101
|
Garate Z, Davis BR, Quintana-Bustamante O, Segovia JC. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum Gene Ther 2013; 24:571-583. [PMID: 23675640 PMCID: PMC3689164 DOI: 10.1089/hum.2012.251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/03/2013] [Indexed: 12/15/2022] Open
Abstract
Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.
Collapse
Affiliation(s)
- Zita Garate
- Differentiation and Cytometry Unit, Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain
| | - Brian R. Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030
| | - Oscar Quintana-Bustamante
- Differentiation and Cytometry Unit, Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain
| | - Jose C. Segovia
- Differentiation and Cytometry Unit, Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain
| |
Collapse
|
102
|
Su RJ, Baylink DJ, Neises A, Kiroyan JB, Meng X, Payne KJ, Tschudy-Seney B, Duan Y, Appleby N, Kearns-Jonker M, Gridley DS, Wang J, Lau KHW, Zhang XB. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors. PLoS One 2013; 8:e64496. [PMID: 23704989 PMCID: PMC3660366 DOI: 10.1371/journal.pone.0064496] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/16/2013] [Indexed: 01/16/2023] Open
Abstract
The ability to efficiently generate integration-free induced pluripotent stem cells (iPSCs) from the most readily available source-peripheral blood-has the potential to expedite the advances of iPSC-based therapies. We have successfully generated integration-free iPSCs from cord blood (CB) CD34(+) cells with improved oriP/EBNA1-based episomal vectors (EV) using a strong spleen focus forming virus (SFFV) long terminal repeat (LTR) promoter. Here we show that Yamanaka factors (OCT4, SOX2, MYC, and KLF4)-expressing EV can also reprogram adult peripheral blood mononuclear cells (PBMNCs) into pluripotency, yet at a very low efficiency. We found that inclusion of BCL-XL increases the reprogramming efficiency by approximately 10-fold. Furthermore, culture of CD3(-)/CD19(-) cells or T/B cell-depleted MNCs for 4-6 days led to the generation of 20-30 iPSC colonies from 1 ml PB, an efficiency that is substantially higher than previously reported. PB iPSCs express pluripotency markers, form teratomas, and can be induced to differentiate in vitro into mesenchymal stem cells, cardiomyocytes, and hepatocytes. Used together, our optimized factor combination and reprogramming strategy lead to efficient generation of integration-free iPSCs from adult PB. This discovery has potential applications in iPSC banking, disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Rui-Jun Su
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Division of Anatomy, Loma Linda University, Loma Linda, California, United States of America
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - David J. Baylink
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Amanda Neises
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Jason B. Kiroyan
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Xianmei Meng
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Kimberly J. Payne
- Division of Anatomy, Loma Linda University, Loma Linda, California, United States of America
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Benjamin Tschudy-Seney
- Department of Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Yuyou Duan
- Department of Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Nancy Appleby
- Division of Anatomy, Loma Linda University, Loma Linda, California, United States of America
| | - Mary Kearns-Jonker
- Division of Anatomy, Loma Linda University, Loma Linda, California, United States of America
| | - Daila S. Gridley
- Department of Radiation Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Jun Wang
- Department of Pathology, Loma Linda University, Loma Linda, California, United States of America
| | - K-H. William Lau
- Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail: .
| |
Collapse
|
103
|
Abstract
Due to remarkable advances in cancer therapies, we have seen great improvements in survival rates of pediatric and reproductive-age male patients. Unfortunately, fertility in adult life might be severely impaired by these treatments. Gonadotoxic therapy is also used to cure a variety of non-malignant disorders. Providing young people undergoing gonadotoxic treatment with adequate fertility preservation options is a challenging area of reproductive medicine and merits broader diffusion in clinical practice. This paper, therefore, aims to review current concepts and perspectives to restore fertility from germ cells or gonadal tissue cryostored prior to gonadotoxic therapies in pre- and post-pubertal patients. For patients rendered sterile after treatment, who did not benefit from fertility preservation measures before therapy, the reproductive potential of alternative sources of stem cells is also examined, although this is at the research stage.
Collapse
Affiliation(s)
- Christine Wyns
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.
| |
Collapse
|
104
|
Muraro MJ, Kempe H, Verschure PJ. Concise Review: The Dynamics of Induced Pluripotency and Its Behavior Captured in Gene Network Motifs. Stem Cells 2013; 31:838-48. [DOI: 10.1002/stem.1340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/20/2012] [Indexed: 01/01/2023]
|
105
|
Potential of herpesvirus saimiri-based vectors to reprogram a somatic Ewing's sarcoma family tumor cell line. J Virol 2013; 87:7127-39. [PMID: 23596304 DOI: 10.1128/jvi.03147-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Herpesvirus saimiri (HVS) infects a range of human cell types with high efficiency. Upon infection, the viral genome can persist as high-copy-number, circular, nonintegrated episomes that segregate to progeny cells upon division. This allows HVS-based vectors to stably transduce a dividing cell population and provide sustained transgene expression in vitro and in vivo. Moreover, the HVS episome is able to persist and provide prolonged transgene expression during in vitro differentiation of mouse and human hemopoietic progenitor cells. Together, these properties are advantageous for induced pluripotent stem cell (iPSC) technology, whereby stem cell-like cells are generated from adult somatic cells by exogenous expression of specific reprogramming factors. Here we assess the potential of HVS-based vectors for the generation of induced pluripotent cancer stem-like cells (iPCs). We demonstrate that HVS-based exogenous delivery of Oct4, Nanog, and Lin28 can reprogram the Ewing's sarcoma family tumor cell line A673 to produce stem cell-like colonies that can grow under feeder-free stem cell culture conditions. Further analysis of the HVS-derived putative iPCs showed some degree of reprogramming into a stem cell-like state. Specifically, the putative iPCs had a number of embryonic stem cell characteristics, staining positive for alkaline phosphatase and SSEA4, in addition to expressing elevated levels of pluripotent marker genes involved in proliferation and self-renewal. However, differentiation trials suggest that although the HVS-derived putative iPCs are capable of differentiation toward the ectodermal lineage, they do not exhibit pluripotency. Therefore, they are hereby termed induced multipotent cancer cells.
Collapse
|
106
|
Winkler T, Hong SG, Decker JE, Morgan MJ, Wu C, Hughes WM, Yang Y, Wangsa D, Padilla-Nash HM, Ried T, Young NS, Dunbar CE, Calado RT. Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs. J Clin Invest 2013; 123:1952-63. [PMID: 23585473 DOI: 10.1172/jci67146] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/14/2013] [Indexed: 01/04/2023] Open
Abstract
Critically short telomeres activate p53-mediated apoptosis, resulting in organ failure and leading to malignant transformation. Mutations in genes responsible for telomere maintenance are linked to a number of human diseases. We derived induced pluripotent stem cells (iPSCs) from 4 patients with aplastic anemia or hypocellular bone marrow carrying heterozygous mutations in the telomerase reverse transcriptase (TERT) or the telomerase RNA component (TERC) telomerase genes. Both mutant and control iPSCs upregulated TERT and TERC expression compared with parental fibroblasts, but mutant iPSCs elongated telomeres at a lower rate compared with healthy iPSCs, and the deficit correlated with the mutations' impact on telomerase activity. There was no evidence for alternative lengthening of telomere (ALT) pathway activation. Elongation varied among iPSC clones derived from the same patient and among clones from siblings harboring identical mutations. Clonal heterogeneity was linked to genetic and environmental factors, but was not influenced by residual expression of reprogramming transgenes. Hypoxia increased telomere extension in both mutant and normal iPSCs. Additionally, telomerase-mutant iPSCs showed defective hematopoietic differentiation in vitro, mirroring the clinical phenotype observed in patients and demonstrating that human telomere diseases can be modeled utilizing iPSCs. Our data support the necessity of studying multiple clones when using iPSCs to model disease.
