101
|
Wang H, Mao Y, Zhou N, Hu T, Hsieh TS, Liu LF. Atp-bound topoisomerase ii as a target for antitumor drugs. J Biol Chem 2001; 276:15990-5. [PMID: 11278845 DOI: 10.1074/jbc.m011143200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerase II (TOP2) poisons interfere with the breakage/reunion reaction of TOP2 resulting in DNA cleavage. In the current studies, we show that two different classes (ATP-sensitive and -insensitive) of TOP2 poisons can be identified based on their differential sensitivity to the ATP-bound conformation of TOP2. First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. doxorubicin, etoposide, mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected. In addition, ADP was shown to strongly antagonize TOP2-mediated DNA cleavage induced by ATP-sensitive but not ATP-insensitive TOP2 poisons. Second, C427A mutant human TOP2alpha, which exhibits reduced ATPase activity, was shown to exhibit cross-resistance to all ATP-sensitive but not ATP-insensitive TOP2 poisons. Third, using ciprofloxacin competition assay, TOP2-mediated DNA cleavage induced by ATP-sensitive but not ATP-insensitive poisons was shown to be antagonized by ciprofloxacin. These results suggest that ATP-bound TOP2 may be the specific target of ATP-sensitive TOP2 poisons. Using Lac repressor-operator complexes as roadblocks, we show that ATP-bound TOP2 acts as a circular clamp capable of entering DNA ends and sliding on unobstructed duplex DNA.
Collapse
Affiliation(s)
- H Wang
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
102
|
Sikder D, Unniraman S, Bhaduri T, Nagaraja V. Functional cooperation between topoisomerase I and single strand DNA-binding protein. J Mol Biol 2001; 306:669-79. [PMID: 11243779 DOI: 10.1006/jmbi.2000.4384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-protein interactions play important role in cell biochemistry by favorably or adversely influencing major molecular events. In most documented cases, the interaction is direct between the partner molecules. Influence of activity in the absence of direct physical interaction between DNA transaction proteins is another important means of modulation. We show here that single strand binding protein stimulates DNA topoisomerase I activity without direct protein-protein interactions. The stimulation is specific to topoisomerase I, as DNA gyrase activity is unaffected by SSB. We propose that such cases of functional collaboration between DNA transaction proteins play important roles in vivo.
Collapse
Affiliation(s)
- D Sikder
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
103
|
Opel ML, Hatfield GW. DNA supercoiling-dependent transcriptional coupling between the divergently transcribed promoters of the ilvYC operon of Escherichia coli is proportional to promoter strengths and transcript lengths. Mol Microbiol 2001; 39:191-8. [PMID: 11123701 DOI: 10.1046/j.1365-2958.2001.02249.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The twin-domain model of Liu and Wang suggested that high levels of DNA supercoiling generated in the region between closely spaced divergently transcribed promoters could serve to couple the activities of these promoters transcriptionally. In this report, we use topoisomer sets of defined superhelical densities as DNA templates in a purified in vitro transcription system to demonstrate transcriptional coupling between the divergently transcribed ilvY and ilvC promoters of the ilvYC operon of Escherichia coli. Current evidence for this type of DNA supercoiling-dependent transcriptional coupling, based largely on the in vivo activities of promoters contained in engineered DNA constructs, suggests that the transcription complex must be physically hindered to generate DNA supercoils and to prevent their diffusion throughout the DNA duplex. However, the in vitro results presented here demonstrate that (i) transcriptional coupling is observed between the divergent promoters of the ilvYC operon in the absence of transcript anchoring; (ii) the magnitude of the negative DNA supercoiling generated in the divergent promoter region is proportional to the sum of the global and transcription-induced superhelicity; and (iii) the magnitude of this transcription-induced superhelicity is proportional to promoter strengths and transcript lengths.
Collapse
Affiliation(s)
- M L Opel
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
104
|
Bath J, Wu LJ, Errington J, Wang JC. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 2000; 290:995-7. [PMID: 11062134 DOI: 10.1126/science.290.5493.995] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The SpoIIIE protein of Bacillus subtilis is required for chromosome segregation during spore formation. The COOH-terminal cytoplasmic part of SpoIIIE was shown to be a DNA-dependent adenosine triphosphatase (ATPase) capable of tracking along DNA in the presence of ATP, and the NH(2)-terminal part of the protein was found to mediate its localization to the division septum. Thus, during sporulation, SpoIIIE appears to act as a DNA pump that actively moves one of the replicated pair of chromosomes into the prespore. The presence of SpoIIIE homologs in a broad range of bacteria suggests that this mechanism for active transport of DNA may be widespread.
Collapse
Affiliation(s)
- J Bath
- Department of Molecular and Cellular Biology, Harvard University, MA 02138, USA
| | | | | | | |
Collapse
|
105
|
El Hanafi D, Bossi L. Activation and silencing of leu-500 promoter by transcription-induced DNA supercoiling in the Salmonella chromosome. Mol Microbiol 2000; 37:583-94. [PMID: 10931352 DOI: 10.1046/j.1365-2958.2000.02015.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The notion that transcription can generate supercoils in the DNA template largely stems from work with small circular plasmids. In the present work, we tested this model in the bacterial chromosome using a supercoiling-sensitive promoter as a functional sensor of superhelicity changes. The leu-500 promoter of Salmonella typhimurium is a mutant and inactive variant of the leucine operon promoter that regains activity if negative DNA supercoiling rises above normal levels, typically as a result of mutations affecting DNA topoisomerase I (topA mutants). Activation of the leu-500 promoter was analysed in topA mutant cells harbouring transcriptionally inducible tet or cat gene cassettes inserted in the region upstream from the leu operon. Some insertions inhibited leu-500 promoter activation in the absence of inducer. This effect is dramatic in the interval between 1.7 kb and 0.6 kb from the leu operon, suggesting that the insertions physically interfere with the mechanism responsible for activation. Superimposed on these effects, transcription of the inserted gene stimulated or inhibited leu-500 promoter activity depending on whether this gene was oriented divergently from the leu operon or in the same direction respectively. Interestingly, transcription-mediated inhibition of leu-500 promoter was observed with inserts as far as 5 kb from the leu operon, and it could be relieved by the introduction of a strong gyrase site between the inserted element and the leu-500 promoter. These results are consistent with the idea that transcriptionally generated positive and negative supercoils can diffuse along chromosomal DNA and, depending on their topological sign, elicit opposite responses from the leu-500 promoter.
Collapse
Affiliation(s)
- D El Hanafi
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
106
|
Rangarajan M, Kim JS, Jin S, Sim SP, Liu A, Pilch DS, Liu LF, LaVoie EJ. 2"-Substituted 5-phenylterbenzimidazoles as topoisomerase I poisons. Bioorg Med Chem 2000; 8:1371-82. [PMID: 10896114 DOI: 10.1016/s0968-0896(00)00054-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5-Phenylterbenzimidazole (1) is active as a topoisomerase I poison (topo I) and is cytotoxic to human tumor cells. No cross-resistance was observed for 1 when it was evaluated against the camptothecin-resistant cell line, CPT-K5. Derivatives of 1 substituted at the 2"-position, however, did exhibit cross-resistance to this cell line. The basis for the resistance of this cell line towards CPT is that it possesses a mutant form of topo I. These results suggest that substituents at the 2"-position may be in proximity to the wild-type enzyme. Therefore, we hypothesized that terbenzimidazoles with 2"-substituents could be capable of interacting with the enzyme and thereby influence activity within this class of topo I poisons. 5-Phenylterbenzimidazoles with a hydroxy, hydroxymethyl, mercapto, amino, N-benzoylaminomethyl, chloro, and trifluoromethyl group at the 2"-position were synthesized. In addition, several 2"-ethyl-5-phenylterbenzimidazoles were prepared containing either a methoxy, hydroxy, amino, or N-acetylamino group at the 2-position of the ethyl side-chain. These 2"-substituted 5-phenylterbenzimidazoles were evaluated as topo I poisons and for cytotoxic activity. The presence of a strong electron-withdrawing group at the 2"-position, such as a chloro or trifluoromethyl group, did enhance both topo I poisoning activity and cytotoxicity. Studies on the relative DNA binding affinity of 1 to its 2"-amino and 2"-trifluoromethyl derivatives did exhibit a correlation with their relative differences in biological activity.
