101
|
Pereira PHF, Macrae A, Reinert F, de Souza RF, Coelho RRR, Pötter G, Klenk HP, Labeda DP. Streptomyces odonnellii sp. nov., a proteolytic streptomycete isolated from soil under cerrado (savanna) vegetation cover. Int J Syst Evol Microbiol 2017; 67:5211-5215. [DOI: 10.1099/ijsem.0.002446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Pedro Henrique Freitas Pereira
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
- Programa de Pós-graduação em Biotecnologia Vegetal, CCS, Universidade Federal do Rio de Janeiro, UFRJ, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | - Andrew Macrae
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
- Programa de Pós-graduação em Biotecnologia Vegetal, CCS, Universidade Federal do Rio de Janeiro, UFRJ, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | - Fernanda Reinert
- Programa de Pós-graduação em Biotecnologia Vegetal, CCS, Universidade Federal do Rio de Janeiro, UFRJ, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | - Rodrigo Fonseca de Souza
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | - Rosalie Reed Rodrigues Coelho
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
- Programa de Pós-graduação em Biotecnologia Vegetal, CCS, Universidade Federal do Rio de Janeiro, UFRJ, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | - Gabrielle Pötter
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- School of Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - David P. Labeda
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA, Agricultural Research Service, Peoria, IL 61604, USA
| |
Collapse
|
102
|
Streptomyces ginkgonis sp. nov., an endophyte from Ginkgo biloba. Antonie van Leeuwenhoek 2017; 111:891-896. [PMID: 29177601 DOI: 10.1007/s10482-017-0987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
A novel endophytic actinomycete strain, designated KM-1-2T, was isolated from seeds of Ginkgo biloba at Yangling, China. A polyphasic approach was used to study the taxonomy of strain KM-1-2T and it was found to show a range of phylogenetic and chemotaxonomic properties consistent with those of members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was identified as LL-diaminopimelic acid. No diagnostic sugars were detected in whole cell hydrolysates. The predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The diagnostic phospholipids were found to be phosphatidylethanolamine and phosphatidylcholine. The DNA G + C content of the novel strain was determined to be 72.9 mol%. The predominant cellular fatty acids (> 10.0 %) were identified as iso-C14 : 0, iso-C16 : 0, C16 : 0 and C17 : 0 cyclo. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is closely related to Streptomyces carpaticus JCM 6915T (99.3%), Streptomyces harbinensis DSM 42076T (98.9%) and Streptomyces cheonanensis JCM 14549T (98.5%). DNA-DNA hybridizations with these three close relatives gave similarity values of 39.1 ± 1.9, 35.8 ± 2.3, and 47.4 ± 2.7%, respectively, which indicated that strain KM-1-2T represents a novel species of the genus Streptomyces. This is consistent with the morphological, physiological and chemotaxonomic data. Cumulatively, these data suggest that strain KM-1-2T represents a novel Streptomyces species, for which the name Streptomyces ginkgonis sp. nov. is proposed, with the type strain KM-1-2T (= CCTCC AA2016004T = KCTC 39801T).
Collapse
|
103
|
Streptomyces thermoalkaliphilus sp. nov., an alkaline cellulase producing thermophilic actinomycete isolated from tropical rainforest soil. Antonie van Leeuwenhoek 2017; 111:413-422. [PMID: 29110157 DOI: 10.1007/s10482-017-0964-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
During an investigation exploring potential sources of novel thermophilic species and natural products, a novel thermophilic and alkaliphilic actinomycete with alkaline cellulase producing ability, designated strain 4-2-13T, was isolated from soil of a tropical rainforest in Xishuangbanna, Yunnan province, China. The morphological and chemotaxonomic characteristics of strain 4-2-13T are consistent with those of the members of the genus Streptomyces. The strain forms extensively branched aerial mycelia and substrate mycelia. Spiral spore chains were observed on aerial mycelia; spores were oval to cylindrical, with smooth surfaces. The organism was found to contain LL-diaminopimelic acid as the diagnostic diamino acid in the cell wall peptidoglycan. The whole cell hydrolysates were found to contain glucose and ribose. The cellular fatty acid profile mainly consists of anteiso-C17:0 and iso-C16:0. The menaquinones were identified as MK-9(H8), MK-10(H6) and MK-9(H6). The polar lipids profile were found to consist of diphosphatidylglycerol, phosphatidylmethylethanolamine, a ninhydrin-positive glycophospholipid, phosphatidylinositol, phosphatidylglycerol and unidentified glycolipids. The 16S rRNA gene sequence analysis showed that the organism belongs to the genus Streptomyces and in the 16S rRNA gene tree it formed a distinct phyletic line together with the closely related type strain Streptomyces burgazadensis Z1R7T (95.2% sequence similarity). However, the phenotypic characteristics of strain 4-2-13T are significantly different from those of S. burgazadensis Z1R7T. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, strain 4-2-13T represents a novel species in the genus Streptomyces, for which the name Streptomyces thermoalkaliphilus sp. nov. is proposed. The type strain is 4-2-13T (= DSM 42159T = CGMCC 4. 7205T).
Collapse
|
104
|
Streptomyces swartbergensis sp. nov., a novel tyrosinase and antibiotic producing actinobacterium. Antonie van Leeuwenhoek 2017; 111:589-600. [PMID: 29110155 DOI: 10.1007/s10482-017-0979-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
As part of an antibiotic screening program, an actinobacterium, strain HMC13T, was isolated from soil collected from the banks of the Gamka River, Western Cape Province, South Africa. The isolate was found to produce branched mycelia that differentiated into spiral spore chains with spiny spores. 16S rRNA gene sequence analysis showed the strain to be closely related to Streptomyces caelestis NRRL 2418T (99.72%) and Streptomyces azureus NBRC 12744T (99.51%). Chemotaxonomic analyses confirmed the classification of the strain as a member of the genus Streptomyces: LL-DAP in the peptidoglycan, no diagnostic sugars in the whole cell sugar pattern, dominant menaquinones including MK9(H8), MK9(H6), and the polar lipids detected included phosphatidylethanolamine. The fatty acid profile revealed the presence of mostly branched, saturated fatty acids: iso-C15:0 (14.4%), anteiso-C15:0 (21.1%), iso-C16:0 (16.8%), C16:1ω7c/2-OH iso-C15:0 (5.8%), C16:0 (6.2%), iso-C17:1ω9c (5.8%), iso-C17:0 (5.9%), and anteiso-C17:0 (9.6%). Strain HMC13T is a tyrosinase producer and exhibits very strong antibiosis against Mycobacterium aurum A+ and Staphylococcus aureus subsp. aureus ATCC 33591 (methicillin resistant), while only weak activity was observed against Bacillus cereus ATCC 10876, Enterococcus faecium VanA (vancomycin resistant), Enterococcus faecalis ATCC 51299 (vancomycin resistant) and Candida tropicalis ATCC 750T. Strain HMC13T (= LMG 28849T = NRRL B-65294T) is proposed as the type strain of a new species, to be named Streptomyces swartbergensis sp. nov.
