101
|
Boehm MK, Woof JM, Kerr MA, Perkins SJ. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J Mol Biol 1999; 286:1421-47. [PMID: 10064707 DOI: 10.1006/jmbi.1998.2556] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunoglobulin A (IgA) is an abundant antibody that mediates immune protection at mucosal surfaces as well as in plasma. The IgA1 isotype contains two four-domain Fab fragments and a four-domain Fc fragment analogous to that in immunoglobulin G (IgG), linked by a glycosylated hinge region made up of 23 amino acid residues from each of the heavy chains. IgA1 also has two 18 residue tailpieces at the C terminus of each heavy chain in the Fc fragment. X-ray scattering using H2O buffers and neutron scattering using 100 % 2H2O buffers were performed on monomeric IgA1 and a recombinant IgA1 that lacks the tailpiece (PTerm455). The radii of gyration RG from Guinier analyses were similar at 6.11-6.20 nm for IgA1 and 5.84-6.16 nm for PTerm455, and their cross-sectional radii of gyration RXS were also similar. The similarity of the RG and RXS values suggests that the tailpiece of IgA1 is not extended outwards in solution. The IgA1 RG values are higher than those for IgG, and the distance distribution function P(r) showed two distinct peaks, whereas a single peak was observed for IgG. Both results show that the hinge of IgA1 results in an extended Fab and Fc arrangement that is different from that in IgG. Automated curve-fit searches constrained by homology models for the Fab and Fc fragments were used to model the experimental IgA1 scattering curves. A translational search to optimise the relative arrangement of the Fab and Fc fragments held in a fixed orientation resembling that in IgG was not successful in fitting the scattering data. A new molecular dynamics curve-fit search method generated IgA1 hinge structures to which the Fab and Fc fragments could be connected in any orientation. A search based on these identified a limited family of IgA1 structures that gave good curve fits to the experimental data. These contained extended hinges of length about 7 nm that positioned the Fab-to-Fab centre-to-centre separation 17 nm apart while keeping the corresponding Fab-to-Fc separation at 9 nm. The resulting extended T-shaped IgA1 structures are distinct from IgG structures previously determined by scattering and crystallography which have Fab-to-Fab and Fab-to-Fc centre-to-centre separations of 7-9 nm and 6-8 nm, respectively. It was concluded that the IgA1 hinge is structurally distinct from that in IgG, and this results in a markedly different antibody structure that may account for a unique immune role of monomeric IgA1 in plasma and mucosa.
Collapse
Affiliation(s)
- M K Boehm
- Department of Biochemistry and Molecular Biology, Royal Free Campus, University College Medical School, London, UK
| | | | | | | |
Collapse
|
102
|
Kishore U, Leigh LE, Eggleton P, Strong P, Perdikoulis MV, Willis AC, Reid KB. Functional characterization of a recombinant form of the C-terminal, globular head region of the B-chain of human serum complement protein, C1q. Biochem J 1998; 333 ( Pt 1):27-32. [PMID: 9639558 PMCID: PMC1219551 DOI: 10.1042/bj3330027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first step in the activation of the classical pathway of the complement system by immune complexes involves the binding of the six globular heads of C1q to the Fc regions of IgG or IgM. The globular heads of C1q are located C-terminal to the six triple-helical stalks present in the molecule; each head is considered to be composed of the C-terminal halves (3x136 residues) of one A-, one B- and one C-chain. It is not known if the C-terminal globular regions, present in each of the three types of chain, are independently folded modules (with each chain having distinct binding properties towards immunoglobulins) or whether the different binding functions of C1q are dependent upon a globular structure which relies on contributions from all three chains. As a first step towards addressing this question, we have expressed the globular head region (residues 87-226) of the C1q B-chain (ghB) as a soluble fusion protein with maltose-binding protein (MBP) in Escherichia coli. The affinity purified fusion protein, designated MBP-ghB, behaved as a dimer on gel filtration and bound preferentially to aggregated IgG rather than to IgM. It could also inhibit C1q-dependent haemolysis of both IgG- and IgM-sensitized erythrocytes. After its release from MBP, by use of Factor Xa, the free ghB exhibited a tendency to aggregate and come out of solution. Since MBP is known to be a monomeric molecule, the dimerization of the MBP-ghB fusion polypeptide is probably brought about by the ghB region, perhaps through hydrophobic interactions within the ghB region. The functional behaviour of MBP-ghB indicates that the globular regions of C1q may adopt a modular organization, i.e. each globular head of C1q may be composed of three structurally and functionally independent domains, thus retaining multivalency in the form of a heterotrimer.
