101
|
Nakamura S, Gohda E, Matsunaga T, Yamamoto I, Minowada J. Production of hepatocyte growth factor by human haematopoietic cell lines. Cytokine 1994; 6:285-94. [PMID: 8054485 DOI: 10.1016/1043-4666(94)90025-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hepatocyte growth factor (HGF) is a multi-functional molecule characterized as a mitogen, a motogen, a morphogen and a tumour suppressor. Little is known about cell types which produce HGF, so we analysed HGF production from cultured cell lines of haematopoietic cell lineage. A total of 138 human leukemia and virus-transformed cell lines were studied and the levels of HGF were measured by ELISA. A significant amount of HGF was detected in a variety of cell lines, including one T, four B, five non-T non-B, eight myeloid one erythroid and two EBV-transformed B cell lines. The amount of HGF spontaneously produced by three of the myeloid cell lines, KCL-22 (33.48 ng/ml), KG-1A (26.21 ng/ml), and KG-1 (18.81 ng/ml), is comparable to the amount produced by human embryonic lung fibroblast cells, known as high HGF-producers. Biological assays together with Western blot analyses verified that the immunoreactive HGF detected in the culture supernatant of haematopoietic cell lines had the same properties as authentic HGF. Moreover, HGF mRNA was detected in high HGF producers by Northern blot analysis. Our findings that lymphoid and myeloid cells function as a source of HGF may provide significant evidence for the involvement of haematopoietic cells in HGF-related morphogenesis and cell growth.
Collapse
Affiliation(s)
- S Nakamura
- Fujisaki Cell Center, Hayashibara Biochemical Laboratories Inc., Okayama, Japan
| | | | | | | | | |
Collapse
|
102
|
Shiota G, Wang TC, Nakamura T, Schmidt EV. Hepatocyte growth factor in transgenic mice: effects on hepatocyte growth, liver regeneration and gene expression. Hepatology 1994. [PMID: 8138271 DOI: 10.1002/hep.1840190423] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Attention has recently been focused on hepatocyte growth factor as a major candidate factor in liver regeneration because it is the most potent known mitogen for hepatocytes in vitro. However, hepatocyte growth factor also displays diverse activities in vitro as scatter factor, as an epithelial morphogen, as a pluripotent mitogen and as a growth inhibitor. Consequently, we developed transgenic mice that expressed hepatocyte growth factor under the control of albumin regulatory sequences to examine its in vivo role in hepatocyte growth. Hepatocytes of these mice expressed increased levels of hepatocyte growth factor as an autocrine growth factor. Hepatocyte growth factor was a potent stimulus for liver repair; the livers of hepatocyte growth factor-transgenic mice recovered completely in half the time needed for their normal siblings after partial hepatectomy. This transgenic model also enabled us to study the chronic effects of hepatocyte growth factor expression. During several months of observation, the labeling index of hepatocytes in albumin-hepatocyte growth factor mice was doubled, and liver DNA content was increased compared with that in wild-type mice. To identify intermediate signaling pathways for hepatocyte growth factor that might regulate this increased growth response, we examined transgenic mice for changes in expression of genes that are known to be regulated during liver regeneration. We found that levels of c-myc and c-jun mRNA were increased in the hepatocyte growth factor-transgenic mice. In additional experiments the increased c-myc expression was the consequence of increased transcription rates as seen in nuclear run-on and myc-CAT reporter gene experiments. We conclude that hepatocyte growth factor increases growth and repair processes when expressed for long periods in the liver and that c-myc and c-jun may be important intermediaries in the hepatocyte growth response caused by hepatocyte growth factor.
Collapse
Affiliation(s)
- G Shiota
- Massachusetts General Hospital Cancer Center, Charlestown 02129
| | | | | | | |
Collapse
|
103
|
Okazaki H, Matsumoto K, Nakamura T. Partial purification and characterization of 'injurin-like' factor which stimulates production of hepatocyte growth factor. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1220:291-8. [PMID: 8305502 DOI: 10.1016/0167-4889(94)90151-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously reported the evidence for presence of a humoral factor 'injurin', which induces expression of the hepatocyte growth factor (HGF) gene in MRC-5 human embryonic lung fibroblasts. We have now purified a factor from porcine liver which stimulates HGF production but differs from injurin. When injurin activity was measured as a stimulatory effect on HGF production by MRC-5 cells, this activity was found in various acid extracts from porcine tissues, including liver, kidney, brain, and lung, and acid extracts from the liver was used for purification. When the acid extract was applied to Q-Sepharose anion-exchange chromatography, 50-60% of the total injurin activity was absorbed to the column and the remaining activity was detected in the flow through fractions. Injurin activity was eluted from the Q-Sepharose column by NaCl concentration gradient with four peaks at 0.5-0.6 M, 0.7-0.8 M, 0.9-1.2 M. 1.5-2.0 M NaCl, thereby suggesting that the factor exists in heterogenous or various forms in tissues. The major active fractions were combined and applied to Mono-Q FPLC anion-exchange chromatography. Injurin activity eluted with a single peak at 0.9-1.5 M NaCl and this activity was 4286 fold purified from the starting extract. Addition of this fraction to MRC-5 cells increased the amount of HGF pulse-labeled with [35S]methionine to a 3-4-fold higher level than that seen in control cells, whereas it had no significant effect on HGF mRNA levels. Therefore, this factor seems to stimulate HGF synthesis affecting translational processes and is distinct from the previously characterized injurin which stimulates HGF gene expression. Chemical treatments and SDS-polyacrylamide gel electrophoresis of this injurin-like factor indicated that injurin-like factor is a acid- and heat-stable non-proteinous factor with an apparent M(r) of 8-15 kDa. Since the injurin activity of the factor was decreased by heparinase treatment, the factor may be a polysulfated glycosaminoglycan related to heparin or to heparan sulfate. These results suggest that HGF production may be regulated by this non-proteinous injurin-like factor and that this factor may also play an important role in the regeneration of organs, through translationally enhancing HGF production.
Collapse
Affiliation(s)
- H Okazaki
- Division of Biochemistry, Osaka University School of Medicine, Japan
| | | | | |
Collapse
|
104
|
Webber EM, Godowski PJ, Fausto N. In vivo response of hepatocytes to growth factors requires an initial priming stimulus. Hepatology 1994. [PMID: 8294105 DOI: 10.1002/hep.1840190230] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although growth factor effects have been studied in cultured hepatocytes, little information exists as to whether these factors can trigger hepatocyte replication in vivo. In this study we infused epidermal growth factor, transforming growth factor-alpha and hepatocyte growth factor directly into the portal vein of rats for 24 hr to see whether they could induce DNA synthesis in normal livers or in livers subjected to one-third hepatectomy. Infusion of transforming growth factor-alpha or epidermal growth factor at doses up to 80 micrograms/24 hr had little effect on hepatic DNA synthesis in normal liver, whereas the monomeric and heterodimeric forms of hepatocyte growth factor generally produced increases of less than threefold in hepatic DNA synthesis. In contrast, after one-third hepatectomy infusion of epidermal growth factor, transforming growth factor-alpha or hepatocyte growth factor produced dose-dependent increases in hepatic DNA synthesis. At a dose of 40 micrograms/24 hr, epidermal growth factor increased DNA synthesis threefold, whereas transforming growth factor-alpha or hepatocyte growth factor increased DNA synthesis to greater than six times that in rats that had undergone hepatectomy alone. Furthermore, infusion of these growth factors, with or without one third-hepatectomy, induced the expression of transforming growth factor-alpha mRNA in the liver. The pattern of protooncogene expression induced by one-third hepatectomy was studied to determine the effect of this procedure in sensitizing the liver to the growth factors. Compared with the well-characterized two-thirds hepatectomy system, there was a similar but smaller increase in c-myc expression but no induction of c-jun expression.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E M Webber
- Department of Pathology and Laboratory Medicine, Brown University School of Medicine, Providence, Rhode Island 02912
| | | | | |
Collapse
|
105
|
Amano O, Matsumoto K, Nakamura T, Iseki S. Expression and localization of hepatocyte growth factor in rat submandibular gland. Growth Factors 1994; 10:145-51. [PMID: 8068352 DOI: 10.3109/08977199409010988] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
By combination of in situ hybridization and immunohistochemical techniques, the expression of hepatocyte growth factor (HGF) was demonstrated in the submandibular gland of rats. Both the mRNA signal and immunoreactivity for HGF were localized exclusively to the epithelial cells of granular convoluted tubules, whereas they were absent from the other components of the submandibular gland. In the granular convoluted tubule cells, HGF-immunoreactivity was localized to the apical secretory granules, which was further substantiated by immunoelectron microscopy. These results added HGF to the list of many growth factors that are produced in the rat submandibular gland and secreted into the saliva.