Collapse
|
105
|
Som NF, Heine D, Holmes N, Knowles F, Chandra G, Seipke RF, Hoskisson PA, Wilkinson B, Hutchings MI. The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3(2). MICROBIOLOGY (READING, ENGLAND) 2017; 163:1415-1419. [PMID: 28884676 PMCID: PMC5845573 DOI: 10.1099/mic.0.000524] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022]
Abstract
MtrAB is a highly conserved two-component system implicated in the regulation of cell division in the Actinobacteria. It coordinates DNA replication with cell division in the unicellular Mycobacterium tuberculosis and links antibiotic production to sporulation in the filamentous Streptomyces venezuelae. Chloramphenicol biosynthesis is directly regulated by MtrA in S. venezuelae and deletion of mtrB constitutively activates MtrA and results in constitutive over-production of chloramphenicol. Here we report that in Streptomyces coelicolor, MtrA binds to sites upstream of developmental genes and the genes encoding ActII-1, ActII-4 and RedZ, which are cluster-situated regulators of the antibiotics actinorhodin (Act) and undecylprodigiosin (Red). Consistent with this, deletion of mtrB switches on the production of Act, Red and streptorubin B, a product of the Red pathway. Thus, we propose that MtrA is a key regulator that links antibiotic production to development and can be used to upregulate antibiotic production in distantly related streptomycetes.
Collapse
Affiliation(s)
- Nicolle F. Som
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Daniel Heine
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil Holmes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Felicity Knowles
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ryan F. Seipke
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow, G4 0RE, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew I. Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
106
|
Antony-Babu S, Stien D, Eparvier V, Parrot D, Tomasi S, Suzuki MT. Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci Rep 2017; 7:11089. [PMID: 28894255 PMCID: PMC5593946 DOI: 10.1038/s41598-017-11363-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
Microbial diversity studies using small subunit (SSU) rRNA gene sequences continue to advance our understanding of biological and ecological systems. Although a good predictor of overall diversity, using this gene to infer the presence of a species in a sample is more controversial. Here, we present a detailed polyphasic analysis of 10 bacterial strains isolated from three coastal lichens Lichina confinis, Lichina pygmaea and Roccella fuciformis with SSU rRNA gene sequences identical to the type strain of Streptomyces cyaneofuscatus. This analysis included phenotypic, microscopic, genetic and genomic comparisons and showed that despite their identical SSU rRNA sequences the strains had markedly different properties, and could be distinguished as 5 different species. Significantly, secondary metabolites profiles from these strains were also found to be different. It is thus clear that SSU rRNA based operational taxonomy units, even at the most stringent cut-off can represent multiple bacterial species, and that at least for the case of Streptomyces, strain de-replication based on SSU gene sequences prior to screening for bioactive molecules can miss potentially interesting novel molecules produced by this group that is notorious for the production of drug-leads.
Collapse
Affiliation(s)
- Sanjay Antony-Babu
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France CNRS, USR 3579, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States of America
| | - Didier Stien
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France CNRS, USR 3579, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Véronique Eparvier
- CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette cedex, France
| | - Delphine Parrot
- UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Equipe CORINT "Chimie Organique et Interface", UFR Sciences Pharmaceutiques et Biologiques, Univ. Rennes 1, Université Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043, Rennes, France
| | - Sophie Tomasi
- UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Equipe CORINT "Chimie Organique et Interface", UFR Sciences Pharmaceutiques et Biologiques, Univ. Rennes 1, Université Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043, Rennes, France
| | - Marcelino T Suzuki
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France CNRS, USR 3579, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| |
Collapse
|
107
|
Goodfellow M, Busarakam K, Idris H, Labeda DP, Nouioui I, Brown R, Kim BY, Del Carmen Montero-Calasanz M, Andrews BA, Bull AT. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie Van Leeuwenhoek 2017; 110:1133-1148. [PMID: 28589342 PMCID: PMC5559561 DOI: 10.1007/s10482-017-0886-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
A polyphasic study was undertaken to establish the taxonomic status of Streptomyces strains isolated from hyper-arid Atacama Desert soils. Analysis of the 16S rRNA gene sequences of the isolates showed that they formed a well-defined lineage that was loosely associated with the type strains of several Streptomyces species. Multi-locus sequence analysis based on five housekeeping gene alleles showed that the strains form a homogeneous taxon that is closely related to the type strains of Streptomyces ghanaensis and Streptomyces viridosporus. Representative isolates were shown to have chemotaxonomic and morphological properties consistent with their classification in the genus Streptomyces. The isolates have many phenotypic features in common, some of which distinguish them from S. ghanaensis NRRL B-12104T, their near phylogenetic neighbour. On the basis of these genotypic and phenotypic data it is proposed that the isolates be recognised as a new species within the genus Streptomyces, named Streptomyces asenjonii sp. nov. The type strain of the species is KNN35.1bT (NCIMB 15082T = NRRL B-65050T). Some of the isolates, including the type strain, showed antibacterial activity in standard plug assays. In addition, MLSA, average nucleotide identity and phenotypic data show that the type strains of S. ghanaensis and S. viridosporus belong to the same species. Consequently, it is proposed that the former be recognised as a heterotypic synonym of the latter and an emended description is given for S. viridosporus.
Collapse
Affiliation(s)
- Michael Goodfellow
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.
| | - Kanungnid Busarakam
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Hamidah Idris
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - David P Labeda
- National Centre for Agricultural Utilization Research, USDA ARS, Peoria, IL, 61614, USA
| | - Imen Nouioui
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Roselyn Brown
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Byung-Yong Kim
- Chunlab Inc., Seoul Natural University, Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | | | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef, 851, Santiago, Chile
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
108
|
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392-416. [DOI: 10.1093/femsre/fux005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
|
109
|
Arocha-Garza HF, Canales-Del Castillo R, Eguiarte LE, Souza V, De la Torre-Zavala S. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ 2017; 5:e3247. [PMID: 28480140 PMCID: PMC5417069 DOI: 10.7717/peerj.3247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.
Collapse
Affiliation(s)
- Hector Fernando Arocha-Garza
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Ricardo Canales-Del Castillo
- Facultad de Ciencias Biológicas, Laboratorio de Biología de la Conservación, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
110
|
Driche EH, Sabaou N, Bijani C, Zitouni A, Pont F, Mathieu F, Badji B. Streptomyces sp. AT37 isolated from a Saharan soil produces a furanone derivative active against multidrug-resistant Staphylococcus aureus. World J Microbiol Biotechnol 2017; 33:105. [PMID: 28466299 DOI: 10.1007/s11274-017-2265-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 04/12/2017] [Indexed: 11/26/2022]
Abstract
A novel actinobacterium strain, named AT37, showed a strong activity against some multidrug-resistant Staphylococcus aureus, including methicillin-resistant S. aureus MRSA ATCC 43300, other clinical isolates of MRSA and vancomycin resistant S. aureus VRSA S1. The strain AT37 was isolated from a Saharan soil by a dilution agar plating method using chitin-vitamin agar medium supplemented with rifampicin. The morphological and chemical studies indicated that this strain belonged to the genus Streptomyces. Its 16S rRNA gene sequence was determined and a database search indicated that it was closely associated with the type strain of Streptomyces novaecaesareae NBRC 13368T with 99.6% of similarity. However, the comparison of the morphological and the physiological characteristics of the strain with those of the nearest species showed significant differences. The strain AT37 secreted the antibiotic optimally during mid-stationary phase of growth. One active compound (AT37-1) was extracted from the culture broth with dichloromethane, separated on silica gel plates and purified by HPLC. Based on spectroscopic analysis of UV-Visible, infrared, and 1H and 13C NMR spectra and spectrometric analysis, the chemical structure of the compound AT37-1 was identified as 5-[(5E,7E,11E)-2,10-dihydroxy-9,11-dimethyl-5,7,11-tridecatrien-1-yl]-2-hydroxy-2-(1-hydroxyethyl)-4-methyl-3(2H)-furanone. Minimum inhibitory concentrations and minimum biofilm inhibitory concentration (MBIC50) of this compound showed significant activity against multidrug-resistant S. aureus with 15-30 and 10-15 μg/mL, respectively.