Collapse
Affiliation(s)
- M Rangarajan
- Department of Pharmaceutical Chemistry, Rutgers, The State University of New Jersey, Piscataway 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Makhey D, Yu C, Liu A, Liu LF, LaVoie EJ. Substituted benz[a]acridines and benz[c]acridines as mammalian topoisomerase poisons. Bioorg Med Chem 2000; 8:1171-82. [PMID: 10882027 DOI: 10.1016/s0968-0896(00)00048-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Coralyne and several other synthetic benzo[a,g]quinolizium derivatives related to protoberberine alkaloids have exhibited activity as topoisomerase poisons. These compounds are characterized by the presence of a positively charged iminium group, which has been postulated to be associated with their pharmacological properties. The objective of the present study was to devise stable noncharged bioisosteres of these compounds. Several similarly substituted benz[a]acridine and benz[c]acridine derivatives were synthesized and their relative activity as topoisomerase poisons was determined. While the benz[c]acridine derivatives evaluated as part of this study were devoid of topoisomerase poisoning activity, several dihydrobenz[a]acridines were able to enhance DNA cleavage in the presence of topo I. In contrast to certain protoberberine derivatives that did exhibit activity as topo II poisons, none of the benz[a]acridines derivatives enhanced DNA cleavage in the presence of topo II. Among the benz[a]acridines studied, 5,6-dihydro-3,4-methylenedioxy-9,10-dimethoxybenz[a]acridine, 13e, was the most potent topo I poison, with comparable potency to coralyne. These data suggest that heterocyclic compounds structurally related to coralyne can exhibit potent topo I poisoning activity despite the absence of an iminium cation within their structure. In comparison to coralyne or other protoberberine derivatives, these benz[a]acridine derivatives possess distinctly different physicochemical properties and represent a novel series of topo I poisons.
Collapse
Affiliation(s)
- D Makhey
- Department of Pharmaceutical Chemistry, Rutgers, The State University of New Jersey, Piscataway 08854-8020, USA
| | | | | | | | | |
Collapse
|
108
|
Hraiky C, Raymond MA, Drolet M. RNase H overproduction corrects a defect at the level of transcription elongation during rRNA synthesis in the absence of DNA topoisomerase I in Escherichia coli. J Biol Chem 2000; 275:11257-63. [PMID: 10753935 DOI: 10.1074/jbc.275.15.11257] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the major function of DNA topoisomerase I in Escherichia coli is to suppress the formation of R-loops, which could inhibit growth. Although the currently available data suggest that the inhibitory effect of R-loops is exerted at the level of gene expression, this has never been demonstrated. In the present report, we show that rRNA synthesis is significantly impaired at the level of transcription elongation in a bacterial strain lacking DNA topoisomerase I. We found that this inhibition is due to transcriptional blocks. RNase H overproduction is also shown to considerably reduce the extent of such transcriptional blocks during rRNA synthesis. Moreover, one of these transcriptional blockage sites is located within a region where extensive R-loop formation was previously shown to occur on a plasmid DNA in the absence of DNA topoisomerase I. Together, these results allow us to propose that an important function of DNA topoisomerase I is to inhibit the formation of R-loops, which may otherwise translate into roadblocks for RNA polymerases. Our results also highlight the potential regulatory role of DNA supercoiling at the level of transcription elongation.
Collapse
Affiliation(s)
- C Hraiky
- Département de Microbiologie et Immunologie, Université de Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
109
|
Janscak P, Bickle TA. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI. J Mol Biol 2000; 295:1089-99. [PMID: 10656812 DOI: 10.1006/jmbi.1999.3414] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.
Collapse
Affiliation(s)
- P Janscak
- Department of Microbiology, University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | |
Collapse
|
110
|
Peng HF, Jackson V. In vitro studies on the maintenance of transcription-induced stress by histones and polyamines. J Biol Chem 2000; 275:657-68. [PMID: 10617664 DOI: 10.1074/jbc.275.1.657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Several factors were evaluated to determine their role in facilitating the presence of transcription-induced stresses in a circular DNA. Transcription was done with T7 RNA polymerase in the presence of E. coli topoisomerase I and closed circular DNA. Positive stress was observed in hypotonic conditions or when one of the polyamines, spermidine or spermine, were present. Polycations such as polylysine, polyarginine, histone H1, histones H2A-H2B, and protamine were observed to induce minimal positive stress. It is known that polyamines influence DNA structure by causing both self-association and sequence-specific structural alterations (polyamine-induced localized bending). Experimental evidence indicates that the likely cause of the positive stress is the induced bending. In order to evaluate protein-mediated bending, transcription was done on nucleosomes. A minimum of three nucleosomes on a DNA of 6055 bp was sufficient to generate very high levels of positive stress. Histones H3-H4 in the absence of H2A-H2B were responsible for this effect. Since these histones by themselves are able to maintain negative coils on DNA, it is concluded that protein-mediated bending is yet another mechanism for placing rotational restriction on DNA. The bending of DNA by either polyamines or histones is an effective mechanism for promoting transcription-induced stresses at physiological ionic strength.
Collapse
Affiliation(s)
- H F Peng
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
111
|
Abstract
The faithful segregation of genetic information requires highly orchestrated changes of chromosome structure during the mitotic cell cycle. The linkage between duplicated sister DNAs is established during S phase and maintained throughout G2 phase (cohesion). In early mitosis, dramatic structural changes occur to produce metaphase chromosomes, each consisting of a pair of compacted sister chromatids (condensation). At anaphase onset, a signal is produced to disrupt the linkage between sister chromatids (separation), allowing them to be pulled apart to opposite poles of the cell. This review discusses our current understanding of the three stages of large-scale structural changes of chromosomes in eukaryotic cells. Recent genetic and biochemical studies have identified key components involved in these processes and started to uncover hitherto unexpected functional links between mitotic chromosome dynamics and other important chromosome functions.
