101
|
Ryu JW, Han SY, Yun JI, Choi SU, Jung H, Ha JD, Cho SY, Lee CO, Kang NS, Koh JS, Kim HR, Lee J. Design and synthesis of triazolopyridazines substituted with methylisoquinolinone as selective c-Met kinase inhibitors. Bioorg Med Chem Lett 2011; 21:7185-8. [DOI: 10.1016/j.bmcl.2011.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 11/29/2022]
|
102
|
Dillon R, Nilsson CL, Shi SDH, Lee NV, Krastins B, Greig MJ. Discovery of a Novel B-Raf Fusion Protein Related to c-Met Drug Resistance. J Proteome Res 2011; 10:5084-94. [DOI: 10.1021/pr200498v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Carol L. Nilsson
- University of Texas Medical Branch, Galveston, TX 77555, United States
| | | | - Nathan V. Lee
- Pfizer Global Research and Development, La Jolla, California 92121, United States
| | - Bryan Krastins
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts 02139, United States
| | - Michael J. Greig
- Pfizer Global Research and Development, La Jolla, California 92121, United States
| |
Collapse
|
103
|
Li Y, Zhang S, Tang Z, Chen J, Kong W. Silencing of c-Met by RNA interference inhibits the survival, proliferation, and invasion of nasopharyngeal carcinoma cells. Tumour Biol 2011; 32:1217-24. [PMID: 21922276 DOI: 10.1007/s13277-011-0225-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 08/10/2011] [Indexed: 12/18/2022] Open
Abstract
c-Met is a tyrosine kinase receptor that mediates pleiotropic cellular responses following its activation by hepatocyte growth factor. The overexpression of c-Met in nasopharyngeal carcinoma (NPC) has been described recently, but the functional role of c-Met in NPC remains incompletely understood. This study aimed to investigate the potential mechanism by which c-Met contributes to the tumorigenesis of NPC. In the present study, by using RNA interference we silenced the expression of c-Met in CNE-2 cells, a poorly differentiated NPC cell line. Our in vitro studies showed that shRNA-mediated depletion of c-Met resulted in the suppression of proliferation, migration, and invasion, as well as an increase in the apoptosis of CNE-2 cells. Moreover, in xenograft nude mice we demonstrated that the depletion of c-Met resulted in reduced tumor growth and increased apoptosis in xenografts. Taken together, these results suggest that c-Met plays an oncogenic role in the development of NPC and reveal it as a potential novel therapeutic target for NPC.
Collapse
Affiliation(s)
- Yuncheng Li
- Department of Otolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China, 430022
| | | | | | | | | |
Collapse
|
104
|
Toiyama Y, Yasuda H, Saigusa S, Matushita K, Fujikawa H, Tanaka K, Mohri Y, Inoue Y, Goel A, Kusunoki M. Co-expression of hepatocyte growth factor and c-Met predicts peritoneal dissemination established by autocrine hepatocyte growth factor/c-Met signaling in gastric cancer. Int J Cancer 2011; 130:2912-21. [PMID: 21796631 DOI: 10.1002/ijc.26330] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 06/29/2011] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) promotes and facilitates migration and invasion of epithelial tumor cells. EMT is induced by factors such as hepatocyte growth factor (HGF). This study aimed to establish whether the HGF/c-Met pathway is associated with gastric cancer metastasis; especially peritoneal dissemination. HGF and c-Met expression and EMT-related molecules were evaluated using real-time PCR and immunohistochemistry. The role of the HGF/c-Met pathway in EMT and anoikis was determined, and kinase inhibitor SU11274 was tested for its ability to block HGF-induced biological effects. In HGF(-) /c-Met(+) gastric cancer cells, recombinant HGF promoted an EMT phenotype that was characterized by morphology, impaired E-cadherin and induction of vimentin. HGF promoted cell growth, invasiveness and migration and inhibition of anoikis. SU11274 blocked HGF-induced EMT and biological effects in vitro. In HGF(+) /c-Met(+) gastric cancer cells, HGF did not affect the biological outcome of EMT and anoikis, but SU11274 exerted the same inhibitory effects as in HGF(-) /c-Met(+) cells. In vivo, HGF(+) /c-Met(+) gastric cancer cells only established peritoneal dissemination and SU11274 inhibited tumor growth. Clinically, HGF expression was significantly correlated with c-Met expression in gastric cancer. Increased HGF and c-Met had a significant association with poor prognosis and predicted peritoneal dissemination. We demonstrated that the HGF/c-Met pathway induces EMT and inhibition of anoikis in gastric cancer cells. Co-expression of HGF and c-Met has the potential to promote peritoneal dissemination in gastric cancer. Blockade of the autocrine HGF/c-Met pathway could be clinically useful for the treatment of peritoneal dissemination in gastric cancer.
Collapse
Affiliation(s)
- Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
MET phosphorylation predicts poor outcome in small cell lung carcinoma and its inhibition blocks HGF-induced effects in MET mutant cell lines. Br J Cancer 2011; 105:814-23. [PMID: 21847116 PMCID: PMC3171012 DOI: 10.1038/bjc.2011.298] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Small cell lung carcinoma (SCLC) has poor prognosis and remains orphan from targeted therapy. MET is activated in several tumour types and may be a promising therapeutic target. Methods: To evaluate the role of MET in SCLC, MET gene status and protein expression were evaluated in a panel of SCLC cell lines. The MET inhibitor PHA-665752 was used to study effects of pathway inhibition in basal and hepatocyte growth factor (HGF)-stimulated conditions. Immunohistochemistry for MET and p-MET was performed in human SCLC samples and association with outcome was assessed. Results: In MET mutant SCLC cells, HGF induced MET phosphorylation, increased proliferation, invasiveness and clonogenic growth. PHA-665752 blocked MET phosphorylation and counteracted HGF-induced effects. In clinical samples, total MET and p-MET overexpression were detected in 54% and 43% SCLC tumours (n=77), respectively. MET phosphorylation was associated with poor median overall survival (132 days) vs p-MET negative cases (287 days)(P<0.001). Phospho-MET retained its prognostic value in a multivariate analysis. Conclusions: MET activation resulted in a more aggressive phenotype in MET mutant SCLC cells and its inhibition by PHA-665752 reversed this phenotype. In patients with SCLC, MET activation was associated with worse prognosis, suggesting a role in the adverse clinical behaviour in this disease.
Collapse
|
106
|
Yamamoto S, Tsuda H, Miyai K, Takano M, Tamai S, Matsubara O. Gene amplification and protein overexpression of MET are common events in ovarian clear-cell adenocarcinoma: their roles in tumor progression and prognostication of the patient. Mod Pathol 2011; 24:1146-55. [PMID: 21478826 DOI: 10.1038/modpathol.2011.70] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to assess protein overexpression and gene copy number alterations of MET in ovarian clear-cell adenocarcinoma, and to assess its potential as a novel therapeutic target. Ninety cases of clear-cell adenocarcinoma were analyzed for MET protein overexpression and copy number alterations of the MET gene by immunohistochemistry and brightfield double in situ hybridization, respectively. In addition, 101 cases of the non-clear-cell type ovarian carcinomas at advanced stages were also evaluated for comparison. MET overexpression was assigned when complete membrane staining with moderate or strong intensity was observed in at least 10% of the tumor cells examined. Double in situ hybridization was determined as positive when the tumor exhibited high-level polysomy (≥4 copies in ≥40% of tumor cells) or MET gene amplification. MET overexpression was detected in 20 of 90 clear-cell adenocarcinomas (22%) and none of 111 non-clear-cell type ovarian carcinomas. Double in situ hybridization was positive in 21 of 89 informative clear-cell adenocarcinomas (24%) and only 3 non-clear-cell type ovarian carcinomas (3%). In the whole population, true amplification of the MET gene was detected only in the clear-cell adenocarcinoma histology (five cases, 6%). In clear-cell adenocarcinomas, double in situ hybridization positivity was highly correlated with the presence of MET overexpression and a poorly differentiated histology of tumors (P=0.0105 and 0.00038, respectively). For the patients with clear-cell adenocarcinomas, MET overexpression, as well as advanced clinical stage and the poorly differentiated histology of tumors, was identified as an independent unfavorable prognostic factor for overall survival. In conclusion, among ovarian carcinomas, the amplification of the MET proto-oncogene is highly selective and commonly occurs in clear-cell adenocarcinoma. MET could serve as a biomarker for the prognostication of patients with clear-cell adenocarcinoma and tumor progression, and has potential as a novel therapeutic target for this carcinoma.