Collapse
Affiliation(s)
- O Amano
- Department of Anatomy, School of Medicine, Kanazawa University, Japan
| | | | | | | |
Collapse
|
106
|
Butterworth BE, Sprankle CS, Goldsworthy SM, Wilson DM, Goldsworthy TL. Expression of myc, fos, and Ha-ras in the livers of furan-treated F344 rats and B6C3F1 mice. Mol Carcinog 1994; 9:24-32. [PMID: 8297482 DOI: 10.1002/mc.2940090106] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Furan administered by gavage for 2 yr has been reported to induce hepatocellular carcinomas in male and female B6C3F1 mice and in male but not female F344 rats. Chronic exposure studies in our laboratory using bioassay conditions showed extensive hepatocellular toxicity and sustained increases in regenerative cell proliferation after 1, 3, and 6 wk of treatment in male and female rats and male mice. Altered expression of growth-control genes associated with this hyperproliferative state may enhance the susceptibility of these genes to mutation or may provide a selective growth advantage to preneoplastic cells. Quantitative northern blot analysis of mRNA was used to examine the expression of the oncogenes myc, fos, and Ha-ras in the livers of animals treated with furan. In male rats, a single administration of 30 mg/kg furan produced necrosis and a subsequent wave of cell proliferation 48 h after treatment and induced transient peaks in the expression of myc, fos, and Ha-ras 6-24 h after treatment. In male rat liver from our cell proliferation studies, only a slight increase in myc expression was seen at the end of week 1 of treatment. However, beginning at week 3 and increasing at week 6, up to a 15-fold increase over control values was observed in the expression of myc in the treated animals. The only other notable increase in expression observed in any animals from the cell proliferation study was a threefold increase in myc at week 6 in treated female rats. The absence of an increase in Ha-ras expression in the male mouse liver suggests that the unique pattern of Ha-ras mutations previously reported in furan-induced mouse liver tumors is not due to increased mutational susceptibility related to overexpression of this gene. The lack of sustained expression of myc, fos, and Ha-ras in rapidly proliferating liver suggests that continuous expression of these genes is not necessary to maintain increased rates of cell replication. The large increase in myc expression in male but not female rats suggests an adaptive change that may be related to the sex-specific incidence of furan-induced hepatocellular carcinomas in rats.
Collapse
MESH Headings
- Animals
- Female
- Furans/toxicity
- Gene Expression/drug effects
- Gene Expression/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, fos/drug effects
- Genes, fos/genetics
- Genes, myc/drug effects
- Genes, myc/genetics
- Genes, ras/drug effects
- Genes, ras/genetics
- Liver/drug effects
- Liver/physiology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Male
- Mice
- Mice, Inbred Strains
- Proto-Oncogenes/drug effects
- Proto-Oncogenes/genetics
- Rats
- Rats, Inbred F344
- Time Factors
Collapse
Affiliation(s)
- B E Butterworth
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709
| | | | | | | | | |
Collapse
|
107
|
Webber EM, FitzGerald MJ, Brown PI, Bartlett MH, Fausto N. Transforming growth factor-alpha expression during liver regeneration after partial hepatectomy and toxic injury, and potential interactions between transforming growth factor-alpha and hepatocyte growth factor. Hepatology 1993. [PMID: 8244268 DOI: 10.1002/hep.1840180622] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-alpha and hepatocyte growth factor are important stimulators of hepatocyte proliferation. In this series of experiments we sought to measure the expression of transforming growth factor-alpha mRNA by hepatocytes in response to toxic liver injury produced by carbon tetrachloride or galactosamine and to perform a more detailed analysis of transforming growth factor-alpha expression after partial hepatectomy. We also explored the interactions of transforming growth factor-alpha and hepatocyte growth factor in their effects on hepatocytes in vitro and tested the ability of these factors to stimulate endogenous transforming growth factor-alpha production by hepatocytes. In previous work we have used oligonucleotide probes to measure transforming growth factor-alpha mRNA expression after partial hepatectomy. In this study we used a rat transforming growth factor-alpha cDNA probe and found that the level of liver transforming growth factor-alpha mRNA increases 4 hr after partial hepatectomy, shows peak expression at 18 hr and returns to the normal level by 36 to 48 hr. Measurement of the corresponding peptide in the liver by means of radioimmunoassay shows that the level of transforming growth factor-alpha rises by 12 hr, peaks at 24 hr and remains significantly increased at 48 hr compared with the levels in sham-operated rats. Carbon tetrachloride and galactosamine are known to produce different patterns of acute liver injury, with maximal hepatocyte DNA synthesis at 48 hr and 5 days, respectively. After carbon tetrachloride administration the profiles of the transforming growth factor-alpha and hepatocyte growth factor mRNA expression are similar, each showing two peaks: the first at 12 hr and the second at 48 hr. In contrast, after galactosamine-induced liver injury the expression patterns of transforming growth factor-alpha and hepatocyte growth factor mRNAs differ: hepatocyte growth factor shows a major peak at 24 hr, with a smaller increase at 5 days, whereas transforming growth factor-alpha begins to increase after 2 days, with a single peak occurring at 5 days. In primary hepatocyte cultures, transforming growth factor-alpha and hepatocyte growth factor appear to have complementary effects. The maximal hepatocyte nuclear labeling index induced by hepatocyte growth factor was 42%; the addition of transforming growth factor-alpha increased this to 74%. Exogenous transforming growth factor-alpha, but not hepatocyte growth factor, stimulates the production of the transforming growth factor-alpha peptide by hepatocytes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E M Webber
- Department of Pathology and Laboratory Medicine, Brown University School of Medicine, Providence, Rhode Island 12912
| | | | | | | | | |
Collapse
|
108
|
Ledda-Columbano GM, Coni P, Simbula G, Zedda I, Columbano A. Compensatory regeneration, mitogen-induced liver growth, and multistage chemical carcinogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 1993; 101 Suppl 5:163-8. [PMID: 8013404 PMCID: PMC1519459 DOI: 10.1289/ehp.93101s5163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Liver cell proliferation has often been implicated to play a major role during different steps of the carcinogenic process. Most of the experimental studies indicating a close association between cell proliferation and liver cancer development have made use of a compensatory type of proliferative stimulus. However, liver growth may also be caused by direct hyperplasia after administration of primary mitogens. Our recent studies examined the possible differences between these two types of cell proliferation. Our studies indicate that a) increased expression of proto-oncogenes such as c-fos, c-jun, and c-myc is not necessary for entry into the cell cycle during mitogen-induced liver growth; b) mitogen-induced liver growth does not support initiation of chemical hepatocarcinogenesis; c) repeated proliferative stimuli induced by primary mitogens do not stimulate the growth of initiated cells to a focal and/or nodular stage; and d) mitogen-induced liver growth, unlike compensatory regeneration, is followed by a particular mode of cell death, namely, apoptosis. This type of cell death may be responsible for the elimination of carcinogen-initiated cells.
Collapse
|
109
|
Mitaka T, Norioka K, Nakamura T, Mochizuki Y. Effects of mitogens and co-mitogens on the formation of small-cell colonies in primary cultures of rat hepatocytes. J Cell Physiol 1993; 157:461-8. [PMID: 8253857 DOI: 10.1002/jcp.1041570305] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Colonies of small hepatocytes appeared after the culture of primary adult rat hepatocytes for 4 days in serum-free Dulbecco's modified Eagle's medium containing 10 mM nicotinamide and 10 ng/ml of epidermal growth factor (EGF), acidic and basic fibroblast growth factors (FGF), hepatocyte growth factor (HGF), or transforming growth factor-alpha (TGF-alpha). Every colony consisted of cells that each had a single nucleus and a higher nucleus/cytoplasm ratio than surrounding hepatocytes, and immunocytochemically the cells induced by any mitogen were stained with albumin, transferrin, cytokeratin-8 and -18. But these cells expressed neither cytokeratin-7 nor -19. When 6 x 10(5) cells were plated on 35-mm dishes, about 15 colonies per 1,000 attached cells were observed in the cultures treated with EGF, HGF, and TGF-alpha. Although FGFs could also induce colonies, their number was less than half of the number induced by EGF. Furthermore, the numbers of colonies induced by the combinations of EGF+HGF, EGF+TGF-alpha, and HGF+TGF-alpha were not different from those of the colonies induced by each mitogen alone. To examine the ability of co-mitogenic factors to induce small-cell colonies, angiotensin-II, insulin-like growth factor-I, norepinephrine, tumor necrosis factor, and vasopressin were used. In the cells cultured without EGF, these co-mitogens neither stimulated DNA synthesis nor induced colonies. On the other hand, in cells cultured with both EGF and each co-mitogen, although the DNA synthesis of the hepatocytes was enhanced, the number of colonies detected was not significantly different from the number which EGF alone could induce. These results showed that the small-cell colonies in primary cultures of rat hepatocytes were inducible by EGF, HGF, TGF-alpha, or FGFs and that the co-mitogens did not influence the formation of the small-cell colonies.
Collapse
Affiliation(s)
- T Mitaka
- Department of Pathology, Sapporo Medical University, School of Medicine, Japan
| | | | | | | |
Collapse
|
110
|
Nakamura T, Hotchi M. Changes in DNA strand breaks in non parenchymal cells following hepatocyte regeneration in CCl4-induced rat liver injury. ACTA ACUST UNITED AC 1993; 63:11-6. [PMID: 1362017 DOI: 10.1007/bf02899239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA strand breaks (nicks) in non-parenchymal cells (NPCs) in CCl4-induced acute or chronic liver injury in rats were detected using an in situ nick translation method; their dynamic changes were analysed in relation to the proliferation pattern of hepatocytes and NPCs, as revealed by bromodeoxyuridine (BrdU)-uptake. In acute injury, hepatocyte proliferation started before centrilobular necrosis had occurred, whereas BrdU-labeled sinusoidal NPCs markedly increased only after centrilobular necrosis was apparent. DNA breakages in NPCs paralleled the proliferation pattern of these cells, suggesting that nicks are physiological, and reflect proliferation and activated gene expression. In chronic injury, liver cirrhosis developed after 9 weeks, but BrdU-labeling of hepatocytes was almost the same level as that in untreated liver. The number of BrdU-labeled NPCs showed only a slight increase, while those with DNA breakages were much more frequent in the cirrhotic stage, suggesting a significant role for NPCs in the fibrotic process. These results indicate that DNA strand breaks in NPCs act as a marker for activation states such as proliferation, differentiation and/or activated gene expression.