Collapse
Affiliation(s)
- T Hirano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
112
|
Broccoli S, Phoenix P, Drolet M. Isolation of the topB gene encoding DNA topoisomerase III as a multicopy suppressor of topA null mutations in Escherichia coli. Mol Microbiol 2000; 35:58-68. [PMID: 10632877 DOI: 10.1046/j.1365-2958.2000.01671.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One major function of DNA topoisomerase I in Escherichia coli is to repress R-loop formation during transcription elongation, which may otherwise inhibit cell growth. We have previously shown that the growth problems of topA mutants can be corrected by overproducing RNase H, an enzyme that degrades the RNA moiety of an R-loop. The goal of the present study was to identify other potential regulators of R-loop formation. To this end, we have screened for multicopy suppressors of topA null mutations. As expected using this procedure, we cloned the rnhA gene encoding RNase H. In addition, we also identified the topB gene encoding DNA topoisomerase III as an efficient suppressor of topA null mutations and, hence, of R-loop formation. We show that DNA topoisomerase III is able to relax transcription-induced negative supercoiling both in vitro and in vivo. An R-loop is also shown to be a hot-spot for relaxation by DNA topoisomerase III, and we found that R-loop-dependent hypernegative supercoiling can be prevented by the activity of this topoisomerase in vivo. It is also shown that the topB gene can act synergistically with the rnhA gene to correct the growth defect of topA null mutants efficiently. This synergistic effect can be explained by the fact that some R-loops must not be degraded in order for the RNA to be available for protein synthesis. Topoisomerase III can presumably repress the formation of such R-loops or cause their destabilization to prevent RNA degradation. This is supported by the fact that overproduction of this topoisomerase corrects the negative effect of overexpressing RNase H activity on the growth of topA null mutants at low temperatures. Moreover, the fact that DNA topoisomerase III does not relax global supercoiling supports our previous conclusion that R-loop formation, and therefore the essential function of DNA topoisomerase I, involves local, rather than global, supercoiling.
Collapse
Affiliation(s)
- S Broccoli
- D¿epartement de microbiologie et immunologie, Universit¿e de Montr¿eal, CP 6128, succursale centre-ville, Montr¿eal, Qu¿ebec, Canada, H3C 3J7
| | | | | |
Collapse
|
113
|
Abstract
It is well known that transcription can induce torsional stress in DNA, affecting the activity of nearby genes or even inducing structural transitions in the DNA duplex. It has long been assumed that the generation of significant torsional stress requires the DNA to be anchored, forming a limited topological domain, because otherwise it would spin almost freely about its axis. Previous estimates of the rotational drag have, however, neglected the role of small natural bends in the helix backbone. We show how these bends can increase the drag several thousandfold relative to prior estimates, allowing significant torsional stress even in linear unanchored DNA. The model helps explain several puzzling experimental results on structural transitions induced by transcription of DNA.
Collapse
Affiliation(s)
- P Nelson
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
114
|
Ohyama T, Miyano M, Sakuma S. Influence of highly curved DNA segments on in vivo topology of plasmids. Mol Biol Rep 1999; 26:269-76. [PMID: 10634510 DOI: 10.1023/a:1007017121313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recombinant plasmids carrying a highly curved DNA structure are sometimes unstable in Escherichia coli. In order to know the underlying mechanism, several plasmids carrying one or two highly bent DNA segment(s) from the human adenovirus type 2 (Ad2) enhancer and/or origin region of phage lambda replication were systematically constructed and propagated in E. coli. The highly bent DNA segments disturbed the action of DNA topoisomerases: i.e. they were shown to be able to produce an anomalously wide spectrum of linking number topoisomers that tails toward lower supercoiling with a little of the DNA actually positively supercoiled. Furthermore, bent DNA caused multimeric plasmid formation. The linking number topoisomers and multimers seemed to be intermediate topological states of the bent DNA-containing plasmids that would lead to the deletion occurring in them. The nucleotide sequence of a deletion product of a bent DNA-containing plasmid showed that the putative source of the severe topological constraint was entirely eliminated from the plasmid.
Collapse
Affiliation(s)
- T Ohyama
- Department of Biology, Faculty of Science, Konan University, Kobe, Japan.
| | | | | |
Collapse
|
115
|
Massé E, Drolet M. R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition. J Mol Biol 1999; 294:321-32. [PMID: 10610761 DOI: 10.1006/jmbi.1999.3264] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently presented evidence that inhibitory R-loops form during transcription in topA null mutants when the nascent RNA anneals with the template DNA strand behind the moving RNA polymerase. This was supported by the results of in vitro transcription assays and by in vivo studies in which R-loop formation was shown to be inhibited by coupled transcription-translation. The results presented here support this model and further demonstrate the link between R-loop formation and growth inhibition of topA null mutants. First, we show that RNase H activity is essential in the absence of DNA topoisomerase I. This was observed even if the growth of the topA null mutant is compensated for by naturally selected mutations, that also reduce global supercoiling below the wild-type level. Second, we show that R-loop-dependent hypernegative supercoiling increases as the temperature decreases and correlates with growth inhibition of topA null mutants. In fact, RNase H overproduction is shown to be detrimental to cell growth at 21 degrees C. Presumably, several mRNAs are being sequestered in R-loops and their degradation by RNase H significantly impedes protein synthesis. We propose that a reduced transcription velocity at low temperatures favors the annealing of the nascent RNA with the template strand behind the moving RNA polymerase, in agreement with the results of previous studies. Finally, based on the currently available data on R-loop formation, we present a model that explains the sensitivity of topA null mutants to various environmental changes that are often accompanied by transient inhibition of translation.
Collapse
Affiliation(s)
- E Massé
- Département de Microbiologie et Immunologie, Université de Montréal, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | | |
Collapse
|
116
|
Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM. Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol 1999; 292:1149-60. [PMID: 10512709 DOI: 10.1006/jmbi.1999.3117] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The scale of negative DNA supercoiling generated by transcription in Top(+) Escherichia coli cells was assessed from the efficiency of cruciform formation upstream of a regulated promoter. An increase in negative supercoiling upon promoter induction led to cruciform formation, which was quantitatively measured by chemical probing of intracellular DNA. By placing a cruciform-forming sequence at varying distances from the promoter, we found that the half-dissociation length of transcription supercoiling wave is approximately 800 bp. This is the first proof that transcription can affect DNA structure on such a remarkably large scale in vivo. Moreover, cooperative binding of the cI repressor to the upstream promoter DNA did not preclude efficient diffusion of transcriptional supercoiling. Finally, our plasmids appeared to contain discrete domains of DNA supercoiling, defined by the features and relative orientation of different promoters.
Collapse
Affiliation(s)
- A S Krasilnikov
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
117
|
Gopal V, Brieba LG, Guajardo R, McAllister WT, Sousa R. Characterization of structural features important for T7 RNAP elongation complex stability reveals competing complex conformations and a role for the non-template strand in RNA displacement. J Mol Biol 1999; 290:411-31. [PMID: 10390341 DOI: 10.1006/jmbi.1999.2836] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized the roles of the phage T7 RNA polymerase (RNAP) thumb subdomain and the RNA binding activity of the N-terminal domain in elongation complex (EC) stability by evaluating how disrupting these structures affects the dissociation rates of halted ECs. Our results reveal distinct roles for these elements in EC stabilization. On supercoiled or partially single-stranded templates the enzyme with a deletion of the thumb subdomain is exceptionally unstable. However, on linear duplex templates the polymerase which has been proteolytically cleaved within the N-terminal domain is the most unstable. The differences in the effects of these RNAP modifications on the stability of ECs on the different templates appear to be due to differences in EC structure: on the linear duplex templates the RNA is properly displaced from the DNA, but on the supercoiled or partially single-stranded templates an extended RNA:DNA hybrid makes a larger contribution to the conformational state of the EC. The halted EC can therefore exist either in a conformation in which the RNA is displaced from the DNA and forms an interaction with the RNAP, or in a conformation in which a more extended RNA:DNA hybrid is present and the RNA:RNAP interaction is less extensive. The partitioning between these competing conformations appears to be a function of the energetics of template reannealing and the relative strengths of the RNA:RNAP interaction and the RNA:DNA hybrid.
