101
|
Abstract
The pancreatic islet displays diverse patterns of endocrine cell arrangement. The prototypic islet, with insulin-secreting beta-cells forming the core surrounded by other endocrine cells in the periphery, is largely based on studies of normal rodent islets. Recent reports on large animals, including humans, show a difference in islet architecture, in which the endocrine cells are randomly distributed throughout the islet. This particular species difference has raised concerns regarding the interpretation of data based on rodent studies to humans. On the other hand, further variations have been reported in marsupials and some nonhuman primates, which possess an inverted ratio of beta-cells to other endocrine cells. This review discusses the striking plasticity of islet architecture and cellular composition among various species including changes in response to metabolic states within a single species. We propose that this plasticity reflects evolutionary acquired adaptation induced by altered physiological conditions, rather than inherent disparities between species.
Collapse
Affiliation(s)
| | - Abraham Kim
- Department of Medicine; The University of Chicago; Chicago, IL USA
| | - Kevin Miller
- Department of Medicine; The University of Chicago; Chicago, IL USA
| | - Manami Hara
- Department of Medicine; The University of Chicago; Chicago, IL USA
| |
Collapse
|
102
|
Binot AC, Manfroid I, Flasse L, Winandy M, Motte P, Martial JA, Peers B, Voz ML. Nkx6.1 and nkx6.2 regulate alpha- and beta-cell formation in zebrafish by acting on pancreatic endocrine progenitor cells. Dev Biol 2010; 340:397-407. [PMID: 20122912 DOI: 10.1016/j.ydbio.2010.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/30/2022]
Abstract
In mice, the Nkx6 genes are crucial to alpha- and beta-cell differentiation, but the molecular mechanisms by which they regulate pancreatic subtype specification remain elusive. Here it is shown that in zebrafish, nkx6.1 and nkx6.2 are co-expressed at early stages in the first pancreatic endocrine progenitors, but that their expression domains gradually segregate into different layers, nkx6.1 being expressed ventrally with respect to the forming islet while nkx6.2 is expressed mainly in beta-cells. Knockdown of nkx6.2 or nkx6.1 expression leads to nearly complete loss of alpha-cells but has no effect on beta-, delta-, or epsilon-cells. In contrast, nkx6.1/nkx6.2 double knockdown leads additionally to a drastic reduction of beta-cells. Synergy between the effects of nkx6.1 and nkx6.2 knockdown on both beta- and alpha-cell differentiation suggests that nkx6.1 and nkx6.2 have the same biological activity, the required total nkx6 threshold being higher for alpha-cell than for beta-cell differentiation. Finally, we demonstrate that the nkx6 act on the establishment of the pancreatic endocrine progenitor pool whose size is correlated with the total nkx6 expression level. On the basis of our data, we propose a model in which nkx6.1 and nkx6.2, by allowing the establishment of the endocrine progenitor pool, control alpha- and beta-cell differentiation.
Collapse
Affiliation(s)
- A-C Binot
- GIGA-Research - Unité de Biologie Moleculaire et Génie Génétique, Tour B34, Université de Liège, B-4000 Sart Tilman, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Soyer J, Flasse L, Raffelsberger W, Beucher A, Orvain C, Peers B, Ravassard P, Vermot J, Voz ML, Mellitzer G, Gradwohl G. Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development 2010; 137:203-12. [PMID: 20040487 DOI: 10.1242/dev.041673] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transcription factor neurogenin 3 (Neurog3 or Ngn3) controls islet cell fate specification in multipotent pancreatic progenitor cells in the mouse embryo. However, our knowledge of the genetic programs implemented by Ngn3, which control generic and islet subtype-specific properties, is still fragmentary. Gene expression profiling in isolated Ngn3-positive progenitor cells resulted in the identification of the uncharacterized winged helix transcription factor Rfx6. Rfx6 is initially expressed broadly in the gut endoderm, notably in Pdx1-positive cells in the developing pancreatic buds, and then becomes progressively restricted to the endocrine lineage, suggesting a dual function in both endoderm development and islet cell differentiation. Rfx6 is found in postmitotic islet progenitor cells in the embryo and is maintained in all developing and adult islet cell types. Rfx6 is dependent on Ngn3 and acts upstream of or in parallel with NeuroD, Pax4 and Arx transcription factors during islet cell differentiation. In zebrafish, the Rfx6 ortholog is similarly found in progenitors and hormone expressing cells of the islet lineage. Loss-of-function studies in zebrafish revealed that rfx6 is required for the differentiation of glucagon-, ghrelin- and somatostatin-expressing cells, which, in the absence of rfx6, are blocked at the progenitor stage. By contrast, beta cells, whose number is only slightly reduced, were no longer clustered in a compact islet. These data unveil Rfx6 as a novel regulator of islet cell development.
Collapse
Affiliation(s)
- Josselin Soyer
- Institute of Genetics and Molecular and Cell Biology (IGBMC), Inserm U-964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
|
105
|
Abstract
The pancreas is a vertebrate-specific organ of endodermal origin which is responsible for production of digestive enzymes and hormones involved in regulating glucose homeostasis, in particular insulin, deficiency of which results in diabetes. Basic research on the genetic and molecular pathways regulating pancreas formation and function has gained major importance for the development of regenerative medical approaches aimed at improving diabetes treatment. Among the different model organisms that are currently used to elucidate the basic pathways of pancreas development and regeneration, the zebrafish is distinguished by its unique opportunities to combine genetic and pharmacological approaches with sophisticated live-imaging methodology, and by its ability to regenerate the pancreas within a short time. Here we review current perspectives and present methods for studying two important processes contributing to pancreas development and regeneration, namely cell migration via time-lapse micropscopy and cell proliferation via incorporation of nucleotide analog EdU, with a focus on the insulin-producing beta cells of the islet.
Collapse
Affiliation(s)
- Robin A Kimmel
- Institute of Molecular Biology, University of Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
106
|
Alexa K, Choe SK, Hirsch N, Etheridge L, Laver E, Sagerström CG. Maternal and zygotic aldh1a2 activity is required for pancreas development in zebrafish. PLoS One 2009; 4:e8261. [PMID: 20011517 PMCID: PMC2788244 DOI: 10.1371/journal.pone.0008261] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022] Open
Abstract
We have isolated and characterized a novel zebrafish pancreas mutant. Mutant embryos lack expression of isl1 and sst in the endocrine pancreas, but retain isl1 expression in the CNS. Non-endocrine endodermal gene expression is less affected in the mutant, with varying degrees of residual expression observed for pdx1, carbA, hhex, prox1, sid4, transferrin and ifabp. In addition, mutant embryos display a swollen pericardium and lack fin buds. Genetic mapping revealed a mutation resulting in a glycine to arginine change in the catalytic domain of the aldh1a2 gene, which is required for the production of retinoic acid from vitamin A. Comparison of our mutant (aldh1a2um22) to neckless (aldh1a2i26), a previously identified aldh1a2 mutant, revealed similarities in residual endodermal gene expression. In contrast, treatment with DEAB (diethylaminobenzaldehyde), a competitive reversible inhibitor of Aldh enzymes, produces a more severe phenotype with complete loss of endodermal gene expression, indicating that a source of Aldh activity persists in both mutants. We find that mRNA from the aldh1a2um22 mutant allele is inactive, indicating that it represents a null allele. Instead, the residual Aldh activity is likely due to maternal aldh1a2, since we find that translation-blocking, but not splice-blocking, aldh1a2 morpholinos produce a phenotype similar to DEAB treatment. We conclude that Aldh1a2 is the primary Aldh acting during pancreas development and that maternal Aldh1a2 activity persists in aldh1a2um22 and aldh1a2i26 mutant embryos.
Collapse
Affiliation(s)
- Kristen Alexa
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nicolas Hirsch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Letitiah Etheridge
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Elizabeth Laver
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Charles G. Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
107
|
Feiner N, Begemann G, Renz AJ, Meyer A, Kuraku S. The origin of bmp16, a novel Bmp2/4 relative, retained in teleost fish genomes. BMC Evol Biol 2009; 9:277. [PMID: 19951429 PMCID: PMC2801517 DOI: 10.1186/1471-2148-9-277] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 12/01/2009] [Indexed: 11/29/2022] Open
Abstract
Background Whole genome sequences have allowed us to have an overview of the evolution of gene repertoires. The target of the present study, the TGFβ superfamily, contains many genes involved in vertebrate development, and provides an ideal system to explore the relationships between evolution of gene repertoires and that of developmental programs. Results As a result of a bioinformatic survey of sequenced vertebrate genomes, we identified an uncharacterized member of the TGFβ superfamily, designated bmp16, which is confined to teleost fish species. Our molecular phylogenetic study revealed a high affinity of bmp16 to the Bmp2/4 subfamily. Importantly, further analyses based on the maximum-likelihood method unambiguously ruled out the possibility that this teleost-specific gene is a product of teleost-specific genome duplication. This suggests that the absence of a bmp16 ortholog in tetrapods is due to a secondary loss. In situ hybridization showed embryonic expression of the zebrafish bmp16 in the developing swim bladder, heart, tail bud, and ectoderm of pectoral and median fin folds in pharyngula stages, as well as gut-associated expression in 5-day embryos. Conclusion Comparisons of expression patterns revealed (1) the redundancy of bmp16 expression with its homologs in presumably plesiomorphic expression domains, such as the fin fold, heart, and tail bud, which might have permitted its loss in the tetrapod lineage, and (2) the loss of craniofacial expression and gain of swim bladder expression of bmp16 after the gene duplication between Bmp2, -4 and -16. Our findings highlight the importance of documenting secondary changes of gene repertoires and expression patterns in other gene families.
