggressive Cancer Stem Cells in Glioblastoma. Front Oncol 2015; 5:159. [PMID: 26258069 PMCID: PMC4507454 DOI: 10.3389/fonc.2015.00159] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/02/2015] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma (GBM) is the most common and fatal type of primary brain tumor. Gliosarcoma (GSM) is a rarer and more aggressive variant of GBM that has recently been considered a potentially different disease. Current clinical treatment for both GBM and GSM includes maximal surgical resection followed by post-operative radiotherapy and concomitant and adjuvant chemotherapy. Despite recent advances in treating other solid tumors, treatment for GBM and GSM still remains palliative, with a very poor prognosis and a median survival rate of 12–15 months. Treatment failure is a result of a number of causes, including resistance to radiotherapy and chemotherapy. Recent research has applied the cancer stem cells theory of carcinogenesis to these tumors, suggesting the existence of a small subpopulation of glioma stem-like cells (GSCs) within these tumors. GSCs are thought to contribute to tumor progression, treatment resistance, and tumor recapitulation post-treatment and have become the focus of novel therapy strategies. Their isolation and investigation suggest that GSCs share critical signaling pathways with normal embryonic and somatic stem cells, but with distinct alterations. Research must focus on identifying these variations as they may present novel therapeutic targets. Targeting pluripotency transcription factors, SOX2, OCT4, and Nanog homeobox, demonstrates promising therapeutic potential that if applied in isolation or together with current treatments may improve overall survival, reduce tumor relapse, and achieve a cure for these patients.
Collapse
Affiliation(s)
- Tracy Seymour
- School of Medicine and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia , Crawley, WA , Australia ; Hartmann Human Lactation Research Group, School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia , Crawley, WA , Australia
| | - Anna Nowak
- School of Medicine and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia , Crawley, WA , Australia
| | - Foteini Kakulas
- Hartmann Human Lactation Research Group, School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia , Crawley, WA , Australia
| |
Collapse
|
135
|
Carelli S, Messaggio F, Canazza A, Hebda DM, Caremoli F, Latorre E, Grimoldi MG, Colli M, Bulfamante G, Tremolada C, Di Giulio AM, Gorio A. Characteristics and Properties of Mesenchymal Stem Cells Derived from Microfragmented Adipose Tissue. Cell Transplant 2015; 24:1233-52. [DOI: 10.3727/096368914x681603] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The subcutaneous adipose tissue provides a clear advantage over other mesenchymal stem cell sources due to the ease with which it can be accessed, as well as the ease of isolating the residing stem cells. Human adipose-derived stem cells (hADSCs), localized in the stromal–vascular portion, can be isolated ex vivo using a combination of washing steps and enzymatic digestion. In this study, we report that microfragmented human lipoaspirated adipose tissue is a better stem cell source compared to normal lipoaspirated tissue. The structural composition of microfragments is comparable to the original tissue. Differently, however, this procedure activates the expression of antigens, such as β-tubulin III. The hADSCs derived from microfragmented lipoaspirate tissue were systematically characterized for growth features, phenotype, and multipotent differentiation potential. They fulfill the definition of mesenchymal stem cells, although with a higher neural phenotype profile. These cells also express genes that constitute the core circuitry of self-renewal such as OCT4, SOX2, and NANOG, and neurogenic lineage genes such as NEUROD1, PAX6, and SOX3. Such findings suggest further studies by evaluating Microfrag-AT hADSC action in animal models of neurodegenerative conditions.