Collapse
Affiliation(s)
- V Gopal
- Department of Biochemistry, University of Texas Heath Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78284-7760, USA
| | | | | | | | | |
Collapse
|
118
|
Massé E, Drolet M. Relaxation of transcription-induced negative supercoiling is an essential function of Escherichia coli DNA topoisomerase I. J Biol Chem 1999; 274:16654-8. [PMID: 10347233 DOI: 10.1074/jbc.274.23.16654] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the essential function of DNA topoisomerase I in Escherichia coli is to prevent chromosomal DNA from reaching an unacceptably high level of global negative supercoiling. However, other in vivo studies have shown that DNA topoisomerase I is very effective in removing local negative supercoiling generated during transcription elongation. To determine whether topoisomerase I is essential for controlling global or local DNA supercoiling, we have prepared a set of topA null mutant strains in combination with different plasmid DNAs. Although we found a correlation between the severity of the growth defect with both transcription-induced and global supercoiling, near to complete growth inhibition correlated only with transcription-induced supercoiling. This result strongly suggests that the major function of DNA topoisomerase I is to relax local negative supercoiling generated during transcription elongation.
Collapse
Affiliation(s)
- E Massé
- Département de Microbiologie et immunologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | |
Collapse
|
119
|
Massé E, Drolet M. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem 1999; 274:16659-64. [PMID: 10347234 DOI: 10.1074/jbc.274.23.16659] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has recently been shown that RNase H overproduction can partially compensate for the growth defect due to the absence of DNA topoisomerase I in Escherichia coli (Drolet, M., Phoenix, P., Menzel, R., Massé, E., Liu, L. F., and Crouch, R. J. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 3526-3530). This result has suggested a model in which inhibitory R-loops occur during transcription in topA mutants. Results presented in this report further support this notion and demonstrate that transcription-induced supercoiling is involved in R-loop formation. First, we show that stable R-loop formation during in vitro transcription with E. coli RNA polymerase only occurs in the presence of DNA gyrase. Second, extensive R-loop formation in vivo, revealed by the production of RNase H-sensitive hypernegatively supercoiled plasmid DNAs, is observed under conditions where topA mutants fail to grow. Furthermore, we have demonstrated that the coupling of transcription and translation in bacteria is an efficient way of preventing R-loop formation.
Collapse
Affiliation(s)
- E Massé
- Département de Microbiologie et immunologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | |
Collapse
|
120
|
Del Poeta M, Toffaletti DL, Rude TH, Dykstra CC, Heitman J, Perfect JR. Topoisomerase I is essential in Cryptococcus neoformans: role In pathobiology and as an antifungal target. Genetics 1999; 152:167-78. [PMID: 10224251 PMCID: PMC1460578 DOI: 10.1093/genetics/152.1.167] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Topisomerase I is the target of several toxins and chemotherapy agents, and the enzyme is essential for viability in some organisms, including mice and drosophila. We have cloned the TOP1 gene encoding topoisomerase I from the opportunistic fungal pathogen Cryptococcus neoformans. The C. neoformans topoisomerase I contains a fungal insert also found in topoisomerase I from Candida albicans and Saccharomyces cerevisiae that is not present in the mammalian enzyme. We were unable to disrupt the topoisomerase I gene in this haploid organism by homologous recombination in over 8000 transformants analyzed. When a second functional copy of the TOP1 gene was introduced into the genome, the topoisomerase I gene could be readily disrupted by homologous recombination (at 7% efficiency). Thus, topoisomerase I is essential in C. neoformans. This new molecular strategy with C. neoformans may also be useful in identifying essential genes in other pathogenic fungi. To address the physiological and pathobiological functions of the enzyme, the TOP1 gene was fused to the GAL7 gene promoter. The resulting GAL7::TOP1 fusion gene was modestly regulated by carbon source in a serotype A strain of C. neoformans. Modest overexpression of topoisomerase I conferred sensitivity to heat shock, gamma-rays, and camptothecin. In contrast, alterations in topoisomerase I levels had no effect on the toxicity of a novel class of antifungal agents, the dicationic aromatic compounds (DACs), indicating that topoisomerase I is not the target of DACs. In an animal model of cryptococcal meningitis, topoisomerase I regulation was not critically important to established infection, but may impact on the initial stress response to infection. In summary, our studies reveal that topoisomerase I is essential in the human pathogen C. neoformans and represents a novel target for antifungal agents.
Collapse
Affiliation(s)
- M Del Poeta
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
121
|
Gangloff S, de Massy B, Arthur L, Rothstein R, Fabre F. The essential role of yeast topoisomerase III in meiosis depends on recombination. EMBO J 1999; 18:1701-11. [PMID: 10075939 PMCID: PMC1171256 DOI: 10.1093/emboj/18.6.1701] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Yeast cells mutant for TOP3, the gene encoding the evolutionary conserved type I-5' topoisomerase, display a wide range of phenotypes including altered cell cycle, hyper-recombination, abnormal gene expression, poor mating, chromosome instability and absence of sporulation. In this report, an analysis of the role of TOP3 in the meiotic process indicates that top3Delta mutants enter meiosis and complete the initial steps of recombination. However, reductional division does not occur. Deletion of the SPO11 gene, which prevents recombination between homologous chromosomes in meiosis I division, allows top3Delta mutants to form viable spores, indicating that Top3 is required to complete recombination successfully. A topoisomerase activity is involved in this process, since expression of bacterial TopA in yeast top3Delta mutants permits sporulation. The meiotic block is also partially suppressed by a deletion of SGS1, a gene encoding a helicase that interacts with Top3. We propose an essential role for Top3 in the processing of molecules generated during meiotic recombination.
Collapse
Affiliation(s)
- S Gangloff
- CEA de Fontenay-aux-roses, UMR 217 CNRS-CEA, BP 6, 92265 Fontenay-aux-roses.
| | | | | | | | | |
Collapse
|
122
|
Abstract
Transcription can induce high levels of negative supercoiling into plasmid DNA under some circumstances. This is especially true when the plasmid carries a functional tetracycline-resistance gene tetA, and is borne in a topA strain of Escherichia coli or Salmonella typhimurium. An important mechanism in transcription-induced supercoiling is believed to be the twin supercoiled-domain effect resulting from hindered rotation of the transcriptional complex, and this is very much more efficient where there is coupled transcription, translation and membrane insertion of the gene product. However, we have noted that strong promoters inserted into tetA-carrying plasmids can greatly increase the fraction of hypersupercoiled DNA. We show here that this effect is clearly present when the inserted promoter transcribes a very short segment of DNA (down to transcript lengths of approximately 45 nt), and where there is no possibility of translation of the RNA transcript. We suggest that the repeated helical opening due to transcriptional initiation is a significant contributor to the induction of high levels of supercoiling.
Collapse
Affiliation(s)
- D Chen
- Department of Biochemistry, The University of Dundee, Dundee, DD1 4HN, UK
| | | |
Collapse
|
123
|
Abstract
Native calf thymus DNA was brominated in high salt to achieve B-->Z conformational transition. Ultraviolet and circular dichroism spectroscopic studies point towards the conformational modification of the native DNA. Specific binding of the monoclonal anti-Z-DNA antibody (Z-22) to the DNA brominated in high salt further confirmed the B-->Z conformational isomerization of native DNA. The role of Z-DNA in the etiopathogenesis of systemic lupus erythematosus has been investigated in the light of the binding of naturally occurring human anti-DNA autoantibodies to the induced Z-DNA.