Collapse
Affiliation(s)
- Sohei Yamamoto
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
107
|
Holbrook JD, Parker JS, Gallagher KT, Halsey WS, Hughes AM, Weigman VJ, Lebowitz PF, Kumar R. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J Transl Med 2011; 9:119. [PMID: 21781349 PMCID: PMC3152520 DOI: 10.1186/1479-5876-9-119] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries. METHODS Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers. RESULTS Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways. CONCLUSIONS The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.
Collapse
Affiliation(s)
- Joanna D Holbrook
- Cancer Research, Oncology R&D, Glaxosmithkline R&D, Collegeville, USA.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Snider JL, Cardelli JA. Helicobacter pylori induces cancer cell motility independent of the c-Met receptor. J Carcinog 2011; 8:7. [PMID: 19439912 PMCID: PMC2687142 DOI: 10.4103/1477-3163.50892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: The hepatocyte growth factor (HGF) receptor, c-Met, is strongly implicated in late-stage cancer progression and poor patient prognosis. The stomach pathogen, Helicobacter pylori (H. pylori), was recently proposed to stimulate c-Met phosphorylation dependent upon interaction of c-Met with the bacterial CagA protein required for H. pylori-induced cancer cell motility and invasion. Materials and Methods: In this report, we employed short hairpin RNA (shRNA), western blot analysis using antibodies recognizing phosphorylation at discrete c-Met residues, and immunofluorescence microscopy to investigate the CagA-c-Met interaction. Results: The data showed that shRNA-mediated c-Met knockdown did not reduce H. pylori-induced cell motility, suggesting that c-Met was not required for motility. Surprisingly, c-Met knockdown did not reduce the level of an H. pylori-induced protein recognized by a phospho-c-Met antibody. This 125 kD protein was 10 kD smaller than c-Met, suggesting that H. pylori did not phosphorylate c-Met but cross-reacted with another protein. This hypothesis was confirmed when c-Met phosphorylation inhibitors did not lower the levels of the bacteria-induced 125 kD protein, and c-Met immunoprecipitation (IP) did not detect this 125 kD protein from H. pylori-treated lysates. This protein was identified as a product of antibody cross reactivity with phosphorylated CagA. We also confirmed that CagA interacts with c-Met, but this interaction may have caused previous authors to misinterpret phosphorylated CagA as c-Met phosphorylation. Finally, pretreatment with the proteasomal inhibitor, lactacystin, caused prolonged HGF-induced c-Met phosphorylation and facilitated a CagA-negative H. pylori to stimulate AGS cell motility, suggesting that sustained c-Met phosphorylation compensates for the loss of CagA-dependent signaling. Conclusions: These data demonstrate that H. pylori stimulates cancer cell motility independent of the c-Met receptor. We further hypothesize that although H. pylori does not target c-Met, the bacteria may still utilize c-Met effector signaling to stimulate CagA-independent cancer cell motility, which may provide a further mechanism of H. pylori-dependent gastric cancer progression.
Collapse
Affiliation(s)
- Jared L Snider
- Department of Microbiology and Immunology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | | |
Collapse
|
109
|
Abstract
INTRODUCTION The aberrantly upregulated c-mesenchymal-epithelia transition factor (c-MET) signaling pathway has been considered to be an attractive target for cancer intervention owing to the important roles it plays in tumor formation, progression, metastasis, angiogenesis and drug resistance. Based on the historical preclinical evidence, a number of c-MET pathway targeted agents are being developed in the clinic, and recent clinical data have begun to provide some insight into which tumor types and patient populations a c-MET pathway inhibitor may be beneficial for. AREAS COVERED Through reviewing recent publications in the literature and information disclosed in other public forums, we describe the current understanding of c-MET biology in human malignancies and discuss the latest progress in the development of c-MET pathway inhibitors for cancer treatment. EXPERT OPINION The c-MET pathway inhibitors currently being evaluated in the clinic have demonstrated compelling evidence of clinical activity in different cancer types and may provide significant therapeutic opportunities. The challenges, however, are to identify the tumor types and patient populations that benefit most, and find the most effective combinations of therapies while minimizing potential toxicity.
Collapse
Affiliation(s)
- Xiangdong Liu
- Incyte Corporation, Experimental Station, Wilmington, DE 19880, USA.
| | | | | |
Collapse
|
110
|
Okamoto W, Okamoto I, Arao T, Yanagihara K, Nishio K, Nakagawa K. Differential roles of STAT3 depending on the mechanism of STAT3 activation in gastric cancer cells. Br J Cancer 2011; 105:407-12. [PMID: 21730976 PMCID: PMC3172904 DOI: 10.1038/bjc.2011.246] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is activated in response to growth factors and cytokines, and which contributes to the regulation of cell proliferation, apoptosis, and motility in many human tumour types. Methods: We investigated the mechanisms of STAT3 activation and the function of STAT3 depending on its mechanism of activation in gastric cancer cells. Results: The MET-tyrosine kinase inhibitor (TKI) and cell transfection with a small interfering RNA (siRNA) specific for MET mRNA inhibited STAT3 phosphorylation in MET-activated cells, indicating that STAT3 activation is linked to MET signalling. Forced expression of a constitutively active form of STAT3 also attenuated MET-TKI-induced apoptosis, suggesting that inhibition of STAT3 activity contributes to MET-TKI-induced apoptosis. MKN1 and MKN7 cells, both of which are negative for MET activation, produced interleukin-6 (IL-6) that activated STAT3 through the Janus kinase pathway. Depletion of STAT3 by siRNA inhibited migration and invasion of these cells, suggesting that STAT3 activated by IL-6 contributes to regulation of cell motility. Conclusion: Our data thus show that activated STAT3 contributes to either cell survival or motility in gastric cancer cells, and that these actions are related to different mechanisms of STAT3 activation.
Collapse
Affiliation(s)
- W Okamoto
- Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | | | | | |
Collapse
|
111
|
Catenacci DVT, Cervantes G, Yala S, Nelson EA, El-Hashani E, Kanteti R, El Dinali M, Hasina R, Brägelmann J, Seiwert T, Sanicola M, Henderson L, Grushko TA, Olopade O, Karrison T, Bang YJ, Ho Kim W, Tretiakova M, Vokes E, Frank DA, Kindler HL, Huet H, Salgia R. RON (MST1R) is a novel prognostic marker and therapeutic target for gastroesophageal adenocarcinoma. Cancer Biol Ther 2011; 12:9-46. [PMID: 21543897 PMCID: PMC3149873 DOI: 10.4161/cbt.12.1.15747] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022] Open
Abstract
RON (MST1R) is one of two members of the MET receptor tyrosine kinase family, along with parent receptor MET. RON has a putative role in several cancers, but its expression and function is poorly characterized in gastroesophageal adenocarcinoma. A recognized functional role of MET tyrosine kinase in gastroesophageal cancer has led to early phase clinical trials using MET inhibitors, with unimpressive results. Therefore, the role of RON in gastroesophageal cancer, as well as its role in cooperative signaling with MET and as a mechanism of resistance to MET inhibition, was studied in gastroesophageal tissues and cell lines. By IHC, RON was highly over-expressed in 74% of gastroesophageal samples (n=94), and over-expression was prognostic of poor survival (p=0.008); RON and MET co-expression occurred in 43% of samples and was prognostic of worst survival (p=0.03). High MST1R gene copy number by quantitative polymerase chain reaction, and confirmed by fluorescence in situ hybridization and/or array comparative genomic hybridization, was seen in 35.5% (16/45) of cases. High MST1R gene copy number correlated with poor survival (p=0.01), and was associated with high MET and ERBB2 gene copy number. A novel somatic MST1R juxtamembrane mutation R1018G was found in 11% of samples. RON signaling was functional in cell lines, activating downstream effector STAT3, and resulted in increased viability over controls. RON and MET co-stimulation assays led to enhanced malignant phenotypes over stimulation of either receptor alone. Growth inhibition as evidenced by viability and apoptosis assays was optimal using novel blocking monoclonal antibodies to both RON and MET, versus either alone. SU11274, a classic MET small molecule tyrosine kinase inhibitor, blocked signaling of both receptors, and proved synergistic when combined with STAT3 inhibition (combination index < 1). These preclinical studies define RON as an important novel prognostic marker and therapeutic target for gastroesophageal cancer warranting further investigation.