Collapse
Affiliation(s)
- Stephana Carelli
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Fanuel Messaggio
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Alessandra Canazza
- Cellular Biology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta,” Milan, Italy
| | - Danuta Maria Hebda
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Filippo Caremoli
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Elisa Latorre
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | | | - Mattia Colli
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Gaetano Bulfamante
- Department of Health Sciences, Pathology Unit, University of Milan, Milan, Italy
| | | | - Anna Maria Di Giulio
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Alfredo Gorio
- Department of Health Sciences, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
136
|
Lu L, Li Y, Du MJ, Zhang C, Zhang XY, Tong HZ, Liu L, Han TL, Li WD, Yan L, Yin NB, Li HD, Zhao ZM. Characterization of a Self-renewing and Multi-potent Cell Population Isolated from Human Minor Salivary Glands. Sci Rep 2015; 5:10106. [PMID: 26054627 PMCID: PMC4460572 DOI: 10.1038/srep10106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Adult stem cells play an important role in maintaining tissue homeostasis. Although these cells are found in many tissues, the presence of stem cells in the human minor salivary glands is not well explored. Using the explant culture method, we isolated a population of cells with self-renewal and differentiation capacities harboring that reside in the human minor salivary glands, called human minor salivary gland mesenchymal stem cells (hMSGMSCs). These cells show embryonic stem cell and mesenchymal stem cell phenotypes. Our results demonstrate that hMSGMSCs have the potential to undergo mesodermal, ectodermal and endodermal differentiation in conditioned culture systems in vitro. Furthermore, in vivo transplantation of hMSGMSCs into SCID mice after partial hepatectomy shows that hMSGMSCs are able to survive and engraft, characterized by the survival of labeled cells and the expression of the hepatocyte markers AFP and KRT18. These data demonstrate the existence of hMSGMSCs and suggest their potential in cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Lin Lu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan Li
- 1] International Medical Plastic and Cosmetic Centre, China Meitan General Hospital, Beijing, PR China [2] Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Ming-juan Du
- Department of Cosmetic and Plastic Surgery, Evercare Beijing Medical &Beauty Hospital, Beijing, PR China
| | - Chen Zhang
- Microinvasive Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Xiang-yu Zhang
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Hai-zhou Tong
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Lei Liu
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Ting-lu Han
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Wan-di Li
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Li Yan
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ning-bei Yin
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Hai-dong Li
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Zhen-min Zhao
- 1] Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China [2] People's Hospital of Jincheng City, Jincheng, Shanxi, PR China
| |
Collapse
|
137
|
Hassiotou F, Geddes DT. Immune cell-mediated protection of the mammary gland and the infant during breastfeeding. Adv Nutr 2015; 6:267-75. [PMID: 25979492 PMCID: PMC4424778 DOI: 10.3945/an.114.007377] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Breastfeeding has been regarded first and foremost as a means of nutrition for infants, providing essential components for their unique growth and developmental requirements. However, breast milk is also rich in immunologic factors, highlighting its importance as a mediator of protection. In accordance with its evolutionary origin, the mammary gland offers via the breastfeeding route continuation of the maternal to infant immunologic support established in utero. At birth, the infant's immune system is immature, and although it was exposed to the maternal microbial flora during pregnancy, it experiences an abrupt change in its microbial environment during and after birth, which is challenging and renders the infant highly susceptible to infection. Active and passive immunity protects the infant via breast milk, which is rich in immunoglobulins, lactoferrin, lysozyme, cytokines, and numerous other immunologic factors, including maternal leukocytes. Breast milk leukocytes provide active immunity and promote development of immunocompetence in the infant. Additionally, it has been speculated that they play a role in the protection of the mammary gland from infection. Leukocytes are thought to exert these functions via phagocytosis, secretion of antimicrobial factors and/or antigen presentation in both the mammary gland and the gastrointestinal tract of the infant, and also in other infant tissues, where they are transported via the systemic circulation. Recently, it has been demonstrated that breast milk leukocytes respond dynamically to maternal as well as infant infections, and are fewer in nonexclusively compared with exclusively breastfeeding dyads, further emphasizing their importance for both the mother and infant. This review summarizes the current knowledge of human milk leukocytes and factors influencing them, and presents recent novel findings supporting their potential as a diagnostic marker for infections of the lactating breast and of the breastfed infant.