Collapse
Affiliation(s)
- Nathalie Feiner
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
108
|
Kay RR, Thompson CRL. Forming patterns in development without morphogen gradients: scattered differentiation and sorting out. Cold Spring Harb Perspect Biol 2009; 1:a001503. [PMID: 20457561 PMCID: PMC2882119 DOI: 10.1101/cshperspect.a001503] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Few mechanisms provide alternatives to morphogen gradients for producing spatial patterns of cells in development. One possibility is based on the sorting out of cells that initially differentiate in a salt and pepper mixture and then physically move to create coherent tissues. Here, we describe the evidence suggesting this is the major mode of patterning in Dictyostelium. In addition, we discuss whether convergent evolution could have produced a conceptually similar mechanism in other organisms.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge
| | | |
Collapse
|
109
|
Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, Jones DA. Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Biol Chem 2009; 285:4110-4121. [PMID: 19946145 PMCID: PMC2823551 DOI: 10.1074/jbc.m109.073676] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although DNA methylation is critical for proper embryonic and tissue-specific development, how different DNA methyltransferases affect tissue-specific development and their targets remains unknown. We address this issue in zebrafish through antisense-based morpholino knockdown of Dnmt3 and Dnmt1. Our data reveal that Dnmt3 is required for proper neurogenesis, and its absence results in profound defects in brain and retina. Interestingly, other organs such as intestine remain unaffected suggesting tissue-specific requirements of Dnmt3. Further, comparison of Dnmt1 knockdown phenotypes with those of Dnmt3 suggested that these two families have distinct functions. Consistent with this idea, Dnmt1 failed to complement Dnmt3 deficiency, and Dnmt3 failed to complement Dnmt1 deficiency. Downstream of Dnmt3 we identify a neurogenesis regulator, lef1, as a Dnmt3-specific target gene that is demethylated and up-regulated in dnmt3 morphants. Knockdown of lef1 rescued neurogenesis defects resulting from Dnmt3 absence. Mechanistically, we show cooperation between Dnmt3 and an H3K9 methyltransferase G9a in regulating lef1. Further, like Dnmt1-Suv39h1 cooperativity, Dnmt3 and G9a seemed to function together for tissue-specific development. G9a knockdown, but not Suv39h1 loss, phenocopied dnmt3 morphants and G9a overexpression provided a striking rescue of dnmt3 morphant phenotypes, whereas Suv39h1 overexpression failed, supporting the notion of specific DNMT-histone methyltransferase networks. Consistent with this model, H3K9me3 levels on the lef1 promoter were reduced in both dnmt3 and g9a morphants, and its knockdown rescued neurogenesis defects in g9a morphants. We propose a model wherein specific DNMT-histone methyltransferase networks are utilized to silence critical regulators of cell fate in a tissue-specific manner.
Collapse
Affiliation(s)
- Kunal Rai
- From the Departments of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112; Departments of Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and; Departments of Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112
| | - Itrat F Jafri
- From the Departments of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112; Departments of Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and; Departments of Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112
| | - Stephanie Chidester
- Departments of Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and
| | - Smitha R James
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Adam R Karpf
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Bradley R Cairns
- From the Departments of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112; Departments of Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and; Departments of Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112.
| | - David A Jones
- From the Departments of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112; Departments of Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 and; Departments of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112.
| |
Collapse
|
110
|
Tiso N, Moro E, Argenton F. Zebrafish pancreas development. Mol Cell Endocrinol 2009; 312:24-30. [PMID: 19477220 DOI: 10.1016/j.mce.2009.04.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
An accurate understanding of the molecular events governing pancreas development can have an impact on clinical medicine related to diabetes, obesity and pancreatic cancer, diseases with a high impact in public health. Until 1996, the main animal models in which pancreas formation and differentiation could be studied were mouse and, for some instances related to early development, chicken and Xenopus. Zebrafish has penetrated this field very rapidly offering a new model of investigation; by joining functional genomics, genetics and in vivo whole mount visualization, Danio rerio has allowed large scale and fine multidimensional analysis of gene functions during pancreas formation and differentiation.
Collapse
Affiliation(s)
- Natascia Tiso
- Dipartimento di Biologia, Universita' degli Studi di Padova, Via Ugo Bassi 58b, I-35121 Padova, Italy
| | | | | |
Collapse
|
111
|
Abstract
The gastrointestinal tract is an asymmetrically patterned organ system. The signals which initiate left-right asymmetry in the developing embryo have been extensively studied, but the downstream steps required to confer asymmetric morphogenesis on the gut organ primordia are less well understood. In this paper we outline key findings on the tissue mechanics underlying gut asymmetry, across a range of species, and use these to synthesise a conserved model for asymmetric gut morphogenesis. We also discuss the importance of correct establishment of left-right asymmetry for gut development and the consequences of perturbations in this process.
Collapse
Affiliation(s)
- Sally F Burn
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | |
Collapse
|
112
|
Li Z, Korzh V, Gong Z. DTA-mediated targeted ablation revealed differential interdependence of endocrine cell lineages in early development of zebrafish pancreas. Differentiation 2009; 78:241-52. [DOI: 10.1016/j.diff.2009.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/23/2009] [Accepted: 05/30/2009] [Indexed: 11/26/2022]
|
113
|
Anderson RM, Bosch JA, Goll MG, Hesselson D, Dong PDS, Shin D, Chi NC, Shin CH, Schlegel A, Halpern M, Stainier DY. Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 2009; 334:213-23. [PMID: 19631206 PMCID: PMC2759669 DOI: 10.1016/j.ydbio.2009.07.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 07/07/2009] [Accepted: 07/15/2009] [Indexed: 02/02/2023]
Abstract
Developmental mechanisms regulating gene expression and the stable acquisition of cell fate direct cytodifferentiation during organogenesis. Moreover, it is likely that such mechanisms could be exploited to repair or regenerate damaged organs. DNA methyltransferases (Dnmts) are enzymes critical for epigenetic regulation, and are used in concert with histone methylation and acetylation to regulate gene expression and maintain genomic integrity and chromosome structure. We carried out two forward genetic screens for regulators of endodermal organ development. In the first, we screened for altered morphology of developing digestive organs, while in the second we screed for the lack of terminally differentiated cell types in the pancreas and liver. From these screens, we identified two mutant alleles of zebrafish dnmt1. Both lesions are predicted to eliminate dnmt1 function; one is a missense mutation in the catalytic domain and the other is a nonsense mutation that eliminates the catalytic domain. In zebrafish dnmt1 mutants, the pancreas and liver form normally, but begin to degenerate after 84 h post fertilization (hpf). Acinar cells are nearly abolished through apoptosis by 100 hpf, though neither DNA replication, nor entry into mitosis is halted in the absence of detectable Dnmt1. However, endocrine cells and ducts are largely spared. Surprisingly, dnmt1 mutants and dnmt1 morpholino-injected larvae show increased capacity for pancreatic beta cell regeneration in an inducible model of pancreatic beta cell ablation. Thus, our data suggest that Dnmt1 is dispensable for pancreatic duct or endocrine cell formation, but not for acinar cell survival. In addition, Dnmt1 may influence the differentiation of pancreatic beta cell progenitors or the reprogramming of cells toward the pancreatic beta cell fate.