Collapse
Affiliation(s)
- U Kishore
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | | | | | | | | | | | | |
Collapse
|
103
|
Chacón P, Morán F, Díaz JF, Pantos E, Andreu JM. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys J 1998; 74:2760-75. [PMID: 9635731 PMCID: PMC1299618 DOI: 10.1016/s0006-3495(98)77984-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Small-angle x-ray solution scattering (SAXS) is analyzed with a new method to retrieve convergent model structures that fit the scattering profiles. An arbitrary hexagonal packing of several hundred beads containing the problem object is defined. Instead of attempting to compute the Debye formula for all of the possible mass distributions, a genetic algorithm is employed that efficiently searches the configurational space and evolves best-fit bead models. Models from different runs of the algorithm have similar or identical structures. The modeling resolution is increased by reducing the bead radius together with the search space in successive cycles of refinement. The method has been tested with protein SAXS (0.001 < S < 0.06 A(-1)) calculated from x-ray crystal structures, adding noise to the profiles. The models obtained closely approach the volumes and radii of gyration of the known structures, and faithfully reproduce the dimensions and shape of each of them. This includes finding the active site cavity of lysozyme, the bilobed structure of gamma-crystallin, two domains connected by a stalk in betab2-crystallin, and the horseshoe shape of pancreatic ribonuclease inhibitor. The low-resolution solution structure of lysozyme has been directly modeled from its experimental SAXS profile (0.003 < S < 0.03 A(-1)). The model describes lysozyme size and shape to the resolution of the measurement. The method may be applied to other proteins, to the analysis of domain movements, to the comparison of solution and crystal structures, as well as to large macromolecular assemblies.
Collapse
Affiliation(s)
- P Chacón
- Centro de Investigaciones Biológicas, C.S.I.C. Velázquez 144, Madrid, Spain
| | | | | | | | | |
Collapse
|
104
|
Perkins SJ, Ashton AW, Boehm MK, Chamberlain D. Molecular structures from low angle X-ray and neutron scattering studies. Int J Biol Macromol 1998; 22:1-16. [PMID: 9513811 DOI: 10.1016/s0141-8130(97)00088-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular structures can be extracted from solution scattering analyses of multidomain or oligomeric proteins by a new method of constrained automated scattering curve fits. Scattering curves are calculated using a procedure tested by comparisons of crystal structures with experimental X-ray and neutron data. The domains or subunits in the protein of interest are all represented by atomic coordinates in order to provide initial constraints. From this starting model, hundreds or thousands of different possible structures are computed, from each of which a scattering curve is computed. Each model is assessed for steric overlap, radii of gyration and R-factors in order to leave a small family of good fit models that corresponds to the molecular structure of interest. This method avoids the tedium of curve fitting by hand and error limits on the ensuing models can be described. For single multidomain proteins, the key constraint is the correct stereochemical connections between the domains in all the models. Successful applications to determine structures are summarised for the Fab and Fc fragments in immunoglobulin G, the three domain pairs in the Fc subunit of immunoglobulin E and the seven, domains in carcinoembryonic antigen. For oligomeric proteins, the key constraint is provided by symmetry and successful analyses were performed for the association of the monomers of the bacterial amide sensor protein AmiC to form trimers and pentameric serum amyloid P component to form decameric structures. The successful analysis of the heterodimeric complex of tissue factor and factor VIIa required the use of constraints provided from biochemical data. The outcome of these analyses is critically appraised, in particular the biological significance of structures determined by these solution scattering curve fits.