Collapse
Affiliation(s)
- Thomas Winkler
- Hematology Branch, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, Maryland 0892-1202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Simara P, Motl JA, Kaufman DS. Pluripotent stem cells and gene therapy. Transl Res 2013; 161:284-92. [PMID: 23353080 PMCID: PMC3602131 DOI: 10.1016/j.trsl.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 01/05/2023]
Abstract
Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal, and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like.
Collapse
Affiliation(s)
- Pavel Simara
- Department of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
108
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
109
|
Chen C, Wang Y, Goh SSL, Yang J, Lam DH, Choudhury Y, Tay FC, Du S, Tan WK, Purwanti YI, Fan W, Wang S. Inhibition of neuronal nitric oxide synthase activity promotes migration of human-induced pluripotent stem cell-derived neural stem cells toward cancer cells. J Neurochem 2013; 126:318-30. [PMID: 23406356 DOI: 10.1111/jnc.12199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/25/2013] [Accepted: 02/12/2013] [Indexed: 01/09/2023]
Abstract
The breakthrough in derivation of human-induced pluripotent stem cells (hiPSCs) provides an approach that may help overcome ethical and allergenic challenges posed in numerous medical applications involving human cells, including neural stem/progenitor cells (NSCs). Considering the great potential of NSCs in targeted cancer gene therapy, we investigated in this study the tumor tropism of hiPSC-derived NSCs and attempted to enhance the tropism by manipulation of biological activities of proteins that are involved in regulating the migration of NSCs toward cancer cells. We first demonstrated that hiPSC-NSCs displayed tropism for both glioblastoma cells and breast cancer cells in vitro and in vivo. We then compared gene expression profiles between migratory and non-migratory hiPSC-NSCs toward these cancer cells and observed that the gene encoding neuronal nitric oxide synthase (nNOS) was down-regulated in migratory hiPSC-NSCs. Using nNOS inhibitors and nNOS siRNAs, we demonstrated that this protein is a relevant regulator in controlling migration of hiPSC-NSCs toward cancer cells, and that inhibition of its activity or down-regulation of its expression can sensitize poorly migratory NSCs and be used to improve their tumor tropism. These findings suggest a novel application of nNOS inhibitors in neural stem cell-mediated cancer therapy.
Collapse
Affiliation(s)
- Can Chen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Liebau S, Mahaddalkar PU, Kestler HA, Illing A, Seufferlein T, Kleger A. A Hierarchy in Reprogramming Capacity in Different Tissue Microenvironments: What We Know and What We Need to Know. Stem Cells Dev 2013; 22:695-706. [DOI: 10.1089/scd.2012.0461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Stefan Liebau
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Pallavi U. Mahaddalkar
- Department on Stem Cell Aging, Institute of Molecular Medicine and Max Planck Research Group, Ulm University, Ulm, Germany
| | - Hans A. Kestler
- Research Group of Bioinformatics and Systems Biology, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Anett Illing
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
111
|
Sommer CA, Mostoslavsky G. The evolving field of induced pluripotency: recent progress and future challenges. J Cell Physiol 2013; 228:267-75. [PMID: 22767332 DOI: 10.1002/jcp.24155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The derivation of patient-specific pluripotent cell lines through the introduction of a few transcription factors into somatic cells has opened new avenues for the study and treatment of human disorders. Induced pluripotent stem cells (iPSCs) and their derivatives offer a unique platform for disease modeling, drug discovery and toxicology, as well as an invaluable source of cells for regenerative therapies. Here, we provide an overview of the various strategies currently available for iPSC generation, highlighting recent advances and discussing some of the challenges faced in harnessing the true potential of iPSCs for biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Cesar A Sommer
- Section of Gastroenterology, Department of Medicine and Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
112
|
Wen Y, Wani P, Zhou L, Baer T, Phadnis SM, Reijo Pera RA, Chen B. Reprogramming of fibroblasts from older women with pelvic floor disorders alters cellular behavior associated with donor age. Stem Cells Transl Med 2013; 2:118-28. [PMID: 23341439 DOI: 10.5966/sctm.2012-0092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We aimed to derive induced pluripotent stem cell (iPSC) lines from vaginal fibroblasts from older women with pelvic organ prolapse. We examined the effect of donor age on iPSCs and on the cells redifferentiated from these iPSCs. Vaginal fibroblasts were isolated from younger and older subjects for reprogramming. iPSCs were generated simultaneously using an excisable polycistronic lentiviral vector expressing Oct4, Klf4, Sox2, and cMyc. The pluripotent markers of iPSCs were confirmed by immunocytochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Spectral karyotyping was performed. The ability of the iPSCs to differentiate into three germ layers was confirmed by embryoid body and teratoma formation. Senescence marker (p21, p53, and Bax) expressions were determined by qRT-PCR and Western blot. The iPSCs were redifferentiated to fibroblasts and were evaluated with senescence-associated β-galactosidase (SA) activity and mitotic index using time-lapse dark-field microscopy. iPSCs derived from both the younger and older subjects expressed pluripotency markers and showed normal karyotype and positive teratoma assays. There was no significant difference in expression of senescence and apoptosis markers (p21, p53, and Bax) in iPSCs derived from the younger subject compared with the older subject. Furthermore, fibroblasts redifferentiated from these iPSCs did not differ in SA activity or mitotic index. We report successful derivation of iPSCs from women with pelvic organ prolapse. Older age did not interfere with successful reprogramming. Donor age differences were not observed in these iPSCs using standard senescence markers, and donor age did not appear to affect cell mitotic activity in fibroblasts redifferentiated from iPSCs.
Collapse
Affiliation(s)
- Yan Wen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317, USA.
| | | | | | | | | | | | | |
Collapse
|
113
|
Teo AKK, Windmueller R, Johansson BB, Dirice E, Njolstad PR, Tjora E, Raeder H, Kulkarni RN. Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem 2013; 288:5353-6. [PMID: 23306198 DOI: 10.1074/jbc.c112.428979] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maturity onset diabetes of the young (MODY) is an autosomal dominant disease. Despite extensive research, the mechanism by which a mutant MODY gene results in monogenic diabetes is not yet clear due to the inaccessibility of patient samples. Induced pluripotency and directed differentiation toward the pancreatic lineage are now viable and attractive methods to uncover the molecular mechanisms underlying MODY. Here we report, for the first time, the derivation of human induced pluripotent stem cells (hiPSCs) from patients with five types of MODY: MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), MODY5 (HNF1B), and MODY8 (CEL) with a polycistronic lentiviral vector expressing a Cre-excisable human "stem cell cassette" containing the four reprogramming factors OCT4, KLF4, SOX2, and CMYC. These MODY-hiPSCs morphologically resemble human pluripotent stem cells (hPSCs), express pluripotency markers OCT4, SOX2, NANOG, SSEA-4, and TRA-1-60, give rise to derivatives of the three germ layers in a teratoma assay, and are karyotypically normal. Overall, our MODY-hiPSCs serve as invaluable tools to dissect the role of MODY genes in the development of pancreas and islet cells and to evaluate their significance in regulating beta cell function. This knowledge will aid future attempts aimed at deriving functional mature beta cells from hPSCs.