Collapse
Affiliation(s)
- El Hadj Driche
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure, Kouba, Alger, Algeria
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie, Université Hassiba Benbouali de Chlef, Hay Salem, Chlef, 02000, Algeria
| | - Nasserdine Sabaou
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure, Kouba, Alger, Algeria.
| | - Christian Bijani
- Laboratoire de chimie de coordination (LCC), CNRS, Université de Toulouse, UPS, INPT, LCC, 205, route de Narbonne, 31077, Toulouse, France
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure, Kouba, Alger, Algeria
| | - Frédéric Pont
- Proteomics Group, INSERM UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Florence Mathieu
- Laboratoire de Génie Chimique, LGC, UMR 5503 (CNRS/INPT/UPS), Université de Toulouse, Toulouse, France
| | - Boubekeur Badji
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure, Kouba, Alger, Algeria.
| |
Collapse
|
111
|
Idris H, Labeda DP, Nouioui I, Castro JF, Del Carmen Montero-Calasanz M, Bull AT, Asenjo JA, Goodfellow M. Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957. Antonie van Leeuwenhoek 2017; 110:705-717. [PMID: 28185026 PMCID: PMC5387016 DOI: 10.1007/s10482-017-0838-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/30/2017] [Indexed: 11/27/2022]
Abstract
A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9T, was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9T is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448T. The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9T (=NCIMB 14965T=NRRL B65268T). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given.
Collapse
Affiliation(s)
- Hamidah Idris
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - David P Labeda
- National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL, 61604, USA
| | - Imen Nouioui
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Jean Franco Castro
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.,Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago, Chile
| | | | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Juan A Asenjo
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago, Chile
| | - Michael Goodfellow
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
112
|
Genome Sequence of the Filamentous Actinomycete Kitasatospora viridifaciens. GENOME ANNOUNCEMENTS 2017; 5:5/6/e01560-16. [PMID: 28183757 PMCID: PMC5331497 DOI: 10.1128/genomea.01560-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vast majority of antibiotics are produced by filamentous soil bacteria called actinomycetes. We report here the genome sequence of the tetracycline producer “Streptomyces viridifaciens” DSM 40239. Given that this species has the hallmark signatures characteristic of the Kitasatospora genus, we previously proposed to rename this organism Kitasatospora viridifaciens.
Collapse
|
113
|
Biswas K, Choudhury JD, Mahansaria R, Saha M, Mukherjee J. Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest. J Antibiot (Tokyo) 2017; 70:747-753. [PMID: 28174421 DOI: 10.1038/ja.2017.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 12/14/2016] [Accepted: 12/25/2016] [Indexed: 12/21/2022]
Abstract
A Gram-positive, aerobic, non-motile actinomycete (strain MS 3/20T) was isolated from the sediment of the Sundarbans mangrove forest in India. On International Streptomyces Project (ISP) medium 2, the isolate produced yellowish brown to red aerial hyphae that carried spiny-surfaced spores in a retinaculum-apertum arrangement. Whole-cell hydrolysate of the strain contained LL-diaminopimelic acid and galactose. Predominant menaquinones were MK-9(H8) and MK-9(H6). Diagnostic polar lipids were glycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unidentified phospholipid and unidentified amino lipid. The major fatty acids were anteiso-C15:0 (17.53%), iso-C16:0 (23.89%) and anteiso-C17:0 (10.29%). The strain showed 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces variabilis NBRC 12825T, Streptomyces erythrogriseus LMG 19406T, Streptomyces griseoincarnatus LMG 19316T and Streptomyces labedae NBRC 15864T. However, strain MS 3/20T could be distinguished from these and seven other closely related species based on low levels of DNA-DNA relatedness (27.2-53.8%), supported by the unique banding pattern obtained from random amplified polymorphic DNA-PCR amplification and the distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain MS 3/20T in comparison with its phylogenetic relatives. Disparate morphological, physiological and chemotaxonomic features, principally growth in NaCl, further corroborated the distinction of strain MS 3/20T from other phylogenetic relatives. Strain MS 3/20T is therefore suggested to be a novel species of the genus Streptomyces, for which the name Streptomyces euryhalinus sp. nov. is proposed. The type strain is MS 3/20T (=CICC 11032T=DSM 103378T).
Collapse
Affiliation(s)
- Kaushik Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | - Riddhi Mahansaria
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Malay Saha
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, India
| |
Collapse
|
114
|
Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR, Ju KS, Metcalf WW. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 2016; 110:563-583. [DOI: 10.1007/s10482-016-0824-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
115
|
Streptomyces gamaensis sp. nov., a novel actinomycete with antifungal activity isolated from soil in Gama, Chad. Antonie van Leeuwenhoek 2016; 110:471-477. [PMID: 28005217 DOI: 10.1007/s10482-016-0816-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11T, was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA-DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098T. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11T (=CGMCC 4.7304T=DSM 101531T).
Collapse
|
116
|
Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil. Antonie van Leeuwenhoek 2016; 110:297-304. [PMID: 27826672 DOI: 10.1007/s10482-016-0797-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
An actinomycete strain, designated strain LUSFXJT, was isolated from a soil sample obtained near the Xiangtan Manganese Mine, Central-South China and characterised using a polyphasic taxonomic approach. The 16S rRNA gene sequence-based phylogenetic analysis indicated that this strain belongs to the genus Streptomyces. The DNA-DNA relatedness between this strain and two closely related type strains, Streptomyces echinatus CGMCC 4.1642T and Streptomyces lanatus CGMCC 4.137T, were 28.7 ± 0.4 and 19.9 ± 2.0%, respectively, values which are far lower than the 70% threshold for the delineation of a novel prokaryotic species. The DNA G+C content of strain LUSFXJ T is 75.0 mol%. Chemotaxonomic analysis revealed that the menaquinones of strain LUSFXJT are MK-9(H6), MK-9(H8), MK-9(H2) and MK-8(H8). The polar lipid profile of strain LUSFXJT was found to contain diphosphatidylglycerol and an unidentified polar lipid. The major cellular fatty acids were identified as iso-C15:0, anteiso-C15:0, iso-C16:0, C16:0 and Summed feature 3. Strain LUSFXJT was found to contain meso-diaminopimelic acid as the diagnostic cell wall diamino acid and the whole cell hydrolysates were found to be rich in ribose, mannose and glucose. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, it is concluded that strain LUSFXJT represents a novel species of the genus Streptomyces, for which the name S. xiangtanensis sp. nov. is proposed. The type strain is LUSFXJT (=GDMCC 4.133T = KCTC 39829T).