Collapse
Affiliation(s)
- Foteini Hassiotou
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Crawley, Australia
| | | |
Collapse
|
138
|
Gardner H, Kent JC, Hartmann PE, Geddes DT. Asynchronous milk ejection in human lactating breast: case series. J Hum Lact 2015; 31:254-9. [PMID: 25612749 DOI: 10.1177/0890334414568120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/21/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Milk production is under the influence of autocrine control such that the rate of milk synthesis decreases as the breast fills with milk. Effective elimination of milk from the alveoli via the milk ejection reflex will therefore result in increased milk synthesis. It has been assumed that milk ejection occurs in all alveoli simultaneously; however, animal studies have indicated that full alveoli eject milk sooner than less full alveoli, suggesting heterogeneous emptying of the mammary gland. OBJECTIVE The aim of this study was to determine whether milk ejection occurs asynchronously in the human lactating breast. METHODS Retrospective analysis of videos made of ultrasound monitoring of milk ducts during pumping. Six video clips (4 women) of ultrasound monitored milk ejections showed obvious differences in the timing of milk flow between different main milk ducts. Duct diameter was simultaneously measured every second in 2 different ducts that drained 2 separate lobes of the breast. RESULTS For 5 of 6 ultrasound duct monitoring sessions, both duct dilation and visualization of milk flow in the 2 separate main milk ducts differed by 2 to 8 seconds. For the remaining woman, milk was observed to eject from 1 part of the lobe, and when not removed, it flowed in a retrograde fashion into a different part of the lobe. CONCLUSION Asynchrony of milk ejection occurs in the human lactating breast, suggesting that the timing of myoepithelial cell response differs, resulting in heterogeneous emptying of the gland.
Collapse
Affiliation(s)
- Hazel Gardner
- The University of Western Australia, Perth, Western Australia, Australia
| | - Jacqueline C Kent
- The University of Western Australia, Perth, Western Australia, Australia
| | - Peter E Hartmann
- The University of Western Australia, Perth, Western Australia, Australia
| | - Donna T Geddes
- The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
139
|
Sani M, Hosseini SM, Salmannejad M, Aleahmad F, Ebrahimi S, Jahanshahi S, Talaei-Khozani T. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int 2015; 39:611-8. [PMID: 25572907 DOI: 10.1002/cbin.10432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 12/26/2014] [Indexed: 12/25/2022]
Abstract
Fresh human breast milk consists of a heterogeneous population of cells that may offer a non-invasive source of cells for therapeutic proposes. The aims of this study were to characterize the breast milk-derived cells cultured in vitro. To do this, the cells from human breast milk were cultured and the expression of the CD markers along with the embryonic stem cell markers, endothelial and luminal mammary epithelial cell markers was evaluated by flow cytometry and immunofluorescence. The presence of fetal microchimerism among the isolated cells was also determined by the presence of SRY gene. They were also differentiated into adipocytes and osteoblasts. The results showed that a remarkable number of cells expressed the mesenchymal stem cell (MSC) markers such as CD90, CD44, CD271, and CD146. A subpopulation of the human breast milk-derived cells (HBMDC) also expressed the embryonic stem cell markers, such as TRA 60-1, Oct4, Nanog and Sox2 but not SSEA1 or 4. The frequencies of the cells which expressed the endothelial, hematopoietic cell markers were negligible. SRY gene was not detected in the breast milk isolated cells. A subpopulation of the cells also expressed cytokeratin 18, the marker of luminal mammary epithelial cells. These cells showed the capability to differentiate into adipocytes and osteoblasts. In conclusion, these finding highlighted the presence of cells with various sources in the breast milk. Different stem cells including MSCs or embryonic stem cell-like cell along with the exfoliated cells from luminal epithelial cells were found among the isolated cells. The breast milk-derived stem cells might be considered as a non-invasive source of the stem cells for therapeutic purpose.