Collapse
Affiliation(s)
- S J Perkins
- Department of Biochemistry and Molecular Biology, Royal Free Hospital School of Medicine, London, UK.
| | | | | | | |
Collapse
|
105
|
The Carbohydrate Moiety of IgM From Atlantic Salmon (Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol 1997. [DOI: 10.1016/s0305-0491(96)00264-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
106
|
Abstract
Despite many successes, atomic force microscopy (AFM) of biological specimens at room temperature is still severely limited by at least two factors: the softness and the thermal motion of flexible multi-domain/subunit molecules. Both problems can be overcome by imaging biological structures at cryogenic temperatures. Even though the instrumentation is considerably more complex and earlier attempts were largely unsuccessful, cryo-AFM has recently been demonstrated on a number of biological specimens, using an AFM operated in liquid nitrogen vapor under ambient pressure. In this brief review, both the method of instrumentation and the latest biological applications are discussed. Not only has the cryo-AFM attained high resolution on those specimens that could not be well imaged at room temperature, but it has also produced potentially important information on several specimens. These results firmly establish the cryo-AFM as a useful and versatile structural probe in biology with its own unique capabilities.
Collapse
Affiliation(s)
- Z Shao
- Department of Molecular Physiology, University of Virginia School of Medicine 22908, USA.
| | | |
Collapse
|
107
|
Abstract
It has long been recognized that one of the major limitations in biological atomic force microscopy (AFM) is the softness of most biological samples, which are easily deformed or damaged by the AFM tip, because of the high pressure in the contact area, especially from the very sharp tips required for high resolution. Another is the molecular motion present at room temperature due to thermal fluctuation. Using an AFM operated in liquid nitrogen vapor (cryo-AFM), we demonstrate that cryo-AFM can be applied to a large variety of biological samples, from immunoglobulins to DNA to cell surfaces. The resolution achieved with cryo-AFM is much improved when compared with AFM at room temperature with similar specimens, and is comparable to that of cryo-electron microscopy on randomly oriented macromolecules. We will also discuss the technical problems that remain to be solved for achieving even higher resolution with cryo-AFM and other possible applications of this novel technique.
Collapse
Affiliation(s)
- Y Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | |
Collapse
|
108
|
Roberts CJ, Davies MC, Tendler SJ, Williams PM, Davies J, Dawkes AC, Yearwood GD, Edwards JC. The discrimination of IgM and IgG type antibodies and Fab' and F(ab)2 antibody fragments on an industrial substrate using scanning force microscopy. Ultramicroscopy 1996; 62:149-55. [PMID: 8677526 DOI: 10.1016/0304-3991(95)00143-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously employed scanning force microscopy (SFM) to study antibody-antigen molecular interactions on microtiter wells used for enzyme linked immunosorbant assays (ELISA). Here we demonstrate the ability of SFM to image and discriminate different types of antibody and antibody fragments bound to an ELISA well surface. The samples studied include a type IgG antibody with a proportion of bound IgM and two-dimensional films of whole IgG antibody, and Fab' and F(ab)2 antibody fragments. Molecular resolution is achieved in each case despite the size of substrate features exceeding most of the molecular dimensions observed. Analysis of the data shows that the SFM overestimates molecular dimensions by an approximately constant amount, which is proposed to principally result from the effects of a finite probe size and not from deformation of the molecular species due to the imaging forces employed.