Collapse
|
117
|
Zhang R, Han X, Xia Z, Luo X, Wan C, Zhang L. Streptomyces luozhongensis sp. nov., a novel actinomycete with antifungal activity and antibacterial activity. Antonie van Leeuwenhoek 2016; 110:195-203. [DOI: 10.1007/s10482-016-0790-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
|
118
|
Widespread interspecies homologous recombination reveals reticulate evolution within the genus Streptomyces. Mol Phylogenet Evol 2016; 102:246-54. [DOI: 10.1016/j.ympev.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023]
|
119
|
Silva FSP, Souza DT, Zucchi TD, Pansa CC, de Figueiredo Vasconcellos RL, Crevelin EJ, de Moraes LAB, Melo IS. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766). Antonie van Leeuwenhoek 2016; 109:1467-1474. [DOI: 10.1007/s10482-016-0748-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|
120
|
Veyisoglu A, Cetin D, Inan Bektas K, Guven K, Sahin N. Streptomyces ovatisporus sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 2016; 66:4856-4863. [PMID: 27553490 DOI: 10.1099/ijsem.0.001442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of a Gram-staining-positive strain, designated strain S4702T was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree. S4702T was found to be most closely related to the type strains of Streptomyces marinus(DSM 41968T; 97.8 % sequence similarity) and Streptomyces abyssalis (YIM M 10400T; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus Streptomyces were lower than 97.5 %. DNA-DNA relatedness of S4702T and the most closely related strain S. marinus DSM 41968T was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained l,l-diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant menaquinone was MK-9(H8). The polar lipid profile of S4702T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702T could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702T represents a novel species of the genus Streptomyces, for which the name Streptomyces ovatisporus sp. nov. is proposed. The type strain is S4702T (DSM 42103T=KCTC 29206T=CGMCC 4.7357T).
Collapse
Affiliation(s)
- Aysel Veyisoglu
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, Sinop 57000, Turkey
| | - Demet Cetin
- Science Teaching Programme, Gazi Faculty of Education, Gazi University, Ankara 06500, Turkey
| | - Kadriye Inan Bektas
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Kiymet Guven
- Faculty of Science, Biology Department, Anadolu University, Eskişehir 26470, Turkey
| | - Nevzat Sahin
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, Samsun 55139, Turkey
| |
Collapse
|
121
|
Streptacidiphilus toruniensis sp. nov., isolated from a pine forest soil. Antonie van Leeuwenhoek 2016; 109:1583-1591. [PMID: 27558132 PMCID: PMC5104812 DOI: 10.1007/s10482-016-0759-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022]
Abstract
Two acidophilic actinobacteria, isolates NA14 and NF37T, were the subject of a polyphasic taxonomic study. Chemotaxonomic and morphological properties of the isolates were characteristic of the genus Streptacidiphilus. The isolates were shown to have identical 16S rRNA gene sequences and to be closely related to Streptacidiphilus neutrinimicus DSM 41755T (>99.9 %). However, DNA:DNA relatedness between isolate NF37T and the type strain of S. neutrinimicus was found to be low at 11.1 (±3.5) %. A broad range of phenotypic features were shown to distinguish the isolates from their close phylogenetic neighbours. These data shown that the isolates form a novel species of Streptacidiphilus for which the name Streptacidiphilus toruniensis sp. nov. is proposed. The type strain is NF37T (= DSM 102291T = NCIMB 15025T).
Collapse
|
122
|
Urem M, Świątek-Połatyńska MA, Rigali S, van Wezel GP. Intertwining nutrient-sensory networks and the control of antibiotic production inStreptomyces. Mol Microbiol 2016; 102:183-195. [DOI: 10.1111/mmi.13464] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Mia Urem
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
| | - Magdalena A. Świątek-Połatyńska
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 Marburg 35043 Germany
| | - Sébastien Rigali
- InBioS, Centre for Protein Engineering; University of Liège; Liège B-4000 Belgium
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 Wageningen 6708 PB The Netherlands
| |
Collapse
|
123
|
Zhang Y, Bignell DRD, Zuo R, Fan Q, Huguet-Tapia JC, Ding Y, Loria R. Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:640-50. [PMID: 27502745 DOI: 10.1094/mpmi-04-16-0068-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.
Collapse
Affiliation(s)
- Yucheng Zhang
- 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, U.S.A
| | - Dawn R D Bignell
- 2 Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ran Zuo
- 3 Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, U.S.A.; and
| | - Qiurong Fan
- 4 College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jose C Huguet-Tapia
- 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, U.S.A
| | - Yousong Ding
- 3 Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, U.S.A.; and
| | - Rosemary Loria
- 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, U.S.A
| |
Collapse
|
124
|
Zhou S, Li Z, Bai L, Yan K, Zhao J, Lu C, Liu C, Wang X, Xiang W. Streptomyces castaneus sp. nov., a novel actinomycete isolated from the rhizosphere of Peucedanum praeruptorum Dunn. Arch Microbiol 2016; 199:45-50. [PMID: 27476065 DOI: 10.1007/s00203-016-1274-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
During an investigation of microbial diversity in medicinal herbs, a novel actinomycete, strain NEAU-QHHV11T was isolated from the rhizosphere of Peucedanum praeruptorum Dunn collected from Xianglu Mountain in Heilongjiang Province, northeast China and characterized using a polyphasic approach. The organism was found to have typical characteristics of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequence also indicated that strain NEAU-QHHV11T belongs to the genus Streptomyces and was most closely related to Streptomyces graminilatus NBRC 108882T (98.7 % sequence similarity) and Streptomyces turgidiscabies NBRC 16080T (98.7 % sequence similarity). The results of DNA-DNA hybridization and some phenotypic characteristics indicated that strain NEAU-QHHV11T could be distinguished from its close phylogenetic relatives. Thus, strain NEAU-QHHV11T represents a novel species of the genus Streptomyces, for which the name Streptomyces castaneus sp. nov. is proposed. The type strain is NEAU-QHHV11T (=CGMCC 4.7235T = DSM 100520T).
Collapse
Affiliation(s)
- Shuyu Zhou
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Zhilei Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Lu Bai
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Kai Yan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Chang Lu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
125
|
Zhao XQ, Xu XN, Chen LY. Production of Enzymes from Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 78:137-151. [PMID: 27452169 DOI: 10.1016/bs.afnr.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies.