Collapse
Affiliation(s)
- Ryan M. Anderson
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Justin A. Bosch
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Mary G. Goll
- Department of Embryology, Carnegie Institution for Science 3520 San Martin Drive Baltimore MD 21218, USA
| | - Daniel Hesselson
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - P. Duc Si Dong
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Donghun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Neil C. Chi
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Chong Hyun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Amnon Schlegel
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
- Department of Medicine, Division of Endocrinology, San Francisco General Hospital, 1001 Potrero Ave, San Francisco, CA 941110
| | - Marnie Halpern
- Department of Embryology, Carnegie Institution for Science 3520 San Martin Drive Baltimore MD 21218, USA
| | - Didier Y.R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| |
Collapse
|
114
|
Castillo J, Crespo D, Capilla E, Díaz M, Chauvigné F, Cerdà J, Planas JV. Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose transporter gene (SLC2A2) in zebrafish. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1570-81. [PMID: 19776250 DOI: 10.1152/ajpregu.00430.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In mammals, GLUT2 plays an essential role in glucose homeostasis. From an evolutionary perspective, relatively little is known about the biology of GLUT2, or other GLUTs, in nonmammalian vertebrates. Here, we have conducted studies to functionally characterize GLUT2 in zebrafish. First, we cloned the zebrafish ortholog of GLUT2 (zfGLUT2) encoding a protein of 504 amino acids with high-sequence identity to other known vertebrate GLUT2 proteins. The zfGLUT2 gene consists of 11 exons and 10 introns, spanning 20 kb and mapping to a region of chromosome 2 that exhibits conserved synteny with human chromosome 3. When expressed in Xenopus oocytes, zfGLUT2 transported 2-deoxyglucose (2-DG) with similar affinity than mammalian GLUT2 (K(m) of 11 mM). Transport of 2-DG was competed mostly by D-fructose and D-mannose and was inhibited by cytochalasin B. During early development, zfGLUT2 expression was detected already at 10 h postfertilization and remained elevated in 5-day larvae, when it was clearly localized to the liver and intestinal bulb. In the adult, zfGLUT2 expression was highest in testis, brain, skin, kidney, and intestine, followed by liver and muscle. In the intestine, zfGLUT2 transcripts were detected in absorptive enterocytes, and its mRNA levels were altered by fasting and refeeding, suggesting that its expression in the intestine may be regulated by the nutritional status. These results indicate that the structure and function of GLUT2 has been remarkably well conserved during vertebrate evolution and open the way for the use of zebrafish as a model species in which to study the biology and pathophysiology of GLUT2.
Collapse
Affiliation(s)
- Juan Castillo
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
115
|
Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc Natl Acad Sci U S A 2009; 106:14896-901. [PMID: 19706417 DOI: 10.1073/pnas.0906348106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pancreatic beta-cells are critical regulators of glucose homeostasis, and they vary dramatically in their glucose stimulated metabolic response and levels of insulin secretion. It is unclear whether these parameters are influenced by the developmental origin of individual beta-cells. Using HOTcre, a Cre-based genetic switch that uses heat-induction to precisely control the temporal expression of transgenes, we labeled two populations of beta-cells within the developing zebrafish pancreas. These populations originate in distinct pancreatic buds and exhibit gene expression profiles suggesting distinct functions during development. We find that the dorsal bud derived beta-cells are quiescent and exhibit a marked decrease in insulin expression postembryonically. In contrast, ventral bud derived beta-cells proliferate actively, and maintain high levels of insulin expression compared with dorsal bud derived beta-cells. Therapeutic strategies to regulate beta-cell proliferation and function are required to cure pathological states that result from excessive beta-cell proliferation (e.g., insulinoma) or insufficient beta-cell mass (e.g., diabetes mellitus). Our data reveal the existence of distinct populations of beta-cells in vivo and should help develop better strategies to regulate beta-cell differentiation and proliferation.
Collapse
|
116
|
Moro E, Gnügge L, Braghetta P, Bortolussi M, Argenton F. Analysis of beta cell proliferation dynamics in zebrafish. Dev Biol 2009; 332:299-308. [PMID: 19500567 DOI: 10.1016/j.ydbio.2009.05.576] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
Among the different mechanisms invoked to explain the beta cell mass expansion during postnatal stages and adulthood, self-replication is being considered the major cellular event occurring both under physiological conditions and in regenerating pancreas after partial pancreactomy. Neogenesis, i.e. differentiation from pancreatic progenitors, has been demonstrated to act concurrently with beta cell replication during pancreatic regeneration. Both phenomena have been largely elucidated in higher vertebrates (mouse, rat and guinea pig), but an extensive description of beta cell dynamics in other animal models is currently lacking. We, therefore, explored in zebrafish the cellular origins of new beta cells in both adult and larval stages. By integrating the results from in vivo time lapse analysis and immunostaining, we provide a detailed reconstruction of the major processes involved in fish beta cell genesis and maintenance. Moreover, by establishing the selective ablation of proliferating beta cells, through the ganciclovir-HSVTK system, we could show that in larval stages self-replication is the main mechanism of beta cells expansion. Since the same mechanism of proliferation has been observed to occur during early and late life stages, we suggest that zebrafish larvae can be used as an alternative tool for an in vivo exploration and screening of new potential mitogens specifically targeting beta cells.
Collapse
Affiliation(s)
- Enrico Moro
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
117
|
Liver development in zebrafish (Danio rerio). J Genet Genomics 2009; 36:325-34. [PMID: 19539242 DOI: 10.1016/s1673-8527(08)60121-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 12/17/2022]
Abstract
Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver initiation and development during embryogenesis using zebrafish as a model system. We mainly focused on topics related to the specification of hepatoblasts from endoderm, the formation and growth of liver bud, the differentiation of hepatocytes and bile duct cells from hepatoblasts, and finally the role of mesodermal signals in controlling liver development in zebrafish.
Collapse
|
118
|
Faro A, Boj SF, Ambrósio R, van den Broek O, Korving J, Clevers H. T-cell factor 4 (tcf7l2) is the main effector of Wnt signaling during zebrafish intestine organogenesis. Zebrafish 2009; 6:59-68. [PMID: 19374549 DOI: 10.1089/zeb.2009.0580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Wnt pathway orchestrates cell fate decisions during embryonic development, organogenesis, and adult tissues homeostasis. T-cell factor (Tcf )/lymphoid enhancer-binding factor (Lef) transcription factors are the downstream effectors of canonical Wnt signaling. Upon Wnt signal activation, beta-catenin stabilizes and translocates to the nucleus, where it interacts with Tcfs activating the transcription of Wnt target genes. In the absence of Wnt, levels of stable beta-catenin are reduced by the action of adenomatous polyposis coli (Apc) and other cytoplasmic proteins. Mutations in Apc cause constitutive accumulation of beta-catenin and inappropriate activation of the Wnt pathway. apc(mcr/mcr) fish embryos show absence of expression of tissue-specific differentiation markers in the intestine, suggesting that inappropriate activation of Wnt signaling abrogates gut organogenesis. Which Tcf transcription factor mediates Wnt signaling during zebrafish gut organogenesis remains unclear. We studied the combined effect of loss of Tcf family members and Apc in the developing embryo. Tcf4 (tcf7l2) loss rescues the apc(mcr/mcr) phenotype in the intestine. Single depletion of Tcf1 (tcf7) and Tcf3 (tcf7l1a) function in an Apc mutant background had no effect on endoderm development. This study reveals that Tcf4 (tcf7l2) is the major effector of Wnt signaling in the intestine during zebrafish organogenesis.
Collapse
Affiliation(s)
- Ana Faro
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
119
|
Parsons MJ, Pisharath H, Yusuff S, Moore JC, Siekmann AF, Lawson N, Leach SD. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech Dev 2009; 126:898-912. [PMID: 19595765 DOI: 10.1016/j.mod.2009.07.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/23/2009] [Accepted: 07/02/2009] [Indexed: 11/28/2022]
Abstract
Zebrafish provide a highly versatile model in which to study vertebrate development. Many recent studies have elucidated early events in the organogenesis of the zebrafish pancreas; however, several aspects of early endocrine pancreas formation in the zebrafish are not homologous to the mammalian system. To better identify mechanisms of islet formation in the zebrafish, with true homology to those observed in mammals, we have temporally and spatially characterized zebrafish secondary islet formation. As is the case in the mouse, we show that Notch inhibition leads to precocious differentiation of endocrine tissues. Furthermore, we have used transgenic fish expressing fluorescent markers under the control of a Notch-responsive element to observe the precursors of these induced endocrine cells. These pancreatic Notch-responsive cells represent a novel population of putative progenitors that are associated with larval pancreatic ductal epithelium, suggesting functional homology between secondary islet formation in zebrafish and the secondary transition in mammals. We also show that Notch-responsive cells persist in the adult pancreas and possess the classical characteristics of centroacinar cells, a cell type believed to be a multipotent progenitor cell in adult mammalian pancreas.
Collapse
Affiliation(s)
- Michael J Parsons
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Lam PY, Webb SE, Leclerc C, Moreau M, Miller AL. Inhibition of stored Ca2+ release disrupts convergence-related cell movements in the lateral intermediate mesoderm resulting in abnormal positioning and morphology of the pronephric anlagen in intact zebrafish embryos. Dev Growth Differ 2009; 51:429-42. [PMID: 19382938 DOI: 10.1111/j.1440-169x.2009.01106.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ca(2+) is a highly versatile intra- and intercellular signal that has been reported to regulate a variety of different pattern-forming processes during early development. To investigate the potential role of Ca(2+) signaling in regulating convergence-related cell movements, and the positioning and morphology of the pronephric anlagen, we treated zebrafish embryos from 11.5 h postfertilization (hpf; i.e. just before the pronephric anlagen are morphologically distinguishable in the lateral intermediate mesoderm; LIM) to 16 hpf, with a variety of membrane permeable pharmacological reagents known to modulate [Ca(2+)](i). The effect of these treatments on pronephric anlagen positioning and morphology was determined in both fixed and live embryos via in situ hybridization using the pronephic-specific probes, cdh17, pax2.1 and sim1, and confocal imaging of BODIPY FL C(5)-ceramide-labeled embryos, respectively. We report that Ca(2+) released from intracellular stores via inositol 1,4,5-trisphosphate receptors plays a significant role in the positioning and morphology of the pronephric anlagen, but does not affect the fate determination of the LIM cells that form these primordia. Our data suggest that when Ca(2+) release is inhibited, the resulting effects on the pronephric anlagen are a consequence of the disruption of normal convergence-related movements of LIM cells toward the embryonic midline.