Collapse
Affiliation(s)
- Daniel VT Catenacci
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Gustavo Cervantes
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Soheil Yala
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Erik A Nelson
- Department of Medical Oncology; Dana-Farber Cancer Institute; Boston, MA USA
| | - Essam El-Hashani
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Rajani Kanteti
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Mohamed El Dinali
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Rifat Hasina
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Johannes Brägelmann
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Tanguy Seiwert
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | | | - Les Henderson
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Tatyana A Grushko
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Olufunmilayo Olopade
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Theodore Karrison
- Department of Health Studies; University of Chicago; Chicago, IL USA
| | - Yung-Jue Bang
- Department of Internal Medicine; Seoul National Univeristy College of Medicine; Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology; Seoul National Univeristy College of Medicine; Seoul, Korea
| | | | - Everett Vokes
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - David A Frank
- Department of Medical Oncology; Dana-Farber Cancer Institute; Boston, MA USA
| | - Hedy L Kindler
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | | | - Ravi Salgia
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| |
Collapse
|
112
|
Basha R, Ingersoll SB, Sankpal UT, Ahmad S, Baker CH, Edwards JR, Holloway RW, Kaja S, Abdelrahim M. Tolfenamic acid inhibits ovarian cancer cell growth and decreases the expression of c-Met and survivin through suppressing specificity protein transcription factors. Gynecol Oncol 2011; 122:163-70. [DOI: 10.1016/j.ygyno.2011.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/29/2022]
|
113
|
Torti D, Sassi F, Galimi F, Gastaldi S, Perera T, Comoglio PM, Trusolino L, Bertotti A. A preclinical algorithm of soluble surrogate biomarkers that correlate with therapeutic inhibition of the MET oncogene in gastric tumors. Int J Cancer 2011; 130:1357-66. [PMID: 21500189 DOI: 10.1002/ijc.26137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Abstract
The MET oncogene is amplified in a fraction of human gastric carcinoma cell lines, with consequent overexpression and constitutive activation of the corresponding protein product, the Met tyrosine kinase receptor. This genetically driven hyperactivation of Met is necessary for cancer cell growth and survival, so that Met pharmacological blockade results in cell-cycle arrest or apoptosis (oncogene addiction). MET gene amplification also occurs in vivo in a number of human gastric carcinomas, and clinical trials are now ongoing to assess the therapeutic efficacy of Met inhibitors in this type of malignancy. The aim of our study was to identify a preclinical algorithm of soluble surrogate biomarkers indicative of response to Met inhibition in gastric tumors, as a potential tool to integrate imaging criteria during patient follow-up. We started from a survey of candidate molecules based on antibody proteomics and gene expression profiling; after ELISA validation and analytical quantification, four biomarkers were identified that appeared to be strongly and consistently modulated by Met inhibition in a panel of Met-addicted gastric carcinoma cell lines, but not in Met-independent cell lines. Pharmacologic blockade of Met using specific small-molecule inhibitors led to reduced secretion of IL-8, GROα and the soluble form of uPAR and to increased production of IL-6 both in vitro (in culture supernatants) and in vivo (in the plasma of xenografted mice). If confirmed in patients, this information might prove useful to monitor clinical response to Met-targeted therapies in MET-amplified gastric carcinomas.
Collapse
Affiliation(s)
- Davide Torti
- Laboratory of Molecular Pharmacology, Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Candiolo, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Janjigian YY, Tang LH, Coit DG, Kelsen DP, Francone TD, Weiser MR, Jhanwar SC, Shah MA. MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol Biomarkers Prev 2011; 20:1021-7. [PMID: 21393565 DOI: 10.1158/1055-9965.epi-10-1080] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MET, the receptor for hepatocyte growth factor, has been proposed as a therapeutic target in gastric cancer. This study assessed the incidence of MET expression and gene amplification in tumors of Western patients with gastric cancer. METHODS Tumor specimens from patients enrolled on a preoperative chemotherapy study (NCI 5700) were examined for the presence of MET gene amplification by FISH, MET mRNA expression by quantitative PCR, MET overexpression by immunohistochemistry (IHC), and for evidence of MET pathway activation by phospho-MET (p-MET) IHC. RESULTS Although high levels of MET protein and mRNA were commonly encountered (in 63% and 50% of resected tumor specimens, respectively), none of these tumors had MET gene amplification by FISH, and only 6.6% had evidence of MET tyrosine kinase activity by p-MET IHC. CONCLUSIONS In this cohort of patients with localized gastric cancer, the presence of high MET protein and RNA expression does not correlate with MET gene amplification or pathway activation, as evidenced by the absence of amplification by FISH and negative p-MET IHC analysis. IMPACT This article shows a lack of MET amplification and pathway activation in a cohort of 38 patients with localized gastric cancer, suggesting that MET-driven gastric cancers are relatively rare in Western patients.
Collapse
Affiliation(s)
- Yelena Y Janjigian
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Stella GM, Benvenuti S, Comoglio PM. Targeting the MET oncogene in cancer and metastases. Expert Opin Investig Drugs 2010; 19:1381-94. [PMID: 20868306 DOI: 10.1517/13543784.2010.522988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE OF THE FIELD 'Invasive growth' is a genetic program involved in embryonic development and adult organ regeneration and usurped by cancer cells. Although its control is complex, tumor- and context-specific and regulated by several cytokines and growth factors, the role played by the MET oncogene is well documented. In human cancers the contribution of MET to invasive growth is mainly through overexpression, driven by unfavorable microenvironmental conditions. MET activation confers a selective advantage to neoplastic cells in tumor progression and drug resistance. A subset of tumors feature alterations of the MET gene and a consequent MET-addicted phenotype. AREAS COVERED IN THIS REVIEW The molecular basis and rationale of MET inhibition in cancer and metastases are discussed. A number of molecules designed to block MET signaling are under development and several Phase II trials are ongoing. WHAT THE READER WILL GAIN Knowledge of the state of the art of anti-MET targeted approaches and the molecular basis and strategies to select patients eligible for treatment with MET inhibitors. TAKE HOME MESSAGE Due to its versatile functions MET is a promising candidate for cancer therapy. Understanding molecular mechanisms of sensitization and resistance to MET inhibitors is a priority to guide tailored therapies and select patients that are most likely to achieve a clinical benefit.
Collapse
Affiliation(s)
- Giulia M Stella
- Division of Molecular Oncology, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, I-10060 Candiolo, Turin, Italy.
| | | | | |
Collapse
|
116
|
Dong W, Chen X, Xie J, Sun P, Wu Y. Epigenetic inactivation and tumor suppressor activity of HAI-2/SPINT2 in gastric cancer. Int J Cancer 2010; 127:1526-34. [PMID: 20063316 DOI: 10.1002/ijc.25161] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatocyte growth factor (HGF) activator inhibitor type 2 (HAI-2/SPINT2) encodes Kunitz-type protease inhibitor that regulates HGF activity. Inspection of the human HAI-2/SPINT2 locus uncovered a large and dense CpG island within the 5' region of this gene. Analysis of cultured human gastric tumor lines indicated that HAI-2/SPINT2 expression is either undetectable or in low abundance in several lines; however, enhanced gene expression was measured in cells cultured on the DNA demethylating agent 5-aza-2'-deoxycytidine. Bisulfite DNA sequencing confirmed the densely methylated HAI-2/SPINT2 promoter region. Forced expression of HAI-2/SPINT2 induced cell apoptosis, suppressed anchorage independent growth in vitro and tumor growth in vivo. We investigated HAI-2/SPINT2 aberrant methylation in patients with gastric cancer. The HAI-2/SPINT2 methylation was found preferentially in cancerous tissues (30 of 40, 75%) compared with nontumor tissues (no methylation was detected), indicating that this aberrant characteristic is common in gastric malignancies. In conclusion, epigenetic inactivation of HAI-2/SPINT2 is a common event contributing to gastric carcinogenesis and may be a potential biomarker for gastric cancer.
Collapse
Affiliation(s)
- Wenjie Dong
- Department of Gastroenterology, Rui-jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
117
|
Guo T, Zhu Y, Gan CS, Lee SS, Zhu J, Wang H, Li X, Christensen J, Huang S, Kon OL, Sze SK. Quantitative proteomics discloses MET expression in mitochondria as a direct target of MET kinase inhibitor in cancer cells. Mol Cell Proteomics 2010; 9:2629-41. [PMID: 20713453 DOI: 10.1074/mcp.m110.001776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancer cells with MET overexpression are paradoxically more sensitive to MET inhibition than cells with baseline MET expression. The underlying molecular mechanisms are incompletely understood. Here, we have traced early responses of SNU5, a MET-overexpressing gastric cancer cell line, exposed to sublethal concentration of PHA-665752, a selective MET inhibitor, using iTRAQ-based quantitative proteomics. More than 1900 proteins were quantified, of which >800 proteins were quantified with at least five peptides. Proteins whose expression was perturbed by PHA-665752 included oxidoreductases, transfer/carrier proteins, and signaling proteins. Strikingly, 38% of proteins whose expression was confidently assessed to be perturbed by MET inhibition were mitochondrial proteins. Upon MET inhibition by a sublethal concentration of PHA-665752, mitochondrial membrane potential increased and mitochondrial permeability transition pore was inhibited concomitant with widespread changes in mitochondrial protein expression. We also showed the presence of highly activated MET in mitochondria, and striking suppression of MET activation by 50 nm PHA-665752. Taken together, our data indicate that mitochondria are a direct target of MET kinase inhibition, in addition to plasma membrane MET. Effects on activated MET in the mitochondria of cancer cells that are sensitive to MET inhibition might constitute a novel and critical noncanonical mechanism for the efficacy of MET-targeted therapeutics.