Collapse
Affiliation(s)
- X Q Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - X N Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - L Y Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| |
Collapse
|
126
|
Boughachiche F, Rachedi K, Duran R, Lauga BEA, Karama S, Bouyoucef, Boulezaz S, Boukrouma M, Boutaleb H, Boulahrouf A. Optimization of alkaline protease production by Streptomyces sp. strain isolated from saltpan environment. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
127
|
Labeda DP, Rong X, Huang Y, Doroghazi JR, Ju KS, Metcalf WW. Taxonomic evaluation of species in the Streptomyces hirsutus clade using multi-locus sequence analysis and proposals to reclassify several species in this clade. Int J Syst Evol Microbiol 2016; 66:2444-2450. [PMID: 26971011 PMCID: PMC10724943 DOI: 10.1099/ijsem.0.001017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/08/2016] [Indexed: 12/18/2023] Open
Abstract
Previous phylogenetic analysis of species of the genus Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100 % bootstrap value) containing eight species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains of spiny- to hairysurfaced, dark green spores on their aerial mycelium. The type strains of the species in this clade, specifically Streptomyces bambergiensis, Streptomyces cyanoalbus, Streptomyces emeiensis, Streptomyces hirsutus, Streptomyces prasinopilosus and Streptomyces prasinus, were subjected to multi-locus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB to clarify their taxonomic status. The type strains of several recently described species with similar gross morphology, including Streptomyces chlorus, Streptomyces herbaceus, Streptomyces incanus, Streptomyces pratens and Streptomyces viridis, were also studied along with six unidentified green-spored Streptomyces strains from the ARS Culture Collection. The MLSAs suggest that three of the species under study (S. bambergiensis, S. cyanoalbus and S. emeiensis) represent synonyms of other previously described species (S. prasinus, S. hirsutus and S. prasinopilosus, respectively). These relationships were confirmed through determination of in silico DNA-DNA hybridization estimates based on draft genome sequences. The five recently described species appear to be phylogenetically distinct but the unidentified strains from the ARS Culture Collection could be identified as representatives of S. hirsutus, S. prasinopilosus or S. prasinus.
Collapse
Affiliation(s)
- David P. Labeda
- Mycotoxin Prevention and Applied Microbiology Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Xiaoying Rong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - James R. Doroghazi
- University of Illinois at Champaign-Urbana, Department of Microbiology and Institute for Genomic Biology, Urbana, IL, USA
| | - Kou-San Ju
- University of Illinois at Champaign-Urbana, Department of Microbiology and Institute for Genomic Biology, Urbana, IL, USA
| | - William W. Metcalf
- University of Illinois at Champaign-Urbana, Department of Microbiology and Institute for Genomic Biology, Urbana, IL, USA
| |
Collapse
|
128
|
Ray L, Mishra SR, Panda AN, Das S, Rastogi G, Pattanaik AK, Adhya TK, Suar M, Raina V. Streptomyces chitinivorans sp. nov., a chitinolytic strain isolated from estuarine lake sediment. Int J Syst Evol Microbiol 2016; 66:3241-3248. [PMID: 27220564 DOI: 10.1099/ijsem.0.001176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterial strain RC1832T was isolated from the sediment of a fish dumping yard at Balugaon near Chilika Lake. The strain is halotolerant (15 % NaCl, w/v), alkali-tolerant (pH 7-10) and hydrolyzes chitin, starch, gelatin, cellulose, carboxymethyl cellulose, Tween 80, tributyrin, lecithin and casein. Apart from showing typical genus-specific morphological and chemotaxonomic features, the comparision and analysis of the near complete 16S rRNA gene sequence clearly revealed that the strain RC1832T represented a member of the genus Streptomyces. It exhibited the highest sequence similarities with the strains Streptomyces fenghuangensis GIMN4.003T (99.78 %), Streptomyces nanhaiensis DSM 41926T (99.07 %), Streptomyces radiopugnans R97T(98.71 %), Streptomyces atacamensis DSM 42065T (98.65 %) and Streptomyces barkulensis DSM 42082T (98.25 %). The DNA-DNA relatedness of strain RC 1832T with the closest phylogenetic neighbours S. fenghuangensis GIMN4.003T and S. nanhaiensis DSM 41926T were 20±2 % and 21±2 %, respectively. Thus, based on a range of phenotypic and genotypic properties, strain RC1832T was suggested to represent a novel species of the genus Streptomyces for which the name Streptomyces chitinivorans sp. nov. is proposed. The type strain is RC1832T (=JCM 30611=KCTC 29696).
Collapse
Affiliation(s)
- Lopamudra Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
- School of Law, KIIT University, Bhubaneswar, Odisha, 715024, India
| | - Samir Ranjan Mishra
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | | | - Surajit Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 751014, India
| | | | - Tapan Kumar Adhya
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
129
|
Chen X, Pizzatti C, Bonaldi M, Saracchi M, Erlacher A, Kunova A, Berg G, Cortesi P. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes. Front Microbiol 2016; 7:714. [PMID: 27242735 PMCID: PMC4874062 DOI: 10.3389/fmicb.2016.00714] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 12/17/2022] Open
Abstract
Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (10(6) CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying its concentration in these compartments. Based on these results we conclude that S. exfoliatus FT05W has high potential to be exploited in agriculture for managing soil borne diseases barely controlled by available plant protection products.
Collapse
Affiliation(s)
- Xiaoyulong Chen
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Cristina Pizzatti
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Maria Bonaldi
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Andrea Kunova
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| |
Collapse
|
130
|
Abstract
We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. Biogeographic patterns provide insight into the evolutionary and ecological processes that govern biodiversity. However, the evolutionary and ecological processes that govern terrestrial microbial diversity remain poorly characterized. We evaluated the biogeography of the genus Streptomyces to show that the diversity of terrestrial bacteria is governed by many of the same processes that govern the diversity of many plant and animal species. While bacteria of the genus Streptomyces are a preeminent source of antibiotics, their evolutionary history, biogeography, and biodiversity remain poorly characterized. The observations we describe provide insight into the drivers of Streptomyces biodiversity and the processes that underlie microbial diversification in terrestrial habitats.
Collapse
|
131
|
Shashkov AS, Streshinskaya GM, Tul'skaya EM, Senchenkova SN, Baryshnikova LM, Dmitrenok AS, Ostash BE, Fedorenko VA. Cell wall glycopolymers of Streptomyces albus, Streptomyces albidoflavus and Streptomyces pathocidini. Antonie van Leeuwenhoek 2016; 109:923-36. [PMID: 27055525 DOI: 10.1007/s10482-016-0691-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022]
Abstract
The cell wall glycopolymers of three strains of Streptomyces albus and the type strain of Streptomyces pathocidini were investigated. The structures of the glycopolymers were established using a combination of chemical and NMR spectroscopic methods. The cell wall of S. albus subsp. albus VKM Ac-35(T) was found to be comprised of three glycopolymers, viz. unsubstituted 1,5-poly(ribitol phosphate), 1,3-poly(glycerol phosphate) substituted with β-D-glucopyranose, and the major polymer, a 3-deoxy-D-glycero-D-galacto-non-2-ulosonic acid (Kdn)-teichulosonic acid: β-D-Glcp-(1 → 8)-α-Kdnp-(2[(→6)-β-D-Glcp-(1 → 8)-α-Kdnp-(2 →] n 6)-β-D-Glcp-(1 → 8)-β-Kdnp-(2-OH, where n ≥ 3. The cell walls of 'S. albus' J1074 and 'S. albus' R1-100 were found to contain three glycopolymers of identical structures, viz. unsubstituted 1,3- and 2,3-poly(glycerol phosphates), and the major polymer, a Kdn-teichulosonic acid with an unusual structure that has not been previously described: β-D-Galp-(1 → 9)-α-Kdnp-(2[(→3)-β-D-Galp-(1 → 9)-α-Kdnp-(2 →] n 3)-β-D-Galp-(1 → 9)-β-Kdnp-(2-OH, where n ~ 7-8. The cell wall of S. pathocidini (formerly S. albus subsp. pathocidicus) VKM Ac-598(T) was found to contain two glycopolymers, viz. 1,3-poly(glycerol phosphate) partially O-glycosylated with 2-acetamido-2-deoxy-α-D-glucopyranose and/or O-acylated with L-lysine, and a poly(diglycosyl 1-phosphate) of hitherto unknown structure: -6)-α-D-Glcp-(1 → 6)-α-D-GlcpNAc-(1-P-.