Collapse
Affiliation(s)
- T Nakamura
- Department of Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | | |
Collapse
|
111
|
Shinozuka H, Masuhara M, Kubo Y, Katyal SL. Growth factor and receptor modulations in rat liver by choline-methionine deficiency. J Nutr Biochem 1993. [DOI: 10.1016/0955-2863(93)90031-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
112
|
Jiang WG, Hallett MB, Puntis MC. Hepatocyte growth factor/scatter factor, liver regeneration and cancer metastasis. Br J Surg 1993; 80:1368-73. [PMID: 8252338 DOI: 10.1002/bjs.1800801104] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatocyte growth factor (HGF) is the most potent stimulator of hepatocyte growth and DNA synthesis identified; it is now known to be the same molecule as scatter factor, which increases the motility of a variety of cell types. HGF is becoming recognized as one of the most important factors in the regulation of liver regeneration after surgical resection or chemical damage. HGF is produced by several tissues, including neoplasms; it can therefore provide a stimulus for increased motility of malignant cells by both a paracrine and autocrine mechanism. The receptor for HGF has been identified as the product of the oncogene c-met, raising the possibility that this gene plays a key role in facilitating cellular invasion. HGF may therefore be important not only for liver cell growth but also in metastasis. This article summarizes the current position of research on HGF, and presents both clinical and scientific evidence that strongly implicates this factor in liver regeneration and cancer invasion and metastasis.
Collapse
Affiliation(s)
- W G Jiang
- Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | |
Collapse
|
113
|
Hepatocyte growth factor may act as a pulmotrophic factor on lung regeneration after acute lung injury. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36912-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
114
|
Jennische E, Ekberg S, Matejka GL. Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C122-8. [PMID: 8338120 DOI: 10.1152/ajpcell.1993.265.1.c122] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of hepatocyte growth factor (HGF) was studied in rat skeletal muscle during postnatal growth and during regeneration after ischemic injury. By Northern blot analysis two RNA transcripts with estimated sizes of 6.0 and 3.1 kb, respectively, could be detected in immature skeletal muscle at 2, 4, and 10 days after birth, whereas no signal could be detected in adult skeletal muscle. In regenerating muscle, HGF mRNA was reexpressed, and a distinct signal was evident during the first days after the injury. One week after the injury only a weak signal was obtained. By in situ hybridization staining, HGF mRNA could be demonstrated in the immature muscle tissue of newborn rats but not in adult skeletal muscle. In regenerating muscle, the staining for HGF mRNA could be demonstrated in the regenerating muscle cells during the early phase of the regeneration. One week after the injury, only faint staining for HGF mRNA persisted in the regenerated fibers. It is concluded that HGF expression is developmentally regulated in skeletal muscle and that HGF is reexpressed in a transient manner during postischemic muscle regeneration.
Collapse
Affiliation(s)
- E Jennische
- Department of Histology, University of Göteborg, Sweden
| | | | | |
Collapse
|
115
|
Jiang WG, Lloyds D, Puntis MC, Nakamura T, Hallett MB. Regulation of spreading and growth of colon cancer cells by hepatocyte growth factor. Clin Exp Metastasis 1993; 11:235-42. [PMID: 8386069 DOI: 10.1007/bf00121166] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatocyte growth factor (HGF), also known as scatter factor, regulates both cell motility and the growth of some cell types. We have determined the effects of HGF on the motility and growth of human colon cancer cell lines (HT115, HT29, HRT18 and HT55). Cell motility, as measured by dissociation from carrier beads or by scattering of cell colonies, was greatly increased in all cell lines. The effects were completely blocked by anti-HGF antibody. In contrast, cell growth of HT115, HT29 and HRT18 cells was inhibited by a wide range of concentrations of HGF. HT55 cell growth was also inhibited but needed a prolonged culture period (> 5 days). The HGF receptor/Met protein is highly expressed in the membrane fraction of these cells as determined by Western blotting. It is concluded that HGF has an effect on both colon cancer cell motility and growth, which may be important in the control of the spread of colon cancer.
Collapse
Affiliation(s)
- W G Jiang
- University Department of Surgery, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | |
Collapse
|
116
|
Maher JJ. Cell-specific expression of hepatocyte growth factor in liver. Upregulation in sinusoidal endothelial cells after carbon tetrachloride. J Clin Invest 1993; 91:2244-52. [PMID: 7683700 PMCID: PMC288227 DOI: 10.1172/jci116451] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cellular origin of hepatocyte growth factor (HGF), a polypeptide implicated in liver regeneration, was examined in normal liver and in hepatic regeneration induced by carbon tetrachloride. In normal liver, HGF and its mRNA were abundant in lipocytes, with smaller amounts present also in sinusoidal endothelial and Kupffer cells. In regenerating liver, HGF gene expression increased exclusively in endothelial cells. HGF mRNA levels rose sixfold in these cells, peaking at 6 h after toxin administration and returning to near normal by 24 h. The rise in HGF mRNA was accompanied by a 5.4-fold increase in HGF secretion. CCl4 did not alter HGF expression by either Kupffer cells or lipocytes; nor did it induce HGF expression by hepatocytes. Nonparenchymal liver cells contained two HGF transcripts: one predicting a full-length molecule of 728 amino acids; and the other encoding a functional five-amino acid deletion variant of HGF. The variant was less abundant than the full-length transcript, but increased in parallel with native HGF mRNA in response to CCl4. The response of nonparenchymal cells to HGF was examined by plating endothelial cells and lipocytes in the presence of recombinant human HGF. Under the conditions examined, the growth factor exerted neither mitogenic nor scatter factor activity on these cells.
Collapse
Affiliation(s)
- J J Maher
- Liver Core Center, University of California, San Francisco 94110
| |
Collapse
|
117
|
Okajima A, Miyazawa K, Kitamura N. Characterization of the promoter region of the rat hepatocyte-growth-factor/scatter-factor gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:113-9. [PMID: 8477688 DOI: 10.1111/j.1432-1033.1993.tb17740.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a potent mitogen for hepatocytes in primary culture. In response to liver damage, the levels of HGF/SF mRNA change in various tissues. In this study, we isolated a genomic DNA fragment containing the promoter region of the rat HGF/SF gene and analyzed transcription-initiation sites and their utilization in response to acute liver injury. Rat HGF/SF-mRNA synthesis starts from at least three sites in the liver, spleen and kidney. One of these sites is preferentially utilized in the liver and spleen in response to acute liver injury. In the 5' flanking region, several cytokine-related sequence elements that might be involved in the regulation of HGF/SF-gene expression are located near the transcription-initiation sites. The effects of cytokines related to these sequence elements on the production of HGF/SF mRNA were examined using a cell culture system. Transforming growth factor-beta 1 (TGF-beta 1) inhibits the production of HGF/SF mRNA by Shay granulocytic sarcoma-derived cells. The TGF-beta 1-inhibitory element, one of the sequence elements present in the promoter sequence, may mediate the inhibition of HGF/SF-gene expression by TGF-beta 1.
Collapse
Affiliation(s)
- A Okajima
- Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | | | | |
Collapse
|
118
|
Liu KX, Kato Y, Yamazaki M, Higuchi O, Nakamura T, Sugiyama Y. Decrease in the hepatic clearance of hepatocyte growth factor in carbon tetrachloride-intoxicated rats. Hepatology 1993; 17:651-60. [PMID: 8477970 DOI: 10.1002/hep.1840170420] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To examine whether a decrease in hepatic uptake, clearance or both of hepatocyte growth factor contributes to increased plasma hepatocyte growth factor levels, we kinetically analyzed hepatic hepatocyte growth factor handling using rats with carbon tetrachloride-induced liver injury in both in vivo and perfused liver systems. After the intravenous administration of tracer 125I-hepatocyte growth factor, the time profile of trichloroacetic acid-precipitable 125I-hepatocyte growth factor was analyzed, and tissue clearance and total body plasma clearance were determined. For the tissues examined (liver, kidney, lung, spleen and adrenal), liver and adrenal clearance of 125I-hepatocyte growth factor decreased significantly. It was found that the hepatic clearance explains the bulk of the total body plasma clearance. The hepatic clearance and the total body clearance decreased to minimums (approximately 40% of control) 24 hr after carbon tetrachloride administration and recovered to near-control values over a 6-day period. At 24 hr after carbon tetrachloride administration, a single-pass liver perfusion of 125I-hepatocyte growth factor was performed, and its results were compared with the control results. After a 15-min perfusion of 125I-hepatocyte growth factor, we washed the liver sequentially with heparin and then with acid buffer to separately determine the cell-surface-bound and internalized 125I-hepatocyte growth factor. In carbon tetrachloride-intoxicated rats, both the acid-washable binding and the internalized 125I-hepatocyte growth factor dropped to almost half of the control values, but the decrease in heparin-washable binding was minimal. In contrast, when 125I-hepatocyte growth factor was perfused with excess unlabeled hepatocyte growth factor (135 pmol/L), mostly saturating the cell-surface receptors, the change in cell-surface-bound 125I-hepatocyte growth factor and internalized 125I-hepatocyte growth factor in carbon tetrachloride-intoxicated rats was minimal. This finding, along with our previous finding that the cell-surface hepatocyte growth factor receptors are greatly down-regulated in carbon tetrachloride-intoxicated rats, suggests that the hepatic clearance of hepatocyte growth factor through receptor-mediated endocytosis decreases in carbon tetrachloride-intoxicated rats. The decrease in the hepatic clearance of hepatocyte growth factor could be one of the causes of the elevated hepatocyte growth factor level in the circulating blood in liver diseases.