Collapse
Affiliation(s)
- Adrian K K Teo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Rao MS, Malik N. Assessing iPSC reprogramming methods for their suitability in translational medicine. J Cell Biochem 2013; 113:3061-8. [PMID: 22573568 DOI: 10.1002/jcb.24183] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discovery of the ability to induce somatic cells to a pluripotent state through the overexpression of specific transcription factors has the potential to transform the ways in which pharmaceutical agents and cellular transplantation therapies are developed. Proper utilization of the technology to generate induced pluripotent stem cells (iPSCs) requires that researchers select the appropriate reprogramming method for generating iPSCs so that the resulting iPSCs can be transitioned towards clinical applications effectively. This article reviews all of the currently available reprogramming techniques with a focus on critiquing them on the basis of their utility in translational medicine.
Collapse
Affiliation(s)
- Mahendra S Rao
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Laboratory of Stem Cell Biology, Bethesda, MD, USA.
| | | |
Collapse
|
115
|
Abstract
Human somatic cells can be reprogrammed to the pluripotent state to become human-induced pluripotent stem cells (hiPSC). This reprogramming is achieved by activating signaling pathways that are expressed during early development. These pathways can be induced by ectopic expression of four transcription factors-Oct4, Sox2, Klf4, and c-Myc. Although there are many ways to deliver these transcription factors into the somatic cells, this chapter will provide protocols that can be used to generate hiPSC from lentiviruses.
Collapse
Affiliation(s)
- Jennifer C Moore
- Rutgers NIMH Stem Cell Center and Department of Genetics, Rutgers, The State University of New Jersey, Nelson Biological Laboratory, Piscataway, NJ, USA
| |
Collapse
|
116
|
Tran T, Andersen R, Sherman S, Pyle A. Insights into Skeletal Muscle Development and Applications in Regenerative Medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:51-83. [DOI: 10.1016/b978-0-12-405210-9.00002-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
117
|
Folmes CDL, Martinez-Fernandez A, Faustino RS, Yamada S, Perez-Terzic C, Nelson TJ, Terzic A. Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells. J Cardiovasc Transl Res 2012; 6:10-21. [PMID: 23247633 DOI: 10.1007/s12265-012-9431-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/22/2012] [Indexed: 12/11/2022]
Abstract
Reprogramming strategies influence the differentiation capacity of derived induced pluripotent stem (iPS) cells. Removal of the reprogramming factor c-Myc reduces tumorigenic incidence and increases cardiogenic potential of iPS cells. c-Myc is a regulator of energy metabolism, yet the impact on metabolic reprogramming underlying pluripotent induction is unknown. Here, mitochondrial and metabolic interrogation of iPS cells derived with (4F) and without (3F) c-Myc demonstrated that nuclear reprogramming consistently reverted mitochondria to embryonic-like immature structures. Metabolomic profiling segregated derived iPS cells from the parental somatic source based on the attained pluripotency-associated glycolytic phenotype and discriminated between 3F versus 4F clones based upon glycolytic intermediates. Real-time flux analysis demonstrated a greater glycolytic capacity in 4F iPS cells, in the setting of equivalent oxidative capacity to 3F iPS cells. Thus, inclusion of c-Myc potentiates the pluripotent glycolytic behavior of derived iPS cells, supporting c-Myc-free reprogramming as a strategy to facilitate oxidative metabolism-dependent lineage engagement.
Collapse
Affiliation(s)
- Clifford D L Folmes
- Center for Regenerative Medicine and Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology & Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Sommer CA, Christodoulou C, Gianotti-Sommer A, Shen SS, Sailaja BS, Hezroni H, Spira A, Meshorer E, Kotton DN, Mostoslavsky G. Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells. PLoS One 2012; 7:e51711. [PMID: 23272148 PMCID: PMC3522693 DOI: 10.1371/journal.pone.0051711] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/05/2012] [Indexed: 11/26/2022] Open
Abstract
Delivery of the transcription factors Oct4, Klf4, Sox2 and c-Myc via integrating viral vectors has been widely employed to generate induced pluripotent stem cell (iPSC) lines from both normal and disease-specific somatic tissues, providing an invaluable resource for medical research and drug development. Residual reprogramming transgene expression from integrated viruses nevertheless alters the biological properties of iPSCs and has been associated with a reduced developmental competence both in vivo and in vitro. We performed transcriptional profiling of mouse iPSC lines before and after excision of a polycistronic lentiviral reprogramming vector to systematically define the overall impact of persistent transgene expression on the molecular features of iPSCs. We demonstrate that residual expression of the Yamanaka factors prevents iPSCs from acquiring the transcriptional program exhibited by embryonic stem cells (ESCs) and that the expression profiles of iPSCs generated with and without c-Myc are indistinguishable. After vector excision, we find 36% of iPSC clones show normal methylation of the Gtl2 region, an imprinted locus that marks ESC-equivalent iPSC lines. Furthermore, we show that the reprogramming factor Klf4 binds to the promoter region of Gtl2. Regardless of Gtl2 methylation status, we find similar endodermal and hepatocyte differentiation potential comparing syngeneic Gtl2ON vs Gtl2OFF iPSC clones. Our findings provide new insights into the reprogramming process and emphasize the importance of generating iPSCs free of any residual transgene expression.
Collapse
Affiliation(s)
- Cesar A. Sommer
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Constantina Christodoulou
- Boston University Pulmonary Center, and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Andreia Gianotti-Sommer
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Steven S. Shen
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Badi Sri Sailaja
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Hadas Hezroni
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Avrum Spira
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Darrell N. Kotton
- Boston University Pulmonary Center, and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (GM); (DNK)
| | - Gustavo Mostoslavsky
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (GM); (DNK)
| |
Collapse
|
119
|
Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol Ther 2012. [PMID: 23207694 DOI: 10.1038/mt.2012.255] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have great potential for regenerative medicine as well as for basic and translational research. However, following the initial excitement over the enormous prospects of this technology, several reports uncovered serious concerns regarding its safety for clinical applications and reproducibility for laboratory applications such as disease modeling or drug screening. In particular, the genomic integrity of iPSCs is the focus of extensive research. Epigenetic remodeling, aberrant expression of reprogramming factors, clonal selection, and prolonged in vitro culture are potential pathways for acquiring genomic alterations. In this review, we will critically discuss current reprogramming technologies particularly in the context of genotoxicity, and the consequences of these alternations for the potential applications of reprogrammed cells. In addition, current strategies of genetic modification of iPSCs, as well as applicable suicide strategies to control the risk of iPSC-based therapies will be introduced.