Collapse
Affiliation(s)
- Pui Ying Lam
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
121
|
Abstract
Understanding how the pancreas develops is vital to finding new treatments for a range of pancreatic diseases, including diabetes and pancreatic cancer. Xenopus is a relatively new model organism for the elucidation of pancreas development, and has already made contributions to the field. Recent studies have shown benefits of using Xenopus for understanding both early patterning and lineage specification aspects of pancreas organogenesis. This review focuses specifically on Xenopus pancreas development, and covers events from the end of gastrulation, when regional specification of the endoderm is occurring, right through metamorphosis, when the mature pancreas is fully formed. We have attempted to cover pancreas development in Xenopus comprehensively enough to assist newcomers to the field and also to enable those studying pancreas development in other model organisms to better place the results from Xenopus research into the context of the field in general and their studies specifically. Developmental Dynamics 238:1271-1286, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Esther J. Pearl
- Laboratory of Molecular Organogenesis, Institut de Recherches Cliniques de Montréal, Montréal, QC Canada
- Département de Médecine, Université de Montréal, Montréal, Canada
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Cassandra K. Bilogan
- Laboratory of Molecular Organogenesis, Institut de Recherches Cliniques de Montréal, Montréal, QC Canada
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
- Division of Experimental Medicine and Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Sandeep Mukhi
- Department of Embryology, Carnegie Institution, Baltimore, Maryland
| | - Donald D. Brown
- Department of Embryology, Carnegie Institution, Baltimore, Maryland
| | - Marko E. Horb
- Laboratory of Molecular Organogenesis, Institut de Recherches Cliniques de Montréal, Montréal, QC Canada
- Département de Médecine, Université de Montréal, Montréal, Canada
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
- Division of Experimental Medicine and Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| |
Collapse
|
122
|
Xu M, Volkoff H. Cloning, tissue distribution and effects of food deprivation on pituitary adenylate cyclase activating polypeptide (PACAP)/PACAP-related peptide (PRP) and preprosomatostatin 1 (PPSS 1) in Atlantic cod (Gadus morhua). Peptides 2009; 30:766-76. [PMID: 19135491 DOI: 10.1016/j.peptides.2008.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Full-length complementary deoxyribonucleic acid sequences encoding pituitary adenylate cyclase activating polypeptide (PACAP)/PACAP-related peptide (PRP) and preprosomatostatin 1 (PPSS 1) were cloned from Atlantic cod (Gadus morhua) hypothalamus using reverse transcription and rapid amplification of complementary deoxyribonucleic acid ends. Semi-quantitative reverse transcriptase polymerase chain reaction shows that PRP/PACAP mRNA and PPSS 1 mRNA are widely distributed throughout cod brain. During development, PRP/PACAP and PPSS 1 were detected at the 30-somite stage and pre-hatching stage, respectively, and expression levels gradually increased up to the hatched larvae. PPSS 1, but not PRP/PACAP, appeared to be affected by food availability during early development. In juvenile cod, PPSS 1 expression levels increased and remained significantly higher than that of control fed fish throughout 30 days of starvation and during a subsequent 10 days refeeding period. In contrast, PRP/PACAP expression levels were not affected by 30 days of food deprivation, but a significant increase in expression levels was observed during the 10 days refeeding period in the experimental food-deprived group as compared to the control fed group. Our results suggest that PRP/PACAP and PPSS 1 may be involved in the complex regulation of growth, feeding and metabolism during food deprivation and refeeding in Atlantic cod.
Collapse
Affiliation(s)
- Meiyu Xu
- Departments of Biology, Memorial University of Newfoundland, St John's, Canada.
| | | |
Collapse
|
123
|
Abstract
Over the last two decades zebrafish has been an excellent model organism to study vertebrate development. Mutant analysis combined with gene knockdown and other manipulations revealed an essential role of Wnt signaling, independent of beta-catenin, during development. Especially well characterized is the function of Wnt/planar cell polarity (PCP) signaling in the regulation of gastrulation movements and neurulation, described in other reviews within this special issue. Here, we set out to highlight some of the new and exciting research that is being carried out in zebrafish to elucidate the role that Wnt/PCP signaling plays in the formation of specific organs, including the lateral line, craniofacial development, and regeneration. We also summarized the emerging connection of the Wnt/PCP pathway with primary cilia function, an essential organelle in several organ activities.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Children's Memorial Research Center, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
124
|
Exdpf is a key regulator of exocrine pancreas development controlled by retinoic acid and ptf1a in zebrafish. PLoS Biol 2009; 6:e293. [PMID: 19067490 PMCID: PMC2586380 DOI: 10.1371/journal.pbio.0060293] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/14/2008] [Indexed: 01/19/2023] Open
Abstract
Both endocrine and exocrine pancreatic cells arise from pancreatic-duodenal homeobox 1 (pdx1)-positive progenitors. The molecular mechanisms controlling cell fate determination and subsequent proliferation, however, are poorly understood. Unlike endocrine cells, less is known about exocrine cell specification. We report here the identification and characterization of a novel exocrine cell determinant gene, exocrine differentiation and proliferation factor (exdpf), which is highly expressed in the exocrine cell progenitors and differentiated cells of the developing pancreas in zebrafish. Knockdown of exdpf by antisense morpholino caused loss or significant reduction of exocrine cells due to lineage-specific cell cycle arrest but not apoptosis, whereas the endocrine cell mass appeared normal. Real-time PCR results demonstrated that the cell cycle arrest is mediated by up-regulation of cell cycle inhibitor genes p21(Cip), p27(Kip), and cyclin G1 in the exdpf morphants. Conversely, overexpression of exdpf resulted in an overgrowth of the exocrine pancreas and a severe reduction of the endocrine cell mass, suggesting an inhibitory role for exdpf in endocrine cell progenitors. We show that exdpf is a direct target gene of pancreas-specific transcription factor 1a (Ptf1a), a transcription factor critical for exocrine formation. Three consensus Ptf1a binding sites have been identified in the exdpf promoter region. Luciferase assay demonstrated that Ptf1a promotes transcription of the exdpf promoter. Furthermore, exdpf expression in the exocrine pancreas was lost in ptf1a morphants, and overexpression of exdpf successfully rescued exocrine formation in ptf1a-deficient embryos. Genetic evidence places expdf downstream of retinoic acid (RA), an instructive signal for pancreas development. Knocking down exdpf by morpholino abolished ectopic carboxypeptidase A (cpa) expression induced by RA. On the other hand, exdpf mRNA injection rescued endogenous cpa expression in embryos treated with diethylaminobenzaldehyde, an inhibitor of RA signaling. Moreover, exogenous RA treatment induced anterior ectopic expression of exdpf and trypsin in a similar pattern. Our study provides a new understanding of the molecular mechanisms controlling exocrine cell specification and proliferation by a novel gene, exdpf. Highly conserved in mammals, the expression level of exdpf appears elevated in several human tumors, suggesting a possible role in tumor pathogenesis.
Collapse
|
125
|
Abstract
Development of the vertebrate pancreas is a complex stepwise process comprising regionalization, cell differentiation, and morphogenesis. Studies in zebrafish are contributing to an emerging picture of pancreas development in which extrinsic signaling molecules influence intrinsic transcriptional programs to allow ultimate differentiation of specific pancreatic cell types. Zebrafish experiments have revealed roles for several signaling molecules in aspects of this process; for example our own work has shown that retinoic acid signals specify the pre-pancreatic endoderm. Time-lapse imaging of live zebrafish embryos has started to provide detailed information about early pancreas morphogenesis. In addition to modeling embryonic development, the zebrafish has recently been used as a model for pancreas regeneration studies. Here, we review the significant progress in these areas and consider the future potential of zebrafish as a diabetes research model.
Collapse
Affiliation(s)
- Mary D Kinkel
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
126
|
Li Z, Wen C, Peng J, Korzh V, Gong Z. Generation of living color transgenic zebrafish to trace somatostatin-expressing cells and endocrine pancreas organization. Differentiation 2009; 77:128-34. [DOI: 10.1016/j.diff.2008.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 08/10/2008] [Accepted: 08/11/2008] [Indexed: 11/30/2022]
|
127
|
Chung WS, Shin CH, Stainier DYR. Bmp2 signaling regulates the hepatic versus pancreatic fate decision. Dev Cell 2008; 15:738-48. [PMID: 19000838 PMCID: PMC2610857 DOI: 10.1016/j.devcel.2008.08.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 07/25/2008] [Accepted: 08/28/2008] [Indexed: 11/20/2022]
Abstract
Explant culture data have suggested that the liver and pancreas originate from common progenitors. We used single-cell-lineage tracing in zebrafish to investigate this question in vivo as well as to analyze the hepatic versus pancreatic fate decision. At early somite stages, endodermal cells located at least two cells away from the midline can give rise to both liver and pancreas. In contrast, endodermal cells closer to the midline give rise to pancreas and intestine, but not liver. Loss- and gain-of-function analyses show that Bmp2b, expressed in the lateral plate mesoderm, signals through Alk8 to induce endodermal cells to become liver. When Bmp2b was overexpressed, medially located endodermal cells, fated to become pancreas and intestine, contributed to the liver. These data provide in vivo evidence for the existence of bipotential hepatopancreatic progenitors and indicate that their fate is regulated by the medio-lateral patterning of the endodermal sheet, a process controlled by Bmp2b.