Collapse
Affiliation(s)
- C J Roberts
- Department of Pharmaceutical Sciences, University of Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Cirić B, Radulović M, Dimitrijević LJ, Jankov RM. Effect of valency on binding properties of the antihuman IgM monoclonal antibody 202. Hybridoma (Larchmt) 1995; 14:537-44. [PMID: 8770640 DOI: 10.1089/hyb.1995.14.537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A murine monoclonal IgG2a antibody, 202, specific for human IgM, was produced and immunochemically characterized. Binding features of MAb 202, epitope localization, and its accessibility at the quaternary structure of polymeric IgM were investigated. Direct and competitive ELISA with fragments of IgM molecule demonstrated that the epitope recognized by MAb 202 lies on the Fc3 portion of IgM. Sandwich ELISA with MAb 202, which could be used simultaneously to capture and to detect bound IgM, indicated that more than one 202 epitope is present on the IgM molecule. MAb 202 did not precipitate IgM in solution, whereas good precipitation lines were obtained in agarose gel. Binding of MAb 202 to the J chain, C-terminal tailpiece and C mu 2 peptide, which remain attached to the C mu 3 domain of the Fc5 fragment, was excluded by a number of experimental results and structural reasons. Therefore a potential candidate for epitope 202 expression was the C mu 3 domain. MAb 202 did not react with isolated mu chain, which is expected since epitope 202 is of a conformational type. Furthermore, the reaction with monomeric IgM was almost undetectable as was demonstrated by a number of methods (ELISA, immunofluorescence, Western blotting). Since monovalent Fab portions of MAb 202 weakly reacted with polymeric IgM, we concluded that intrinsic affinity of their interaction is low but greatly enhanced by bivalent binding. Antipolymeric IgM binding specificity of MAb 202 was demonstrated only in the case of bivalent binding with a functional affinity constant of Kd = 2.14 x 10(-9) M-1. This implied up to a 10(4) difference between intrinsic and functional affinity, as in the range of concentration used in this study MAb 202 did not react with monomeric IgM.
Collapse
Affiliation(s)
- B Cirić
- Immunology Research Center, University of Belgrade, Yugoslavia
| | | | | | | |
Collapse
|
110
|
Igarashi Y, Kimura K, Ichimura K, Matsuzaki S, Ikura T, Kuwajima K, Kihara H. Solution X-ray scattering study on the chaperonin GroEL from Escherichia coli. Biophys Chem 1995; 53:259-66. [PMID: 7880961 DOI: 10.1016/0301-4622(94)00107-u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular architecture of native GroEL has been studied by solution X-ray scattering. The radius of gyration for the native molecule was estimated to be 66.0 A in 50 mM Tris-HCl, 100 mM KCl at pH 7.5 and 25 degrees C. The maximum dimension was estimated to be 170 A, based on the pair distance distribution function. A cylindrical structure or two heptameric rings was found to be the best for native GroEL among structures examined by using a multi-sphere model analysis in which the radius of constituent sphere was 6 A. The results of the model analysis show that the radius of GroEL is 68.0 A and the height is 150.7 A. Unexpectedly, the central penetrating hole through GroEL was not confirmed in the best-fit structure.
Collapse
Affiliation(s)
- Y Igarashi
- Department of Biochemistry, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Normal circulating immunoglobulin may control complement binding to targets and thereby the manifestations of autoimmune disease. Molecular analysis of IgG and IgM mutants suggests that C1q binding by IgG utilizes a core Glu-X-Lys-X-Lys motif (where X is any amino acid). Additional amino acids, particularly homologous proline residues at position 331 in IgG and 436 in IgM, appear critical for classical pathway initiation. Glycosylation of IgG heavy chain is important in C1q binding, as well as glycosylation of IgA heavy chain for alternative pathway initiation. Additional recent evidence suggests an important role for C3 in antigen presentation. The data also raise the possibility that C3 plays a significant role in the intracellular antigen processing pathway.