Collapse
|
124
|
Nitiss JL. Investigating the biological functions of DNA topoisomerases in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:63-81. [PMID: 9748506 DOI: 10.1016/s0167-4781(98)00128-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA topoisomerases participate in nearly all events relating to DNA metabolism including replication, transcription, and chromosome segregation. Recent studies in eukaryotic cells have led to the discovery of several novel topoisomerases, and to new questions concerning the roles of these enzymes in cellular processes. Gene knockout studies are helping to delineate the roles of topoisomerases in mammalian cells, just as similar studies in yeast established paradigms concerning the functions of topoisomerases in lower eukaryotes. The application of new technologies for identifying interacting proteins has connected the studies on topoisomerases to other areas of human biology including genome stability and aging. These studies highlight the importance of understanding how topoisomerases participate in the normal processes of transcription, DNA replication, and genome stability.
Collapse
Affiliation(s)
- J L Nitiss
- St. Jude Children's Research Hospital, Molecular Pharmacology Department, 332 N. Lauderdale, Memphis, TN 38105, USA.
| |
Collapse
|
125
|
He B, Kukarin A, Temiakov D, Chin-Bow ST, Lyakhov DL, Rong M, Durbin RK, McAllister WT. Characterization of an unusual, sequence-specific termination signal for T7 RNA polymerase. J Biol Chem 1998; 273:18802-11. [PMID: 9668054 DOI: 10.1074/jbc.273.30.18802] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized an unusual type of termination signal for T7 RNA polymerase that requires a conserved 7-base pair sequence in the DNA (ATCTGTT in the non-template strand). Each of the nucleotides within this sequence is critical for function, as any substitutions abolish termination. The primary site of termination occurs 7 nucleotides downstream from this sequence but is context-independent (that is, the sequence around the site of termination, and in particular the nucleotide at the site of termination, need not be conserved). Termination requires the presence of the conserved sequence and its complement in duplex DNA and is abolished or diminished if the signal is placed downstream of regions in which the non-template strand is missing or mismatched. Under the latter conditions, much of the RNA product remains associated with the template. The latter results suggest that proper resolution of the transcription bubble at its trailing edge and/or displacement of the RNA product are required for termination at this class of signal.
Collapse
Affiliation(s)
- B He
- Department of Microbiology and Immunology, Morse Institute for Molecular Genetics, State University of New York, Health Science Center, Brooklyn, New York 11203-2098, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
LaMarr WA, Yu L, Nicolaou KC, Dedon PC. Supercoiling affects the accessibility of glutathione to DNA-bound molecules: positive supercoiling inhibits calicheamicin-induced DNA damage. Proc Natl Acad Sci U S A 1998; 95:102-7. [PMID: 9419336 PMCID: PMC18140 DOI: 10.1073/pnas.95.1.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNA superhelical tension, an important feature of genomic organization, is known to affect the interactions of intercalating molecules with DNA. However, the effect of torsional tension on nonintercalative DNA-binding chemicals has received less attention. We demonstrate here that the enediyne calicheamicin gamma1I, a strand-breaking agent specific to the minor groove, causes approximately 50% more damage in negatively supercoiled plasmid DNA than in DNA with positive superhelicity. Furthermore, we show that the decrease in damage in positively supercoiled DNA is controlled at the level of thiol activation of the drug. Our results suggest that supercoiling may affect both the activity of nonintercalating genotoxins in vivo and the accessibility of glutathione and other small physiologic molecules to DNA-bound chemicals or reactions occurring in the grooves of DNA.
Collapse
Affiliation(s)
- W A LaMarr
- Division of Toxicology, 56-787, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
127
|
Abstract
When supercoiled pBR322 DNA was relaxed at 0 or 22 degrees C by topoisomerase I in the presence of the divalent cations Ca2+, Mn2+ or Co2+, the resulting distributions of topoisomers observed at 22 degrees C had positive supercoils, up to an average delta Lk value of +8.6 (for Ca2+at 0 degrees C), corresponding to an overwinding of the helix by 0.7 degrees/bp. An increase of the divalent cation concentration in the reaction mixture above 50 mM completely reversed the effect. When such ions were present in agarose electrophoresis gels, they caused a relaxation of positively supercoiled DNA molecules, and thus allowed a separation of strongly positively supercoiled topoisomers. The effect of divalent cations on DNA adds a useful tool for the study of DNA topoisomers, for the generation as well as separation of positively supercoiled DNA molecules.
Collapse
Affiliation(s)
- Y C Xu
- Molecular and Cell Biology Programs, FO3.1, University of Texas at Dallas, Box 830688, Richardson, TX 75083-0688, USA
| | | |
Collapse
|
128
|
Kimura K, Hirano T. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 1997; 90:625-34. [PMID: 9288743 DOI: 10.1016/s0092-8674(00)80524-3] [Citation(s) in RCA: 312] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
13S condensin is a five-subunit protein complex that plays a central role in mitotic chromosome condensation in Xenopus egg extracts. Two core subunits of this complex, XCAP-C and XCAP-E, belong to an emerging family of putative ATPases, the SMC family. We report here that 13S condensin has a DNA-stimulated ATPase activity and exhibits a high affinity for structured DNAs such as cruciform DNA. 13S condensin is able to introduce positive supercoils into a closed circular DNA in the presence of bacterial or eukaryotic topoisomerase I. The supercoiling reaction is ATP-dependent. We propose that 13S condensin wraps DNA in a right-handed direction by utilizing the energy of ATP hydrolysis. This reaction may represent a key mechanism underlying the compaction of chromatin fibers during mitosis.
Collapse
Affiliation(s)
- K Kimura
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
129
|
Qi H, Menzel R, Tse-Dinh YC. Regulation of Escherichia coli topA gene transcription: involvement of a sigmaS-dependent promoter. J Mol Biol 1997; 267:481-9. [PMID: 9126832 DOI: 10.1006/jmbi.1997.0901] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To investigate the regulation of Escherichia coli topA gene transcription, primer extension was employed to determine the transcription initiation sites from the chromosomal topA gene. When cells were grown in LB medium to log phase, four transcription initiation sites could be identified. Three of these sites corresponded to promoters P1, P2 and P4 previously characterized using topA-galK fusion plasmids. The P3 promoter that is active on the plasmid was not utilized at the chromosomal topA gene under the conditions employed. There was a new transcription initiation site corresponding to a new promoter Px1. When cells started to enter stationary phase, promoter Px1 gradually became the major transcription initiation site for topA, while transcription from promoters P2 and P4 decreased. In an E. coli mutant lacking sigmaS (the rpoS gene product), the stationary phase specific sigma factor, the induction of transcription from promoter Px1 was abolished. In another mutant lacking H-NS activity, resulting in increased sigmaS level in log-phase, the transcription from promoter Px1 during log phase was increased. Thus Px1 appeared to be regulated by sigmaS. The activity of promoter P1 on the chromosome increased during heat shock, consistent with the previous result obtained using the topA-galK fusion plasmid showing that P1 is a sigma32-dependent heat shock promoter. Promoters P2 and P4 were most likely to be recognized by sigma70. The total level of topoisomerase I protein in the rpoS mutant was not reduced significantly in stationary phase due to increased transcription initiation from the other topA promoters. The utilization of multiple sigma factors for transcription initiation of topA could be important for adaptation of E. coli to change in growth conditions.