Collapse
Affiliation(s)
- K X Liu
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
119
|
Hamanoue M, Kawaida K, Takao S, Shimazu H, Noji S, Matsumoto K, Nakamura T. Rapid and marked induction of hepatocyte growth factor during liver regeneration after ischemic or crush injury. Hepatology 1992; 16:1485-92. [PMID: 1280246 DOI: 10.1002/hep.1840160626] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Liver injuries induced by ischemia or physical trauma are characterized by noninflammatory damage frequently observed in a clinical setting. When the liver of rats was injured by ischemic treatment or physical crushing, necrotic tissue degeneration occurred in several sites of lobulus within 24 hr. Hepatocyte growth factor, a potent mitogen for adult rat hepatocytes in primary culture, was markedly induced in the livers of rats injured by ischemia or physical trauma. In both cases, the hepatocyte growth factor messenger RNA level in the injured liver reached about 10 to 20 times that of the normal level during 12 to 24 hr after liver injury. The increase in hepatocyte growth factor messenger RNA correlated well with the degree of liver damage as evaluated by serum ALT activity in the sera of rats. In situ hybridization showed that hepatocyte growth factor messenger RNA expression occurs in nonparenchymal liver cells, primarily in Kupffer cells of the ischemic liver. After the increase of hepatocyte growth factor messenger RNA in the injured liver, a marked compensatory hepatocyte DNA synthesis occurred 48 to 72 hr after these treatments. These results suggest that hepatocyte growth factor acts as a hepatotropic factor for liver regeneration after noninflammatory liver damage caused by ischemia and physical crush, probably through a paracrine mechanism.
Collapse
Affiliation(s)
- M Hamanoue
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
120
|
Kagoshima M, Kinoshita T, Matsumoto K, Nakamura T. Developmental changes in hepatocyte growth factor mRNA and its receptor in rat liver, kidney and lung. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:375-80. [PMID: 1332867 DOI: 10.1111/j.1432-1033.1992.tb17431.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocyte growth factor (HGF) is a mesenchymal-derived factor which induces mitosis, cell movement and morphogenesis of tissue-like structure. We analyzed changes in HGF mRNA and its receptor, the c-met proto-oncogene product, in the liver, kidney and lung during late fetal and postnatal development in rats. In the liver, the HGF-mRNA level was very low during late gestation and in neonates, it increased remarkably and reached a maximum two weeks postnatally, to be followed by a decrease to 33% of the maximum. HGF mRNA in the kidney and lung was either undetectable or very low during late gestation and the neonatal period and increased markedly to reach a maximum, respectively, 3-4 weeks postnatally. HGF-mRNA level in the adult rat lung was fivefold higher than that in the liver and kidney. The number of HGF receptors on plasma membranes of these tissues was low in neonates but there was a rapid increase after birth and a maximum was reached within three weeks. The number of HGF receptors/ng plasma membrane protein at the maximal level was highest in the liver and lowest in the lung. c-met/HGF-receptor mRNA in the liver was also low during late-gestation or in early neonatal periods and increased postnatally. Since HGF-mRNA and HGF-receptor levels changed differently in liver, kidney and lung, the expression of HGF and its receptor may be independently regulated in each organ. However, in these organs, HGF mRNA and the HGF receptor increased within a few weeks of birth, HGF may play roles in organ growth, organ maturation and the maintenance of tissue homeostasis during the postnatal period, presumably through its potential to act as mitogen, motogen and morphogen.
Collapse
Affiliation(s)
- M Kagoshima
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
121
|
Masuhara M, Katyal SL, Nakamura T, Shinozuka H. Differential expression of hepatocyte growth factor, transforming growth factor-alpha and transforming growth factor-beta 1 messenger RNAs in two experimental models of liver cell proliferation. Hepatology 1992. [PMID: 1427663 DOI: 10.1002/hep.1840160522] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hepatocyte growth factor, a potent hepatocyte mitogen in vitro, appears to trigger hepatocyte regeneration after partial hepatectomy and after acute liver cell necrosis. Transforming growth factor-alpha and transforming growth factor-beta 1 may also be involved in the control of liver regeneration. In this study we assessed possible roles of hepatocyte growth factor, transforming growth factor-alpha and transforming growth factor-beta 1 on liver cell proliferation in vivo, using a model of choline deficiency that is associated with liver cell necrosis and a model of a hypolipidemic agent (4-chloro-6-(2,3 xylidino)-2-pyrimidinylthio (N-beta-hydroxyethyl) acetamide) without liver necrosis. Male F344 rats were fed a choline-deficient diet or 0.16% 4-chloro-6-(2,3 xylidino)-2-pyrimidinylthio (N-beta-hydroxyethyl) acetamide diet for 6 and 4 wk, respectively. Rats were killed periodically, and the expression of hepatocyte growth factor messenger RNA in the liver, lung and kidney was determined by Northern-blot analysis. The levels of transforming growth factor-alpha and transforming growth factor-beta 1 messenger RNAs in the liver were also determined. Feeding a choline-deficient diet for 1 to 6 wk led to gradual increases in the levels of hepatocyte growth factor, transforming growth factor-alpha and transforming growth factor-beta 1 messenger RNAs in the liver. Feeding a 4-chloro-6-(2,3 xylidino)-2-pyrimidinylthio (N-beta-hydroxyethyl) acetamide diet for 3 days and 2 wk induced marked enhancement of liver cell proliferation as judged by hepatocyte 5-bromo-2-deoxyuridine incorporation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Masuhara
- Department of Pathology, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | | | |
Collapse
|
122
|
Tomiya T, Tani M, Yamada S, Hayashi S, Umeda N, Fujiwara K. Serum hepatocyte growth factor levels in hepatectomized and nonhepatectomized surgical patients. Gastroenterology 1992; 103:1621-4. [PMID: 1426882 DOI: 10.1016/0016-5085(92)91186-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Serum hepatocyte growth factor levels were measured in hepatectomized and nonhepatectomized surgical patients. The levels were significantly increased and reached a maximum within 7 days after surgery in both groups, returning to preoperative levels 28 days after partial hepatectomy and 7 days after other operations. Multiple regression analysis showed that such maximal hepatocyte growth factor levels were significantly related to having liver cirrhosis and postoperative maximal serum total bilirubin and alanine aminotransferase levels and peripheral white blood cell counts in the hepatectomized group and to postoperative maximal peripheral white blood cell counts and serum C-reactive protein levels in the nonhepatectomized group. However, the levels showed no relation to the resected liver volume and increment of the remaining liver volume 28 days after partial hepatectomy. It is concluded that serum hepatocyte growth factor levels were increased after partial hepatectomy in association with hepatocellular dysfunction and necrosis and systemic inflammation. It is unlikely that the increase was related to liver regeneration.
Collapse
Affiliation(s)
- T Tomiya
- First Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
123
|
Baffy G, Yang L, Michalopoulos GK, Williamson JR. Hepatocyte growth factor induces calcium mobilization and inositol phosphate production in rat hepatocytes. J Cell Physiol 1992; 153:332-339. [PMID: 1429853 DOI: 10.1002/jcp.1041530213] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of hepatocyte growth factor (HGF) on intracellular Ca2+ mobilization were studied using fura-2-loaded single rat hepatocytes. Hepatocytes microperfused with different amounts of HGF responded with a rapid concentration-dependent rise in the cytosolic free Ca2+ concentration with a maximum increase of 142% at 80 ng/ml of HGF. The lag period of the Ca2+ response was decreased with increasing HGF concentrations, being 64 +/- 12 s, 42 +/- 6 s, and 14 +/- 2 s, respectively, with 8, 20, and 80 ng/ml of HGF. The detailed pattern of Ca2+ transients, however, was variable. Out of 16 cells tested using 20 ng/ml of HGF, 68% showed sustained oscillatory responses, whereas other cells showed a sustained increase in the cytosolic-free Ca2+ upon exposure to HGF, which was dependent on the presence of extracellular Ca2+. HGF also induced Ca2+ entry across the plasma membrane. Mobilization of Ca2+ by HGF was accompanied by a rapid accumulation of inositol 1,4,5-trisphosphate (Ins 1,4,5-P3). The effects of HGF and epidermal growth factor (EGF) were comparable and partly additive for Ins 1,4,5-P3 production and for the sustained phase of Ca2+ mobilization. Preincubation of cells with 10 microM of genistein to inhibit protein tyrosine kinases abolished the HGF-induced Ca2+ response and also inhibited HGF-induced Ins 1,4,5-P3 production in rat liver cells. These data indicate that early events in the signal transduction pathways mediated by HGF and EGF have in common the requirements for tyrosine kinase activity, Ins 1,4,5-P3 production, and Ca2+ mobilization.