Collapse
Affiliation(s)
- Mahsa Sani
- Anatomy Department, Laboratory for stem cell research, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Research Club, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | | | |
Collapse
|
140
|
Breastmilk Stem Cells: Recent Advances and Future Prospects. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
141
|
Detante O, Jaillard A, Moisan A, Barbieux M, Favre I, Garambois K, Hommel M, Remy C. Biotherapies in stroke. Rev Neurol (Paris) 2014; 170:779-98. [DOI: 10.1016/j.neurol.2014.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022]
|
142
|
Differentiation of human breast-milk stem cells to neural stem cells and neurons. Neurol Res Int 2014; 2014:807896. [PMID: 25506428 PMCID: PMC4260437 DOI: 10.1155/2014/807896] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 12/24/2022] Open
Abstract
Objectives. Human breast milk contains a heterogeneous population of cells that have the potential to provide a noninvasive source of cells for cell therapy in many neurodegenerative diseases without any ethical concern. The objectives of this study were to differentiate the breast milk-derived stem cells (BMDSC) toward neural stem cells and then into the neurons and neuroglia. Materials and Methods. To do this, the BMDSC were isolated from human breast milk and cultured in Dulbecco's modified Eagle medium/F12 (DMEM/F12) containing fibroblast growth factor (bFGF). The cells were then characterized by evaluation of the embryonic and stem cell markers. Then, the cells were exposed to culture medium containing 1% B27 and 2% N2 for 7–10 days followed by medium supplemented with B27, N2, bFGF 10 µg/mL, and endothelial growth factor (EGF) 20 µg/mL. Then, the sphere-forming assay was performed. The spheres were then differentiated into three neural lineages by withdrawing growth factor in the presence of 5% FBS (fetal bovine serum). The immunofluorescence was done for β-tubulin III, O4, and GFAP (glial fibrillary acidic protein). Results. The results indicated that the cells expressed both embryonic and mesenchymal stem cell (MSC) markers. They also showed neurospheres formation that was nestin-positive. The cells were also differentiated into all three neural lineages. Conclusion. The BMDSC can behave in the same way with neural stem cells. They were differentiated into oligodendrocytes, and astrocytes as well as neurons.
Collapse
|
143
|
Hassiotou F, Hartmann PE. At the dawn of a new discovery: the potential of breast milk stem cells. Adv Nutr 2014; 5:770-8. [PMID: 25398739 PMCID: PMC4224213 DOI: 10.3945/an.114.006924] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Breast milk contains bioactive molecules that provide a multitude of immunologic, developmental and nutritional benefits to the infant. Less attention has been placed on the cellular nature of breast milk, which contains thousands to millions of maternal cells in every milliliter that the infant ingests. What are the properties and roles of these cells? Most studies have examined breast milk cells from an immunologic perspective, focusing specifically on the leukocytes, mainly in the early postpartum period. In the past decade, research has taken a multidimensional approach to investigating the cells of human milk. Technologic advances in single cell analysis and imaging have aided this work, which has resulted in the breakthrough discovery of stem cells in breast milk with multilineage potential that are transferred to the offspring during breastfeeding. This has generated numerous implications for both infant and maternal health and regenerative medicine. This review summarizes the latest knowledge on breast milk stem cells, and discusses their known in vitro and in vivo attributes as well as potential functions and applications.
Collapse
Affiliation(s)
- Foteini Hassiotou
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Crawley, Australia
| | | |
Collapse
|
144
|
Bode L, McGuire M, Rodriguez JM, Geddes DT, Hassiotou F, Hartmann PE, McGuire MK. It’s alive: microbes and cells in human milk and their potential benefits to mother and infant. Adv Nutr 2014; 5:571-3. [PMID: 25469400 PMCID: PMC4188237 DOI: 10.3945/an.114.006643] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human milk is the optimal source of nutrition for the nursing infant. Classically, the nutrients (water, protein, lipid, carbohydrate, vitamins, and minerals) were studied as the critical components of milk serving the growth needs of the infant for optimum growth. However, human milk contains factors other than the classically defined nutrients for which researchers are investigating potential roles in infant and maternal health, development, and well-being. The symposium addressed some of the exciting factors being studied, including microbes and maternal cells found within milk. Drs. Michelle McGuire and Juan M. Rodríguez addressed the presence of a bacterial community in human milk produced by healthy and mastitic mothers, potential sources of those bacteria, and the impact of milk-derived bacteria on the nursing infant. Drs. Donna Geddes, Peter Hartmann, and Foteini Hassiotou discussed the potential importance of maternal cells. For years, immune cells were known to be present in human milk, but recent evidence suggests that their impact is as much on the infant as on the health of the lactating mammary gland. Finally, the existence of highly plastic stem cells in human milk opens doors for previously unforeseen developmental “training” of the nursing infant.