Collapse
Affiliation(s)
| | | | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, the Liver Center and the Diabetes Center, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| |
Collapse
|
128
|
Noël ES, Casal-Sueiro A, Busch-Nentwich E, Verkade H, Dong PDS, Stemple DL, Ober EA. Organ-specific requirements for Hdac1 in liver and pancreas formation. Dev Biol 2008; 322:237-50. [PMID: 18687323 PMCID: PMC3710974 DOI: 10.1016/j.ydbio.2008.06.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 05/28/2008] [Accepted: 06/20/2008] [Indexed: 12/14/2022]
Abstract
Liver, pancreas and lung originate from the presumptive foregut in temporal and spatial proximity. This requires precisely orchestrated transcriptional activation and repression of organ-specific gene expression within the same cell. Here, we show distinct roles for the chromatin remodelling factor and transcriptional repressor Histone deacetylase 1 (Hdac1) in endodermal organogenesis in zebrafish. Loss of Hdac1 causes defects in timely liver specification and in subsequent differentiation. Mosaic analyses reveal a cell-autonomous requirement for hdac1 within the hepatic endoderm. Our studies further reveal specific functions for Hdac1 in pancreas development. Loss of hdac1 causes the formation of ectopic endocrine clusters anteriorly to the main islet, as well as defects in exocrine pancreas specification and differentiation. In addition, we observe defects in extrahepatopancreatic duct formation and morphogenesis. Finally, loss of hdac1 results in an expansion of the foregut endoderm in the domain from which the liver and pancreas originate. Our genetic studies demonstrate that Hdac1 is crucial for regulating distinct steps in endodermal organogenesis. This suggests a model in which Hdac1 may directly or indirectly restrict foregut fates while promoting hepatic and exocrine pancreatic specification and differentiation, as well as pancreatic endocrine islet morphogenesis. These findings establish zebrafish as a tractable system to investigate chromatin remodelling factor functions in controlling gene expression programmes in vertebrate endodermal organogenesis.
Collapse
Affiliation(s)
- Emily S. Noël
- National Institute for Medical Research, Division of Developmental Biology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Antonio Casal-Sueiro
- National Institute for Medical Research, Division of Developmental Biology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | - Heather Verkade
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Liver Center, University of California, San Francisco, CA 94158, USA
| | - P. Duc Si Dong
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Liver Center, University of California, San Francisco, CA 94158, USA
| | - Derek L. Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome, Campus Hinxton, Cambridge, CB10 1SA, UK
| | - Elke A. Ober
- National Institute for Medical Research, Division of Developmental Biology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
129
|
Abstract
Directed cell movements during gastrulation establish the germ layers of the vertebrate embryo and coordinate their contributions to different tissues and organs. Anterior migration of the mesoderm and endoderm has largely been interpreted to result from epiboly and convergent-extension movements that drive body elongation. We show that the chemokine Cxcl12b and its receptor Cxcr4a restrict anterior migration of the endoderm during zebrafish gastrulation, thereby coordinating its movements with those of the mesoderm. Depletion of either gene product causes disruption of integrin-dependent cell adhesion, resulting in separation of the endoderm from the mesoderm; the endoderm then migrates farther anteriorly than it normally would, resulting in bilateral duplication of endodermal organs. This process may have relevance to human gastrointestinal bifurcations and other organ defects.
Collapse
Affiliation(s)
- Sreelaja Nair
- Department of Developmental and Cell Biology University of California, Irvine 92697-2300 USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology University of California, Irvine 92697-2300 USA
| |
Collapse
|
130
|
Sanders EJ, Harvey S. Peptide hormones as developmental growth and differentiation factors. Dev Dyn 2008; 237:1537-52. [PMID: 18498096 DOI: 10.1002/dvdy.21573] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peptide hormones, usually considered to be endocrine factors responsible for communication between tissues remotely located from each other, are increasingly being found to be synthesized in developing tissues, where they act locally. Several hormones are now known to be produced in developing tissues that are unrelated to the endocrine gland of origin in the adult. These hormones are synthesized locally, and are active as differentiation and survival factors, before the developing adult endocrine tissue becomes functional. There is increasing evidence for paracrine and/or autocrine actions for these factors during development, thus, placing them among the conventional growth and differentiation factors. We review the evidence for the view that thyroid hormones, growth hormone, prolactin, insulin, and parathyroid hormone-related protein are developmental growth and differentiation factors.
Collapse
Affiliation(s)
- Esmond J Sanders
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
131
|
Delporte FM, Pasque V, Devos N, Manfroid I, Voz ML, Motte P, Biemar F, Martial JA, Peers B. Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors. BMC DEVELOPMENTAL BIOLOGY 2008; 8:53. [PMID: 18485195 PMCID: PMC2409314 DOI: 10.1186/1471-213x-8-53] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/16/2008] [Indexed: 02/04/2023]
Abstract
Background PAX6 is a transcription factor playing a crucial role in the development of the eye and in the differentiation of the pancreatic endocrine cells as well as of enteroendocrine cells. Studies on the mouse Pax6 gene have shown that sequences upstream from the P0 promoter are required for expression in the lens and the pancreas; but there remain discrepancies regarding the precise location of the pancreatic regulatory elements. Results Due to genome duplication in the evolution of ray-finned fishes, zebrafish has two pax6 genes, pax6a and pax6b. While both zebrafish pax6 genes are expressed in the developing eye and nervous system, only pax6b is expressed in the endocrine cells of the pancreas. To investigate the cause of this differential expression, we used a combination of in silico, in vivo and in vitro approaches. We show that the pax6b P0 promoter targets expression to endocrine pancreatic cells and also to enteroendocrine cells, retinal neurons and the telencephalon of transgenic zebrafish. Deletion analyses indicate that strong pancreatic expression of the pax6b gene relies on the combined action of two conserved regulatory enhancers, called regions A and C. By means of gel shift assays, we detected binding of the homeoproteins PDX1, PBX and PREP to several cis-elements of these regions. In constrast, regions A and C of the zebrafish pax6a gene are not active in the pancreas, this difference being attributable to sequence divergences within two cis-elements binding the pancreatic homeoprotein PDX1. Conclusion Our data indicate a conserved role of enhancers A and C in the pancreatic expression of pax6b and emphasize the importance of the homeoproteins PBX and PREP cooperating with PDX1, in activating pax6b expression in endocrine pancreatic cells. This study also provides a striking example of how adaptative evolution of gene regulatory sequences upon gene duplication progressively leads to subfunctionalization of the paralogous gene pair.
Collapse
Affiliation(s)
- François M Delporte
- Unit of Molecular Biology and Genetic Engineering, University of Liège, Giga-R, B34, Avenue de l'hôpital, 1, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Shin CH, Chung WS, Hong SK, Ober EA, Verkade H, Field HA, Huisken J, Stainier DYR. Multiple roles for Med12 in vertebrate endoderm development. Dev Biol 2008; 317:467-79. [PMID: 18394596 PMCID: PMC2435012 DOI: 10.1016/j.ydbio.2008.02.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 02/02/2023]
Abstract
In zebrafish, the endoderm originates at the blastula stage from the most marginal blastomeres. Through a series of complex morphogenetic movements and differentiation events, the endodermal germ layer gives rise to the epithelial lining of the digestive tract as well as its associated organs such as the liver, pancreas, and swim bladder. How endodermal cells differentiate into distinct cell types such as hepatocytes or endocrine and exocrine pancreatic cells remains a major question. In a forward genetic screen for genes regulating endodermal organ development, we identified mutations at the shiri locus that cause defects in the development of a number of endodermal organs including the liver and pancreas. Detailed phenotypic analyses indicate that these defects are partially due to a reduction in endodermal expression of the hairy/enhancer of split-related gene, her5, at mid to late gastrulation stages. Using the Tg(0.7her5:EGFP)(ne2067) line, we show that her5 is expressed in the endodermal precursors that populate the pharyngeal region as well as the organ-forming region. We also find that knocking down her5 recapitulates some of the endodermal phenotypes of shiri mutants, further revealing the role of her5 in endoderm development. Positional cloning reveals that shiri encodes Med12, a regulatory subunit of the transcriptional Mediator complex recently associated with two human syndromes. Additional studies indicate that Med12 modulates the ability of Casanova/Sox32 to induce sox17 expression. Thus, detailed phenotypic analyses of embryos defective in a component of the Mediator complex have revealed new insights into discrete aspects of vertebrate endoderm development, and provide possible explanations for the craniofacial and digestive system defects observed in humans with mutations in MED12.