Collapse
Affiliation(s)
- G Baffy
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104-6089
| | | | | | | |
Collapse
|
124
|
Matsumoto K, Okazaki H, Nakamura T. Up-regulation of hepatocyte growth factor gene expression by interleukin-1 in human skin fibroblasts. Biochem Biophys Res Commun 1992; 188:235-43. [PMID: 1384479 DOI: 10.1016/0006-291x(92)92375-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocyte growth factor (HGF) functions as a hepatotrophic and renotrophic factor for regeneration of the liver and kidney. When 1 ng/ml of interleukin-1 alpha (IL-1 alpha) or interleukin-1 beta (IL-1 beta) was added to cultures of human skin fibroblasts, the production of HGF was 5-6 fold higher than levels in the controls. HGF mRNA level in the cells was increased to 4-fold higher levels at 6 h after exposure to IL-1 alpha. Tumor necrosis factor-alpha and interferon-gamma but no other cytokine tested had slightly stimulatory effects on HGF production. The tumor promoter, tetradecanoylphorbol 13-acetate (TPA) markedly enhanced the stimulatory effect of IL-1 alpha and IL-1 beta on the production of HGF. The stimulatory effect of both IL-1 alpha and IL-1 beta and the synergistical stimulation with TPA were completely abrogated by 10 ng/ml TGF-beta 1 or 1 microM dexamethasone. These results suggest that IL-1 alpha and IL-1 beta are positive regulators for expression of the HGF gene and are likely have a role in regeneration of tissues following the occurrence of inflammatory diseases.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
125
|
Defrances MC, Wolf HK, Michalopoulos GK, Zarnegar R. The presence of hepatocyte growth factor in the developing rat. Development 1992; 116:387-395. [PMID: 1286614 DOI: 10.1242/dev.116.2.387] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hepatocyte growth factor (HGF), a heparin-binding polypeptide mitogen, stimulates DNA synthesis in adult rat and human hepatocytes and in several other cells of epithelial origin. Recently, it was determined that scatter factor (SF), a protein that has been shown to cause the dispersion and migration of epithelial cells in culture, is identical to HGF. Moreover, the receptor for HGF was identified as the product of the proto-oncogene, c-MET, a tyrosine kinase-containing transmembrane protein. c-MET expression has been reported in a variety of adult and embryonic mouse tissues. Similarly, we and others have demonstrated that HGF is expressed in various adult rat and human tissues. In the present study, the tissue distribution of HGF during rat development was determined by immunohistochemistry using an HGF-specific polyclonal antiserum. Between day 12 and day 19, immunoreactivity for HGF was present in various locations such as hematopoietic cells, somites, squamous epithelium of the esophagus and skin, periventricular germinal matrix of the brain, bronchial epithelium, renal collecting tubules and chondrocytes. After day 19, HGF immunoreactivity was also present in the pancreas, submaxillary glands and neural tissues. In addition to immunolocalizing HGF in tissue sections, bioreactive and immunoreactive HGF was extracted and purified from rat fetuses. Other studies demonstrated the presence of HGF and c-MET mRNA in total fetal rat, and in fetal and neonatal rat liver. Addition of purified HGF to fetal and neonatal rat liver cultures enriched for hepatocytes stimulated DNA synthesis up to six-fold over controls. These findings strongly suggest a pivotal role for this potent regulator of growth and development.
Collapse
Affiliation(s)
- M C Defrances
- Department of Pathology, University of Pittsburgh Medical Center, PA 15261
| | | | | | | |
Collapse
|
126
|
Joplin R, Hishida T, Tsubouchi H, Daikuhara Y, Ayres R, Neuberger JM, Strain AJ. Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor. J Clin Invest 1992; 90:1284-1289. [PMID: 1401065 PMCID: PMC443171 DOI: 10.1172/jci115992] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In previous studies, intrahepatic human biliary epithelial cells (BEC) were isolated in high purity. However, these cells demonstrated only limited growth responses. Here we report that human BEC proliferate in response to human hepatocyte growth factor (hHGF), retain BEC-specific phenotype, and can be serially passaged. BEC showed dose-dependent growth in response to 0.01-100 ng/ml hHGF. The maximum S-phase labeling index reached 40% with half-maximal stimulation at 1 ng/ml. The response of cells from normal and primary biliary cirrhotic liver to hHGF was similar. Cultures were immunostained with specific antibodies and then processed for [3H]thymidine autoradiography. Proliferating cells expressed BEC-specific markers (HEA125 and CK-19), but were negative for desmin and factor VIII-related antigen. Occasional vimentin-positive cells were observed, but these were nonproliferative. In conclusion, cells responding to hHGF were clearly BEC in origin. The observation that HGF is mitogenic for BEC as well as hepatocytes has important implications. First, greater yields of intrahepatic BEC are available for subsequent studies of the pathogenesis and etiology of diseases of the biliary epithelium. Secondly, some means of regulating the cellular response to HGF in vivo must operate, in that HGF levels rise early after partial hepatectomy and yet BEC proliferate 24 h later than hepatocytes.
Collapse
Affiliation(s)
- R Joplin
- Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
127
|
Tajima H, Matsumoto K, Nakamura T. Regulation of cell growth and motility by hepatocyte growth factor and receptor expression in various cell species. Exp Cell Res 1992; 202:423-31. [PMID: 1327854 DOI: 10.1016/0014-4827(92)90095-p] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocyte growth factor (HGF), a humoral mediator for regeneration of liver and kidney, possesses multiple biological activities. To investigate target cell specificity and to examine whether multiple actions of HGF are related to properties of the HGF receptor on target cells, we examined the effects of HGF on cell growth and motility and analyzed the HGF receptor in various species of cells. HGF stimulated growth and DNA synthesis of PAM212 (naturally immortalized mouse keratinocytes), Mv1Lu (mink lung epithelia), and A431 (human epidermoid carcinoma) cells, as well as mature hepatocytes, but inhibited those of IM-9 (human B-lymphoblasts). Conversely, HGF had a marked stimulatory effect on cell motility of MDCK (Mardin-Darby canine kidney epithelia) cells, but not on their growth. Also, HGF enhanced the motility of various species of cells, including A431, PAM212, HepG2 (human hepatoma), KB (human epidermoid carcinoma), and J-111 (human monocytes) cells. Scatchard analysis of 125I-HGF binding to hepatocytes indicated that the cells expressed both high- and low-affinity binding sites for HGF with Kd values of 23 and 260 pM, respectively. High-affinity HGF receptor with Kd values of 20-25 pM was detected at 40-720 sites/cell in MDCK, A431, PAM212, Lu99, and IM-9 cells, but not in fibroblasts and hematopoietic cells. In contrast, low-affinity binding sites were detected in all cell lines examined, even in those not responsive to HGF. Northern blots revealed that cells possessing a high-affinity HGF receptor expressed c-MET/HGF receptor mRNA. Therefore, HGF probably regulates both cell growth and motility of various types of epithelial cells and some types of mesenchymal cells. The multiple biological activities of HGF may be exerted through a high-affinity HGF receptor linked to multiple distinct intracellular signaling pathways.
Collapse
Affiliation(s)
- H Tajima
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
128
|
Marker AJ, Galloway E, Palmer S, Nakamura T, Gould GW, MacSween RN, Bushfield M. Role of the adenylate cyclase, phosphoinositidase C and receptor tyrosyl kinase systems in the control of hepatocyte proliferation by hepatocyte growth factor. Biochem Pharmacol 1992; 44:1037-43. [PMID: 1329755 DOI: 10.1016/0006-2952(92)90365-p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocyte growth factor (HGF) is the most potent known mitogen for hepatocytes in primary culture. However, the mechanisms through which HGF induces hepatocyte proliferation have not been defined. Here we have investigated the role of the adenylate cyclase, phosphoinositidase C and tyrosine kinase signalling systems in the control of hepatocyte proliferation by HGF using freshly isolated or cultured adult rat hepatocytes. We show that human recombinant HGF caused a dose-dependent increase in hepatocyte DNA synthesis with a maximal effect at 10 ng/mL and an EC50 of 5.9 ng/mL. HGF had no effect on hepatocyte adenylate cyclase activity or intracellular cAMP levels. Elevation of hepatocyte cAMP levels resulted in inhibition of HGF-stimulated DNA synthesis. HGF stimulated inositol phospholipid hydrolysis with a maximal effect at 25 ng/mL and potentiated the effect of vasopressin (10(-8) and 10(-9)M). HGF (100 ng/mL) caused an increase in the phosphorylation on tyrosine of an unknown hepatocyte protein with a molecular mass of 36 kDa. Thus, we have shown that HGF, like epidermal growth factor (EGF), can activate the phosphoinositidase C and tyrosine kinase systems in rat hepatocytes. As with EGF, these intracellular signalling systems may underlie HGF-induced hepatocyte proliferation.
Collapse
Affiliation(s)
- A J Marker
- Department of Pathology, University of Glasgow, U.K
| | | | | | | | | | | | | |
Collapse
|
129
|
Kono S, Nagaike M, Matsumoto K, Nakamura T. Marked induction of hepatocyte growth factor mRNA in intact kidney and spleen in response to injury of distant organs. Biochem Biophys Res Commun 1992; 186:991-8. [PMID: 1379811 DOI: 10.1016/0006-291x(92)90844-b] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent mitogen for various epithelial cells, including mature hepatocytes and renal tubular cells. Here, HGF mRNA was found to be markedly increased in non-injured kidney and spleen, when the liver or kidney in rats was injured by 70% partial hepatectomy or unilateral nephrectomy. HGF mRNA increased to 3-4 fold higher level than the normal in the kidney and spleen as well as in the remnant liver after partial hepatectomy. Similarly, HGF mRNA markedly increased in the spleen as well as in the remnant kidney after unilateral nephrectomy. These results suggest that the onset of injury to the liver or kidney may be recognized by distal non-injured organs by the signalling of a humoral factor and that HGF derived from these organs may be involved in the regeneration of liver or kidney, through an endocrine mechanism.