Collapse
Affiliation(s)
- H Qi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595, USA
| | | | | |
Collapse
|
130
|
Portes-Sentis S, Sergeant A, Gruffat H. A particular DNA structure is required for the function of a cis-acting component of the Epstein-Barr virus OriLyt origin of replication. Nucleic Acids Res 1997; 25:1347-54. [PMID: 9060428 PMCID: PMC146601 DOI: 10.1093/nar/25.7.1347] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OriLyt, thecis-acting element of Epstein-Barr virus lytic origin of replication, consists of upstream and downstream components. The upstream component plays a dual role in transcription and replication. The downstream component contains a homopurine-homopyrimidine sequence which forms an H palindrome. We show that the downstream component can adopt a triple helix structure in vitro, that the 5' border of the homopyrimidine sequence is sensitive to P1 nuclease when carried by a supercoiled plasmid and that an oligonucleotide complementary to the homopyrimidine strand is taken up by a plasmid carrying the OriLyt H palindrome. We also show that all mutations which alter the H palindrome impair both oligonucleotide uptake and OriLyt-dependent replication. Interestingly, compensatory mutations which restore an H palindrome also restore oligonucleotide uptake by the mutated plasmids and their OriLyt-dependent replication. Thus, there is a strong correlation between the inability of the OriLyt H palindrome to form a non-B-DNA structure in vitro and impairment of OriLyt-dependent replication. This suggests that the presence of a non-B-DNA structure in the OriLyt downstream component is required for OriLyt-dependent replication.
Collapse
Affiliation(s)
- S Portes-Sentis
- Laboratoire de Virologie Humaine, U412 INSERM, ENS-Lyon, 46 Allée d'Italie, F-69364 Lyon cedex 07, France
| | | | | |
Collapse
|
131
|
Ivanchenko M, Zlatanova J, van Holde K. Histone H1 preferentially binds to superhelical DNA molecules of higher compaction. Biophys J 1997; 72:1388-95. [PMID: 9138584 PMCID: PMC1184521 DOI: 10.1016/s0006-3495(97)78785-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In chromatin, the physiological amount of H1 is one molecule per nucleosome or, roughly, one molecule per 200 bp of DNA. We observed that at such a stoichiometry, H1 selectively binds to supercoiled DNA with magnitude of sigma > or = 0.012 (both negative and positive), leaving relaxed, linear, or nicked DNA molecules unbound. When negative and positive DNA topoisomers of varying superhelicity are simultaneously present in the binding mixture, H1 selectively binds to the molecules with highest superhelicity; less supercoiled forms are gradually involved in binding upon increasing the amount of input protein. We explain this topological preference of H1 as the consequence of an increased probability for more than one H1-DNA contact provided by the supercoiling. The existence of simultaneous contacts of H1 with both intertwined DNA strands in the supercoiled DNA molecules is also inferred by topoisomerase relaxation of H1-DNA complexes that had been prefixed with glutaraldehyde.
Collapse
Affiliation(s)
- M Ivanchenko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331-7305, USA
| | | | | |
Collapse
|
132
|
Mirabella A, Gartenberg MR. Yeast telomeric sequences function as chromosomal anchorage points in vivo. EMBO J 1997; 16:523-33. [PMID: 9034335 PMCID: PMC1169656 DOI: 10.1093/emboj/16.3.523] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Site-specific recombination in Saccharomyces cerevisiae was used to generate non-replicative DNA rings containing yeast telomeric sequences. In topoisomerase mutants expressing Escherichia coli topoisomerase I, the rings adopted a novel DNA topology consistent with the ability of yeast telomeric DNA to block or retard the axial rotation of DNA. DNA fragments bearing portions of the terminal repeat sequence C1-3 A/TG1-3 were both necessary and sufficient to create a barrier to DNA rotation. Synthetic oligonucleotide sequences containing Rap1p binding sites, a well represented motif in naturally occurring C1-3A arrays, also conferred immobilization; mutant Rap1p binding sites and telomeric sequences from other organisms were not sufficient. DNA anchoring was diminished by addition of competing telomeric sequences, implicating a role for an as yet unidentified limiting trans-acting factor. Though Rap1p is a likely protein constituent of the DNA anchor, deletion of the non-essential C-terminal domain did not affect the topology of telomeric DNA rings. Similarly, disruption of SIR2, SIR3 and SIR4, genes which influence a variety of telomere functions in yeast, also had no effect. We propose that telomeric DNA supports the formation of a SIR-independent macromolecular protein-DNA assembly that hinders the motion of DNA because of its linkage to an insoluble nuclear structure. Potential roles for DNA anchoring in telomere biology are discussed.
Collapse
Affiliation(s)
- A Mirabella
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
133
|
Phoenix P, Raymond MA, Massé E, Drolet M. Roles of DNA topoisomerases in the regulation of R-loop formation in vitro. J Biol Chem 1997; 272:1473-9. [PMID: 8999816 DOI: 10.1074/jbc.272.3.1473] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently found that stable R-loop formation occurs in vivo and in vitro when a portion of the Escherichia coli rrnB operon is transcribed preferentially in its physiological orientation. Our results also suggested that the formation of such structures was more frequent in topA mutants and was sensitive to the template DNA supercoiling level. In the present report we investigated in greater detail the involvement of DNA topoisomerases in this process. By using an in vitro transcription system with phage RNA polymerases, we found that hypernegative supercoiling of plasmid DNAs in the presence of DNA gyrase is totally abolished by RNase H, suggesting that extensive R-looping occurs during transcription in the presence of DNA gyrase. When RNase A is present, significant hypernegative supercoiling occurs only when the 567-base pair rrnB HindIII fragment is transcribed in its physiological orientation. This result suggests that more stable R-loops are being produced in this orientation. Our results also suggest that DNA gyrase can participate in the process of R-loop elongation. The strong transcription-induced relaxing activity of E. coli DNA topoisomerase I is shown to efficiently counteract the effect of DNA gyrase and thus inhibit extensive R-looping. In addition, we found that an R-looped plasmid DNA is a better substrate for relaxation by E. coli DNA topoisomerase I as compared with a non-R-looped substrate.
Collapse
Affiliation(s)
- P Phoenix
- Département de Microbiologie et immunologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
134
|
Spirito F, Bossi L. Long-distance effect of downstream transcription on activity of the supercoiling-sensitive leu-500 promoter in a topA mutant of Salmonella typhimurium. J Bacteriol 1996; 178:7129-37. [PMID: 8955393 PMCID: PMC178624 DOI: 10.1128/jb.178.24.7129-7137.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of the lacZ gene from the supercoiling-sensitive leu-500 promoter on a plasmid in topA mutant cells was stimulated by activating a divergently oriented Tac promoter, 400 bp upstream from leu-500. The stimulation was approximately threefold regardless of whether the Tac promoter drove the expression of the tet gene, whose product is membrane bound, or of the cat gene, whose product is cytosolic. Putting a second copy of the Tac promoter downstream from lacZ, approximately 3,000 bp from leu-500 in the same orientation as the latter, resulted in 30-fold increase in lacZ expression upon isopropyl-beta-D-thiogalactopyranoside induction. Again, these effects were independent of the nature of the gene upstream from leu-500 (tet or cat). With both tet- and cat-harboring constructs, activation of the two Tac promoter copies caused plasmid DNA to become hypernegatively supercoiled in topA mutant cells. Thus, neither leu-500 activation nor hypernegative plasmid DNA supercoiling appears to require membrane anchoring of DNA in this system. Replacing the downstream copy of Tac with a constitutive promoter resulted in high-level lacZ expression even when the upstream copy was repressed. Under these conditions, no hypernegative DNA supercoiling was observed, indicating that the activity of plasmid-borne leu-500 in topA mutant cells does not necessarily correlate with the linking deficit of plasmid DNA. The response of the leu-500-lacZ fusion to downstream transcription provides a sensitive assay for transcriptional supercoiling in bacteria.