Collapse
Affiliation(s)
- Tiannan Guo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Down-Regulation of c-Met Expression Inhibits Human HCC Cells Growth and Invasion by RNA Interference. J Surg Res 2010; 162:231-8. [DOI: 10.1016/j.jss.2009.04.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 04/08/2009] [Accepted: 04/15/2009] [Indexed: 01/06/2023]
|
119
|
Okamoto W, Okamoto I, Yoshida T, Okamoto K, Takezawa K, Hatashita E, Yamada Y, Kuwata K, Arao T, Yanagihara K, Fukuoka M, Nishio K, Nakagawa K. Identification of c-Src as a potential therapeutic target for gastric cancer and of MET activation as a cause of resistance to c-Src inhibition. Mol Cancer Ther 2010; 9:1188-97. [PMID: 20406949 DOI: 10.1158/1535-7163.mct-10-0002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Therapeutic strategies that target c-Src hold promise for a wide variety of cancers. We have now investigated both the effects of dasatinib, which inhibits the activity of c-Src and several other kinases, on cell growth as well as the mechanism of dasatinib resistance in human gastric cancer cell lines. Immunoblot analysis revealed the activation of c-Src at various levels in most gastric cancer cell lines examined. Dasatinib inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and induced G(1) arrest, as revealed by flow cytometry, in a subset of responsive cell lines. In other responsive cell lines, dasatinib inhibited both ERK and AKT phosphorylation and induced apoptosis, as revealed by an increase in caspase-3 activity and cleavage of poly(ADP-ribose) polymerase. Depletion of c-Src by RNA interference also induced G(1) arrest or apoptosis in dasatinib-responsive cell lines, indicating that the antiproliferative effect of dasatinib is attributable to c-Src inhibition. Gastric cancer cell lines positive for the activation of MET were resistant to dasatinib. Dasatinib had no effect on ERK or AKT signaling, whereas the MET inhibitor PHA-665752 induced apoptosis in these cells. The subsets of gastric cancer cells defined by a response to c-Src or MET inhibitors were distinct and nonoverlapping. Our results suggest that c-Src is a promising target for the treatment of gastric cancer and that analysis of MET amplification might optimize patient selection for treatment with c-Src inhibitors.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Medical Oncology, Kinki University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Eng AKH, Kon OL. Molecular Genetics of Gastric Adenocarcinoma. PROCEEDINGS OF SINGAPORE HEALTHCARE 2010. [DOI: 10.1177/201010581001900108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gastric carcinoma is the second leading cause of cancer deaths in the world. Its aetiology is closely linked to the bacterial pathogen Helicobacter pylori which is believed to induce a state of chronic inflammation that predisposes to a cascade of molecular and cellular alterations leading to carcinogenesis. Although the exact process of gastric carcinogenesis has yet to be elucidated fully, the interaction of the genetic factors with environmental factors is likely to be a significant consideration. Numerous genes and molecular pathways have been discovered to be associated with gastric adenocarcinoma and more importantly, it is now becoming possible to use some of these as means of prognostication and targeted therapy. This review will outline our current understanding of the aetiology and molecular genetics of gastric adenocarcinoma and its current clinical applications.
Collapse
Affiliation(s)
| | - Oi Lian Kon
- Division of Medical Sciences, National Cancer Centre, Singapore
| |
Collapse
|
121
|
Discovery of 6-benzyloxyquinolines as c-Met selective kinase inhibitors. Bioorg Med Chem Lett 2010; 20:1405-9. [DOI: 10.1016/j.bmcl.2009.12.109] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/28/2009] [Accepted: 12/29/2009] [Indexed: 11/23/2022]
|
122
|
Goetsch L, Caussanel V. Selection criteria for c-Met-targeted therapies: emerging evidence for biomarkers. Biomark Med 2010; 4:149-70. [DOI: 10.2217/bmm.09.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extensive development of targeted therapies emphasize the critical need for biomarkers and major efforts have been engaged to identify screening, prognostic, stratification and therapy-monitoring markers. One of the challenges in translating preclinical studies into effective clinical therapies remains the accurate identification of a responsive subsets of patients. Studies on trastuzumab demonstrated that patient response could be specifically correlated with the amplification of the Her2 gene. However, for the EGF receptor, it has been more difficult to find the right stratification biomarker and recent data demonstrate that genetic alterations for the EGF receptor have to be considered. Taken together, these data underline the need for a deeper understanding of both targeted receptor and human disease to determine pathways that might be investigated during early clinical trials in order to define relevant biomarkers for patient selection. This article, dealing with the c-Met tyrosine kinase receptor, provides an overview of c-Met alterations observed in cancer and proposes approaches for stratification biomarker selection.
Collapse
Affiliation(s)
- Liliane Goetsch
- Centre d’Immunologie Pierre Fabre, 5 avenue Napoléon III F-74164 Saint Julien en Genevois, France
| | | |
Collapse
|
123
|
De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther 2010; 125:105-17. [DOI: 10.1016/j.pharmthera.2009.10.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/23/2022]
|
124
|
Nakagawa T, Tohyama O, Yamaguchi A, Matsushima T, Takahashi K, Funasaka S, Shirotori S, Asada M, Obaishi H. E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Sci 2010; 101:210-5. [PMID: 19832844 PMCID: PMC11159146 DOI: 10.1111/j.1349-7006.2009.01343.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
c-Met is the cellular receptor for hepatocyte growth factor (HGF) and is known to be dysregulated in various types of human cancers. Activation of the HGF/c-Met pathway causes tumor progression, invasion, and metastasis. Vascular endothelial growth factor (VEGF) is also known as a key molecule in tumor progression through the induction of tumor angiogenesis. Because of their key roles in tumor progression, these pathways provide attractive targets for therapeutic intervention. We have generated a novel, orally active, small molecule compound, E7050, which inhibits both c-Met and vascular endothelial growth factor receptor (VEGFR)-2. In vitro studies indicate that E7050 potently inhibits phosphorylation of both c-Met and VEGFR-2. E7050 also potently represses the growth of both c-met amplified tumor cells and endothelial cells stimulated with either HGF or VEGF. In vivo studies using E7050 showed inhibition of the phosphorylation of c-Met and VEGFR-2 in tumors, and strong inhibition of tumor growth and tumor angiogenesis in xenograft models. Treatment of some tumor lines containing c-met amplifications with high doses of E7050 (50-200 mg/kg) induced tumor regression and disappearance. In a peritoneal dissemination model, E7050 showed an antitumor effect against peritoneal tumors as well as a significant prolongation of lifespan in treated mice. Our results indicate that E7050 is a potent inhibitor of c-Met and VEGFR-2 and has therapeutic potential for the treatment of cancer.
Collapse
|
125
|
Qian F, Engst S, Yamaguchi K, Yu P, Won KA, Mock L, Lou T, Tan J, Li C, Tam D, Lougheed J, Yakes FM, Bentzien F, Xu W, Zaks T, Wooster R, Greshock J, Joly AH. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res 2009; 69:8009-16. [PMID: 19808973 DOI: 10.1158/0008-5472.can-08-4889] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are overexpressed and/or activated in a wide variety of human malignancies. Vascular endothelial growth factor (VEGF) receptors are expressed on the surface of vascular endothelial cells and cooperate with Met to induce tumor invasion and vascularization. EXEL-2880 (XL880, GSK1363089) is a small-molecule kinase inhibitor that targets members of the HGF and VEGF receptor tyrosine kinase families, with additional inhibitory activity toward KIT, Flt-3, platelet-derived growth factor receptor beta, and Tie-2. Binding of EXEL-2880 to Met and VEGF receptor 2 (KDR) is characterized by a very slow off-rate, consistent with X-ray crystallographic data showing that the inhibitor is deeply bound in the Met kinase active site cleft. EXEL-2880 inhibits cellular HGF-induced Met phosphorylation and VEGF-induced extracellular signal-regulated kinase phosphorylation and prevents both HGF-induced responses of tumor cells and HGF/VEGF-induced responses of endothelial cells. In addition, EXEL-2880 prevents anchorage-independent proliferation of tumor cells under both normoxic and hypoxic conditions. In vivo, these effects produce significant dose-dependent inhibition of tumor burden in an experimental model of lung metastasis. Collectively, these data indicate that EXEL-2880 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of invasion and angiogenesis mediated by HGF and VEGF receptors.