Collapse
|
120
|
BYRNE JAMESA. NUCLEAR REPROGRAMMING AND THE CURRENT CHALLENGES IN ADVANCING PERSONALIZED PLURIPOTENT STEM CELL-BASED THERAPIES. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1568558612300028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
121
|
Morsczeck C. Transgene-free induced pluripotent dental stem cells for neurogenic differentiation. Stem Cell Res Ther 2012; 3:46. [PMID: 23176714 PMCID: PMC3580476 DOI: 10.1186/scrt137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A stem-cell-based therapy could be the ultimate strategy for the regeneration of degenerated nervous tissues. While neural progenitor cells are limited, the generation of functional nervous tissue cells from non-neural somatic cells (for example, dental stem cells) is highly desired. The recent publication in Stem Cell Research and Therapy by Huang and colleagues is an interesting contribution to this topic. The present commentary puts this paper in context with contemporary reports about (transgene-free) induced pluripotent stem cells and neurogenic differentiation.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| |
Collapse
|
122
|
Pomp O, Colman A. Disease modelling using induced pluripotent stem cells: status and prospects. Bioessays 2012; 35:271-80. [PMID: 23148027 DOI: 10.1002/bies.201200088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to convert human somatic cells into induced pluripotent stem cells (iPSCs) is allowing the production of custom-tailored cells for drug discovery and for the study of disease phenotypes at the cellular and molecular level. IPSCs have been derived from patients suffering from a large variety of disorders with different severities. In many cases, disease related phenotypes have been observed in iPSCs or their lineage-specific progeny. Several proof of concept studies have demonstrated that these phenotypes can be reversed in vitro using approved drugs. However, several challenges must be overcome to take full advantage of this technology. Here, we highlight recent advances in the field and discuss the main challenges associated with this technology as it applies to disease modelling.
Collapse
Affiliation(s)
- Oz Pomp
- Institute of Medical Biology, #06-06 Immunos, Singapore
| | | |
Collapse
|
123
|
Abstract
Human somatic cells can be reprogrammed into induced pluripotent stem cells (hiPSCs) with wide lineage differentiation potential in culture. However, reprogramming and long-term culture can also induce abnormalities in these pluripotent cells. This minireview discusses recent studies that have identified changes in imprinted gene expression and erosion of X chromosome inactivation in female hiPSCs and how understanding the sources and consequences of epigenetic variability in hiPSCs will impact disease modeling and clinical application in the future.
Collapse
Affiliation(s)
- Anton Wutz
- Wellcome Trust Centre for Stem Cell Research, Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
124
|
Tancos Z, Nemes C, Polgar Z, Gocza E, Daniel N, Stout T, Maraghechi P, Pirity M, Osteil P, Tapponnier Y, Markossian S, Godet M, Afanassieff M, Bosze Z, Duranthon V, Savatier P, Dinnyes A. Generation of rabbit pluripotent stem cell lines. Theriogenology 2012; 78:1774-86. [DOI: 10.1016/j.theriogenology.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/09/2012] [Accepted: 06/10/2012] [Indexed: 12/20/2022]
|
125
|
Qu X, Liu T, Song K, Li X, Ge D. Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions. PLoS One 2012; 7:e48161. [PMID: 23110200 PMCID: PMC3482207 DOI: 10.1371/journal.pone.0048161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be generated from somatic cells by ectopic expression of defined transcription factors (TFs). However, the optimal cell type and the easy reprogramming approaches that minimize genetic aberrations of parent cells must be considered before generating the iPSCs. This paper reports a method to generate iPSCs from adult human adipose-derived stem cells (hADSCs) without the use of a feeder layer, by ectopic expression of the defined transcription factors OCT4, SOX2, KLF4 and C-MYC using a polycistronic plasmid. The results, based on the expression of pluripotent marker, demonstrated that the iPSCs have the characteristics similar to those of embryonic stem cells (ESCs). The iPSCs differentiated into three embryonic germ layers both in vitro by embryoid body generation and in vivo by teratoma formation after being injected into immunodeficient mice. More importantly, the plasmid DNA does not integrate into the genome of human iPSCs as revealed by Southern blotting experiments. Karyotypic analysis also demonstrated that the reprogramming of hADSCs by the defined factors did not induce chromosomal abnormalities. Therefore, this technology provides a platform for studying the biology of iPSCs without viral vectors, and can hopefully overcome immune rejection and ethical concerns, which are the two important barriers of ESC applications.
Collapse
Affiliation(s)
- Xinjian Qu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| | - Kedong Song
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| | - Xiangqin Li
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| | - Dan Ge
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| |
Collapse
|
126
|
Zou XY, Yang HY, Yu Z, Tan XB, Yan X, Huang GTJ. Establishment of transgene-free induced pluripotent stem cells reprogrammed from human stem cells of apical papilla for neural differentiation. Stem Cell Res Ther 2012; 3:43. [PMID: 23095454 PMCID: PMC3580434 DOI: 10.1186/scrt134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022] Open
Abstract
Introduction Induced pluripotent stem cells (iPSCs) are a potent cell source for neurogenesis. Previously we have generated iPSCs from human dental stem cells carrying transgene vectors. These exogenous transgenes may affect iPSC behaviors and limit their clinical applications. The purpose of this study was to establish transgene-free iPSCs (TF-iPSCs) reprogrammed from human stem cells of apical papilla (SCAP) and determine their neurogenic potential. Methods A single lentiviral 'stem cell cassette' flanked by the loxP site (hSTEMCCA-loxP), encoding four human reprogramming factors, OCT4, SOX2, KLF4, and c-MYC, was used to reprogram human SCAP into iPSCs. Generated iPSCs were transfected with plasmid pHAGE2-EF1α-Cre-IRES-PuroR and selected with puromycin for the TF-iPSC subclones. PCR was performed to confirm the excision of hSTEMCCA. TF-iPSC clones did not resist to puromycin treatment indicating no pHAGE2-EF1α-Cre-IRES-PuroR integration into the genome. In vitro and in vivo analyses of their pluripotency were performed. Embryoid body-mediated neural differentiation was undertaken to verify their neurogenic potential. Results TF-SCAP iPSCs were generated via a hSTEMCCA-loxP/Cre system. PCR of genomic DNA confirmed transgene excision and puromycin treatment verified the lack of pHAGE2-EF1α-Cre-IRES-PuroR integration. Transplantation of the TF-iPSCs into immunodeficient mice gave rise to teratomas containing tissues representing the three germ layers -- ectoderm (neural rosettes), mesoderm (cartilage and bone tissues) and endoderm (glandular epithelial tissues). Embryonic stem cell-associated markers TRA-1-60, TRA-2-49 and OCT4 remained positive after transgene excision. After neurogenic differentiation, cells showed neural-like morphology expressing neural markers nestin, βIII-tubulin, NFM, NSE, NeuN, GRM1, NR1 and CNPase. Conclusions TF-SCAP iPSCs reprogrammed from SCAP can be generated and they may be a good cell source for neurogenesis.
Collapse
|
127
|
Ronen D, Benvenisty N. Genomic stability in reprogramming. Curr Opin Genet Dev 2012; 22:444-9. [PMID: 23040504 DOI: 10.1016/j.gde.2012.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/15/2012] [Accepted: 09/17/2012] [Indexed: 02/08/2023]
Abstract
The genetic stability of induced pluripotent stem (iPS) cells has a significant impact on their potential use in regenerative medicine and basic research. Analysis of the genomic integrity of iPS cells suggests a tendency to develop aberrations ranging from whole chromosome trisomies to single nucleotide mutations. Furthermore, fluctuations in telomere elongation and changes in mitochondrial DNA are also observed. Some mutations may already exist in the founder cells or result from prolonged culturing, however, many of the mutations occur during the reprogramming event. Thus, great care should be given to the initial characterization and subsequent culturing of new iPS cell lines in order to avoid the use of potentially aberrant cells.