Collapse
Affiliation(s)
- Alexander S Shashkov
- ND Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia, 119991
| | - Galina M Streshinskaya
- School of Biology MV, Lomonosov Moscow State University, Vorob'evy gory 1 Stroenie 12, Moscow, Russia, 119991.
| | - Elena M Tul'skaya
- School of Biology MV, Lomonosov Moscow State University, Vorob'evy gory 1 Stroenie 12, Moscow, Russia, 119991
| | - Sophia N Senchenkova
- ND Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia, 119991
| | - Lidia M Baryshnikova
- All-Russian Collection of Microorganisms (VKM), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Andrey S Dmitrenok
- ND Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia, 119991
| | - Bohdan E Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Victor A Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| |
Collapse
|
132
|
Goering A, McClure RA, Doroghazi JR, Albright JC, Haverland NA, Zhang Y, Ju KS, Thomson RJ, Metcalf WW, Kelleher NL. Metabologenomics: Correlation of Microbial Gene Clusters with Metabolites Drives Discovery of a Nonribosomal Peptide with an Unusual Amino Acid Monomer. ACS CENTRAL SCIENCE 2016; 2:99-108. [PMID: 27163034 PMCID: PMC4827660 DOI: 10.1021/acscentsci.5b00331] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 05/31/2023]
Abstract
For more than half a century the pharmaceutical industry has sifted through natural products produced by microbes, uncovering new scaffolds and fashioning them into a broad range of vital drugs. We sought a strategy to reinvigorate the discovery of natural products with distinctive structures using bacterial genome sequencing combined with metabolomics. By correlating genetic content from 178 actinomycete genomes with mass spectrometry-enabled analyses of their exported metabolomes, we paired new secondary metabolites with their biosynthetic gene clusters. We report the use of this new approach to isolate and characterize tambromycin, a new chlorinated natural product, composed of several nonstandard amino acid monomeric units, including a unique pyrrolidine-containing amino acid we name tambroline. Tambromycin shows antiproliferative activity against cancerous human B- and T-cell lines. The discovery of tambromycin via large-scale correlation of gene clusters with metabolites (a.k.a. metabologenomics) illuminates a path for structure-based discovery of natural products at a sharply increased rate.
Collapse
Affiliation(s)
- Anthony
W. Goering
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan A. McClure
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - James R. Doroghazi
- Department
of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jessica C. Albright
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicole A. Haverland
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Yongbo Zhang
- Integrated
Molecular Structure Education and Research Center, Weinberg College
of Arts and Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kou-San Ju
- Department
of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Regan J. Thomson
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - William W. Metcalf
- Department
of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Neil L. Kelleher
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
133
|
Andam CP, Choudoir MJ, Vinh Nguyen A, Sol Park H, Buckley DH. Contributions of ancestral inter-species recombination to the genetic diversity of extant Streptomyces lineages. ISME JOURNAL 2016; 10:1731-41. [PMID: 26849310 DOI: 10.1038/ismej.2015.230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022]
Abstract
Streptomyces species produce many important antibiotics and have a crucial role in soil nutrient cycling. However, their evolutionary history remains poorly characterized. We have evaluated the impact of homologous recombination on the evolution of Streptomyces using multi-locus sequence analysis of 234 strains that represent at least 11 species clusters. Evidence of inter-species recombination is widespread but not uniform within the genus and levels of mosaicism vary between species clusters. Most phylogenetically incongruent loci are monophyletic at the scale of species clusters and their subclades, suggesting that these recombination events occurred in shared ancestral lineages. Further investigation of two mosaic species clusters suggests that genes acquired by inter-species recombination may have become fixed in these lineages during periods of demographic expansion; implicating a role for phylogeography in determining contemporary patterns of genetic diversity. Only by examining the phylogeny at the scale of the genus is apparent that widespread phylogenetically incongruent loci in Streptomyces are derived from a far smaller number of ancestral inter-species recombination events.
Collapse
Affiliation(s)
- Cheryl P Andam
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| | - Mallory J Choudoir
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| | - Anh Vinh Nguyen
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| | - Han Sol Park
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| | - Daniel H Buckley
- Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA
| |
Collapse
|
134
|
Guo S, Liu C, Liu S, Guan X, Guo L, Jia F, Wang X, Xiang W. Streptomyces polygonati sp. nov., an endophytic actinomycete isolated from a root of Polygonatum odoratum (Mill.). Int J Syst Evol Microbiol 2016; 66:1488-1493. [PMID: 26790410 DOI: 10.1099/ijsem.0.000906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete, designated strain NEAU-G9T, was isolated from the root of Polygonatum odoratum (Mill.) collected from Harbin, Heilongjiang province, north China, and was characterized using a polyphasic approach. Key morphological and chemotaxonomic properties confirmed the affiliation of strain NEAU-G9T to the genus Streptomyces. Strain NEAU-G9T contained ll-diaminopimelic acid as the diamino acid. The predominant menaquinones were MK-9(H8), MK-9(H6) and MK-9(H4). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant fatty acids were iso-C16 : 0, anteiso-C15 : 0 and C16 : 0.16S rRNA gene sequence similarity studies showed that strain NEAU-G9T belongs to the genus Streptomyces and exhibits the highest sequence similarity to Streptomyces yanglinensis JCM 13275T (97.75 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-G9T is most closely related to Streptomyces misakiensis JCM 4062T (97.12 % sequence similarity). A combination of DNA-DNA hybridization results and some phenotypic characteristics indicated that strain NEAU-G9T can be clearly distinguished from S. yanglinensis JCM 13275T and S. misakiensis JCM 4062T. Consequently, strain NEAU-G9T represents a novel species of the genus Streptomyces, for which the name Streptomyces polygonati sp. nov. is proposed. The type strain is NEAU-G9T ( = CGMCC 4.7237T = DSM 100521T).
Collapse
Affiliation(s)
- Siyu Guo
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Shuanghe Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xuejiao Guan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Lifeng Guo
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Feiyu Jia
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
135
|
Nur Azura AB, Yusoff M, Tan GYA, Jegadeesh R, Appleton DR, Vikineswary S. Streptomyces sanglieri which colonised and enhanced the growth of Elaeis guineensis Jacq. seedlings was antagonistic to Ganoderma boninense in in vitro studies. J Ind Microbiol Biotechnol 2015; 43:485-93. [PMID: 26721619 DOI: 10.1007/s10295-015-1724-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
Abstract
Actinomycete strain AUM 00500 was 99.5 % similar to Streptomyces sanglieri NBRC 100784(T) and was evaluated for antagonistic activity towards Ganoderma boninense, the causative fungus of basal stem rot of oil palm. The strain showed strong antifungal activity towards G. boninense in in vitro and SEM analysis showed various modes of inhibition of the fungus. Ethyl acetate extracts of single culture and inhibition zone of cross-plug culture by HPLC indicated that strain AUM 00500 produced two different antibiotics of the glutarimide group namely cycloheximide and actiphenol. In greenhouse trials, oil palm seed treated with spores of S. sanglieri strain AUM 00500 at 10(9) cfu/ml showed significant (P < 0.05) increase in oil palm seedlings growth when compared to the control. Streptomyces sanglieri strain AUM 00500 successfully colonised the epidermal surface of the roots of treated oil palm seedlings and it was recovered from root fragments plated on starch casein agar.