Collapse
Affiliation(s)
- Fawn Qian
- Exelixis, Inc, South San Francisco, California 94083, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Nakamura Y, Migita T, Hosoda F, Okada N, Gotoh M, Arai Y, Fukushima M, Ohki M, Miyata S, Takeuchi K, Imoto I, Katai H, Yamaguchi T, Inazawa J, Hirohashi S, Ishikawa Y, Shibata T. Krüppel-like factor 12 plays a significant role in poorly differentiated gastric cancer progression. Int J Cancer 2009; 125:1859-67. [PMID: 19588488 DOI: 10.1002/ijc.24538] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gastric cancer is the second common malignant neoplasia in Japan, and its poorly differentiated form is a deadly disease. To identify novel candidate oncogenes contributing to its genesis, we examined copy-number alterations in 50 primary poorly differentiated gastric cancers using an array-based comparative genomic hybridization (array-CGH). Many genetic changes were identified, including a novel amplification of the 13q22 locus. Several genes are located in this locus, and selective knockdown of one for the Krüppel-like factor 12 (KLF12) induced significant growth-arrest in the HGC27 gastric cancer cell line. Microarray analysis also demonstrated that genes associated with cell proliferation were mostly changed by KLF12 knockdown. To explore the oncogenic function of KLF12, we introduced a full length of human KLF12 cDNA into NIH3T3 and AZ-521 cell lines and found that overexpression significantly enhanced their invasive potential. In clinical samples, KLF12 mRNA in cancer tissue was increased in 11 of 28 cases (39%) when compared with normal gastric epithelium. Clinicopathological analysis further demonstrated a significant correlation between KLF12mRNA levels and tumor size (p = 0.038). These data suggest that the KLF12 gene plays an important role in poorly differentiated gastric cancer progression and is a potential target of therapeutic measures.
Collapse
Affiliation(s)
- Yu Nakamura
- Cancer Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Kubo T, Kuroda Y, Shimizu H, Kokubu A, Okada N, Hosoda F, Arai Y, Nakamura Y, Taniguchi H, Yanagihara K, Imoto I, Inazawa J, Hirohashi S, Shibata T. Resequencing and copy number analysis of the human tyrosine kinase gene family in poorly differentiated gastric cancer. Carcinogenesis 2009; 30:1857-64. [PMID: 19734198 DOI: 10.1093/carcin/bgp206] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tyrosine kinase (TK) family is an important regulator of signaling pathways that control a variety of physiological and pathological conditions, and a substantial proportion of TK genes are genetically altered in cancer. To clarify the somatic mutation profile of TK genes and discover potential targets for gastric cancer (GC) therapy, we undertook a systematic screening of mutations in the kinase domains of all human TK genes (636 exons of 90 genes) in 17 GC cell lines and 52 microdissected primary GCs with poorly differentiated histology. We identified 26 non-synonymous alterations (22 genes in total) that included 11 sequence alterations in cell lines and 15 somatic mutations in primary tumors. Recurrent mutations were found in four genes including a known oncogene (NTRK3), the Src kinase family (LTK and CSK) and a potential Wnt signal activator (ROR2). In addition, we analyzed copy number alterations of all the TK gene loci in the same cohort samples by array-based comparative genomic hybridization analysis and identified 24 high-level amplifications and two homozygous deletions. Both sequence alteration and frequent copy number aberration were detected in two TK genes (HCK and ERBB2), strongly suggesting that they encode potential oncogenes in GC. Our focused and integrated analyses of systemic resequencing and gene copy number have revealed the novel onco-kinome profile of GC and pave the way to a comprehensive understanding of the GC genome.
Collapse
Affiliation(s)
- Takashi Kubo
- Cancer Genomics Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Kuniyasu H, Oue N, Sasahira T, Yi L, Moriwaka Y, Shimomoto T, Fujii K, Ohmori H, Yasui W. Reg IV enhances peritoneal metastasis in gastric carcinomas. Cell Prolif 2009; 42:110-21. [PMID: 19143768 DOI: 10.1111/j.1365-2184.2008.00577.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The role of Regenerating (Reg) IV on peritoneal metastasis was examined in gastric cancer using. MATERIAL AND METHODS Reg IV-transfected human gastric cancer cells (MKN28-R1, MKN28-R2, TMK1-R1), control transfectants (MKN28-R0, TMK1-R0), and REG4-knocked down MKN45 cells were examined in in vitro and in nude mice peritoneal metastasis models. RESULTS AND DISCUSSION Increase of expression and secretion of Reg IV, and levels of BCL-2, BCL-XL,survivin, phosphorylated AKT, and phosphorylated EGFR, and decrease of nitric oxide-induced apoptosis were found in Reg IV-transfectants, whereas those were abrogated in the knockdown cells. In mice models, increased number and size of peritoneal tumors and decreased apoptosis were found in Reg IV-transfectants, whereas those were abrogated by the knockdown cells. Mice survivals were worsened in Reg IV-transfectants-inoculated mice, but were improved in Reg IV-knockdown cell-inoculated mice. Levels of Reg IV protein in peritoneal lavage fluids increased in Reg IV-transfectants inoculated mice, but decreased in Reg IV-knockdown cell inoculated mice. In metastasized human gastric cancers, Reg IV positivity in peritoneum-metastasis cases was higher than those in negative cases. Reg IV was detected in peritoneal lavage fluids from human gastric cancer patients, in whose lavages keratin mRNA was detected by reverse transcriptase-polymerase chain reaction. Collectively, Reg IV might accelerate peritoneal metastasis in gastric cancer. Reg IV in lavage fluids might be a good marker for peritoneal metastasis.
Collapse
Affiliation(s)
- H Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
A novel multipurpose monoclonal antibody for evaluating human c-Met expression in preclinical and clinical settings. Appl Immunohistochem Mol Morphol 2009; 17:57-67. [PMID: 18815565 DOI: 10.1097/pai.0b013e3181816ae2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inappropriate expression of the c-MET cell surface receptor in many human solid tumors necessitates the development of companion diagnostics to identify those patients who could benefit from c-MET targeted therapies. Tumor tissues are formalin fixed and paraffin embedded (FFPE) for histopathologic evaluation, making the development of an antibody against c-MET that accurately and reproducibly detects the protein in FFPE samples an urgent need. We have developed a monoclonal antibody (mAb), designated MET4, from a panel of MET-avid mAbs, based on its specific staining pattern in FFPE preparations. The accuracy of MET4 immunohistochemistry (MET4-IHC) was assessed by comparing MET4-IHC in FFPE cell pellets with immunoblotting analysis. The technical reproducibility of MET4-IHC possessed a percentage coefficient of variability of 6.25% in intra-assay and interassay testing. Comparison with other commercial c-MET antibody detection reagents demonstrated equal specificity and increased sensitivity for c-MET detection in prostate tissues. In cohorts of ovarian cancers and gliomas, MET4 reacted with ovarian cancers of all histologic subtypes (strong staining in 25%) and with 63% of gliomas. In addition, MET4 bound c-MET on the surfaces of cultured human cancer cells and tumor xenografts. In summary, the MET4 mAb accurately and reproducibly measures c-MET expression by IHC in FFPE tissues and can be used for molecular imaging in vivo. These properties encourage further development of MET4 as a multipurpose molecular diagnostics reagent to help to guide appropriate selection of patients being considered for treatment with c-MET-antagonistic drugs.
Collapse
|
130
|
Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci 2008; 99:2280-5. [PMID: 19037978 PMCID: PMC11159911 DOI: 10.1111/j.1349-7006.2008.00916.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Met oncogene encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF). Uncontrolled activation of Met is oncogenic and has been implicated in the growth, invasion and metastasis in a variety of tumors. Several distinct mechanisms including amplification, translocation or mutation of Met may underlie uncontrolled Met activation. In several solid tumors, amplification and mutation of Met were reported to be associated with tumorigenesis, invasion and metastasis. The present study evaluated the amplification and mutation of Met in a large number of non-small cell lung cancer (NSCLC). Among 213 NSCLC patients, increased Met copy number was identified in 12 patients (5.6%) and associated with a worse prognosis (P = 0.0414). The mutation of Met in 534 NSCLC patients was also evaluated. In these patients there were no previously reported mutations within the juxtamembrane (JM) domain (R988C, T1010I, S1058P and G1085X). However, a somatic exon 14 deleting splice variant in 3 (1.7%) of 178 NSCLC samples was identified for which sequencing was performed. Met amplification and mutation were rare in Japanese NSCLC. However, the results support a critical role of Met gene dose in NSCLC, suggesting that Met may be a specific molecular therapeutic target in selected NSCLC patients with increased Met copy number.