Collapse
Affiliation(s)
- Daniel Ronen
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|
128
|
Bliss LA, Sams MR, Deep-Soboslay A, Ren-Patterson R, Jaffe AE, Chenoweth JG, Jaishankar A, Kleinman JE, Hyde TM. Use of postmortem human dura mater and scalp for deriving human fibroblast cultures. PLoS One 2012; 7:e45282. [PMID: 23028905 PMCID: PMC3459947 DOI: 10.1371/journal.pone.0045282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/15/2012] [Indexed: 12/22/2022] Open
Abstract
Fibroblasts can be collected from deceased individuals, grown in culture, reprogrammed into induced pluripotent stem cells (iPSCs), and then differentiated into a multitude of cell types, including neurons. Past studies have generated iPSCs from somatic cell biopsies from either animal or human subjects. Previously, fibroblasts have only been successfully cultured from postmortem human skin in two studies. Here we present data on fibroblast cell cultures generated from 146 scalp and/or 53 dura mater samples from 146 postmortem human brain donors. In our overall sample, the odds of successful dural culture was almost two-fold compared with scalp (OR = 1.95, 95% CI: [1.01, 3.9], p = 0.047). Using a paired design within subjects for whom both tissues were available for culture (n = 53), the odds of success for culture in dura was 16-fold as compared to scalp (OR = 16.0, 95% CI: [2.1–120.6], p = 0.0007). Unattended death, tissue donation source, longer postmortem interval (PMI), and higher body mass index (BMI) were associated with unsuccessful culture in scalp (all p<0.05), but not in dura. While scalp cells proliferated more and grew more rapidly than dura cells [F (1, 46) = 12.94, p<0.008], both tissues could be generated and maintained as fibroblast cell lines. Using a random sample of four cases, we found that both postmortem scalp and dura could be successfully reprogrammed into iPSC lines. Our study demonstrates that postmortem dura mater, and to a lesser extent, scalp, are viable sources of living fibroblasts for culture that can be used to generate iPSCs. These tissues may be accessible through existing brain tissue collections, which is critical for studying disorders such as neuropsychiatric diseases.
Collapse
Affiliation(s)
- Lindsay A. Bliss
- Section on Neuropathology, Clinical Brain Disorders Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Malik R. Sams
- Section on Neuropathology, Clinical Brain Disorders Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy Deep-Soboslay
- Section on Neuropathology, Clinical Brain Disorders Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Renee Ren-Patterson
- Section on Neuropathology, Clinical Brain Disorders Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, United States of America
| | - Josh G. Chenoweth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, United States of America
| | - Amritha Jaishankar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, United States of America
| | - Joel E. Kleinman
- Section on Neuropathology, Clinical Brain Disorders Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
129
|
Lund RJ, Närvä E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 2012; 13:732-44. [PMID: 22965355 DOI: 10.1038/nrg3271] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies using high-resolution genome-wide approaches have recently reported that genomic and epigenomic alterations frequently accumulate in human pluripotent cells. Detailed characterization of these changes is crucial for understanding the impact of these alterations on self-renewal and proliferation, and particularly on the developmental and malignant potential of the cells. Such knowledge is required for the optimized and safe use of pluripotent cells for therapeutic purposes, such as regenerative cellular therapies using differentiated derivatives of pluripotent cells.In this Review, we summarize the current knowledge of the genomic and epigenomic stability of pluripotent human cells and the implications for stem cell research.
Collapse
Affiliation(s)
- Riikka J Lund
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
130
|
Hussein SMI, Nagy AA. Progress made in the reprogramming field: new factors, new strategies and a new outlook. Curr Opin Genet Dev 2012; 22:435-43. [PMID: 22959308 DOI: 10.1016/j.gde.2012.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/17/2022]
Abstract
The ground-breaking work of Yamanaka and Thomson showed that forced expression of just four transcription factors can reprogram mouse and human somatic cells to pluripotency, leading to the discovery of the so-called induced pluripotent stem cells (iPSCs). Similar to embryonic stem cells (ESCs), iPSCs have the ability to permanently self-renew and also give rise to multiple cell types once differentiated. These cells opened up the opportunity to develop human disease models in vitro, drug and toxicity screening tools, as well as a continuous autologous cell source for future cell-based therapies. Therefore, it is not surprising that the methods for generating iPSCs have significantly evolved over the past few years. To date the reprogramming methods include the use of various transfection/transduction systems, small molecules to enhance the reprogramming process, and to adapt to a multitude of different cell type sources. We are now able to convert essentially any somatic cell type into iPSCs with increased efficiency and at higher quality when compared to ESCs. More recently, this field has been expanded to direct reprogramming of one cell type to another, including lineage-specific progenitors. Here, we provide a concise review of methods to generate induced pluripotent stem cells, and discuss the most recent strategies augmenting the reprogramming process and increasing the quality of iPSCs.
Collapse
Affiliation(s)
- Samer M I Hussein
- Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario M5T 3H7, Canada
| | | |
Collapse
|
131
|
Affiliation(s)
- Weiqi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | |
Collapse
|
132
|
Margariti A, Winkler B, Karamariti E, Zampetaki A, Tsai TN, Baban D, Ragoussis J, Huang Y, Han JDJ, Zeng L, Hu Y, Xu Q. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci U S A 2012; 109:13793-8. [PMID: 22869753 PMCID: PMC3427074 DOI: 10.1073/pnas.1205526109] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.
Collapse
Affiliation(s)
- Andriana Margariti
- Cardiovascular Division, King’s College London British Heart FoundationCentre, London SE5 9NU, United Kingdom
| | - Bernhard Winkler
- Cardiovascular Division, King’s College London British Heart FoundationCentre, London SE5 9NU, United Kingdom
| | - Eirini Karamariti
- Cardiovascular Division, King’s College London British Heart FoundationCentre, London SE5 9NU, United Kingdom
| | - Anna Zampetaki
- Cardiovascular Division, King’s College London British Heart FoundationCentre, London SE5 9NU, United Kingdom
| | - Tsung-neng Tsai
- Cardiovascular Division, King’s College London British Heart FoundationCentre, London SE5 9NU, United Kingdom
| | - Dilair Baban
- The Genomics Group, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom; and
| | - Jiannis Ragoussis
- The Genomics Group, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom; and
| | - Yi Huang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Jing-Dong J. Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Lingfang Zeng
- Cardiovascular Division, King’s College London British Heart FoundationCentre, London SE5 9NU, United Kingdom
| | - Yanhua Hu
- Cardiovascular Division, King’s College London British Heart FoundationCentre, London SE5 9NU, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, King’s College London British Heart FoundationCentre, London SE5 9NU, United Kingdom
| |
Collapse
|
133
|
Hibaoui Y, Feki A. Human pluripotent stem cells: applications and challenges in neurological diseases. Front Physiol 2012; 3:267. [PMID: 22934023 PMCID: PMC3429043 DOI: 10.3389/fphys.2012.00267] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022] Open
Abstract
The ability to generate human pluripotent stem cells (hPSCs) holds great promise for the understanding and the treatment of human neurological diseases in modern medicine. The hPSCs are considered for their in vitro use as research tools to provide relevant cellular model for human diseases, drug discovery, and toxicity assays and for their in vivo use in regenerative medicine applications. In this review, we highlight recent progress, promises, and challenges of hPSC applications in human neurological disease modeling and therapies.