Collapse
Affiliation(s)
- S Kono
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
130
|
Jezequel-Cuer M, Dalix AM, Flejou JF, Durand G. Variations in human liver fucosyltransferase activities in hepatobiliary diseases. LIVER 1992; 12:140-6. [PMID: 1501518 DOI: 10.1111/j.1600-0676.1992.tb00573.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hyperfucosylation of a number of glycoconjugates observed in liver diseases involves the action of several specific fucosyltransferases (F.T.) notably responsible for synthesizing histo-blood group antigens. We determined the activities of alpha 3, alpha 2 and alpha 3/4 F.T. in 35 liver biopsy samples from patients with fatty liver, alcoholic or post-hepatic liver cirrhosis, primary or secondary biliary cirrhosis, acute hepatitis or a normal liver. F.T. activities were measured by transfer of GDP [14C] fucose to asialotransferrin for alpha 3 F.T., to phenyl beta-D-galactoside for alpha 2 F.T. and to 2' fucosyllactose for alpha 3/4 F.T. The diseased liver extracts showed an early increase in non-Le gene-associated alpha 3 F.T. activity (p = 0.001), which was related to the number of steatosic hepatocytes and the degree of intralobular inflammatory infiltration. Overexpression of this alpha 3 F.T. provides an explanation for the strong expression of 3-fucosyl lactosamine structures described in several hepatobiliary diseases. alpha 2 F.T. levels were significantly elevated in the two groups of liver cirrhosis and acute hepatitis (p = 0.05), but not enough to consider alpha 2 F.T. as a sensitive feature of mesenchymal cell injury. All Lewis-positive biopsies displaying biliary alterations showed increased Le gene-encoded alpha 3/4 F.T. activity (p = 0.001), which was related to the intensity of neoductular proliferation. Elevated levels of alpha 3/4 F.T. may be a very early sign of biliary regeneration.
Collapse
|
131
|
Arakaki N, Hirono S, Kawakami S, Tsubouchi H, Ishii T, Hara H, Daikuhara Y. Effects of protein kinase inhibitors on the mitogenic activity of human hepatocyte growth factor on rat hepatocytes in primary culture. Biochem Biophys Res Commun 1992; 185:22-8. [PMID: 1534655 DOI: 10.1016/s0006-291x(05)80949-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To evaluate the role of protein phosphorylation reactions in signal transduction of human hepatocyte growth factor (hHGF), now known to be the same protein as the scatter factor and tumor cytotoxic factor, we examined the effects of various inhibitors of protein kinases on the mitogenic activity of hHGF on rat hepatocytes in primary culture. Genistein, a specific inhibitor of tyrosine kinase, dose-dependently inhibited the effect of hHGF in stimulating DNA synthesis of hepatocytes. By contrast, 1-(5-isoquinolinesulfonyl)-2- methylpiperazine (H7), a specific inhibitor of protein kinase C, potentiated the stimulatory effect of hHGF on DNA synthesis of hepatocytes. H7 was effective at over 2 micrograms/ml and potentiated the effect of hHGF over 2-fold at 20 micrograms/ml. On the other hand, an inhibitor of Ca++/calmodulin-dependent protein kinase inhibited both the basal and hHGF-stimulated DNA synthesis in the cells, whereas an inhibitor of cyclic nucleotide-dependent protein kinases had little effect on the action of hHGF. These results suggest that tyrosine phosphorylation is required for stimulation of hepatocyte DNA synthesis by hHGF and that the action of hHGF is negatively regulated by protein kinase C activation.
Collapse
Affiliation(s)
- N Arakaki
- Department of Biochemistry, Kagoshima University Dental School, Japan
| | | | | | | | | | | | | |
Collapse
|
132
|
Seki S, Sakaguchi H, Kawakita N, Yanai A, Kuroki T, Mizoguchi Y, Kobayashi K. An analysis of proliferating cells in biopsy specimens from patients with small hepatocellular carcinoma. Cancer 1992; 69:2433-9. [PMID: 1314688 DOI: 10.1002/1097-0142(19920515)69:10<2433::aid-cncr2820691008>3.0.co;2-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The proliferation of neoplastic and nonneoplastic hepatocytes is caused by various humoral growth factors with autocrine and paracrine mechanisms, and the proliferative activity of both hepatocytes and nonhepatocytic cells contributes to neoplastic growth. The authors attempted to detect various kinds of proliferating cells immunohistochemically in small hepatocellular carcinoma (HCC) using a monoclonal antibody against DNA polymerase alpha. Most of the HCC cells that stained for this enzyme were small, had basophilic cytoplasm with poorly developed organelles, and aggregated to form clusters distributed randomly within cancer nests. Nonhepatocytic cells also were stained, including some endothelial cells, Kupffer's cells, macrophages, and lymphocytes. Fat-storing cells were not stained. The number of stained sinusoidal (capillary) cells decreased in this order: Kupffer's cells and macrophages, endothelial cells, and fat-storing cells. Nonhepatocytic cells, including lymphocytes, proliferated more actively in areas with actively growing HCC cells than in those with quiescent cancer cells. The relationship between stained HCC cells and stained sinusoidal cells was clearly defined; the correlation coefficient was 0.97. These findings suggest the possibility of a relationship between the proliferative activity of neoplastic hepatocytes and that of sinusoidal cells, including lymphocytes.
Collapse
Affiliation(s)
- S Seki
- Third Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
133
|
Matsumoto K, Tajima H, Hamanoue M, Kohno S, Kinoshita T, Nakamura T. Identification and characterization of "injurin," an inducer of expression of the gene for hepatocyte growth factor. Proc Natl Acad Sci U S A 1992; 89:3800-4. [PMID: 1533283 PMCID: PMC525578 DOI: 10.1073/pnas.89.9.3800] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The marked and rapid increase of hepatocyte growth factor (HGF) mRNA in the intact lung of rats after partial hepatectomy or unilateral nephrectomy suggests the existence of a humoral factor mediating a signal of injury to distal organs and may induce the expression of HGF gene in these organs. We have now identified a proteinous factor in the sera of rats with injury of liver or kidney that increases HGF mRNA in the intact lung. When the serum of rats with liver insult caused by partial hepatectomy or ischemic treatment was injected i.p. into normal noninjured rats, it induced a marked HGF mRNA expression in the lung of the recipient rats. The addition of serum from rats with various hepatic or renal injuries to MRC-5 human embryonic lung fibroblasts in culture also led to the induction of HGF mRNA expression, so that the production of HGF by MRC-5 cells after treatment with the sera was remarkably increased in the culture medium. However, serum from the normal intact rat induced no HGF production and no HGF mRNA in the lung in vivo and lung fibroblasts in vitro. This factor, which increases HGF production, was purified greater than 200-fold from sera of CCl4-treated rats. The factor proved to be an acid- and heat-stable protein with an apparent molecular mass of 10-20 kDa in SDS/PAGE. Its activity markedly increased within 3-6 hr in the plasma of rats after various treatments that injured the liver or kidney. These results suggest that the factor specifically appears in the blood of rats with organ injury and may be involved in organ regeneration through the potential to increase the synthesis of HGF. Since the factor seems to mediate various organ injuries, we named it "injurin."
Collapse
Affiliation(s)
- K Matsumoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
134
|
Gohda E, Kataoka H, Tsubouchi H, Daikilara Y, Yamamoto I. Phorbol ester-induced secretion of human hepatocyte growth factor by human skin fibroblasts and its inhibition by dexamethasone. FEBS Lett 1992; 301:107-10. [PMID: 1451778 DOI: 10.1016/0014-5793(92)80220-b] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human skin fibroblasts secreted a certain amount of human hepatocyte growth factor (hHGF), as determined by an enzyme-linked immunosorbent assay for hHGF. This hHGF secretion was remarkably stimulated by protein kinase C (PKC)-activating phorbol esters, which was inhibited by the simultaneous addition of dexamethasone. Pretreatment with phorbol 12-myristate 13-acetate (PMA) caused a down-regulation in hHGF secretion. hHGF secreted by the PMA-treated cells showed a potent hepatocyte growth-promoting activity which was neutralized by an anti-hHGF antiserum. These results indicate both that PMA-treated human skin fibroblasts produce biologically active hHGF and the possible involvement of PKC activation in this process.
Collapse
Affiliation(s)
- E Gohda
- Department of Immunochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | |
Collapse
|
135
|
Arakaki N, Hirono S, Ishii T, Kimoto M, Kawakami S, Nakayama H, Tsubouchi H, Hishida T, Daikuhara Y. Identification and partial characterization of two classes of receptors for human hepatocyte growth factor on adult rat hepatocytes in primary culture. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50543-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
136
|
Ramadori G, Neubauer K, Odenthal M, Nakamura T, Knittel T, Schwögler S, Meyer zum Büschenfelde KH. The gene of hepatocyte growth factor is expressed in fat-storing cells of rat liver and is downregulated during cell growth and by transforming growth factor-beta. Biochem Biophys Res Commun 1992; 183:739-42. [PMID: 1532309 DOI: 10.1016/0006-291x(92)90545-v] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatocyte growth factor (HGF) has been detected in non-parenchymal cells but not in hepatocytes. We performed Northern blot analysis of total RNA extracted from rat hepatocytes, Kupffer cells, endothelial cells and fat-storing (Ito-) cells. Total RNA was extracted from fat-storing cells at different times after isolation and from cells treated with different amounts of transforming growth factor beta. The RNA was hybridized with HGF, fibronectin-, and alpha-actin-specific cDNA probes, consecutively. We found an abundant amount of HGF mRNA in freshly isolated fat-storing cells, but not in other liver cells. The amount of the HGF transcripts decreases significantly in FSC during the time of culture, while fibronectin gene expression increases and alpha-actin gene expression as well. TGF-beta dramatically inhibits HGF gene expression, but causes an enhanced fibronectin mRNA level. Northern blot hybridisation of total RNA from CCl4-chronically damaged liver with HGF cDNA shows a significant increase of HGF mRNA during development of liver fibrosis. We suggest that in damaged liver either non-parenchymal cells, others than FSC, became able to express the HGF in vivo, or other mediators overcome the inhibitory effect of TGF-beta.