Collapse
Affiliation(s)
- Chong Hyun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Won-Suk Chung
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892, USA
| | - Elke A. Ober
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Heather Verkade
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Holly A. Field
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Jan Huisken
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| |
Collapse
|
133
|
Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RHA. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 2008; 5:e203. [PMID: 17676975 PMCID: PMC1925136 DOI: 10.1371/journal.pbio.0050203] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 05/22/2007] [Indexed: 12/19/2022] Open
Abstract
Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish.
Collapse
Affiliation(s)
| | | | - René F Ketting
- Hubrecht Laboratory-KNAW, Utrecht, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| | - Jon D Moulton
- Gene Tools, Philomath, Oregon, United States of America
| | | |
Collapse
|
134
|
Chung WS, Stainier DYR. Intra-endodermal interactions are required for pancreatic beta cell induction. Dev Cell 2008; 14:582-93. [PMID: 18410733 PMCID: PMC2396532 DOI: 10.1016/j.devcel.2008.02.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/18/2007] [Accepted: 02/04/2008] [Indexed: 11/19/2022]
Abstract
The cellular origin of signals that regulate pancreatic beta cell induction is not clearly defined. Here, we investigate the seeming paradox that Hedgehog/Smoothened signaling functions during gastrulation to promote pancreatic beta cell development in zebrafish, yet has an inhibitory role during later stages of pancreas development in amniotes. Our cell transplantation experiments reveal that in zebrafish, Smoothened function is not required in beta cell precursors. At early somitogenesis stages, when the zebrafish endoderm first forms a sheet, pancreatic beta cell precursors lie closest to the midline; however, the requirement for Smoothened lies in their lateral neighbors, which ultimately give rise to the exocrine pancreas and intestine. Thus, pancreatic beta cell induction requires Smoothened function cell-nonautonomously during gastrulation, to allow subsequent intra-endodermal interactions. These results clarify the function of Hedgehog signaling in pancreas development, identify an unexpected cellular source of factors that regulate beta cell specification, and uncover complex patterning and signaling interactions within the endoderm.
Collapse
Affiliation(s)
- Won-Suk Chung
- Department of Biochemistry and Biophysics, and the Diabetes Center, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
135
|
Kinkel MD, Eames SC, Alonzo MR, Prince VE. Cdx4 is required in the endoderm to localize the pancreas and limit beta-cell number. Development 2008; 135:919-29. [PMID: 18234725 DOI: 10.1242/dev.010660] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cdx transcription factors have crucial roles in anteroposterior patterning of the nervous system and mesoderm. Here we focus on the role of cdx4 in patterning the endoderm in zebrafish. We show that cdx4 has roles in determining pancreatic beta-cell number, directing midline convergence of beta-cells during early pancreatic islet formation, and specifying the anteroposterior location of foregut organs. Embryos deficient in cdx4 have a posteriorly shifted pancreas, liver and small intestine. The phenotype is more severe with knockdown of an additional Cdx factor, cdx1a. We show that cdx4 functions within the endoderm to localize the pancreas. Morpholino knockdown of cdx4 specifically in the endoderm recapitulates the posteriorly shifted pancreas observed in cdx4 mutants. Conversely, overexpression of cdx4 specifically in the endoderm is sufficient to shift the pancreas anteriorly. Together, these results suggest a model in which cdx4 confers posterior identity to the endoderm. Cdx4 might function to block pancreatic identity by preventing retinoic acid (RA) signal transduction in posterior endoderm. In support of this, we demonstrate that in cdx4-deficient embryos treated with RA, ectopic beta-cells are located well posterior to the normal pancreatic domain.
Collapse
Affiliation(s)
- Mary D Kinkel
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
136
|
Verkade H, Heath JK. Wnt signaling mediates diverse developmental processes in zebrafish. Methods Mol Biol 2008; 469:225-51. [PMID: 19109714 DOI: 10.1007/978-1-60327-469-2_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A combination of forward and reverse genetic approaches in zebrafish has revealed novel roles for canonical Wnt and Wnt/PCP signaling during vertebrate development. Forward genetics in zebrafish provides an exceptionally powerful tool to assign roles in vertebrate developmental processes to novel genes, as well as elucidating novel roles played by known genes. This has indeed turned out to be the case for components of the canonical Wnt signaling pathway. Non-canonical Wnt signaling in the zebrafish is also currently a topic of great interest, due to the identified roles of this pathway in processes requiring the integration of cell polarity and cell movement, such as the directed migration movements that drive the narrowing and lengthening (convergence and extension) of the embryo during early development.
Collapse
Affiliation(s)
- Heather Verkade
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
137
|
Wang H, Zhou Q, Kesinger JW, Norris C, Valdez C. Heme regulates exocrine peptidase precursor genes in zebrafish. Exp Biol Med (Maywood) 2007; 232:1170-80. [PMID: 17895525 DOI: 10.3181/0703-rm-77] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously determined that yquem harbors a mutation in the gene encoding uroporphyrinogen decarboxylase (UROD), the fifth enzyme in heme biosynthesis, and established zebrafish yquem (yqe(tp61)) as a vertebrate model for human hepatoery-thropoietic porphyria (HEP). Here we report that six exocrine peptidase precursor genes, carboxypeptidase A, trypsin precursor, trypsin like, chymotrypsinogen B1, chymotrypsinogen 1-like, and elastase 2 like, are downregulated in yquem/urod (-/-), identified initially by microarray analysis of yquem/urod zebrafish and, subsequently, confirmed by in situ hybridization. We then determined downregulation of these six zymogens specifically in the exocrine pancreas of sauternes (sau(tb223)) larvae, carrying a mutation in the gene encoding delta-amino-levulinate synthase (ALAS2), the first enzyme in heme biosynthesis. We also found that ptf1a, a transcription factor regulating exocrine zymogens, is downregulated in both yquem/urod (-/-) and sau/alas2 (-/-) larvae. Further, hemin treatment rescues expression of ptf1a and these six zymogens in both yquem/urod (-/-) and sauternes/alas2 (-/-) larvae. Thus, it appears that heme deficiency downregulates ptf1a, which, in turn, leads to downregulation of exocrine zymogens. Our findings provide a better understanding of heme deficiency pathogenesis and enhance our ability to diagnose and treat patients with porphyria or pancreatic diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Zoology and Stephenson Research & Technology Center, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | | | |
Collapse
|
138
|
Manfroid I, Delporte F, Baudhuin A, Motte P, Neumann CJ, Voz ML, Martial JA, Peers B. Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development. Development 2007; 134:4011-21. [PMID: 17942484 DOI: 10.1242/dev.007823] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In amniotes, the pancreatic mesenchyme plays a crucial role in pancreatic epithelium growth, notably through the secretion of fibroblast growth factors. However, the factors involved in the formation of the pancreatic mesenchyme are still largely unknown. In this study, we characterize, in zebrafish embryos, the pancreatic lateral plate mesoderm, which is located adjacent to the ventral pancreatic bud and is essential for its specification and growth. We firstly show that the endoderm, by expressing the fgf24 gene at early stages, triggers the patterning of the pancreatic lateral plate mesoderm. Based on the expression of isl1, fgf10 and meis genes, this tissue is analogous to the murine pancreatic mesenchyme. Secondly, Fgf10 acts redundantly with Fgf24 in the pancreatic lateral plate mesoderm and they are both required to specify the ventral pancreas. Our results unveil sequential signaling between the endoderm and mesoderm that is critical for the specification and growth of the ventral pancreas, and explain why the zebrafish ventral pancreatic bud generates the whole exocrine tissue.
Collapse
Affiliation(s)
- Isabelle Manfroid
- GIGA-Research-Unité de Biologie Moléculaire et Génie Génétique, Tour B34, Université de Liège, B-4000 Sart Tilman, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Guo X, Cheng L, Liu Y, Fan W, Lu D. Cloning, expression, and functional characterization of zebrafish Mist1. Biochem Biophys Res Commun 2007; 359:20-6. [PMID: 17531198 DOI: 10.1016/j.bbrc.2007.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/06/2007] [Indexed: 11/16/2022]
Abstract
The basic helix-loop-helix (bHLH) protein Mist1 is an important exocrine pancreas transcriptional factor expressed in the acinar cells of mammals. In the present study, we cloned the homologous Mist1 cDNA encoding a predicted protein of 184 amino acids in zebrafish. The typical bHLH domain of zebrafish Mist1 shares high identity with that of its orthologs in mouse, rat, and human. Expression analysis revealed that Mist1 maternal transcripts are distinct in the very beginning of embryogenesis and that endogenous Mist1 is chronologically expressed in polster, hatching gland, hindbrain and appears exclusively in the pancreas from 72 hpf onward. Knockdown of Mist1 conditionally causes mild morphological defects in embryos. In MO-treated embryos, midbrain-hindbrain boundary is missing and exocrine pancreas is significantly reduced and disorganized. These results suggest that Mist1 functions in an evolutionary conserved way as a key transcriptional regulator specific for exocrine pancreas development in zebrafish.