Collapse
Affiliation(s)
- A B Nur Azura
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - M Yusoff
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - G Y A Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - R Jegadeesh
- Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - D R Appleton
- Sime Darby Technology Centre Sdn. Bhd., 1st Floor, Block B, UPM-MTDC Technology Centre III, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - S Vikineswary
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
136
|
Tang B, Yu Y, Zhi X, Yang L, Cen X, Zhao G, Ding X. Streptomyces yangpuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 66:1224-1229. [PMID: 26703868 DOI: 10.1099/ijsem.0.000861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive strain with sandy aerial mycelium and golden yellow substrate mycelium, designated fd2-tbT, was isolated from a soil sample collected in Shanghai, China, and its taxonomic status was established by phylogenetic analysis. 16S rRNA gene sequence analysis showed that strain fd2-tbT belonged to the genus Streptomyces and was related to Streptomyces amritsarensis JCM 19660T (99.9 % 16S rRNA gene sequence similarity), Streptomyces flavotricini NBRC 12770T (99.9 %), Streptomyces polychromogenes NBRC 13072T (99.8 %), Streptomyces racemochromogenes NRRL B-5430T (99.7 %), Streptomyces globosus LMG 19896T (99.5 %), Streptomyces toxytricini NBRC 12823T (99.5 %) and Streptomyces katrae NBRC 13447T (99.3 %). The cell wall of strain fd2-tbT contained ll-diaminopimelic acid, and whole-cell sugars were identified as glucose and ribose. The menaquinones MK-9(H4), MK-9(H6) and MK-9(H8) were also detected. In addition, the polar lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, as well as five unidentified phospholipids, were detected. Major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and C16 : 0. DNA-DNA hybridization experiments showed that strain fd2-tbT exhibited 36.5 ± 0.6 %, 43.5 ± 2.0 %, 11.1 ± 1.3 %, 10.3 ± 3.1 %, 9.8 ± 1.9 %, 48.9 ± 3.9 % and 16.3 ± 1.7 % relatedness to S. amritsarensis JCM 40119660T, S. flavotricini NBRC 12770T, S. polychromogenes NBRC 13072T, S. racemochromogenes NRRL B-5430T, S. globosus LMG 19896T, S. toxytricini NBRC 12823T and S. katrae NBRC 13447T, respectively. Based on these analyses as well as some phenotypic differences, strain fd2-tbT is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces yangpuensis sp. nov. is proposed. The type strain is fd2-tbT ( = DSM 100336T = CGMCC 4.7256T).
Collapse
Affiliation(s)
- Biao Tang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, PRChina
| | - Yucong Yu
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, PRChina
| | - Xiaoyang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PRChina
| | - Lingling Yang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PRChina
| | - Xufeng Cen
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, PRChina
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, PRChina.,Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, PRChina
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, PRChina
| |
Collapse
|
137
|
Golińska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M. Synthesis of silver nanoparticles from two acidophilic strains ofPilimelia columelliferasubsp.pallidaand their antibacterial activities. J Basic Microbiol 2015; 56:541-56. [DOI: 10.1002/jobm.201500516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/02/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Patrycja Golińska
- Department of Microbiology; Nicolaus Copernicus University; Torun Poland
| | - Magdalena Wypij
- Department of Microbiology; Nicolaus Copernicus University; Torun Poland
| | - Dnyaneshwar Rathod
- Department of Microbiology; Nicolaus Copernicus University; Torun Poland
- Department of Biotechnology; Nanobiotechnology Laboratory; SGB Amravati University; Amravati Maharashtra India
| | - Sagar Tikar
- Department of Biotechnology; Nanobiotechnology Laboratory; SGB Amravati University; Amravati Maharashtra India
| | - Hanna Dahm
- Department of Microbiology; Nicolaus Copernicus University; Torun Poland
| | - Mahendra Rai
- Department of Biotechnology; Nanobiotechnology Laboratory; SGB Amravati University; Amravati Maharashtra India
| |
Collapse
|
138
|
Sharma TK, Mawlankar R, Sonalkar VV, Shinde VK, Zhan J, Li WJ, Rele MV, Dastager SG, Kumar LS. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India. Antonie van Leeuwenhoek 2015; 109:225-35. [DOI: 10.1007/s10482-015-0626-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/17/2015] [Indexed: 04/19/2023]
|
139
|
Nguyen TM, Kim J. Description of Streptomyces fabae sp. nov., a producer of antibiotics against microbial pathogens, isolated from soybean (Glycine max) rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:4151-4156. [PMID: 26303567 DOI: 10.1099/ijsem.0.000551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An actinomycete, designated strain T66T and isolated from soybean rhizosphere soil at Gyeonggi Siheung Sorae in the Republic of Korea, has antibiotic activity against a broad range of microbial pathogens. The strain was determined to be closely related to several known species in the genus Streptomyces on the basis of 16S rRNA gene sequence data (97.73-98.07 % similarity). The strain exhibited cell-wall chemotype I and phospholipid type II. The menaquinones present were MK-9 (H6), MK-9 (H8) and MK-10 (H2). Major fatty acids were anteiso-C15 : 0, iso-C16 : 0, iso-C15 : 0, and anteiso-C17 : 0. The level of DNA-DNA relatedness between strain T66T and closely related type strains was determined to be below 40 %. Strain T66T had spiral spore chains and a rugose spore surface that is different from its closest relatives. Comparison of the genotypic and phenotypic features confirmed that strain T66T ( = KEMB 9005-219T = KACC 18226T = NBRC 110902T) should be considered as the type strain of a novel species in the genus Streptomyces, for which the name Streptomyces fabae sp. nov. is proposed.
Collapse
Affiliation(s)
- Tuan Manh Nguyen
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 443-760, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 443-760, Republic of Korea
| |
Collapse
|
140
|
Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, van Wezel GP, Raaijmakers JM. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 2015; 6:1081. [PMID: 26500626 PMCID: PMC4598592 DOI: 10.3389/fmicb.2015.01081] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/22/2015] [Indexed: 11/24/2022] Open
Abstract
In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.
Collapse
Affiliation(s)
- Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Victor J Carrion
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Roland Mumm
- Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre Wageningen, Netherlands ; Centre for Biosystems Genomics Wageningen, Netherlands
| | - Hua Zhu
- Molecular Biotechnology, Institute of Biology, Leiden University Leiden, Netherlands
| | - Gilles P van Wezel
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Molecular Biotechnology, Institute of Biology, Leiden University Leiden, Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Molecular Biotechnology, Institute of Biology, Leiden University Leiden, Netherlands
| |
Collapse
|
141
|
Petříčková K, Chroňáková A, Zelenka T, Chrudimský T, Pospíšil S, Petříček M, Krištůfek V. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Front Microbiol 2015; 6:814. [PMID: 26300877 PMCID: PMC4525017 DOI: 10.3389/fmicb.2015.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.