Collapse
Affiliation(s)
- G Ramadori
- Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
137
|
Yanagita K, Nagaike M, Ishibashi H, Niho Y, Matsumoto K, Nakamura T. Lung may have an endocrine function producing hepatocyte growth factor in response to injury of distal organs. Biochem Biophys Res Commun 1992; 182:802-9. [PMID: 1531175 DOI: 10.1016/0006-291x(92)91803-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent growth factor for various epithelial cells including mature hepatocytes and renal tubular cells. When 70% of the rat liver was excised, HGF mRNA in the intact lung markedly increased at 6 h later, then decrease to normal levels at 24 h. A similar marked increase of HGF mRNA was found in the lung of rats with hepatitis induced by CCl4. Moreover HGF mRNA in the intact lung also increased to about a 5 times higher level than the normal, within 12 h after unilateral nephrectomy. Isolated alveolar macrophages significantly expressed HGF mRNA, yet the amount remained unchanged after injury of the liver. The marked increase of HGF mRNA in lungs of partially hepatectomized rats remained even after removal of alveolar macrophages. In situ hybridization showed a marked increase of HGF mRNA signal found in endothelial cells in the lung after partial hepatectomy. We postulate that endothelial cells in the lung recognize damage of distal organs through a mediator and that lung-derived HGF may contribute to tissue repair or regeneration of injured organs, through endocrine-related mechanisms.
Collapse
Affiliation(s)
- K Yanagita
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
Biochemical membrane alterations appearing during the process of chemical carcinogenesis are described. Emphasis is put on membrane composition, structure, and biogenesis. In this presentation the knowledge gained from experimental studies of liver and skin in the process of cancer development is acknowledged. Important biochemical changes have been reported in lipid composition, fatty acid saturation, constitutional enzyme expression, receptor turnover and oligomerization. Functional consequences of the altered membrane structure is discussed within the concepts of regulation of cell proliferation, regulation of membrane receptor expression, redox control, signal transduction, drug metabolism, and multidrug resistance. Data from malignant tumours and normal tissue are addressed to evaluate the importance of the alterations for the process and for the eventual malignant transformation.
Collapse
Affiliation(s)
- L C Eriksson
- Karolinska Institute, Department of Pathology, Huddinge University Hospital, Sweden
| | | |
Collapse
|
139
|
Schirmacher P, Geerts A, Pietrangelo A, Dienes HP, Rogler CE. Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology 1992; 15:5-11. [PMID: 1530788 DOI: 10.1002/hep.1840150103] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatocyte growth factor/hepatopoietin A is a complete mitogen for parenchymal liver cells, and its expression is increased as an early response to acute liver injury. To identify the liver cell population responsible for hepatocyte growth factor gene expression, we investigated tissue sections and isolated and purified cell fractions from normal rat liver by in situ and Northern blot hybridization. Hepatocyte growth factor transcripts were present in sinusoidal liver cells, which were preferentially located in the periportal parenchyma. Northern hybridization analysis of RNA isolated from purified liver cell fractions demonstrated that HGF messenger RNA is present only in fat-storing cells. No specific hepatocyte growth factor gene expression was detected in parenchymal cells, endothelial cells and Kupffer cells. Myofibroblast-like transition of fat-storing cells, which is linked to fibrogenesis in chronic liver disease, results in the loss of hepatocyte growth factor expression. Hepatocyte growth factor gene expression in the normal liver, a new function of fat-storing cells, suggests that this growth factor may play a role in the physiological balance between cell death and replacement in the liver and that hepatocyte growth factor may also act in a paracrine manner. Furthermore, loss of hepatocyte growth factor expression in myofibroblast-like cells derived from fat-storing cells may be responsible for reduced parenchymal cell regeneration in chronic liver disease.
Collapse
Affiliation(s)
- P Schirmacher
- Institute of Pathology, University of Mainz, Germany
| | | | | | | | | |
Collapse
|
140
|
Evarts RP, Nakatsukasa H, Marsden ER, Hu Z, Thorgeirsson SS. Expression of transforming growth factor-alpha in regenerating liver and during hepatic differentiation. Mol Carcinog 1992; 5:25-31. [PMID: 1543539 DOI: 10.1002/mc.2940050107] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both the level of expression and cellular distribution of transcripts for transforming growth factor-alpha (TGF-alpha) were studied in adult rat liver after partial hepatectomy and during hepatic differentiation in fetal, neonatal, and adult livers by northern blot analysis and in situ hybridization. A marked increase in the expression of TGF-alpha was observed in neonatal livers and in adult livers after partial hepatectomy and during hepatic regeneration following modification of the Solt-Farber protocol. Quantitation of silver grains after in situ hybridization with a TGF-alpha riboprobe revealed a sixfold to eightfold increase in fetal and neonatal hepatocytes. Moreover, the expression of TGF-alpha in the liver 3 wk after birth was still fourfold higher than that of the adult quiescent liver. Both proliferating oval cells and basophilic foci of hepatocytes generated by modification of the Solt-Farber protocol were positive for TGF-alpha transcripts. The level of TGF-alpha transcripts was sixfold higher in the basophilic foci than in the surrounding liver. High concentrations of TGF-alpha transcripts were observed in the oval cells that lined pseudoducts and in the transitional cells proliferating within the ducts. The combination of in situ hybridization and immunocytochemistry using cell-specific antibodies revealed the presence of TGF-alpha transcripts in both oval cells and in perisinusoidal stellate cells. The observation that TGF-alpha transcripts were found both in primitive liver epithelial cells and perisinusoidal stellate cells suggests that this growth factor, in addition to its mitogenic action, may also have other important functions in the liver.
Collapse
Affiliation(s)
- R P Evarts
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
141
|
Tomiya T, Nagoshi S, Fujiwara K. Significance of serum human hepatocyte growth factor levels in patients with hepatic failure. Hepatology 1992; 15:1-4. [PMID: 1530786 DOI: 10.1002/hep.1840150102] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Serum human hepatocyte growth factor levels were measured using a newly developed enzyme-linked immunosorbent assay kit in patients with liver diseases. Serum human hepatocyte growth factor levels were increased in correlation with derangements of prothrombin time, total bilirubin and other parameters reflecting hepatocellular dysfunction in 112 patients with chronic liver disease. The levels were positively correlated with serum AST and ALT levels in 59 of these patients whose prothrombin times were within the normal range. Abnormally increased serum human hepatocyte growth factor levels were found in 100% of the determinations in 16 patients with fulminant hepatic failure and in 80% of the determinations in 16 patients with chronic hepatic failure. The levels greater than 1 ng/ml, however, were found in 94% of determinations in the former group, but only in 16% of the determinations in the latter group. This difference was seen irrespective of prothrombin time or hepatic coma grades. In patients with fulminant hepatic failure serum human hepatocyte growth factor levels were increased immediately after plasma exchange using heparin as the anticoagulant in 71% of the determinations. This increase disappeared 12 hr after discontinuation of plasma exchange. In 17 of 39 patients with chronic renal failure who had no liver disease, serum human hepatocyte growth factor levels were abnormally increased before hemodialysis using heparin, and the levels were elevated immediately after hemodialysis in all the patients. The increase of serum human hepatocyte growth factor levels in hepatic failure may be the result of hepatocellular dysfunction and necrosis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Tomiya
- First Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
142
|
Yagi K, Suenobu N, Serada M, Tsuda K, Kondoh A, Miura Y. Stimulative effect of non-parenchymal liver cells on ability of tyrosine aminotransferase induction in hepatocytes. Cytotechnology 1992; 10:25-31. [PMID: 1369495 DOI: 10.1007/bf00376097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hepatocytes and non-parenchymal liver cells were isolated from adult rat liver and co-cultured for 48 hours as a monolayer on polystyrene culture dishes. The ability of tyrosine aminotransferase (TAT) induction in hepatocytes was examined in the presence of dexamethasone and dibutyryl cAMP. Non-parenchymal cells greatly enhance the ability of TAT induction of hepatocytes. A soluble factor with molecular weight of more than 10,000 is responsible for this enhancement, because conditioned medium prepared from non-parenchymal cells is also stimulatory. Non-parenchymal cells restored the ability in hepatocytes damaged with the addition of D-galactosamine. Conditioned medium prepared from non-parenchymal cells treated with D-galactosamine had higher activity of enhancement than the medium from normal cells. The soluble factor might be released in response to some signal of injury. Hepatocytes and non-parenchymal cells were immobilized within Ca-alginate, and although immobilized hepatocytes rapidly lost the ability to induce TAT, hepatocytes co-immobilized with non-parenchymal cells maintained the ability during 4 days of culture. These results indicated that non-parenchymal liver cells, as well as hepatocytes, could be used to construct a bioartificial liver support system.