Collapse
Affiliation(s)
- V D Miletic
- Duke University Medical Center, Department of Pediatrics, Durham, North Carolina 27710, USA
| | | |
Collapse
|
112
|
Smith KF, Haris PI, Chapman D, Reid KB, Perkins SJ. Beta-sheet secondary structure of the trimeric globular domain of C1q of complement and collagen types VIII and X by Fourier-transform infrared spectroscopy and averaged structure predictions. Biochem J 1994; 301 ( Pt 1):249-56. [PMID: 8037678 PMCID: PMC1137169 DOI: 10.1042/bj3010249] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
C1q plays a key role in the recognition of immune complexes, thereby initiating the classical pathway of complement activation. Although the triple-helix conformation of its N-terminal segment is well established, the secondary structure of the trimeric globular C-terminal domain is as yet unknown. The secondary structures of human C1q and C1q stalks and pepsin-extracted human collagen types I, III and IV (with no significant non-collagen-like structure) were studied by Fourier-transform i.r. spectroscopy in 2H2O buffers. After second-derivative calculation to resolve the fine structure of the broad amide I band, the Fourier-transform i.r. spectrum of C1q showed two major bands, one at 1637 cm-1, which is a characteristic frequency for beta-sheets, and one at 1661 cm-1. Both major bands were also detected for Clq in H2O buffers. Only the second major band was observed at 1655 cm-1 in pepsin-digested C1q which contains primarily the N-terminal triple-helix region. The Fourier-transform i.r. spectra of collagen in 2H2O also showed a major band at 1659 cm-1 (and minor bands at 1632 cm-1 and 1682 cm-1). It is concluded that the C1q globular heads contain primarily beta-sheet structure. The C-terminal domains of C1q show approximately 25% sequence identity with the non-collagen-like C-terminal regions of the short-chain collagen types VIII and X. To complement the Fourier-transform-i.r. spectroscopic data, averaged Robson and Chou-Fasman structure predictions on 15 similar sequences for the globular domains of C1q and collagen types VIII and X were performed. These showed a clear pattern of ten beta-strands interspersed by beta-turns and /or loops. Residues thought to be important for C1q-immune complex interactions with IgG and IgM were predicted to be at a surface-exposed loop. Sequence insertions and deletions, glycosylation sites, the free cysteine residue and RGD recognition sequences were also predicted to be at surface-exposed positions.
Collapse
Affiliation(s)
- K F Smith
- Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, London, U.K
| | | | | | | | | |
Collapse
|
113
|
Xu Y, Oomen R, Klein M. Residue at position 331 in the IgG1 and IgG4 CH2 domains contributes to their differential ability to bind and activate complement. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41886-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
114
|
Abstract
The structures of the various regions of an antibody molecule are analysed and correlated with biological function. The structural features which relate to potential applications are detailed.
Collapse
Affiliation(s)
- E A Padlan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
115
|
Abstract
The alpha IIb beta 3 platelet integrin is the prototypical member of a widely distributed class of transmembrane receptors formed by the noncovalent association of alpha and beta subunits. Electron microscopic (EM) images of the alpha IIb beta 3 complex show an asymmetric particle with a globular domain from which two extended regions protrude to contact the lipid bilayer. Distance constraints provided by disulfide bond patterns, epitope mapping, and ligand mimetic cross-linking studies rather suggest a somewhat more compact conformation for the alpha IIb beta 3 complex. We have studied the shape of detergent-solubilized alpha IIb beta 3 by employing a low-resolution modeling procedure in which each polypeptide has been represented as an array of interconnected, nonoverlapping spheres (beads) of various sizes. The number, size, and three-dimensional relationships among the beads were defined either solely by dimensions obtained from published EM images of integrin receptors (EM models, 21 beads), or solely by interdomain constraints derived from published biochemical data (biochemical model, 37 beads). Interestingly, although no EM data were employed in its construction, the resulting overall shape of the biochemical model was still compatible with the EM data. Both kinds of models were then evaluated for their calculated solution properties. The more elongated EM models have diffusion and sedimentation coefficients that differ, at best, by +2% and -18% from the experimental values, determined, respectively, in octyl glucoside and Triton X-100. On the other hand, the parameters calculated for the more compact biochemical model showed a more consistent agreement with experimental values, differing by -7% (octyl glucoside) to -6% (Triton X-100). Thus, it appears that using the biochemical constraints as a starting point has resulted in not only a more detailed model of the detergent-solubilized alpha IIb beta 3 complex, where the relative spatial location of specific domains the size of 5-10 kDa can be tentatively mapped, but in a model that can also reconcile the electron microscopy with the biochemical and the solution data.