Collapse
Affiliation(s)
- Katsuhiro Okuda
- Department of Oncology, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | | | | | | | | |
Collapse
|
131
|
Bachleitner-Hofmann T, Sun MY, Chen CT, Tang L, Song L, Zeng Z, Shah M, Christensen JG, Rosen N, Solit DB, Weiser MR. HER kinase activation confers resistance to MET tyrosine kinase inhibition in MET oncogene-addicted gastric cancer cells. Mol Cancer Ther 2008; 7:3499-508. [PMID: 18974395 DOI: 10.1158/1535-7163.mct-08-0374] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor cells with genomic amplification of MET display constitutive activation of the MET tyrosine kinase, which renders them highly sensitive to MET inhibition. Several MET inhibitors have recently entered clinical trials; however, as with other molecularly targeted agents, resistance is likely to develop. Therefore, elucidating possible mechanisms of resistance is of clinical interest. We hypothesized that collateral growth factor receptor pathway activation can overcome the effects of MET inhibition in MET-amplified cancer cells by reactivating key survival pathways. Treatment of MET-amplified GTL-16 and MKN-45 gastric cancer cells with the highly selective MET inhibitor PHA-665752 abrogated MEK/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling, resulting in cyclin D1 loss and G(1) arrest. PHA-665752 also inhibited baseline phosphorylation of epidermal growth factor receptor (EGFR) and HER-3, which are transactivated via MET-driven receptor cross-talk in these cells. However, MET-independent HER kinase activation using EGF (which binds to and activates EGFR) or heregulin-beta1 (which binds to and activates HER-3) was able to overcome the growth-inhibitory effects of MET inhibition by restimulating MEK/MAPK and/or PI3K/AKT signaling, suggesting a possible escape mechanism. Importantly, dual inhibition of MET and HER kinase signaling using PHA-665752 in combination with the EGFR inhibitor gefitinib or in combination with inhibitors of MEK and AKT prevented the above rescue effects. Our results illustrate that highly targeted MET tyrosine kinase inhibition leaves MET oncogene-"addicted" cancer cells vulnerable to HER kinase-mediated reactivation of the MEK/MAPK and PI3K/AKT pathways, providing a rationale for combined inhibition of MET and HER kinase signaling in MET-amplified tumors that coexpress EGFR and/or HER-3.
Collapse
Affiliation(s)
- Thomas Bachleitner-Hofmann
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Cappuzzo F, Jänne PA, Skokan M, Finocchiaro G, Rossi E, Ligorio C, Zucali PA, Terracciano L, Toschi L, Roncalli M, Destro A, Incarbone M, Alloisio M, Santoro A, Varella-Garcia M. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol 2008; 20:298-304. [PMID: 18836087 DOI: 10.1093/annonc/mdn635] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MET amplification has been detected in approximately 20% of non-small-cell lung cancer patients (NSCLC) with epidermal growth factor receptor (EGFR) mutations progressing after an initial response to tyrosine kinase inhibitor (TKI) therapy. PATIENTS AND METHODS We analyzed MET gene copy number using FISH in two related NSCLC cell lines, one sensitive (HCC827) and one resistant (HCC827 GR6) to gefitinib therapy and in two different NSCLC patient populations: 24 never smokers or EGFR FISH-positive patients treated with gefitinib (ONCOBELL cohort) and 182 surgically resected NSCLC not exposed to anti-EGFR agents. RESULTS HCC827 GR6-resistant cell line displayed MET amplification, with a mean MET copy number >12, while sensitive HCC827 cell line had a mean MET copy number of 4. In the ONCOBELL cohort, no patient had gene amplification and MET gene copy number was not associated with outcome to gefitinib therapy. Among the surgically resected patients, MET was amplified in 12 cases (7.3%) and only four (2.4%) had a higher MET copy number than the resistant HCC827 GR6 cell line. CONCLUSIONS MET gene amplification is a rare event in patients with advanced NSCLC. The development of anti-MET therapeutic strategies should be focused on patients with acquired EGFR-TKI resistance.
Collapse
Affiliation(s)
- F Cappuzzo
- Department of Oncology-Hematology, Istituto Clinico Humanitas IRCCS, Rozzano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Cipriani NA, Abidoye OO, Vokes E, Salgia R. MET as a target for treatment of chest tumors. Lung Cancer 2008; 63:169-79. [PMID: 18672314 DOI: 10.1016/j.lungcan.2008.06.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 06/15/2008] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase MET has been studied of a large variety of human cancers, including lung and mesothelioma. The MET receptor and its ligand HGF (hepatocyte growth factor) play important roles in cell growth, survival and migration, and dysregulation of the HGF-MET pathway leads to oncogenic changes including tumor proliferation, angiogenesis and metastasis. In small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), and malignant pleural mesothelioma (MPM), MET is dysregulated via overexpression, constitutive activation, gene amplification, ligand-dependent activation, mutation or epigenetic mechanisms. New drugs targeted against MET and HGF are currently being investigated in vitro and in vivo, with promising results. These drugs function at a variety of steps within the HGF-MET pathway, including MET expression at the RNA or protein level, the ligand-receptor interaction, and tyrosine kinase function. This paper will review the structure, function, mechanisms of tumorigenesis, and potential for therapeutic inhibition of the MET receptor in lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Nicole A Cipriani
- Department of Medicine, University of Chicago Medical Center, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
134
|
Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008; 7:504-16. [PMID: 18511928 DOI: 10.1038/nrd2530] [Citation(s) in RCA: 651] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The MET tyrosine kinase stimulates cell scattering, invasion, protection from apoptosis and angiogenesis, thereby acting as a powerful expedient for cancer dissemination. MET can also be genetically selected for the long-term maintenance of the primary transformed phenotype, and some tumours appear to be dependent on (or 'addicted' to) sustained MET activity for their growth and survival. Because of its dual role as an adjuvant, pro-metastatic gene for some tumour types and as a necessary oncogene for others, MET is a versatile candidate for targeted therapeutic intervention. Here we discuss recent progress in the development of molecules that inhibit MET function and consider their application in a subset of human tumours that are potentially responsive to MET-targeted therapies.
Collapse
|
135
|
Liu X, Yao W, Newton RC, Scherle PA. Targeting the c-MET signaling pathway for cancer therapy. Expert Opin Investig Drugs 2008; 17:997-1011. [DOI: 10.1517/13543784.17.7.997] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiangdong Liu
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Wenqing Yao
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Robert C Newton
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Peggy A Scherle
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| |
Collapse
|
136
|
Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, Kim YJ, Choi YC. MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem 2008; 283:18158-66. [PMID: 18456660 DOI: 10.1074/jbc.m800186200] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) constitute a class of small noncoding RNAs that play important roles in a variety of biological processes including development, apoptosis, proliferation, and differentiation. Here we show that the expression of miR-199a and miR-199a* (miR-199a/a*), which are processed from the same precursor, is confined to fibroblast cells among cultured cell lines. The fibroblast-specific expression pattern correlated well with methylation patterns: gene loci on chromosome 1 and 19 were fully methylated in all examined cell lines but unmethylated in fibroblasts. Transfection of miR-199a and/or -199a* mimetics into several cancer cell lines caused prominent apoptosis with miR-199a* being more pro-apoptotic. The mechanism underlying apoptosis induced by miR-199a was caspase-dependent, whereas a caspase-independent pathway was involved in apoptosis induced by miR-199a* in A549 cells. By employing microarray and immunoblotting analyses, we identified the MET proto-oncogene as a target of miR-199a*. Studies with a luciferase reporter fused to the 3'-untranslated region of the MET gene demonstrated miR-199a*-mediated down-regulation of luciferase activity through a binding site of miR-199a*. Interestingly, extracellular signal-regulated kinase 2 (ERK2) was also down-regulated by miR-199a*. Coordinated down-regulation of both MET and its downstream effector ERK2 by miR-199a* may be effective in inhibiting not only cell proliferation but also motility and invasive capabilities of tumor cells.
