101
|
|
102
|
Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Montero-Menei C, Menei P. The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy. Biomaterials 2011; 32:2106-16. [DOI: 10.1016/j.biomaterials.2010.11.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/14/2010] [Indexed: 12/16/2022]
|
103
|
Anderson SB, Lin CC, Kuntzler DV, Anseth KS. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 2011; 32:3564-74. [PMID: 21334063 DOI: 10.1016/j.biomaterials.2011.01.064] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/26/2011] [Indexed: 12/20/2022]
Abstract
Thiol-ene photopolymerization offers a unique platform for the formation of peptide-functionalized poly(ethylene glycol) hydrogels and the encapsulation, culture and differentiation of cells. Specifically, this photoinitiated polymerization scheme occurs at neutral pH and can be controlled both spatially and temporally. Here, we have encapsulated human mesenchymal stem cells (hMSCs) in matrix metalloproteinase (MMP) degradable and cell-adhesive hydrogels using thiol-ene photopolymerization. We find that hMSCs survive equally well in this system, regardless of MMP-degradability. When hMSCs are encapsulated in these cell-degradable hydrogels, they survive and are able to proliferate. In classic hMSC differentiation medias, hMSCs locally remodel their microenvironment and take on characteristic morphologies; hMSCs cultured in growth or osteogenic differentiation media are less round, as measured by elliptical form factor, and are smaller than hMSCs cultured in chondrogenic or adipogenic differentiation media. In addition, hMSCs encapsulated in completely cell-degradable hydrogels and cultured in osteogenic, chondrogenic, or adipogenic differentiation media generally express increased levels of specific differentiation markers as compared to cells in hydrogels that are not cell-degradable. These studies demonstrate the ability to culture and differentiate hMSCs in MMP-degradable hydrogels polymerized via a thiol-ene reaction scheme and that increased cell-mediated hydrogel degradability facilitates directed differentiation of hMSCs.
Collapse
Affiliation(s)
- Sarah B Anderson
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 424, Boulder, CO 80309-0424, USA
| | | | | | | |
Collapse
|
104
|
Zhang Y, Zhan H, Xu W, Yuan Z, Lu P, Zhan L, Li Q. Upregulation of matrix metalloproteinase-1 and proteinase-activated receptor-1 promotes the progression of human gliomas. Pathol Res Pract 2011; 207:24-9. [DOI: 10.1016/j.prp.2010.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 02/03/2023]
|
105
|
Abstract
Stem cells are a class of special embryonic or adult cells that are able to self-renew and undergo multi-directional differentiation. Studies have shown that stem cells have selective tropism toward tumor tissue. Previous studies have shown that hepatic stem cells play an important role in hepatocarcinogenesis by participating in regulation of cell growth and differentiation. However, some other studies demonstrated that stem cells could inhibit cell growth in hepatocellular carcinoma. Elucidation of relationship between stem cells and hepatocellular carcinoma could provide new clues to the pathogenesis of hepatocellular carcinoma and help develop new therapeutic strategies for the disease.
Collapse
|
106
|
Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 2010; 30:15337-57. [PMID: 21084591 DOI: 10.1523/jneurosci.3467-10.2010] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the metzincin family of metalloproteinases have long been considered merely degradative enzymes for extracellular matrix molecules. Recently, however, there has been growing appreciation for these proteinases and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs), as fine modulators of nervous system physiology and pathology. Present all along the phylogenetic tree, in all neural cell types, from the nucleus to the synapse and in the extracellular space, metalloproteinases exhibit a complex spatiotemporal profile of expression in the nervous parenchyma and at the neurovascular interface. The irreversibility of their proteolytic activity on numerous biofactors (e.g., growth factors, cytokines, receptors, DNA repair enzymes, matrix proteins) is ideally suited to sustain structural changes that are involved in physiological or postlesion remodeling of neural networks, learning consolidation or impairment, neurodegenerative and neuroinflammatory processes, or progression of malignant gliomas. The present review provides a state of the art overview of the involvement of the metzincin/TIMP system in these processes and the prospects of new therapeutic strategies based on the control of metalloproteinase activity.