Collapse
Affiliation(s)
- M Rocco
- Biostructures Unit, Istituto Nazionale per la Ricerca sul Cancro, IST, Genova, Italy
| | | | | |
Collapse
|
116
|
Perkins SJ, Smith KF, Kilpatrick JM, Volanakis JE, Sim RB. Modelling of the serine-proteinase fold by X-ray and neutron scattering and sedimentation analyses: occurrence of the fold in factor D of the complement system. Biochem J 1993; 295 ( Pt 1):87-99. [PMID: 8216242 PMCID: PMC1134824 DOI: 10.1042/bj2950087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Solution scattering is a powerful means of determining the overall arrangement of domains in the multidomain proteins of complement. the serine-proteinase domain is central to all proteolytic events during complement activation. As models of this domain, bovine beta-trypsin, trypsinogen, alpha-chymotrypsin and chymotrypsinogen A were studied by neutron and X-ray synchrotron solution scattering. At pH 7, all the X-ray and neutron M(r) values corresponded to monomeric proteins. The X-ray radii of gyration, RG, of beta-trypsin, trypsinogen, alpha-chymotrypsin and chymotrypsinogen A (measured in positive solute-solvent contrasts) were 1.59 nm, 1.78 nm, 1.71 nm and 1.76 nm (+/- 0.05-0.11 nm) in that order. Neutron contrast variation showed that the RG at infinite contrast, RC, for these four proteins were 1.57 nm, 1.70 nm, 1.67 nm and 1.78 nm (+/- 0.03 nm) in that same order. The radial inhomogeneity of neutron-scattering density, alpha, was positive at (5-13) x 10(-5), and corresponds to the preponderance of hydrophilic residues near the protein surface. On trypsinogen activation, a small reduction in the RG value of 0.13 +/- 0.07 nm was just detectable, while the RG of chymotrypsinogen A was unchanged after activation. The RC and alpha values of the four proteins can be calculated by using crystallographic co-ordinates. The reduced RG of beta-trypsin relative to trypsinogen was explained in terms of the removal of the extended N-terminal hexapeptide of trypsinogen. The full X-ray and neutron-scattering curves in positive and negative contrasts agreed well with scattering curves calculated from crystallographic coordinates to a nominal structural resolution of 4.5 nm, provided that the internal structure was considered in neutron modelling, and that the hydration was considered in X-ray modelling. Sedimentation-coefficient data also provide information on the disposition of domains in multidomain proteins. It was found that the hydrated X-ray sphere model could be directly utilized to calculate sedimentation coefficients. X-ray scattering on factor D showed from its RG of 1.78 nm that this is monomeric and very similar in structure to beta-trypsin. The X-ray-scattering curve of factor D was readily modelled using the beta-trypsin crystal structure after allowance for sequence changes. The success of these modellings provides a basis for the constrained modelling of solution scattering data for the multidomain proteins of complement.
Collapse
Affiliation(s)
- S J Perkins
- Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, London, U.K
| | | | | | | | | |
Collapse
|
117
|
Perkins SJ, Nealis AS, Dunham DG, Hardingham TE, Muir IH. Molecular modeling of the multidomain structures of the proteoglycan binding region and the link protein of cartilage by neutron and synchrotron X-ray scattering. Biochemistry 1991; 30:10708-16. [PMID: 1931990 DOI: 10.1021/bi00108a015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interaction of proteoglycan monomers with hyaluronate in cartilage is mediated by a globular binding region at the N-terminus of the proteoglycan monomer; this interaction is stabilized by link protein. Sequences show that both the binding region (27% carbohydrate) and the link protein (6% carbohydrate) contain an immunoglobulin (Ig) fold domain and two proteoglycan tandem repeat (PTR) domains. Both proteins were investigated by neutron and synchrotron X-ray solution scattering, in which nonspecific aggregate formation was reduced by the use of citraconylation to modify surface lysine residues. The neutron and X-ray radius of gyration RG of native and citraconylated binding region is 5.1 nm, and the cross-sectional RG (RXS) is 1.9-2.0 nm. No neutron contrast dependence of the RG values was observed; however, a large contrast dependence was seen for the RXS values which is attributed to the high carbohydrate content of the binding region. The neutron RG for citraconylated link protein is 2.9 nm, its RXS is 0.8 nm, and these data are also independent of the neutron contrast. The scattering curves of binding region and link protein were modeled using small spheres. Both protein structures were defined initially by the representation of one domain by a crystal structure for a variable Ig fold and a fixed volume for the two PTR domains calculated from sequence data. The final models showed that the different dimensions and neutron contrast properties of binding region compared to link protein could be attributed to an extended glycosylated C-terminal peptide with extended carbohydrate structures in the binding region.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S J Perkins
- Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, London, U.K
| | | | | | | | | |
Collapse
|