Collapse
Affiliation(s)
- Seonhoe Kim
- Gene2Drug Research Center, Bioneer Corporation, and National Genome Information Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kunii K, Davis L, Gorenstein J, Hatch H, Yashiro M, Di Bacco A, Elbi C, Lutterbach B. FGFR2-Amplified Gastric Cancer Cell Lines Require FGFR2 and Erbb3 Signaling for Growth and Survival. Cancer Res 2008; 68:2340-8. [DOI: 10.1158/0008-5472.can-07-5229] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
138
|
Panani AD. Cytogenetic and molecular aspects of gastric cancer: clinical implications. Cancer Lett 2008; 266:99-115. [PMID: 18381231 DOI: 10.1016/j.canlet.2008.02.053] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/05/2008] [Accepted: 02/22/2008] [Indexed: 12/13/2022]
Abstract
Gastric cancer is of major importance world-wide being the second most common cause of cancer-related death in the world. According to Lauren's histological classification gastric cancer is divided in two groups, the better differentiated intestinal carcinomas and the poorly differentiated diffuse-type cancers. The genetic changes underlying the initiation and progression of gastric cancer are not well defined. Gastric carcinogenesis is a multistep process involving a number of genetic and epigenetic factors. Although it has been proposed that different genetic pathways exist for differentiated and undifferentiated carcinomas, the two histological subtypes of gastric cancer share some common genetic alterations. Currently, tumor histology and pathologic stage are the major prognostic variables used in the clinical practice for gastric cancer patients. However, it is known that tumors with similar morphology may differ in biological aggressiveness, prognosis and response to treatment. Molecular genetic analysis of gastric cancer revealed a number of associations of certain genetic changes with pathological features, tumor biological behavior and prognosis of gastric cancer patients, suggesting that these genetic abnormalities might play an important role in gastric tumorigenesis. Increasing evidence suggests that the molecular genetic changes could be helpful in the clinical setting, contributing to prognosis and management of patients. Regarding epigenetic events in gastric tumorigenesis, a number of methylating markers have been proposed for risk assessment, prognostic evaluation and as therapeutic targets. However, further research is required in order to systematically investigate the genetic changes in gastric cancer estimating also their usefulness in the clinical practice. A good understanding of the genetic changes underlying gastric carcinogenesis may provide new perspectives for prognosis and screening of high risk individuals. Some of the genetic alterations could definitely improve tumor classification and management of gastric cancer patients. Also, based on molecular data identified in gastric cancer novel therapeutics might help to improve the treatment of this disease.
Collapse
Affiliation(s)
- Anna D Panani
- Critical Care Department, Medical School of Athens University, Cytogenetics Unit, Evangelismos Hospital, Ipsilandou 45-47, Athens 10676, Greece
| |
Collapse
|
139
|
Beyond VEGF: targeting tumor growth and angiogenesis via alternative mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 610:43-53. [PMID: 18593014 DOI: 10.1007/978-0-387-73898-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
140
|
Klosner G, Varecka R, Knobler R, Trautinger F. Ultraviolet-A and -B Differentially Modify the Tyrosine-Kinase Profile of Human Keratinocytes and Induce the Expression of Arg†. Photochem Photobiol 2007; 84:261-5. [DOI: 10.1111/j.1751-1097.2007.00235.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
141
|
Cen L, Arnoczky KJ, Hsieh FC, Lin HJ, Qualman SJ, Yu S, Xiang H, Lin J. Phosphorylation profiles of protein kinases in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 2007; 20:936-46. [PMID: 17585318 DOI: 10.1038/modpathol.3800834] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, which includes two major subtypes, alveolar and embryonal rhabdomyosarcoma. The mechanism of its oncogenesis is largely unknown. However, the oncogenic process of rhabdomyosarcoma involves multi-stages of signaling protein dysregulation characterized by prolonged activation of tyrosine and serine/threonine kinases. To better understand this protein dysregulation, we evaluated the phosphorylation profiles of multiple tyrosine and serine/threonine kinases to identify whether these protein kinases are activated in rhabdomyosarcoma. We applied immunohistochemistry with phospho-specific antibodies to examine phosphorylation levels of selected receptor and non-receptor tyrosine kinases, mammalian target of rapamycin (mTOR), p70S6K, and protein kinase C (PKC) isozymes on alveolar and embryonal rhabdomyosarcoma tissue microarray slides. Our results showed that the phosphorylation levels of these kinases are elevated in some rhabdomyosarcoma tissues compared to normal tissues. Phosphorylation levels of receptor and non-receptor tyrosine kinases are elevated between 26 and 68% in alveolar rhabdomyosarcoma and between 24 and 71% in embryonal rhabdomyosarcoma, respectively, compared to normal tissues. In addition, phosphorylation levels of mTOR and its downstream targets, p70S6K, S6, and 4EBP1, are increased between 50 and 72% in both subtypes of rhabdomyosarcoma. Further, phosphorylation levels of PKCalpha, PKCdelta, PKCtheta, and PKCzeta/lambda are upregulated between 57 and 69% in alveolar rhabdomyosarcoma and between 43 and 72% in embryonal rhabdomyosarcoma. This is the first report to create a phosphorylation profile of tyrosine and serine/threonine kinases involved in the mTOR and PKC pathways of alveolar and embryonal rhabdomyosarcoma. These protein kinases may play roles in the development or tumor progression of rhabdomyosarcomas and thus may serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ling Cen
- Department of Pediatrics, Center for Childhood Cancer, Columbus Children's Research Institute, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Oguri A, Ohmiya N, Taguchi A, Itoh A, Hirooka Y, Niwa Y, Maeda O, Ando T, Goto H. Rugal hyperplastic gastritis increases the risk of gastric carcinoma, especially diffuse and p53-independent subtypes. Eur J Gastroenterol Hepatol 2007; 19:561-6. [PMID: 17556902 DOI: 10.1097/meg.0b013e32811ec056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Infection with Helicobacter pylori has been linked to chronic gastritis with atrophy or hyperrugosity. The development of noncardia gastric carcinoma, especially the intestinal type in Lauren's classification, has been associated with severe atrophic gastritis and p53 mutations. The objective of this study was to determine the association between hyperrugosity and gastric carcinogenesis, including p53 mutations. PARTICIPANTS AND METHODS Barium meal roentgenograms were performed in 395 control participants and 132 gastric carcinoma patients. The fold width was measured at the greater curvature of the middle portion of the gastric body. Serum pepsinogens I and II were determined along with gastrin levels. Complete coding sequences and splice junctions for exons 5-8 of p53 gene were screened for mutations by polymerase chain reaction-based single-strand conformational polymorphism analysis. RESULTS Rugal hyperplastic gastritis (gastric body fold width>or=5 mm) increased the risk of gastric carcinoma [odds ratio, 2.60; 95% confidence interval, 1.69-4.01] as compared with the control group, especially diffuse-type gastric carcinoma (odds ratio, 4.13; 95% confidence interval, 2.36-7.24). The p53 mutational rate was significantly lower in gastric carcinoma patients with rugal hyperplastic gastritis. In intestinal-type gastric carcinoma with hyperrugosity, the incidence of p53 gene mutations decreased, but no association was found in diffuse-type gastric carcinoma between p53 mutations and rugal hyperplastic gastritis. CONCLUSIONS Rugal hyperplastic gastritis was associated with an elevated risk of gastric carcinoma, especially diffuse-type, and a lower frequency of p53 mutations.
Collapse
Affiliation(s)
- Akihiko Oguri
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Bardella C, Dettori D, Olivero M, Coltella N, Mazzone M, Di Renzo MF. The therapeutic potential of hepatocyte growth factor to sensitize ovarian cancer cells to cisplatin and paclitaxel in vivo. Clin Cancer Res 2007; 13:2191-8. [PMID: 17404103 DOI: 10.1158/1078-0432.ccr-06-1915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Advanced ovarian cancers are initially responsive to combinatorial chemotherapy with platinum drugs and taxanes but, in most cases, develop drug resistance. We recently showed that, in vitro, hepatocyte growth factor (HGF) enhances death of human ovarian cancer cell lines treated with cisplatin (CDDP) and paclitaxel. The present study addresses whether in vivo HGF makes ovarian carcinoma cells more responsive to these chemotherapeutics. EXPERIMENTAL DESIGN Using Lentiviral vectors carrying the HGF transgene, we transduced SK-OV-3 and NIH:OVCAR-3 ovarian carcinoma cell lines to obtain stable autocrine and paracrine HGF receptor activation. In vitro, we assayed growth, motility, invasiveness, and the response to CDDP and paclitaxel of the HGF-secreting bulk unselected cell populations. In vivo, we tested the cytotoxic effects of the drugs versus s.c. tumors formed by the wild-type and HGF-secreting cells in immunocompromised mice. Tumor-bearing mice were treated with CDDP (i.p.) and paclitaxel (i.v.), combined in different schedules and doses. RESULTS In vitro, HGF-secreting cells did not show altered proliferation rates and survival but were strongly sensitized to the death triggered by CDDP and paclitaxel, alone or in combination. In vivo, we found a therapeutic window in which autocrine/paracrine HGF made tumors sensitive to low doses of the drugs, which were ineffective on their own. CONCLUSIONS These data provide the proof-of-concept that in vivo gene therapy with HGF might be competent in sensitizing ovarian cancer cells to conventional chemotherapy.