Collapse
Affiliation(s)
- F Spirito
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
135
|
Feng Q, Moran JV, Kazazian HH, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 1996; 87:905-16. [PMID: 8945517 DOI: 10.1016/s0092-8674(00)81997-2] [Citation(s) in RCA: 849] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human L1 elements are highly abundant poly(A) (non-LTR) retrotransposons whose second open reading frame (ORF2) encodes a reverse transcriptase (RT). We have identified an endonuclease (EN) domain at the L1 ORF2 N-terminus that is highly conserved among poly(A) retrotransposons and resembles the apurinic/apyrimidinic (AP) endonucleases. Purified L1 EN protein (L1 ENp) makes 5'-PO4, 3'-OH nicks in supercoiled plasmids, shows no preference for AP sites, and preferentially cleaves sequences resembling L1 in vivo target sequences. Mutations in conserved amino acid residues of L1 EN abolish its nicking activity and eliminate L1 retrotransposition. We propose that L1 EN cleaves the target site for L1 insertion and primes reverse transcription.
Collapse
Affiliation(s)
- Q Feng
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
136
|
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 1996; 63:1-22. [PMID: 8891900 DOI: 10.1002/(sici)1097-4644(199610)63:1%3c1::aid-jcb1%3e3.0.co;2-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inverted repeats occur nonrandomly in the DNA of most organisms. Stem-loops and cruciforms can form from inverted repeats. Such structures have been detected in pro- and eukaryotes. They may affect the supercoiling degree of the DNA, the positioning of nucleosomes, the formation of other secondary structures of DNA, or directly interact with proteins. Inverted repeats, stem-loops, and cruciforms are present at the replication origins of phage, plasmids, mitochondria, eukaryotic viruses, and mammalian cells. Experiments with anti-cruciform antibodies suggest that formation and stabilization of cruciforms at particular mammalian origins may be associated with initiation of DNA replication. Many proteins have been shown to interact with cruciforms, recognizing features like DNA crossovers, four-way junctions, and curved/bent DNA of specific angles. A human cruciform binding protein (CBP) displays a novel type of interaction with cruciforms and may be linked to initiation of DNA replication.
Collapse
Affiliation(s)
- C E Pearson
- McGill Cancer Centre, McGill University, Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
137
|
Krebs JE, Dunaway M. DNA length is a critical parameter for eukaryotic transcription in vivo. Mol Cell Biol 1996; 16:5821-9. [PMID: 8816496 PMCID: PMC231583 DOI: 10.1128/mcb.16.10.5821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The organization of eukaryotic chromosomes into topological domains has led to the assumption that DNA topology and perhaps supercoiling are involved in eukaryotic nuclear processes. Xenopus oocytes provide a model system for studying the role of DNA topology in transcription. Linear plasmid templates for RNA polymerases (Pols) I and II are not transcribed in Xenopus oocytes, while circular templates are transcriptionally active. Here we show that circularity is not required for transcription of Pol I or Pol II promoters if the linear template is sufficiently long (> 17 to 19 kb). The Xenopus rRNA (Pol I) promoter is active in central positions on a long linear template but is not transcribed when located near an end. Because supercoils generated by transcription could be retained by viscous drag against the long template, these results are consistent with a supercoiling requirement for this promoter. Surprisingly, the herpes simplex virus thymidine kinase (Pol II) promoter is active even 100 bp from the end of the long template, indicating that template length fulfills a critical parameter for transcription that is not consistent with a supercoiling requirement. These results show that DNA length has unrecognized importance for transcription in vivo.
Collapse
Affiliation(s)
- J E Krebs
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | |
Collapse
|
138
|
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: Significance for initiation of DNA replication. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(199610)63:1<1::aid-jcb1>3.0.co;2-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
139
|
Abstract
Transcription when coupled to nucleotide excision repair specifies the location in active genes where preferential DNA repair is to take place. During DNA damage-induced recruitment of RNA polymerase (RNAP), there is a physical association of the beta subunit of Escherichia coli RNAP and the UvrA component of the repair apparatus (G. C. Lin and L. Grossman, submitted for publication). This molecular affinity is reflected in the ability of the RNAP to increase, in a promoter-dependent manner, DNA supercoiling by the UvrAB complex. In the presence of the RNAP, the UvrAB complex is able to bind to promoter regions and to translocate in a 5' to 3' direction along the non-transcribed strand. As a consequence of this helicase-catalyzed translocation, preferential incision of DNA damaged sites occurs downstream on the transcribed strand. Because of the helicase directionality, the initial binding of the UvrAB complex to the transcribed strand would inevitably lead to its collision with the RNAP. These results imply that the RNAP-induced DNA structure in the vicinity of the transcription start site signals a landing or entry site for the UvrAB complex on DNA.
Collapse
Affiliation(s)
- B Ahn
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
140
|
Abstract
Based on the binding of the UvrAB complex to a promoter region in transcription open complexes (Ahn, B., and Grossman, L. (1996) J. Biol. Chem. 271, 21453-21461) and the requirement of a single-stranded region for UvrAB helicase activity, we examined the binding of UvrAB proteins to synthetic bubble or loop regions in duplex DNA and the role of these regions in translocation of the UvrAB complex as well as incision of DNA damage. We found that the UvrAB complex was able to bind to bubble and loop regions with an affinity similar to that for damaged DNA in the absence of RNAP. The preferential recognition and incision of damaged sites by the UvrAB complex was observed downstream of the bubble or loop region in the strand complementary to the strand along which the UvrAB complex translocates. These results imply that the bubble region generated in duplex DNA by RNAP serves as a preferred entry site for the translocation of the UvrAB complex, and that preferential binding and unidirectional translocation of the UvrAB complex predetermine where incision is to occur.
Collapse
Affiliation(s)
- B Ahn
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
141
|
Tobias I, Coleman BD, Lembo M. A class of exact dynamical solutions in the elastic rod model of DNA with implications for the theory of fluctuations in the torsional motion of plasmids. J Chem Phys 1996. [DOI: 10.1063/1.472040] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
142
|
Albert AC, Spirito F, Figueroa-Bossi N, Bossi L, Rahmouni AR. Hyper-negative template DNA supercoiling during transcription of the tetracycline-resistance gene in topA mutants is largely constrained in vivo. Nucleic Acids Res 1996; 24:3093-9. [PMID: 8760899 PMCID: PMC146055 DOI: 10.1093/nar/24.15.3093] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The excess linking deficit of plasmid DNA from topoisomerase I-defective bacteria (topA mutants) results mainly from transcription and is commonly ascribed to unbalanced relaxation of transcription-induced twin-supercoiled domains. This defect is aggravated in genes for membrane-binding proteins (such as the tet gene) where anchoring of the transcription complex to the bacterial membrane is thought to enhance twin-domain partitioning. Thus, it is often assumed that the 'hyper-negative' linking difference of plasmid DNA from topA mutants reflects unconstrained, hyper-negative DNA supercoiling inside the cell. We tested the validity of this assumption in the present study. A DNA sequence that undergoes a gradual B to Z transition under increasing negative superhelical tension was used as a sensor of unconstrained negative supercoiling. Z-DNA formation was probed at a site upstream from the inducible pTac promoter fused either to the tet gene or to the gene for cytosolic chloramphenicol acetyl transferase (cat). Although plasmid DNA linking deficit increased more extensively in topA mutants following tet activation than following cat activation, no significant differences were observed in the extents to which the B to Z DNA transition is stimulated in the two cases. We infer that the excess linking deficit of the tet-containing plasmid DNA reflects constrained negative DNA supercoiling inside the cell.