Collapse
Affiliation(s)
- Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA,To whom correspondence should be addressed. E-mail:
| | - Mark McGuire
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID
| | - Juan M. Rodriguez
- Department of Nutrition, Food Science, and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Donna T. Geddes
- School of Chemistry and Biochemistry, Faculty of Science, University of Western Australia, Crawley, WA, Australia; and
| | - Foteini Hassiotou
- School of Chemistry and Biochemistry, Faculty of Science, University of Western Australia, Crawley, WA, Australia; and
| | - Peter E. Hartmann
- School of Chemistry and Biochemistry, Faculty of Science, University of Western Australia, Crawley, WA, Australia; and
| | | |
Collapse
|
145
|
Nanda R, Das P, Tripathy PK. Breast milk: immunosurveillance in infancy. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60665-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
146
|
Melnik BC. The potential mechanistic link between allergy and obesity development and infant formula feeding. Allergy Asthma Clin Immunol 2014; 10:37. [PMID: 25071855 PMCID: PMC4112849 DOI: 10.1186/1710-1492-10-37] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022] Open
Abstract
This article provides a new view of the cellular mechanisms that have been proposed to explain the links between infant formula feeding and the development of atopy and obesity. Epidemiological evidence points to an allergy- and obesity-preventive effect of breastfeeding. Both allergy and obesity development have been traced back to accelerated growth early in life. The nutrient-sensitive kinase mTORC1 is the master regulator of cell growth, which is predominantly activated by amino acids. In contrast to breastfeeding, artificial infant formula feeding bears the risk of uncontrolled excessive protein intake overactivating the infant's mTORC1 signalling pathways. Overactivated mTORC1 enhances S6K1-mediated adipocyte differentiation, but negatively regulates growth and differentiation of FoxP3(+) regulatory T-cells (Tregs), which are deficient in atopic individuals. Thus, the "early protein hypothesis" not only explains increased mTORC1-mediated infant growth but also the development of mTORC1-driven diseases such as allergy and obesity due to a postnatal deviation from the appropriate axis of mTORC1-driven metabolic and immunologic programming. Remarkably, intake of fresh unpasteurized cow's milk exhibits an allergy-preventive effect in farm children associated with increased FoxP3(+) Treg numbers. In contrast to unprocessed cow's milk, formula lacks bioactive immune-regulatory microRNAs, such as microRNA-155, which plays a major role in FoxP3 expression. Uncontrolled excessive protein supply by formula feeding associated with the absence of bioactive microRNAs and bifidobacteria in formula apparently in a synergistic way result in insufficient Treg maturation. Treg deficiency allows Th2-cell differentiation promoting the development of allergic diseases. Formula-induced mTORC1 overactivation is thus the critical mechanism that explains accelerated postnatal growth, allergy and obesity development on one aberrant pathway.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, DE-49090 Osnabrück, Germany
| |
Collapse
|
147
|
Abstract
Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. In this review, Visvader and Stingl integrate recent data on the mammary stem cell differentiation hierarchy and its control at the transcriptional and epigenetic levels. They also discuss the relevance of the evolving hierarchy to the identification of “cells of origin” of breast cancer. The mammary epithelium is highly responsive to local and systemic signals, which orchestrate morphogenesis of the ductal tree during puberty and pregnancy. Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. Lineage tracing has highlighted the existence of bipotent mammary stem cells (MaSCs) in situ as well as long-lived unipotent cells that drive morphogenesis and homeostasis of the ductal tree. Moreover, there is accumulating evidence for a heterogeneous MaSC compartment comprising fetal MaSCs, slow-cycling cells, and both long-term and short-term repopulating cells. In parallel, diverse luminal progenitor subtypes have been identified in mouse and human mammary tissue. Elucidation of the normal cellular hierarchy is an important step toward understanding the “cells of origin” and molecular perturbations that drive breast cancer.