Collapse
Affiliation(s)
- Youssef Hibaoui
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals Geneva, Switzerland
| | | |
Collapse
|
134
|
Ben-David U, Benvenisty N. High prevalence of evolutionarily conserved and species-specific genomic aberrations in mouse pluripotent stem cells. Stem Cells 2012; 30:612-22. [PMID: 22328490 DOI: 10.1002/stem.1057] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mouse pluripotent stem cells (PSCs) are the best studied pluripotent system and are regarded as the "gold standard" to which human PSCs are compared. However, while the genomic integrity of human PSCs has recently drawn much attention, mouse PSCs have not been systematically evaluated in this regard. The genomic stability of PSCs is a matter of profound significance, as it affects their pluripotency, differentiation, and tumorigenicity. We thus performed a thorough analysis of the genomic integrity of 325 samples of mouse PSCs, including 127 induced pluripotent stem cell (iPSC) samples. We found that genomic aberrations occur frequently in mouse embryonic stem cells of various mouse strains, add in mouse iPSCs of various cell origins and derivation techniques. Four hotspots of chromosomal aberrations were detected: full trisomy 11 (with a minimally recurrent gain in 11qE2), full trisomy 8, and deletions in chromosomes 10qB and 14qC-14qE. The most recurrent aberration in mouse PSCs, gain 11qE2, turned out to be fully syntenic to the common aberration 17q25 in human PSCs, while other recurrent aberrations were found to be species specific. Analysis of chromosomal aberrations in 74 samples of rhesus macaque PSCs revealed a gain in chromosome 16q, syntenic to the hotspot in human 17q. Importantly, these common aberrations jeopardize the interpretation of published comparisons of PSCs, which were unintentionally conducted between normal and aberrant cells. Therefore, this work emphasizes the need to carefully monitor genomic integrity of PSCs from all species, for their proper use in biomedical research.
Collapse
Affiliation(s)
- Uri Ben-David
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
135
|
Efficient establishment of pig embryonic fibroblast cell lines with conditional expression of the simian vacuolating virus 40 large T fragment. Biosci Biotechnol Biochem 2012; 76:1372-7. [PMID: 22785463 DOI: 10.1271/bbb.120155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pig is an important animal for both agricultural and medical purposes. However, the number of pig-derived cell lines is relatively limited when compared with mouse- and human-derived lines. We established in this study a retroviral conditional expression system for the Simian vacuolating virus 40 large T fragment (SV40T) which allowed us to efficiently establish pig embryonic fibroblast cell lines. The established cell lines showed high levels of cell proliferation and resistance to cellular senescence. A chromosome analysis showed that 84% of the cells had the normal karyotype. Transient expression of the Cre recombinase allowed us to excise the SV40T fragment from the genome. The development of this research tool will enable us to quickly establish new cell lines derived from various animals.
Collapse
|
136
|
Drews K, Tavernier G, Demeester J, Lehrach H, De Smedt SC, Rejman J, Adjaye J. The cytotoxic and immunogenic hurdles associated with non-viral mRNA-mediated reprogramming of human fibroblasts. Biomaterials 2012; 33:4059-68. [DOI: 10.1016/j.biomaterials.2012.02.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
|
137
|
Karow M, Chavez CL, Farruggio AP, Geisinger JM, Keravala A, Jung WE, Lan F, Wu JC, Chen-Tsai Y, Calos MP. Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA. Stem Cells 2012; 29:1696-704. [PMID: 21898697 DOI: 10.1002/stem.730] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized the stem cell field. iPSCs are most often produced by using retroviruses. However, the resulting cells may be ill-suited for clinical applications. Many alternative strategies to make iPSCs have been developed, but the nonintegrating strategies tend to be inefficient, while the integrating strategies involve random integration. Here, we report a facile strategy to create murine iPSCs that uses plasmid DNA and single transfection with sequence-specific recombinases. PhiC31 integrase was used to insert the reprogramming cassette into the genome, producing iPSCs. Cre recombinase was then used for excision of the reprogramming genes. The iPSCs were demonstrated to be pluripotent by in vitro and in vivo criteria, both before and after excision of the reprogramming cassette. This strategy is comparable with retroviral approaches in efficiency, but is nonhazardous for the user, simple to perform, and results in nonrandom integration of a reprogramming cassette that can be readily deleted. We demonstrated the efficiency of this reprogramming and excision strategy in two accessible cell types, fibroblasts and adipose stem cells. This simple strategy produces pluripotent stem cells that have the potential to be used in a clinical setting.
Collapse
Affiliation(s)
- Marisa Karow
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Cellular reprogramming employing recombinant sox2 protein. Stem Cells Int 2012; 2012:549846. [PMID: 22693519 PMCID: PMC3368608 DOI: 10.1155/2012/549846] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/23/2012] [Indexed: 12/21/2022] Open
Abstract
Induced pluripotent stem (iPS) cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT) and Sox2 (Sox2-TAT) proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.
Collapse
|
139
|
Zwi-Dantsis L, Huber I, Habib M, Winterstern A, Gepstein A, Arbel G, Gepstein L. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. Eur Heart J 2012; 34:1575-86. [PMID: 22621821 DOI: 10.1093/eurheartj/ehs096] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS Myocardial cell replacement therapies are hampered by a paucity of sources for human cardiomyocytes and by the expected immune rejection of allogeneic cell grafts. The ability to derive patient-specific human-induced pluripotent stem cells (hiPSCs) may provide a solution to these challenges. We aimed to derive hiPSCs from heart failure (HF) patients, to induce their cardiomyocyte differentiation, to characterize the generated hiPSC-derived cardiomyocytes (hiPSC-CMs), and to evaluate their ability to integrate with pre-existing cardiac tissue. METHODS AND RESULTS Dermal fibroblasts from two HF patients were reprogrammed by retroviral delivery of Oct4, Sox2, and Klf4 or by using an excisable polycistronic lentiviral vector. The resulting HF-hiPSCs displayed adequate reprogramming properties and could be induced to differentiate into cardiomyocytes with the same efficiency as control hiPSCs (derived from human foreskin fibroblasts). Gene expression and immunostaining studies confirmed the cardiomyocyte phenotype of the differentiating HF-hiPSC-CMs. Multi-electrode array recordings revealed the development of a functional cardiac syncytium and adequate chronotropic responses to adrenergic and cholinergic stimulation. Next, functional integration and synchronized electrical activities were demonstrated between hiPSC-CMs and neonatal rat cardiomyocytes in co-culture studies. Finally, in vivo transplantation studies in the rat heart revealed the ability of the HF-hiPSC-CMs to engraft, survive, and structurally integrate with host cardiomyocytes. CONCLUSIONS Human-induced pluripotent stem cells can be established from patients with advanced heart failure and coaxed to differentiate into cardiomyocytes, which can integrate with host cardiac tissue. This novel source for patient-specific heart cells may bring a unique value to the emerging field of cardiac regenerative medicine.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
140
|
Ho PJ, Yen ML, Yet SF, Yen BL. Current Applications of Human Pluripotent Stem Cells: Possibilities and Challenges. Cell Transplant 2012; 21:801-14. [DOI: 10.3727/096368911x627507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.