Collapse
Affiliation(s)
- Chiara Bardella
- Laboratory of Cancer Genetics and Division of Molecular Oncology of the Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
144
|
Vogiatzi P, Vindigni C, Roviello F, Renieri A, Giordano A. Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol 2007; 211:287-95. [PMID: 17238139 DOI: 10.1002/jcp.20982] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric cancer is a common aggressive malignancy. Although its incidence shows considerable variation among different countries, gastric cancer is still a major health problem worldwide. The causes of stomach cancer are not completely understood. What is clear is that gastric cancer is a multi-stage process involving genetic and epigenetic factors. This review is an in-depth study of the known genetic and epigenetic processes in the development of this tumor, and delineates possible approaches in gene and epigenetic therapy.
Collapse
Affiliation(s)
- Paraskevi Vogiatzi
- Department of Molecular Biology, Medical Genetics, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
145
|
Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP, Nambu MD, Los G, Bender SL, Mroczkowski B, Christensen JG. An Orally Available Small-Molecule Inhibitor of c-Met, PF-2341066, Exhibits Cytoreductive Antitumor Efficacy through Antiproliferative and Antiangiogenic Mechanisms. Cancer Res 2007; 67:4408-17. [PMID: 17483355 DOI: 10.1158/0008-5472.can-06-4443] [Citation(s) in RCA: 600] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been implicated in the progression of several human cancers and are attractive therapeutic targets. PF-2341066 was identified as a potent, orally bioavailable, ATP-competitive small-molecule inhibitor of the catalytic activity of c-Met kinase. PF-2341066 was selective for c-Met (and anaplastic lymphoma kinase) compared with a panel of >120 diverse tyrosine and serine-threonine kinases. PF-2341066 potently inhibited c-Met phosphorylation and c-Met-dependent proliferation, migration, or invasion of human tumor cells in vitro (IC(50) values, 5-20 nmol/L). In addition, PF-2341066 potently inhibited HGF-stimulated endothelial cell survival or invasion and serum-stimulated tubulogenesis in vitro, suggesting that this agent also exhibits antiangiogenic properties. PF-2341066 showed efficacy at well-tolerated doses, including marked cytoreductive antitumor activity, in several tumor models that expressed activated c-Met. The antitumor efficacy of PF-2341066 was dose dependent and showed a strong correlation to inhibition of c-Met phosphorylation in vivo. Near-maximal inhibition of c-Met activity for the full dosing interval was necessary to maximize the efficacy of PF-2341066. Additional mechanism-of-action studies showed dose-dependent inhibition of c-Met-dependent signal transduction, tumor cell proliferation (Ki67), induction of apoptosis (caspase-3), and reduction of microvessel density (CD31). These results indicated that the antitumor activity of PF-2341066 may be mediated by direct effects on tumor cell growth or survival as well as antiangiogenic mechanisms. Collectively, these results show the therapeutic potential of targeting c-Met with selective small-molecule inhibitors for the treatment of human cancers.
Collapse
Affiliation(s)
- Helen Y Zou
- Departments of Cancer Biology, Pfizer Global Research and Development, La Jolla Laboratories, La Jolla, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Lutterbach B, Zeng Q, Davis LJ, Hatch H, Hang G, Kohl NE, Gibbs JB, Pan BS. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res 2007; 67:2081-8. [PMID: 17332337 DOI: 10.1158/0008-5472.can-06-3495] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent clinical successes of small-molecule epidermal growth factor receptor (EGFR) inhibitors in treating advanced non-small cell lung cancer (NSCLC) have raised hopes that the identification of other deregulated growth factor pathways in NSCLC will lead to new therapeutic options for NSCLC. Met, the receptor for hepatocyte growth factor, has been implicated in growth, invasion, and metastasis of many tumors including NSCLC. To assess the functional role for Met in NSCLC, we evaluated a panel of nine lung cancer cell lines for Met gene amplification, Met expression, Met pathway activation, and the sensitivity of the cell lines to short hairpin RNA (shRNA)-mediated Met knockdown. Two cell lines, EBC-1 and H1993, showed significant Met gene amplification and overexpressed Met receptors which were constitutively phosphorylated. The other seven lines did not exhibit Met amplification and expressed much lower levels of Met, which was phosphorylated only on addition of hepatocyte growth factor. We also found a strong up-regulation of tyrosine phosphorylation in beta-catenin and p120/delta-catenin in the Met-amplified EBC-1 and H1993 cell lines. ShRNA-mediated Met knockdown induced significant growth inhibition, G(1)-S arrest, and apoptosis in EBC-1 and H1993 cells, whereas it had little or no effect on the cell lines that do not have Met amplification. These results strongly suggest that Met amplification identifies a subset of NSCLC likely to respond to new molecular therapies targeting Met.
Collapse
Affiliation(s)
- Bart Lutterbach
- Cancer Biology and Therapeutics, Department of Molecular Oncology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Yang S, Jeung HC, Jeong HJ, Choi YH, Kim JE, Jung JJ, Rha SY, Yang WI, Chung HC. Identification of genes with correlated patterns of variations in DNA copy number and gene expression level in gastric cancer. Genomics 2007; 89:451-9. [PMID: 17229543 DOI: 10.1016/j.ygeno.2006.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/08/2006] [Accepted: 12/04/2006] [Indexed: 01/02/2023]
Abstract
To identify DNA copy number changes that had a direct influence on mRNA expression in gastric cancer, cDNA microarray-based comparative genomic hybridization (aCGH) and gene expression profiling were performed using 17 K cDNA microarrays. A set of 158 genes showing Pearson correlation coefficients over 0.6 between DNA copy number changes and mRNA expression level variations was selected. In an independent gene expression profiling of 60 tissue samples, the 158 genes were able to distinguish most of the normal and tumor tissues in an unsupervised hierarchical clustering, suggesting that the differential expression patterns displayed by this specific group of genes are most likely based on the gene copy number changes. Furthermore, 43 statistically significant (P<0.01) genes were selected that correctly distinguished all of the tissue samples. The copy number changes detected by aCGH can be verified by fluorescence in situ hybridization and real-time polymerase chain reaction. The selected genes include those that were previously identified as being tumor suppressors or deleted in various tumors, including GATA binding protein 4 (GATA4), monoamine oxidase A (MAOA), cyclin C (CCNC), and oncogenes including malignant fibrous histiocytoma amplified sequence 1 (MFHAS1/MASL1), high mobility group AT-hook 2 (HMGA2), PPAR binding protein (PPARBP), growth factor receptor-bound protein 7 (GRB7), and TBC1 (tre-2, BUB2, cdc16) domain family, member 1 (TBC1D1).
Collapse
Affiliation(s)
- Sanghwa Yang
- Cancer Metastasis Research Center (CMRC), Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Various cytokines and soluble growth factors upon interaction with their membrane receptors are responsible for inducing cellular proliferation, differentiation, movement, and protection from anoikis (a planned suicide activated by normal cells in absence of attachment to neighboring cells or extracellular matrix (EMC)). Among those soluble factors a major position is exerted by hepatocyte growth factor (HGF) together with its receptor MET and macrophage-stimulating protein (MSP) in cooperation with its receptor RON.
Collapse
Affiliation(s)
- Silvia Benvenuti
- Division of Molecular Oncology, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Candiolo (Torino), Italy
| | | |
Collapse
|
149
|
Naka T, Kuester D, Boltze C, Scheil-Bertram S, Samii A, Herold C, Ostertag H, Krueger S, Roessner A. Expression of hepatocyte growth factor and c-MET in skull base chordoma. Cancer 2007; 112:104-10. [DOI: 10.1002/cncr.23141] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
150
|
Myllykangas S, Böhling T, Knuutila S. Specificity, selection and significance of gene amplifications in cancer. Semin Cancer Biol 2006; 17:42-55. [PMID: 17161620 DOI: 10.1016/j.semcancer.2006.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/17/2006] [Indexed: 12/16/2022]
Abstract
DNA copy number amplifications activate oncogenes and are found in the majority of advanced solid tumors. Cell-lineage specificity and oncogene affinity of DNA amplifications in cancer suggest that properties of precursor stem cells and selection pressure in the tissue micro-environment determine the genomic location of gene amplifications. Biological specificity and significance of gene amplifications make them potential targets for clinical applications. Here we discuss the specificity of non-randomly occurring DNA copy number amplifications as defining features for cancers, their selection in the tumor tissue, and significance in the clinical practice.
Collapse
Affiliation(s)
- Samuel Myllykangas
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, POB 21 (Haartmaninkatu 3), FI-00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|