Collapse
Affiliation(s)
- A C Albert
- Centre de Biophysique Moléculaire, Orléans, France
| | | | | | | | | |
Collapse
|
143
|
Lilley DM, Chen D, Bowater RP. DNA supercoiling and transcription: topological coupling of promoters. Q Rev Biophys 1996; 29:203-25. [PMID: 8968111 DOI: 10.1017/s0033583500005825] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA supercoiling is a consequence of the double-stranded nature of DNA. When a linear DNA molecule is ligated into a covalently closed circle, the two strands become intertwined like the links of a chain, and will remain so unless one of the strands is broken. The number of times one strand is linked with the other is described by a fundamental property of DNA supercoiling, the linking number (Lk).
Collapse
MESH Headings
- Base Sequence
- Biophysical Phenomena
- Biophysics
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Leucine/genetics
- Models, Biological
- Mutation
- Promoter Regions, Genetic
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
- Tetracycline Resistance/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- D M Lilley
- Department of Biochemistry, University of Dundee, UK
| | | | | |
Collapse
|
144
|
Ishibashi O, Yamazaki T, Shishido K. A fruiting body-specific novel cDNA, mfbBc, containing continuous 5'-CCA(A/C)CA direct repeats within the coding region, derived from the basidiomycete Lentinula edodes. MYCOSCIENCE 1996. [DOI: 10.1007/bf02461349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
145
|
Fernandez-Beros ME, Tse-Dinh YC. Vaccinia virus DNA topoisomerase I preferentially removes positive supercoils from DNA. FEBS Lett 1996; 384:265-8. [PMID: 8617368 DOI: 10.1016/0014-5793(96)00317-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Type I DNA topoisomerases homologous to Escherichia coli topoisomerase I normally only remove negative supercoils from DNA. Topoisomerases I from various eukaryotes share sequence homology and remove both positive and negative supercoils from DNA. Here we report that vaccinia virus topoisomerase I has significant difference in substrate preference from the other homologous type I topoisomerases. Vaccinia virus topoisomerase I shows a definite preference for removal of positive supercoils. In contrast, topoisomerase I from human, wheat germ and Saccharomyces cerevisiae has little preference between positive and negative supercoils. The vaccinia enzyme may have evolved for functions required for optimal viral growth. topoisomerases.
Collapse
Affiliation(s)
- M E Fernandez-Beros
- Department of Biochemistry and Molecular Biology, New York Medical College, Vallhalla, 10595, USA
| | | |
Collapse
|
146
|
Guptasarma P. Cooperative relaxation of supercoils and periodic transcriptional initiation within polymerase batteries. Bioessays 1996; 18:325-32. [PMID: 8967901 DOI: 10.1002/bies.950180411] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcription and DNA supercoiling are known to be linked by a cause-effect relationship that operates in both directions. It is proposed here that this two-way relationship may be exploited by the E. coli genome to facilitate constitutive transcription of supercoil-sensitive genes by polymerase batteries made up of uniformly spaces RNA polymerase elongation complexes. Specifically, it is argued that (1) polymerases transcribing DNA in tandem cooperate to relax each other's transcription-driven positive supercoils; and (2) negative supercoils driven upstream by elongation complexes tend to be 'harnessed' and used to cooperatively (and periodically) initiate fresh transcription from promoters. Harnessing of transcription-driven negative supercoils is thought to be achieved through the erection of protein barriers to the rotational upstream propagation of supercoils from transcription events. The possible relevance of such cooperation amongst polymerases to the activation of transcription by DNA-binding protein factors is emphasized. Some testable predictions are made and implications are discussed.
Collapse
Affiliation(s)
- P Guptasarma
- Centre for Cellular and Molecular Biology, Hyderabad, India. . ac.uk
| |
Collapse
|
147
|
Burckhardt G, Walter A, Zimmer C. Reversal of the Z- to B-conformation of poly(dA-dT) center dot poly(dA-dT) induced by netropsin and distamycin A. J Biomol Struct Dyn 1996; 13:671-6. [PMID: 8906887 DOI: 10.1080/07391102.1996.10508879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Poly(dA-dT) center dot poly(dA-dT) which adopts the Z-form at 5 M NaCl in presence of 95 mM Ni2+ions is reversed to the B-conformation by the nonintercalating drugs netropsin (Nt) and distamycin A (Dst). The drug-induced reversal from the Z-to B-form of poly(dA-dT) center dot poly(dA-dT) is evidenced by CD spectral changes at characteristic wavelengths around 295 nm and 248 nm. The drug-induced conformational transition is accompanied by a slow kinetic process. The results suggest the preference of these AT-specific drugs for the B-form and the inability of Nt and Dst to form a stable complex with the Z-form of poly(dA-dT) center dot poly(dA-dT).
Collapse
Affiliation(s)
- G Burckhardt
- Abteilung Molekulare Biologie, Institut fur Molekularbiologie der Friedrich-Schiller-Universitat Jena, Germany
| | | | | |
Collapse
|
148
|
Müller V, Takeya M, Brendel S, Wittig B, Rich A. Z-DNA-forming sites within the human beta-globin gene cluster. Proc Natl Acad Sci U S A 1996; 93:780-4. [PMID: 8570634 PMCID: PMC40132 DOI: 10.1073/pnas.93.2.780] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Agarose-encapsulated, metabolically active, permeabilized nuclei from human hematopoietic cell lines were tested for Z-DNA formation in the beta-globin gene cluster. Biotinylated monoclonal antibodies against Z-DNA were diffused into the nuclei and cross-linked to DNA with a 10-ns laser exposure at 266 nm. Following digestion with restriction enzymes, fragments that had formed Z-DNA were isolated. Seventeen regions with Z-DNA sequence motifs in the 73-kb region were studied by PCR amplification, and five were found in the Z conformation.
Collapse
Affiliation(s)
- V Müller
- Abteilung Molekularbiologie und Bioinformatik, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
149
|
Wang ZY, Deuel TF. S1-nuclease-sensitive DNA structures contribute to transcriptional regulation of the human PDGF A-chain. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:227-44. [PMID: 8787612 DOI: 10.1016/s0079-6603(08)60195-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Z Y Wang
- Department of Medicine and Biochemistry, Jewish Hospital at Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
150
|
Daniels GA, Lieber MR. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res 1995; 23:5006-11. [PMID: 8559658 PMCID: PMC307506 DOI: 10.1093/nar/23.24.5006] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Central the regulation and mechanism of class switch recombination is the understanding of the relationship between transcription and DNA recombination. We demonstrated previously, using mini-chromosome substrates, that physiologically oriented transcription is required for recombination to occur between switch regions. In this report, we demonstrate the formation of an RNA:DNA complex under in vitro transcription conditions for these same and other switch DNA fragments. We find that cell-free transcription of repetitive murine switch regions (Smu, S gamma 2b and S gamma 3) leads to altered DNA mobility on agarose gels. These altered mobilities are resistant to RNase A but sensitive to RNase H. Transcription in the presence of labeled ribonucleotides demonstrates the stable physical association of the RNA with the DNA. Importantly, complex formation only occurs upon transcription in the physiologic orientation. Reaban and Griffin [1990 Nature, 348, 342-344] found an RNA:DNA hybrid structure that was limited to an atypical 143 nucleotide purine region within a 2.3 kb S alpha segment. Here we demonstrate RNA:DNA hybrid formation in more typical switch sequences (lacking the atypical 143 nucleotide purine tract) from a variety of switch regions that are only 60-70% purine on the non-template strand. These results suggest a general model involving an RNA:DNA complex as an intermediate during class switch recombination.
Collapse
Affiliation(s)
- G A Daniels
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|