Collapse
Affiliation(s)
- Xiaofang Guo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | |
Collapse
|
140
|
Pauls S, Zecchin E, Tiso N, Bortolussi M, Argenton F. Function and regulation of zebrafish nkx2.2a during development of pancreatic islet and ducts. Dev Biol 2007; 304:875-90. [PMID: 17335795 DOI: 10.1016/j.ydbio.2007.01.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 01/12/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
In the mouse Nkx2.2 is expressed in the entire pancreatic anlage. Nevertheless, absence of Nkx2.2 only perturbs the development of endocrine cell types, notably beta-cells which are completely absent. In order to test the possibility that Nkx2.2 might fulfil additional functions during pancreas development we analysed its zebrafish homologue nkx2.2a using gene targeting and GFP-transgenic fish lines. Our results suggest similar roles for nkx2.2a and Nkx2.2 during the development of the endocrine pancreas. Morpholino-based knock-down of nkx2.2a leads to a reduction of alpha- and beta-cell number and an increase of ghrelin-producing cells but, as in mice, does not affect delta-cells. Moreover, like in the mouse, two spatially distinct promoters regulate expression of nkx2.2a in precursors and differentiated islet cells. In addition we found that in zebrafish nkx2.2a is also expressed in the anterior pancreatic bud and, later, in the differentiated pancreatic ducts. A nkx2.2a-transgenic line in which pancreatic GFP expression is restricted to the pancreatic ducts revealed that single GFP-positive cells leave the anterior pancreatic bud and move towards the islet where they form intercellular connections between each other. Subsequently, these cells generate the branched network of the larval pancreatic ducts. Morpholinos that block nkx2.2a function also lead to the absence of the pancreatic ducts. We observed the same phenotype in ptf1a-morphants that are additionally characterized by a reduced number of nkx2.2a-positive duct precursors. Whereas important details of the molecular program leading to the differentiation of endocrine cell types are conserved between mammals and zebrafish, our results reveal a new function for nkx2.2a in the development of the pancreatic ducts.
Collapse
Affiliation(s)
- Stefan Pauls
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
141
|
Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, Jones DA, Cairns BR. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev 2007; 21:261-6. [PMID: 17289917 PMCID: PMC1785123 DOI: 10.1101/gad.1472907] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 12/22/2006] [Indexed: 11/24/2022]
Abstract
The roles of DNA methyltransferase-2 (DNMT2) enzymes are controversial; whether DNMT2 functions primarily as a nuclear DNA methyltransferase or as a cytoplasmic tRNA methyltransferase, and whether DNMT2 activity impacts development, as dnmt2 mutant mice or Drosophila lack phenotypes. Here we show that morpholino knockdown of Dnmt2 protein in zebrafish embryos confers differentiation defects in particular organs, including the retina, liver, and brain. Importantly, proper organ differentiation required Dnmt2 activity in the cytoplasm, not in the nucleus. Furthermore, zebrafish Dnmt2 methylates an RNA species of approximately 80 bases, consistent with tRNA methylation. Thus, Dnmt2 promotes zebrafish development, likely through cytoplasmic RNA methylation.
Collapse
Affiliation(s)
- Kunal Rai
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Stephanie Chidester
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Chad V. Zavala
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Elizabeth J. Manos
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Smitha R. James
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA
| | - Adam R. Karpf
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA
| | - David A. Jones
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bradley R. Cairns
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
142
|
Stetsyuk V, Peers B, Mavropoulos A, Verbruggen V, Thisse B, Thisse C, Motte P, Duvillié B, Scharfmann R. Calsenilin is required for endocrine pancreas development in zebrafish. Dev Dyn 2007; 236:1517-25. [PMID: 17450605 DOI: 10.1002/dvdy.21149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calsenilin/DREAM/Kchip3 is a neuronal calcium-binding protein. It is a multifunctional protein, mainly expressed in neural tissues and implicated in regulation of presenilin processing, repression of transcription, and modulation of A-type potassium channels. Here, we performed a search for new genes expressed during pancreatic development and have studied the spatiotemporal expression pattern and possible role of calsenilin in pancreatic development in zebrafish. We detected calsenilin transcripts in the pancreas from 21 somites to 39 hours postfertilization stages. Using double in situ hybridization, we found that the calsenilin gene was expressed in pancreatic endocrine cells. Loss-of-function experiments with anti-calsenilin morpholinos demonstrated that injected morphants have a significant decrease in the number of pancreatic endocrine cells. Furthermore, the knockdown of calsenilin leads to perturbation in islet morphogenesis, suggesting that calsenilin is required for early islet cell migration. Taken together, our results show that zebrafish calsenilin is involved in endocrine cell differentiation and morphogenesis within the pancreas.
Collapse
Affiliation(s)
- V Stetsyuk
- University Paris-Descartes, Faculty of Medicine; INSERM, Necker Hospital, U845/EMI 363, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Zecchin E, Filippi A, Biemar F, Tiso N, Pauls S, Ellertsdottir E, Gnügge L, Bortolussi M, Driever W, Argenton F. Distinct delta and jagged genes control sequential segregation of pancreatic cell types from precursor pools in zebrafish. Dev Biol 2007; 301:192-204. [PMID: 17059815 DOI: 10.1016/j.ydbio.2006.09.041] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 08/28/2006] [Accepted: 09/20/2006] [Indexed: 12/17/2022]
Abstract
The different cell types of the vertebrate pancreas arise asynchronously during organogenesis. Beta-cells producing insulin, alpha-cells producing glucagon, and exocrine cells secreting digestive enzymes differentiate sequentially from a common primordium. Notch signaling has been shown to be a major mechanism controlling these cell-fate choices. So far, the pleiotropy of Delta and Jagged/Serrate genes has hindered the evaluation of the roles of specific Notch ligands, as the phenotypes of knock-out mice are lethal before complete pancreas differentiation. Analyses of gene expression and experimental manipulations of zebrafish embryos allowed us to determine individual contributions of Notch ligands to pancreas development. We have found that temporally distinct phases of both endocrine and exocrine cell type specification are controlled by different delta and jagged genes. Specifically, deltaA knock-down embryos lack alpha cells, similarly to mib (Delta ubiquitin ligase) mutants and embryos treated with DAPT, a gamma secretase inhibitor able to block Notch signaling. Conversely, jagged1b morphants develop an excess of alpha-cells. Moreover, the pancreas of jagged2 knock-down embryos has a decreased ratio of exocrine-to-endocrine compartments. Finally, overexpression of Notch1a-intracellular-domain in the whole pancreas primordium or specifically in beta-cells helped us to refine a model of pancreas differentiation in which cells exit the precursor state at defined stages to form the pancreatic cell lineages, and, by a feedback mediated by different Notch ligands, limit the number of other cells that can leave the precursor state.
Collapse
Affiliation(s)
- E Zecchin
- Dipartimento di Biologia, Universita' di Padova, Via U Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Here, we report a detailed fate map of the zebrafish pancreas at the early gastrula stage of development (6 hours postfertilization; hpf). We show that, at this stage, both pancreas and liver progenitors are symmetrically localized in two broad domains relative to the dorsal organizer. We demonstrate that the dorsal and ventral pancreatic buds can derive from common progenitor pools at 6 hpf, but often derive from independent populations. Endocrine vs. exocrine pancreas show a similar pattern of progenitors, consistent with descriptions of the dorsal bud being strictly endocrine and the ventral bud primarily exocrine. In general, we find that endocrine/dorsal bud progenitors are located more dorsally than the exocrine pancreas/ventral bud progenitors. Later in gastrulation (10 hpf), pancreas progenitors have migrated to bilateral domains at the equator of the embryo. Our fate map will assist with design and interpretation of future experiments to understand early pancreas development.
Collapse
Affiliation(s)
- Andrea B Ward
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60615, USA
| | | | | |
Collapse
|
145
|
Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 2006; 124:218-29. [PMID: 17223324 PMCID: PMC2583263 DOI: 10.1016/j.mod.2006.11.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/26/2006] [Accepted: 11/30/2006] [Indexed: 11/16/2022]
Abstract
In order to generate a zebrafish model of beta cell regeneration, we have expressed an Escherichia coli gene called nfsB in the beta cells of embryonic zebrafish. This bacterial gene encodes a nitroreductase (NTR) enzyme, which can convert prodrugs such as metronidazole (Met) to cytotoxins. By fusing nfsB to mCherry, we can simultaneously render beta cells susceptible to prodrug and visualize Met dependent cell ablation. We show that the neighboring alpha and delta cells are unaffected by prodrug treatment and that ablation is beta cell specific. Following drug removal and 36h of recovery, beta cells regenerate. Using ptf1a morphants, it is clear that this beta cell recovery occurs independently of the presence of the exocrine pancreas. Also, by using photoconvertible Kaede to cell lineage trace and BrdU incorporation to label proliferation, we investigate mechanisms for beta regeneration. Therefore, we have developed a unique resource for the study of beta cell regeneration in a living vertebrate organism, which will provide the opportunity to conduct large-scale screens for pharmacological and genetic modifiers of beta cell regeneration.