Collapse
Affiliation(s)
- Pai-Jiun Ho
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Men-Luh Yen
- Departmant of Primary Medicine and Department of Obstetrics/Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shaw-Fang Yet
- Cardiovascular Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
141
|
Ramos-Mejía V, Montes R, Bueno C, Ayllón V, Real PJ, Rodríguez R, Menendez P. Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. PLoS One 2012; 7:e35824. [PMID: 22545141 PMCID: PMC3335819 DOI: 10.1371/journal.pone.0035824] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/22/2012] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation.
Collapse
Affiliation(s)
- Verónica Ramos-Mejía
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
- * E-mail: (VR); (PM)
| | - Rosa Montes
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - Clara Bueno
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - Verónica Ayllón
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - Pedro J. Real
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - René Rodríguez
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
| | - Pablo Menendez
- Centre Pfizer-Universidad de Granada-Junta de Andalucía for Genomics, Oncological Research (GENyO), Granada, Spain
- * E-mail: (VR); (PM)
| |
Collapse
|
142
|
Mostoslavsky G. Concise review: The magic act of generating induced pluripotent stem cells: many rabbits in the hat. Stem Cells 2012; 30:28-32. [PMID: 21948613 DOI: 10.1002/stem.742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since the seminal discovery by Yamanaka et al. demonstrating that four transcription factors were capable of inducing nuclear reprogramming to a pluripotent state, a plethora of publications have followed aimed at improving the efficiency, simplicity, and safety of the original methodology that was based on the use of integrating retroviruses. A better understanding of the basic mechanisms behind reprogramming as well as an improvement in tissue culture conditions have allowed for the development of new tools based on different molecular approaches, such as excisable and nonintegrating vectors, RNA, proteins, and small compounds, among others. In most instances, a dynamic interplay exists between each method's efficiency of reprogramming versus overall safety, and these points need to be considered when choosing a particular approach. Regardless, the fast pace at which this field has advanced in recent years attracted many investigators to enter into the induced pluripotent stem cell (iPSC) world and has made the process of nuclear reprogramming and iPSC generation a routine lab technique.
Collapse
Affiliation(s)
- Gustavo Mostoslavsky
- Section of Gastroenterology, Department of Medicine and Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
143
|
Fan Y, Luo Y, Chen X, Li Q, Sun X. Generation of human β-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev 2012; 58:404-9. [PMID: 22498813 DOI: 10.1262/jrd.2011-046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may have a wide range of applications in cell and gene therapy. However, the safety issues and the low efficiency associated with generating human iPSCs have limited their usage in clinical settings. The cell type used to create iPSCs can significantly influence the reprogramming efficiency and kinetics. Here, we show that amniotic fluid cells from the prenatal diagnosis of a β-thalassemia patient can be efficiently reprogrammed using a doxycycline (DOX)-inducible humanized version of the single lentiviral "stem cell cassette" vector flanked by loxP sites, which can be excised with Cre recombinase. We also demonstrated that the patient-derived iPSCs can be characterized based on the expression of pluripotency markers, and they can be differentiated into various somatic cell types in vitro and in vivo. Moreover, microarray analysis demonstrates a high correlation coefficient between human β-thalassemia iPS cells and human embryonic stem (hES) cells but a low correlation coefficient between human β-thalassemia amniotic fluid cells and human β-thalassemia iPS cells. Our data suggest that amniotic fluid cells may be an ideal human somatic cell resource for rapid and efficient generation of patient-specific iPS cells.
Collapse
Affiliation(s)
- Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province,The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China.
| | | | | | | | | |
Collapse
|
144
|
Kleger A, Mahaddalkar PU, Katz SF, Lechel A, Joo JY, Loya K, Lin Q, Hartmann D, Liebau S, Kraus JM, Cantz T, Kestler HA, Zaehres H, Schöler H, Rudolph KL. Increased reprogramming capacity of mouse liver progenitor cells, compared with differentiated liver cells, requires the BAF complex. Gastroenterology 2012; 142:907-17. [PMID: 22245845 DOI: 10.1053/j.gastro.2012.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/01/2011] [Accepted: 01/03/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Ectopic expression of certain transcription factors can reprogram somatic cells to a pluripotent state. Hematopoietic and muscle stem cells can be more efficiently reprogrammed than differentiated blood or muscle cells, yet similar findings have not been shown in other primary organ systems. Moreover, molecular characteristics of the cellular hierarchy of tissues that influence reprogramming capacities need to be delineated. We analyzed the effect of differentiation stage of freshly isolated, mouse liver cells on the reprogramming efficiency. METHODS Liver progenitor cell (LPC)-enriched cell fractions were isolated from adult (6-8 wk) and fetal (embryonic day 14.5) livers of mice and reprogrammed to become induced pluripotent stem (iPS) cells. Different transcription factors were expressed in liver cells, and markers of pluripotency were examined, along with the ability of iPS cells to differentiate, in vitro and in vivo, into different germ layers. RESULTS Fetal and adult LPCs had significantly greater reprogramming efficiency after transduction with 3 or 4 reprogramming factors. Transduction efficiency-corrected reprogramming rates of fetal LPCs were 275-fold higher, compared with unsorted fetal liver cells, when 3 reprogramming factors were transduced. The increased reprogramming efficiency of LPCs, compared with differentiated liver cells, occurred independently of proliferation rates, but was associated with endogenous expression of reprogramming factors (Klf4 and c-Myc) and BAF (Brg1/Brm associated factor)-complex members Baf155 and Brg1, which mediate epigenetic changes during reprogramming. Knockdown of BAF complex members negated the increased reprogramming efficiency of LPCs, compared with non-LPCs. CONCLUSIONS LPCs have intrinsic, cell proliferation-independent characteristics resulting in an increased reprogramming capacity compared to differentiated liver cells.
Collapse
Affiliation(s)
- Alexander Kleger
- Institute of Molecular Medicine and Max-Planck-Research Department on Stem Cell Aging, Ulm University, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Fluri DA, Tonge PD, Song H, Baptista RP, Shakiba N, Shukla S, Clarke G, Nagy A, Zandstra PW. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat Methods 2012; 9:509-16. [PMID: 22447133 PMCID: PMC4954777 DOI: 10.1038/nmeth.1939] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 01/24/2012] [Indexed: 12/21/2022]
Abstract
We describe derivation of induced pluripotent stem cells (iPSCs) from terminally differentiated mouse cells in serum- and feeder-free stirred suspension cultures. Temporal analysis of global gene expression revealed high correlations between cells reprogrammed in suspension and cells reprogrammed in adhesion-dependent conditions. Suspension culture-reprogrammed iPSCs (SiPSCs) could be differentiated into all three germ layers in vitro and contributed to chimeric embryos in vivo. SiPSC generation allowed for efficient selection of reprogramming factor-expressing cells based on their differential survival and proliferation in suspension culture. Seamless integration of SiPSC reprogramming and directed differentiation enabled scalable production of beating cardiac cells in a continuous single cell- and small aggregate-based process. This method is an important step toward the development of robust PSC generation, expansion and differentiation technology.