Collapse
Affiliation(s)
- Kateřina Petříčková
- Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, v. v. i. České Budějovice, Czech Republic
| | - Tomáš Zelenka
- Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic
| | - Tomáš Chrudimský
- Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, v. v. i. České Budějovice, Czech Republic
| | - Stanislav Pospíšil
- Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic
| | - Miroslav Petříček
- Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic
| | - Václav Krištůfek
- Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, v. v. i. České Budějovice, Czech Republic
| |
Collapse
|
142
|
Yousif G, Busarakam K, Kim BY, Goodfellow M. Streptomyces mangrovi sp. nov., isolated from mangrove forest sediment. Antonie van Leeuwenhoek 2015; 108:783-91. [DOI: 10.1007/s10482-015-0533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/11/2015] [Indexed: 02/06/2023]
|
143
|
Zhao J, Guo L, Liu C, Bai L, Han C, Li J, Xiang W, Wang X. Streptomyces tyrosinilyticus sp. nov., a novel actinomycete isolated from river sediment. Int J Syst Evol Microbiol 2015; 65:3091-3096. [PMID: 26297662 DOI: 10.1099/ijs.0.000385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete, designated strain NEAU-Jh3-20(T), was isolated from river sediment collected from South river in Jilin Province, north China and characterized using a polyphasic approach. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain NEAU-Jh3-20(T) should be assigned to the genus Streptomyces and forms a distinct branch with its closest neighbour Streptomyces vitaminophilus DSM 41686(T)(97.09%). Moreover, key morphological and chemotaxonomic properties also confirmed the affiliation of strain NEAU-Jh3-20(T) to the genus Streptomyces. The cell wall contained ll-diaminopimelic acid and the whole-cell hydrolysates were glucose and ribose. The phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified phospholipid. The predominant menaquinones were MK-9(H8) and MK-9(H6). The major fatty acids were C16 : 0, C18 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The DNA G+C content was 72.2 mol%. A combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-Jh3-20(T) could be distinguished from its closest phylogenetic relative. Therefore, it is proposed that strain NEAU-Jh3-20(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces tyrosinilyticus sp. nov. is proposed. The type strain is NEAU-Jh3-20(T) ( = CGMCC 4.7201(T)= DSM 42170(T)).
Collapse
Affiliation(s)
- Junwei Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Lifeng Guo
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Lu Bai
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chuanyu Han
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Jiansong Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|
144
|
Streptomyces alkaliphilus sp. nov., isolated from sediments of Lake Elmenteita in the Kenyan Rift Valley. Antonie van Leeuwenhoek 2015; 107:1249-59. [DOI: 10.1007/s10482-015-0418-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
145
|
Chitin-degrading enzymes from an actinomycete ectosymbiont of Acromyrmex subterraneus brunneus (Hymenoptera: Formicidae). ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
146
|
Lv LL, Zhang YF, Zhang LL. Glycomyces tarimensis sp. nov., an actinomycete isolated from a saline-alkali habitat. Int J Syst Evol Microbiol 2015; 65:1587-1591. [PMID: 25713037 DOI: 10.1099/ijs.0.000143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete strain, designated TRM 45387(T), was isolated from a saline-alkali soil in Xinjiang Province (40° 22' N 79° 08' E), north-west China. The isolate was characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain TRM 45387(T) belonged to the genus Glycomyces and was closely related to Glycomyces arizonensis DSM 44726(T) (96.59% 16S rRNA gene sequence similarity). The G+C content of the DNA was 71.26 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid, and xylose, glucose, galactose, arabinose and ribose as the major whole-cell sugars. The diagnostic phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositolmannosides. The predominant menaquinone was MK-10(H6). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. On the basis of the evidence from this polyphasic study, a novel species, Glycomyces tarimensis sp. nov., is proposed. The type strain of Glycomyces tarimensis is TRM 45387(T) ( =CCTCC AA 2014007(T) =JCM 30184(T)).
Collapse
Affiliation(s)
- Ling-Ling Lv
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin/College of Life Science, Tarim University, Alar 843300, PR China
| | - Yue-Feng Zhang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin/College of Life Science, Tarim University, Alar 843300, PR China
| | - Li-Li Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin/College of Life Science, Tarim University, Alar 843300, PR China
| |
Collapse
|
147
|
Seipke RF. Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS One 2015; 10:e0116457. [PMID: 25635820 PMCID: PMC4312078 DOI: 10.1371/journal.pone.0116457] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/10/2014] [Indexed: 12/26/2022] Open
Abstract
Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty.
Collapse
Affiliation(s)
- Ryan F. Seipke
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
- * E-mail:
| |
Collapse
|
148
|
Draft genome sequences of six type strains of the genus streptacidiphilus. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01387-14. [PMID: 25573937 PMCID: PMC4290990 DOI: 10.1128/genomea.01387-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Members of the genus Streptacidiphilus are acidophilic actinomycetes with streptomycete-like features. Here, we report the draft genome sequences of the type strains of Streptacidiphilus albus, Streptacidiphilus anmyonensis, Streptacidiphilus carbonis, Streptacidiphilus jiangxiensis, Streptacidiphilus melanogenes, and Streptacidiphilus neutrinimicus. These genome sequences will serve as valuable references for understanding their taxonomic relationships, genetic characteristics, and potentials for industry.
Collapse
|
149
|
Streptomyces xiaopingdaonensis sp. nov., a novel marine actinomycete isolated from the sediment of Xiaopingdao in Dalian, China. Antonie van Leeuwenhoek 2014; 107:511-8. [DOI: 10.1007/s10482-014-0347-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/02/2014] [Indexed: 02/05/2023]
|
150
|
Streptomyces vulcanius sp. nov., a novel actinomycete isolated from volcanic sediment. Antonie van Leeuwenhoek 2014; 107:15-21. [PMID: 25294726 DOI: 10.1007/s10482-014-0299-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
A novel actinomycete, designated strain NEAU-C3(T), was isolated from volcanic sediment collected from Longwan, Jilin province, north China and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the members of the genus Streptomyces. EzTaxon-e analysis of the 16S rRNA gene sequence indicated strain NEAU-C3(T) to be most closely related to Streptomyces hygroscopicus subsp. ossamyceticus JCM 4965(T) (97.7 % sequence similarity) and Streptomyces torulosus JCM 4872(T) (97.7 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-C3(T) belongs within the genus Streptomyces and forms a separate subclade, an association that was supported by a bootstrap value of 72 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. The DNA-DNA hybridization values between strain NEAU-C3(T) and the two most closely related type strains were low enough to justify the assignment of the strain to a novel species. On the basis of these phenotypic, phylogenetic and chemotaxonomic characteristics, it is concluded that strain NEAU-C3(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces vulcanius sp. nov. is proposed. The type strain is NEAU-C3(T) (=CGMCC 4.7177(T)=DSM 42139(T)).
Collapse
|