Collapse
Affiliation(s)
- Harshan Pisharath
- Department of Comparative Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
| | - Jerry M. Rhee
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
| | - Michelle A. Swanson
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
| | - Steven D. Leach
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
| | - Michael J. Parsons
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
- #corresponding author , 720 Rutland Avenue, Ross 771, Baltimore, MD 21205, phone 410 502 2982, Fax 410 614 2913
| |
Collapse
|
146
|
Rai K, Nadauld LD, Chidester S, Manos EJ, James SR, Karpf AR, Cairns BR, Jones DA. Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Mol Cell Biol 2006; 26:7077-85. [PMID: 16980612 PMCID: PMC1592902 DOI: 10.1128/mcb.00312-06] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/15/2006] [Accepted: 06/30/2006] [Indexed: 11/20/2022] Open
Abstract
DNA methylation and histone methylation are two key epigenetic modifications that help govern heterochromatin dynamics. The roles for these chromatin-modifying activities in directing tissue-specific development remain largely unknown. To address this issue, we examined the roles of DNA methyltransferase 1 (Dnmt1) and the H3K9 histone methyltransferase Suv39h1 in zebra fish development. Knockdown of Dnmt1 in zebra fish embryos caused defects in terminal differentiation of the intestine, exocrine pancreas, and retina. Interestingly, not all tissues required Dnmt1, as differentiation of the liver and endocrine pancreas appeared normal. Proper differentiation depended on Dnmt1 catalytic activity, as Dnmt1 morphants could be rescued by active zebra fish or human DNMT1 but not by catalytically inactive derivatives. Dnmt1 morphants exhibited dramatic reductions of both genomic cytosine methylation and genome-wide H3K9 trimethyl levels, leading us to investigate the overlap of in vivo functions of Dnmt1 and Suv39h1. Embryos lacking Suv39h1 had organ-specific terminal differentiation defects that produced largely phenocopies of Dnmt1 morphants but retained wild-type levels of DNA methylation. Remarkably, suv39h1 overexpression rescued markers of terminal differentiation in Dnmt1 morphants. Our results suggest that Dnmt1 activity helps direct histone methylation by Suv39h1 and that, together, Dnmt1 and Suv39h1 help guide the terminal differentiation of particular tissues.
Collapse
Affiliation(s)
- Kunal Rai
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Navarro MH, Lozano MT, Agulleiro B. Ontogeny of the endocrine pancreatic cells of the gilthead sea bream, Sparus aurata (Teleost). Gen Comp Endocrinol 2006; 148:213-26. [PMID: 16630618 DOI: 10.1016/j.ygcen.2006.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 02/23/2006] [Accepted: 03/10/2006] [Indexed: 11/16/2022]
Abstract
The development of the gilthead sea bream, Sparus aurata, endocrine pancreas was studied from hatching to 114 days, using immunocytochemical techniques. Bonito insulin (INS)-, synthetic somatostatin-14 (SS-14)-, salmon somatostatin-25 (SS-25)-, mammalian somatostatin-28 (1-12) (SS-28)-, porcine glucagon (GLU)-, glucagon-like peptide-1 (1-19) (GLP-1)-, synthetic porcine peptide tyrosine tyrosine (PYY)-, and neuropeptide Y (NPY)-like immunoreactivities were demonstrated. The different types of endocrine cells appear at distinct stages of development and differ in their arrangement. The coexistence of INS and SS-25 immunoreactivities was demonstrated in the cells of one strand or primordial cord and a primordial islet that appeared close to the dorsal epithelium of the anterior region of the undifferentiated gut or next to the gut at hatching and one day after hatching, respectively. INS- and SS-25- immunoreactive (ir) cells were located in the core and at the periphery of the single islet found in 2-day-old larvae, while SS-28-ir cells were found in the single islet in 4- to 11-day-old larvae. GLU/GLP-1-ir cells were located next to the outer SS-25-ir cells in the single islet of 12- and 16-day-old larvae. SS-14/SS-25- and SS-14/SS-28-ir cells were detected in the outer region and in the inner area of the single islet, respectively, in 17- to 23-day-old larvae. One big islet and several small islets and isolated or clustered cells next to the pancreatic duct were present in 24- and 25-day-old larvae. The islets were similar in cell composition to the single islet seen in the previous stage, while the isolated and grouped cells showed the coexistence of INS and diverse SSs immunoreactivities. Nerve fibers showing PYY immunoreactivity were identified in the islets from 17 days onwards. In 30- to 44-day-old larvae, GLU and NPY immunoreactivities coexisted in a few cells at the periphery of some small islets. PYY-ir cells were first detected at day 51. One big islet, several intermediate islets and numerous small islets were present from 51-day-old-larvae to juveniles. GLU was colocalized with PYY and NPY in a few cells in a small peripheral area in the big islet and a few intermediate islets. The outer region of small islets and other intermediate islets showed the complete coexistence of GLU, PYY, and NPY.
Collapse
|
148
|
Papasani MR, Robison BD, Hardy RW, Hill RA. Early developmental expression of two insulins in zebrafish (Danio rerio). Physiol Genomics 2006; 27:79-85. [PMID: 16849636 DOI: 10.1152/physiolgenomics.00012.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have cloned a second insulin gene in zebrafish and studied temporal and spatial expression of two zebrafish insulin genes. Zebrafish insulin-a (insa) and -b (insb) mRNAs are derived from two different DNA contigs on chromosomes 5 and 14, respectively, representing two different insulin genes. Real-time PCR studies suggest that insa is a maternal and also a postzygotic transcript. insa was observed at 1 h postfertilization (hpf) and was rapidly degraded by 6 and 12 hpf but induced at 24 hpf (i.e., after pancreas formation). Expression levels at 24 hpf were approximately 220-fold higher than at 6 hpf and were significantly different from earlier time points. At 72 hpf (at time of hatching), zebrafish insa mRNA levels tended to be higher than at 24 hpf and were approximately 727-fold higher compared with 6 hpf. This further increase in insa expression may be one of the many rapid physiological changes associated with hatching. insb expression was observed from 1 hpf and was significantly decreased from 12 hpf onward. Its expression levels at 12 and 24 hpf were approximately twofold and sixfold lower, respectively, compared with expression at 6 hpf. insb expression levels at 48 hpf were significantly lower than at 24 hpf but not different from 72 hpf. Expression levels at 72 hpf were approximately 61-fold lower than at 6 hpf. In situ hybridization studies showed insb expression in proliferating blastomeres at 3 and 4 hpf. At later time points, insb expression was restricted to the brain and pancreas (24 and 48 hpf). insa expression was observed in the pancreas at 24 and 48 hpf. Expression of insb in blastomeres and head suggests that insb could be acting as a pro-growth, survival, and neurotrophic factor during development. Pancreatic insa and insb may both be involved in regulation of glucose homeostasis as in mammals.
Collapse
Affiliation(s)
- Madhusudhan R Papasani
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, USA
| | | | | | | |
Collapse
|
149
|
Ellertsdottir E, Ganz J, Dürr K, Loges N, Biemar F, Seifert F, Ettl AK, Kramer-Zucker AK, Nitschke R, Driever W. A mutation in the zebrafish Na,K-ATPase subunitatp1a1a.1provides genetic evidence that the sodium potassium pump contributes to left-right asymmetry downstream or in parallel to nodal flow. Dev Dyn 2006; 235:1794-808. [PMID: 16628609 DOI: 10.1002/dvdy.20800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
While there is a good conceptual framework of dorsoventral and anterioposterior axes formation in most vertebrate groups, understanding of left-right axis initiation is fragmentary. Diverse mechanisms have been implied to contribute to the earliest steps of left-right asymmetry, including small molecule signals, gap junctional communication, membrane potential, and directional flow of extracellular liquid generated by monocilia in the node region. Here we demonstrate that a mutation in the zebrafish Na,K-ATPase subunit atp1a1a causes left-right defects including isomerism of internal organs at the anatomical level. The normally left-sided Nodal signal spaw as well as its inhibitor lefty are expressed bilaterally, while pitx2 may appear random or bilateral. Monocilia movement and fluid circulation in Kupffer's vesicle are normal in atp1a1a(m883) mutant embryos. Therefore, the Na,K-ATPase is required downstream or in parallel to monocilia function during initiation of left-right asymmetry in zebrafish.
Collapse
Affiliation(s)
- Elin Ellertsdottir
- Developmental Biology, Institute Biology 1, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Wan H, Korzh S, Li Z, Mudumana SP, Korzh V, Jiang YJ, Lin S, Gong Z. Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter. Exp Cell Res 2006; 312:1526-39. [PMID: 16490192 DOI: 10.1016/j.yexcr.2006.01.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/13/2005] [Accepted: 01/18/2006] [Indexed: 10/25/2022]
Abstract
In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficient in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development.
Collapse
Affiliation(s)
- Haiyan Wan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|