Collapse
Affiliation(s)
- David A Fluri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
The potential of iPS cells in synucleinopathy research. Stem Cells Int 2012; 2012:629230. [PMID: 22550513 PMCID: PMC3329650 DOI: 10.1155/2012/629230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/12/2012] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is a protein involved in the pathogenesis of several so-called synucleinopathies including Parkinson's disease. A variety of models have been so far assessed. Human induced pluripotent stem cells provide a patient- and disease-specific model for in vitro studies, pharmacotoxicological screens, and hope for future cell-based therapies. Initial experimental procedures include the harvest of patients' material for the reprogramming process, the investigation of the patients genetic background in the cultured cells, and the evaluation of disease-relevant factors/proteins under various cell culture conditions.
Collapse
|
147
|
Abstract
PURPOSE OF REVIEW The study of primary immunodeficiencies (PIDs) has largely been based on animal models, in-vitro assays, and the study of patient-derived tissue. Although very important, these approaches carry significant limitations including limited access to disease-specific tissue. Here, we focus on a novel approach based on the use of patient-derived induced pluripotent stem cells (iPSCs) that may overcome some of the inherent limitations of the classical approaches to the study of PIDs. RECENT FINDINGS Recent advances have paved the way to disease modeling by iPSCs in many fields including the study of PIDs. However, significant challenges in the use of iPSCs for disease modeling and cell therapy still remain to be addressed before translational application of this technology is attempted. SUMMARY The study of patient-derived iPSCs promises to have significant impact on the characterization of the pathophysiology of PIDs and on the development of novel forms of treatment for these disorders. In particular, this technology may permit to study in much greater detail the mechanisms of disease that involve extra-immune tissues, with minimal risk or discomfort to the patient and without the need for complex genetic manipulation.
Collapse
|
148
|
Thomson AJ, Pierart H, Meek S, Bogerman A, Sutherland L, Murray H, Mountjoy E, Downing A, Talbot R, Sartori C, Whitelaw CBA, Freeman TC, Archibald AL, Burdon T. Reprogramming pig fetal fibroblasts reveals a functional LIF signaling pathway. Cell Reprogram 2012; 14:112-22. [PMID: 22339199 DOI: 10.1089/cell.2011.0078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Distinct signaling pathways are reported to maintain pluripotency in embryo-derived stem cells. Mouse embryonic stem cells (ESCs) respond to leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP)-mediated activity, whereas human ESCs depend upon Fibroblast growth factor (FGF) and activin signaling. In the majority of mammals investigated, however, the signals that support stem cell pluripotency are not well defined, as is evident by the persistent difficulties in maintaining authentic stable ESC lines. Induction of pluripotency by transcription factor-mediated reprogramming could provide an alternative way to produce ESC-like cells from nonpermissive species, and facilitate identification of core ESC signaling requirements. To evaluate the effectiveness of this approach in pigs, we transduced porcine foetal fibroblasts with retroviruses expressing Oct4, Sox2, Klf4, and c-Myc, and maintained the resulting cultures in medium containing either LIF or FGF2. Alkaline phosphatase positive colonies with compact, mouse ESC-like morphology were preferentially recovered using serum-free medium supplemented with LIF. These cell lines expressed the endogenous stem cell transcription factors, OCT4, NANOG, and SOX2, and the cell surface marker SSEA-4, consistent with acquisition of an undifferentiated state. However, restricted differentiation potential, and persistent expression of retroviral transgenes indicated that reprogramming was incomplete. Interestingly, LIF activated both the transcription factor STAT3 and its target gene SOCS3, and stimulated cell growth, indicating functional coupling of the signaling pathway in these cells. This demonstration of LIF-dependence in reprogrammed pig cells supports the notion that the connection between LIF/STAT3 signaling and the core regulatory network of pluripotent stem cells is a conserved pathway in mammals.
Collapse
Affiliation(s)
- Alison J Thomson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Reimer A, Seiler K, Tornack J, Tsuneto M, Melchers F. Reprogramming to iPS cells and their subsequent hematopoietic differentiation is more efficient from MEFs than from preB cells. Immunol Lett 2012; 143:70-6. [PMID: 22313949 DOI: 10.1016/j.imlet.2012.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
Efficiencies of the generation of induced pluripotent stem (iPS) cells from either mouse embryonic fibroblasts (MEF) or from mouse fetal liver (FL) derived preB cells and their hematogenic potencies were compared. In 10 days approximately 2% of the MEFs transduced with Sox-2, Oct-4 and Klf-4 developed to iPS cells, while only 0.01% of transduced FL-preB cells yielded iPS cells, and only after around 3 weeks. Subsequently, the generated iPS cells were induced to differentiate into hematopoietic cells in vitro. On day 5 of differentiation MEF-iPS yielded numbers and percentages of Flk-1(+) mesodermal-like cells comparable to those developed from embryonic stem (ES) cells. Compared to ES cells further differentiation to hematopoietic and lymphopoietic cells was reduced, possibly because of persistent expression of the reprogramming factors. By contrast, FL-iPS cells developed lower numbers and percentages of Flk-1(+) cells, and no significant further development to hematopoietic or lymphopoietic cells could be induced. These results indicate that the efficiencies of iPS generation and subsequent hematopoietic development depends on the type of differentiated cell from which iPS cells are generated.
Collapse
Affiliation(s)
- Andreas Reimer
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | | | | | | | | |
Collapse
|
150
|
Baum C, Modlich U, Göhring G, Schlegelberger B. Concise review: managing genotoxicity in the therapeutic modification of stem cells. Stem Cells 2012; 29:1479-84. [PMID: 21898683 DOI: 10.1002/stem.716] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The therapeutic use of procedures for genetic stem cell modification is limited by potential adverse events related to uncontrolled mutagenesis. Prominent findings have been made in hematopoietic gene therapy, demonstrating the risk of clonal, potentially malignant outgrowth on the basis of mutations acquired during or after therapeutic genome modification. The incidence and the growth rate of insertional mutants have been linked to the "stemness" of the target cells and vector-related features such as the integration pattern, the architecture, and the exact content of transgene cassettes. Milieu factors supporting the survival and expansion of mutants may eventually allow oncogenic progression. Similar concerns apply for medicinal products based on pluripotent stem cells. Focusing on the genetic stress induced by insertional mutagenesis and culture adaptation, we propose four conclusions. (a) Mutations occurring in the production of stem cell-based medicines may be unavoidable and need to be classified according to their risk to trigger the formation of clones that are sufficiently long-lived and mitotically active to acquire secondary transforming mutations. (b) The development of rational prevention strategies depends upon the identification of the specific mutations forming such "dominant clones" (which can also be addressed as cancer stem cell precursors) and a better knowledge of the mechanisms underlying their creation, expansion, and homeostatic control. (c) Quantitative assay systems are required to assess the practical value of preventive actions. (d) Improved approaches for the genetic modification of stem cells can address all critical steps in the origin and growth control of mutants.
Collapse
Affiliation(s)
- Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| | | | | | | |
Collapse
|