Collapse
Affiliation(s)
- Jane E Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville VIC 3010, Australia
| | - John Stingl
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
148
|
Choudhary RK. Mammary stem cells: expansion and animal productivity. J Anim Sci Biotechnol 2014; 5:36. [PMID: 25057352 PMCID: PMC4107933 DOI: 10.1186/2049-1891-5-36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022] Open
Abstract
Identification and characterization of mammary stem cells and progenitor cells from dairy animals is important in the understanding of mammogenesis, tissue turnover, lactation persistency and regenerative therapy. It has been realized by many investigators that altered lactation, long dry periods (non-milking period between two consecutive lactation cycles), abrupt cessation of lactation (common in water buffaloes) and disease conditions like mastitis, greatly reduce milk yield thus render huge financial losses within the dairy sector. Cellular manipulation of specialized cell types within the mammary gland, called mammary stem cells (MaSCs)/progenitor cells, might provide potential solutions to these problems and may improve milk production. In addition, MaSCs/progenitor cells could be used in regenerative therapy against tissue damage caused by mastitis. This review discusses methods of MaSC/progenitor cell manipulation and their mechanisms in bovine and caprine animals. Author believes that intervention of MaSCs/progenitor cells could lessen the huge financial losses to the dairy industry globally.
Collapse
Affiliation(s)
- Ratan K Choudhary
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab 141004, India
| |
Collapse
|
149
|
Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kaneko Y, Borlongan CV. Stem cell transplantation for neuroprotection in stroke. Brain Sci 2014; 3:239-61. [PMID: 24147217 PMCID: PMC3800120 DOI: 10.3390/brainsci3010239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cell-based therapies for stroke have expanded substantially over the last decade. The diversity of embryonic and adult tissue sources provides researchers with the ability to harvest an ample supply of stem cells. However, the optimal conditions of stem cell use are still being determined. Along this line of the need for optimization studies, we discuss studies that demonstrate effective dose, timing, and route of stem cells. We recognize that stem cell derivations also provide uniquely individual difficulties and limitations in their therapeutic applications. This review will outline the current knowledge, including benefits and challenges, of the many current sources of stem cells for stroke therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Cesar V. Borlongan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-813-974-3988; Fax: +1-813-974-3078
| |
Collapse
|
150
|
Martignani E, Cravero D, Miretti S, Accornero P, Baratta M. Bovine mammary stem cells: new perspective for dairy science. Vet Q 2014; 34:52-8. [PMID: 24624999 DOI: 10.1080/01652176.2014.894262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Mammary stem cells provide opportunities for the cyclic remodelling of the bovine mammary gland. Therefore, understanding the character and regulation of mammary stem cells is important for increasing animal health and productivity. The exciting possibility that stem cell expansion can influence milk production is currently being investigated by several researchers. In fact, appropriate regulation of mammary stem cells could hopefully benefit milk yield, persistency of lactation, dry period management and tissue repair. Accordingly, we and others have attempted to characterize and regulate the function of bovine mammary stem cells. However, research on mammary stem cells requires tissue biopsies, which represents a limitation for the management of animal welfare. Interestingly, different studies recently reported the identification of putative mammary stem cells in human breast milk. The possible identification of primitive cell types within cow's milk may provide a non-invasive source of relevant mammary cells for a wide range of applications. In this review, we have summarized the main achievements in this field for dairy cow science and described the interesting perspectives open to manipulate milk persistency during lactation and to cope with oxidative stress during the transition period by regulating mammary stem cells.
Collapse
Affiliation(s)
- E Martignani
- a Department of Veterinary Science , University of Turin , Grugliasco , TO , Italy
| | | | | | | | | |
Collapse
|