Collapse
Affiliation(s)
- K Yagi
- Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
143
|
Mine T, Kojima I, Ogata E, Nakamura T. Comparison of effects of HGF and EGF on cellular calcium in rat hepatocytes. Biochem Biophys Res Commun 1991; 181:1173-80. [PMID: 1837217 DOI: 10.1016/0006-291x(91)92062-o] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We compared the effects of HGF and EGF on cytoplasmic free calcium concentration, [Ca2+]c, and inositol trisphosphate production in rat hepatocytes. HGF induced a prompt and transient elevation of [Ca2+]c. EGF also induced an immediate increase in [Ca2+]c, the magnitude of which was greater than that by HGF. In contrast, in the presence of 1 microM extracellular calcium EGF increased [Ca2+]c to a lesser extent than HGF. When cells were pretreated with EGF, the effect of HGF on [Ca2+]c was greatly enhanced. However, such enhancement was not observed in medium containing 1 microM extracellular calcium. In hepatocytes prelabeled with [3H]-inositol, both HGF and EGF increased [3H]inositol trisphosphate. HGF and EGF acted synergistically to stimulate production of inositol trisphosphate. These results indicate that both HGF and EGF increase [Ca2+]c by a mechanism involving phosphoinositide turnover and that the actions of HGF and EGF on hepatocyte calcium metabolism are not totally identical.
Collapse
Affiliation(s)
- T Mine
- Fourth Department of Internal Medicine, University of Tokyo School of Medicine, Japan
| | | | | | | |
Collapse
|
144
|
Matsumoto K, Takehara T, Inoue H, Hagiya M, Shimizu S, Nakamura T. Deletion of kringle domains or the N-terminal hairpin structure in hepatocyte growth factor results in marked decreases in related biological activities. Biochem Biophys Res Commun 1991; 181:691-9. [PMID: 1661588 DOI: 10.1016/0006-291x(91)91246-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To determine the essential domain for biological activity in the hepatocyte growth factor (HGF) molecule, we prepared various mutated recombinant HGFs using site-directed mutagenesis, and examined the effects on DNA synthesis in hepatocytes, scattering of MDCK cells and the antiproliferative activity on HepG2 hepatoma cells. Native HGF and mutant HGFs, in which Gln534 and/or Tyr673 were respectively substituted for His and Ser to coincide with the catalytic triad amino acids in plasmin, markedly stimulated DNA synthesis of hepatocytes and scattering of MDCK cells but inhibited DNA synthesis of HepG2 cells. The mutant HGF deleted with the third or fourth kringle domain resulted in marked decrease of all three biological activities, while deletion of the N-terminal hairpin structure or the first or second kringle domain almost completely inactivated biological activities. We propose that the N-terminal hairpin structure and the first and second kringle domains are essential for biological activities of HGF and possibly for binding to its receptor.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Nagaike M, Hirao S, Tajima H, Noji S, Taniguchi S, Matsumoto K, Nakamura T. Renotropic functions of hepatocyte growth factor in renal regeneration after unilateral nephrectomy. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54419-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
146
|
Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991; 67:901-8. [PMID: 1835669 DOI: 10.1016/0092-8674(91)90363-4] [Citation(s) in RCA: 945] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously shown that Madin-Darby canine kidney (MDCK) epithelial cells grown in collagen gels in the presence of fibroblasts or fibroblast-conditioned medium (CM) form branching tubules, instead of the spherical cysts that develop under control conditions. We now report that the fibroblast-derived molecule responsible for epithelial tubulogenesis is hepatocyte growth factor (HGF). First, addition of exogenous HGF to cultures of MDCK cells induces formation of epithelial tubules. Second, the tubulogenic activity of fibroblast CM is completely abrogated by antibodies to HGF. These results demonstrate that HGF, a polypeptide that was identified as a mitogen for cultured hepatocytes, has the properties of a paracrine mediator of epithelial morphogenesis, and suggest that it may play important roles in the formation of parenchymal organs during embryonic development.
Collapse
Affiliation(s)
- R Montesano
- Department of Morphology, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
147
|
Affiliation(s)
- N L Bucher
- Department of Pathology, Boston University School of Medicine, Massachusetts 02118
| |
Collapse
|
148
|
Seki S, Sakaguchi H, Kawakita N, Yanai A, Kuroki T, Mizoguchi Y, Kobayashi K, Monna T. Detection of proliferating liver cells in various diseases by a monoclonal antibody against DNA polymerase-alpha: with special reference to the relationship between hepatocytes and sinusoidal cells. Hepatology 1991; 14:781-8. [PMID: 1718833 DOI: 10.1002/hep.1840140507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proliferating cells in liver specimens from patients with various diseases were detected by use of a monoclonal antibody against human DNA polymerase-alpha, which is present in the nuclei of cells in the G1, S, M and G2 phases of the mitotic cell cycle and absent in the G0 phase, to clarify the kinetics and morphological characteristics of these cells. This monoclonal antibody was supernatant derived from clone CL22-2-42B, and the peroxidase antiperoxidase method was used. Not only epithelial cells (hepatocytes, biliary epithelial cells and hepatocellular carcinoma cells) but also nonepithelial cells (Kupffer cells and other macrophages, endothelial cells, fat-storing cells, lymphocytes and fibroblasts) were stained for DNA polymerase-alpha. In acute viral hepatitis with confluent necrosis, small hepatocytes with basophilic cytoplasm next to the necrosis accounted for most of the proliferating cells. In these areas, Kupffer cells and other macrophages and lymphocytes had often proliferated. Hepatocellular carcinoma cells were frequently stained for DNA polymerase-alpha, in addition to endothelial cells, macrophages and lymphocytes. These nonepithelial cells were stained more frequently in specimens with many stained carcinoma cells than in those with only a few cells stained. In fibrotic areas, fibroblasts were often stained for this enzyme. In proliferating bile ducts, both small epithelial cells and large mature cells were stained. The differences between stained and nonstained cells that were not hepatocytes could not be defined by their ultrastructural characteristics. From these findings, it seemed possible that sinusoidal cells, especially Kupffer cells and other macrophages, might be much involved in hepatocytic proliferation during regeneration of the liver and also in the occurrence of malignant tumors.
Collapse
Affiliation(s)
- S Seki
- Third Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Konishi T, Takehara T, Tsuji T, Ohsato K, Matsumoto K, Nakamura T. Scatter factor from human embryonic lung fibroblasts is probably identical to hepatocyte growth factor. Biochem Biophys Res Commun 1991; 180:765-73. [PMID: 1835386 DOI: 10.1016/s0006-291x(05)81131-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human embryonic lung fibroblasts (MRC5) produced scatter factor which enhanced motility of Madin-Darby canine kidney (MDCK) epithelial cells and a factor which stimulates DNA synthesis of adult rat hepatocytes in primary culture. These activities were both completely neutralized by antibody against human hepatocyte growth factor (HGF). Human recombinant HGF induced a marked scattering of MDCK cells. Moreover, MRC5 cells highly expressed 6kb mRNA which hybridized with HGF cDNA probe and scatter factor cDNA cloned from the MRC5 cDNA library had the same sequence as that of HGF cDNA from human leukocytes. These results indicate that HGF possesses scatter factor activity and the scatter factor derived from the MRC5 cells is probably identical to HGF.
Collapse
Affiliation(s)
- T Konishi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
150
|
Matsumoto K, Nakamura T. Hepatocyte growth factor: molecular structure and implications for a central role in liver regeneration. J Gastroenterol Hepatol 1991; 6:509-19. [PMID: 1834243 DOI: 10.1111/j.1440-1746.1991.tb00897.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatocyte growth factor (HGF) is a most potent factor for mature parenchymal hepatocytes in primary culture and may act as a trigger for liver regeneration. We purified HGF from rat platelets to homogeneity and cloned both human and rat HGF cDNA. HGF is a heterodimer molecule composed of the 69 kDa alpha-subunit and the 34 kDa beta-subunit. HGF has no amino acid sequence homology with other known peptide growth factors and possesses the highest potential among known growth factors to stimulate proliferation of hepatocytes in primary culture. HGF is derived from a single chain precursor of 728 amino acid residues and the precursor is proteolytically processed to form a two-chain mature HGF. The alpha-subunit of HGF contains 4 kringle structures and HGF has a homology (38%) with plasmin. Biologically active recombinant human HGF could be expressed from COS-1 cells and CHO cells transfected with cloned cDNA. HGF activity and the HGF mRNA level are markedly increased in the liver following insult such as hepatitis, by the administration of hepatotoxins, ischaemia, physical damage and partial hepatectomy. Moreover, HGF mRNA is induced in the lung and kidney, in the presence of liver injury. In situ hybridization revealed that HGF-producing cells in liver are non-parenchymal liver cells, presumably Kupffer and sinusoidal endothelial cells. Therefore, HGF from neighbouring cells (Kupffer and sinsuoidal endothelial cells) and distal organs (lung and kidney) may function as a trigger for liver regeneration by both a paracrine mechanism and an endocrine mechanism. HGF has mitogenic activity for renal tubular epithelial cells, epidermal melanocytes and keratinocytes as well as mature hepatocytes, and has the potential to promote cell migration for some epithelial cells, including normal human keratinocytes. Since cell growth and cell motility are relevant to tissue repair and embryogenesis, HGF may well have important roles in tissue repair and embryogenesis as well as in liver regeneration.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|