Collapse
|
107
|
TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma. Cell Death Differ 2010; 18:853-63. [PMID: 21127499 DOI: 10.1038/cdd.2010.154] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) have become valuable candidates for cell-based therapeutical applications including neuroregenerative and anti-tumor strategies. Yet, the molecular mechanisms that control hMSC trans-differentiation to neural cells and hMSC tropism toward glioma remain unclear. Here, we demonstrate that hMSCs incubated with 50 ng/ml tumor necrosis factor alpha (TNF-α) acquired astroglial cell morphology without affecting proliferation, which was increased at 5 ng/ml. TNF-α (50 ng/ml) upregulated expression of numerous genes important for neural cell growth and function including LIF (leukemia inhibitory factor), BMP2 (bone morphogenetic protein 2), SOX2 (SRY box 2), and GFAP (glial fibrillary acidic protein), whereas NES (human nestin) transcription ceased suggesting a premature neural phenotype in TNF-α-differentiated hMSCs. Studies on intracellular mitogen-activated protein kinase (MAPK) signaling revealed that inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activity abolished the TNF-α-mediated regulation of neural genes in hMSCs. In addition, TNF-α significantly enhanced expression of the chemokine receptor CXCR4 (CXC motive chemokine receptor 4), which facilitated the chemotactic invasiveness of hMSCs toward stromal cell-derived factor 1 (SDF-1) alpha. TNF-α-pretreated hMSCs not only exhibited an increased ability to infiltrate glioma cell spheroids dependent on matrix metalloproteinase activity in vitro, but they also showed a potentiated tropism toward intracranial malignant gliomas in an in vivo mouse model. Taken together, our results provide evidence that culture-expansion of hMSCs in the presence of TNF-α triggers neural gene expression and functional capacities, which could improve the use of hMSCs in the treatment of neurological disorders including malignant gliomas.
Collapse
|
108
|
Matrix Metalloproteinase 1 in Pre-eclampsia and Fetal Growth Restriction: Reduced Gene Expression in Decidual Tissue and Protein Expression in Extravillous Trophoblasts. Placenta 2010; 31:615-20. [DOI: 10.1016/j.placenta.2010.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/12/2010] [Accepted: 04/06/2010] [Indexed: 11/22/2022]
|
109
|
p27 modulates tropism of mesenchymal stem cells toward brain tumors. Exp Ther Med 2010; 1:695-699. [PMID: 24926323 DOI: 10.3892/etm_00000107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/28/2010] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have inherent tumor-tropic properties in the brain and seem to be a useful tool for cellular therapy for brain tumors. However, the mechanisms involved in MSC migration are not fully understood. The tumor suppressor p27, an inhibitor of cyclin-dependent kinase complexes, not only plays a crucial role in cell cycle regulation but also has cell cycle-independent functions, such as differentiation and migration of cells. In fact, p27 has been alternatively reported to inhibit or stimulate cell migration in cells of different types. Therefore, in the present study, we investigated whether p27 is involved in the tumor-tropic activity of MSCs using MSCs from p27-null mice. It was found that p27-/- MSCs showed a decreased motility in the wound healing assay and displayed increased numbers of stress fibers. To compare the in vivo migratory activity of p27-/- and p27+/+ MSCs toward glioma, we injected C6 glioma cells into one side of the mouse brain and BrdU-labeled p27-/- or p27+/+ MSCs into the other side. Significantly fewer labeled p27-/- MSCs were observed in the tumor area compared with p27+/+ MSCs. The present study suggests that p27 works as a stimulator of the in vitro and in vivo migration process of MSCs toward tumors. These findings are important when the efficacy of stem cell-based strategies for glioma therapy is considered.
Collapse
|
110
|
Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK. Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 2010; 1:17. [PMID: 20550687 PMCID: PMC2905093 DOI: 10.1186/scrt17] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/15/2010] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION This study aimed to determine the homing potential and fate of epidermal neural crest stem cells (eNCSCs) derived from hair follicles, and bone marrow-derived stem cells (BMSCs) of mesenchymal origin, in a lipopolysaccharide (LPS)-induced inflammatory lesion model in the rat brain. Both eNCSCs and BMSCs are easily accessible from adult tissues by using minimally invasive procedures and can differentiate into a variety of neuroglial lineages. Thus, these cells have the potential to be used in autologous cell-replacement therapies, minimizing immune rejection, and engineered to secrete a variety of molecules. METHODS Both eNCSCs and BMSCs were prelabeled with iron-oxide nanoparticles (IO-TAT-FITC) and implanted either onto the corpus callosum in healthy or LPS-lesioned animals or intravenously into lesioned animals. Both cell types were tracked longitudinally in vivo by using magnetic resonance imaging (MRI) for up to 30 days and confirmed by postmortem immunohistochemistry. RESULTS Transplanted cells in nonlesioned animals remained localized along the corpus callosum. Cells implanted distally from an LPS lesion (either intracerebrally or intravenously) migrated only toward the lesion, as seen by the localized MRI signal void. Fluorescence microscopy of the FITC tag on the nanoparticles confirmed the in vivo MRI data, CONCLUSIONS This study demonstrated that both cell types can be tracked in vivo by using noninvasive MRI and have pathotropic properties toward an inflammatory lesion in the brain. As these cells differentiate into the glial phenotype and are derived from adult tissues, they offer a viable alternative autologous stem cell source and gene-targeting potential for neurodegenerative and demyelinating pathologies.
Collapse
Affiliation(s)
- Johanna S Jackson
- Stem Cell Imaging, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | |
Collapse
|
111
|
Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 2010; 29:249-61. [DOI: 10.1007/s10555-010-9222-7] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
112
|
Bexell D, Scheding S, Bengzon J. Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther 2010; 18:1067-75. [PMID: 20407426 DOI: 10.1038/mt.2010.58] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene therapy of solid cancers has been severely restricted by the limited distribution of vectors within tumors. However, cellular vectors have emerged as an effective migratory system for gene delivery to invasive cancers. Implanted and injected multipotent mesenchymal stromal cells (MSCs) have shown tropism for several types of primary tumors and metastases. This capacity of MSCs forms the basis for their use as a gene vector system in neoplasms. Here, we review the tumor-directed migratory potential of MSCs, mechanisms of the migration, and the choice of therapeutic transgenes, with a focus on malignant gliomas as a model system for invasive and highly vascularized tumors. We examine recent findings demonstrating that MSCs share many characteristics with pericytes and that implanted MSCs localize primarily to perivascular niches within tumors, which might have therapeutic implications. The use of MSC vectors in cancer gene therapy raises concerns, however, including a possible MSC contribution to tumor stroma and vasculature, MSC-mediated antitumor immune suppression, and the potential malignant transformation of cultured MSCs. Nonetheless, we highlight the novel prospects of MSC-based tumor therapy, which appears to be a promising approach.
Collapse
Affiliation(s)
- Daniel Bexell
- Lund Stem Cell Center, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
113
|
Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Collapse
Affiliation(s)
- Priya R Baraniak
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
114
|
Ho IAW, Hui KM, Lam PYP. Isolation of peptide ligands that interact specifically with human glioma cells. Peptides 2010; 31:644-50. [PMID: 20026365 DOI: 10.1016/j.peptides.2009.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Poor prognosis of high grade gliomas coupled with the difficulty of widespread delivery of therapeutic agents prompted the search into new molecular targets. Our aim is to isolate glioma-specific peptide sequences that can be used for targeted delivery of therapeutic drugs and imaging tracer to accurately demarcate tumor volume as a response to therapy. Herein, we describe the isolation and characterization of a glioma-specific peptide sequence, GL1, that interact exclusively with human glioma cells lines and primary glioma cells derived from human biopsy in vitro. Further analysis showed that the receptors for GL1 were located on the external side of the plasma membrane, where the GL1 peptides could bind stably up to a period of 180 min. More importantly, GL1 phages home specifically to human glioma xenograft when administered through tail vein, a phenomenon that was not observed when non-specific phages were used as control. Taken together, our results confirmed that GL1 could represent a novel peptide that target to tumor of glial origins, and could potentially be used as a targeting moiety for the conjugation of therapeutic drugs or diagnostic imaging radiolabels.
Collapse
Affiliation(s)
- Ivy A W Ho
- Laboratory of Cancer Gene Therapy, Singapore
| | | | | |
Collapse
|
115
|
Abstract
Human mesenchymal stem cells (hMSCs) localized to bone marrow, nonhematopoietic organs, as well as perivascular niches are postulated to traffic through type I collagen-rich stromal tissues to first infiltrate sites of tissue damage, inflammation, or neoplasia and then differentiate. Nevertheless, the molecular mechanisms supporting the ability of hMSCs to remodel 3-dimensional (3D) collagenous barriers during trafficking or differentiation remain undefined. Herein, we demonstrate that hMSCs degrade and penetrate type I collagen networks in tandem with the expression of a 5-member set of collagenolytic matrix metalloproteinases (MMPs). Specific silencing of each of these proteases reveals that only a single membrane-tethered metalloenzyme, termed MT1-MMP, plays a required role in hMSC-mediated collagenolysis, 3D invasion, and intravasation. Further, once confined within type I collagen-rich tissue, MT1-MMP also controls hMSC differentiation in a 3D-specific fashion. Together, these data demonstrate that hMSC invasion and differentiation programs fall under the control of the pericellular collagenase, MT1-MMP.
Collapse
|
116
|
Makinoshima H, Dezawa M. Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Lett 2009; 583:3697-703. [PMID: 19874825 DOI: 10.1016/j.febslet.2009.10.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) have a critical role in cancer progression and metastasis. Despite extensive studies of the physiological responses in cancer cells, the molecular mechanisms regulating gene expression in MSCs by cancer cells remain undefined. Here we demonstrate that CC chemokine ligand 5 (CCL5) expression was increased in MSCs co-cultured with pancreatic cancer cells (PCCs), and this activation was dependent on extracellular insulin-like growth factor (IGF-I). Moreover, CCL5 induction in MSCs was required for the activation of IGF-I pathway in PCCs. These results reveal a link between the IGF-I pathway in PCCs and CCL5 pathway in MSCs through the interaction of those cells.
Collapse
Affiliation(s)
- Hideki Makinoshima
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | |
Collapse
|