101
|
Abstract
The apoptotic machinery is highly conserved throughout evolution, and central to the regulation of apoptosis is the caspase family of cysteine proteases. Insights into the regulation and function of apoptosis in mammals have come from studies using model organisms. Drosophila provides an exceptional model system for identifying the function of conserved mechanisms regulating apoptosis, especially during development. The characteristic patterns of apoptosis during Drosophila development have been well described, as has the apoptotic response following DNA damage. The focus of this discussion is to introduce methodologies for monitoring apoptosis during Drosophila development and also in Drosophila cell lines.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
102
|
Simón R, Aparicio R, Housden BE, Bray S, Busturia A. Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis 2015; 19:1430-43. [PMID: 24858703 DOI: 10.1007/s10495-014-1000-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A balance between cell proliferation and apoptosis is important for normal development and tissue homeostasis. Under stress conditions, the conserved tumor suppressor and transcription factor Dp53 induces apoptosis to contribute to the maintenance of homeostasis. However, in some cases Dp53-induced apoptosis results in the proliferation of surrounding non-apoptotic cells. To gain insight into the Dp53 function in the control of apoptosis and proliferation, we studied the interaction between the Drosophila Dp53 and Notch genes. We present evidence that simultaneous reduction of Dp53 and Notch function synergistically increases the wing phenotype of Notch heterozygous mutant flies. Further, we found that a Notch cis-regulatory element is responsive to loss and gain of Dp53 function and that over-expression of Dp53 up-regulates Notch mRNA and protein expression. These findings suggest not only that Dp53 and Notch act together to control wing development but also indicate that Dp53 transcriptionally regulates Notch expression. Moreover, using Notch gain and loss of function mutations we examined the relevance of Dp53 and Notch interactions in the process of Dp53-apoptosis induced proliferation. Results show that proliferation induced by Dp53 over-expression is dependent on Notch, thus identifying Notch as a new player in Dp53-induced proliferation. Interestingly, we found that Dp53-induced Notch activation and proliferation occurs even under conditions where apoptosis was inhibited. Our findings highlight the conservation between flies and vertebrates of the Dp53 and Notch cross-talk and suggest that Dp53 has a dual role regulating cell death and proliferation gene networks to control the homeostatic balance between apoptosis and proliferation.
Collapse
Affiliation(s)
- Rocío Simón
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c) Nicolás Cabrera 1, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
103
|
Niche signaling promotes stem cell survival in the Drosophila testis via the JAK-STAT target DIAP1. Dev Biol 2015; 404:27-39. [PMID: 25941003 DOI: 10.1016/j.ydbio.2015.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 11/22/2022]
Abstract
Tissue-specific stem cells are thought to resist environmental insults better than their differentiating progeny, but this resistance varies from one tissue to another, and the underlying mechanisms are not well-understood. Here, we use the Drosophila testis as a model system to study the regulation of cell death within an intact niche. This niche contains sperm-producing germline stem cells (GSCs) and accompanying somatic cyst stem cells (or CySCs). Although many signals are known to promote stem cell self-renewal in this tissue, including the highly conserved JAK-STAT pathway, the response of these stem cells to potential death-inducing signals, and factors promoting stem cell survival, have not been characterized. Here we find that both GSCs and CySCs resist cell death better than their differentiating progeny, under normal laboratory conditions and in response to potential death-inducing stimuli such as irradiation or starvation. To ask what might be promoting stem cell survival, we characterized the role of the anti-apoptotic gene Drosophila inhibitor of apoptosis 1 (diap1) in testis stem cells. DIAP1 protein is enriched in the GSCs and CySCs and is a JAK-STAT target. diap1 is necessary for survival of both GSCs and CySCs, and ectopic up-regulation of DIAP1 in somatic cyst cells is sufficient to non-autonomously rescue stress-induced cell death in adjacent differentiating germ cells (spermatogonia). Altogether, our results show that niche signals can promote stem cell survival by up-regulation of highly conserved anti-apoptotic proteins, and suggest that this strategy may underlie the ability of stem cells to resist death more generally.
Collapse
|
104
|
Lee YM, Sun YH. Maintenance of glia in the optic lamina is mediated by EGFR signaling by photoreceptors in adult Drosophila. PLoS Genet 2015; 11:e1005187. [PMID: 25909451 PMCID: PMC4409299 DOI: 10.1371/journal.pgen.1005187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/31/2015] [Indexed: 01/13/2023] Open
Abstract
The late onset of neurodegeneration in humans indicates that the survival and function of cells in the nervous system must be maintained throughout adulthood. In the optic lamina of the adult Drosophila, the photoreceptor axons are surrounded by multiple types of glia. We demonstrated that the adult photoreceptors actively contribute to glia maintenance in their target field within the optic lamina. This effect is dependent on the epidermal growth factor receptor (EGFR) ligands produced by the R1-6 photoreceptors and transported to the optic lamina to act on EGFR in the lamina glia. EGFR signaling is necessary and sufficient to act in a cell-autonomous manner in the lamina glia. Our results suggest that EGFR signaling is required for the trafficking of the autophagosome/endosome to the lysosome. The loss of EGFR signaling results in cell degeneration most likely because of the accumulation of autophagosomes. Our findings provide in vivo evidence for the role of adult neurons in the maintenance of glia and a novel role for EGFR signaling in the autophagic flux. Degeneration of the nervous system can be viewed as a failure to maintain cell survival or function in the nervous system. The late onset of neurodegeneration in humans indicates that the cell survival in the nervous system must be maintained throughout our lives. Neuronal survival is maintained by neurotrophic factors in adults; however, it is unclear whether glia survival is also maintained throughout adulthood. Here, we use the Drosophila visual system as a model to address the role played by adult neurons for the active maintenance of glia. We demonstrated that the adult photoreceptors secrete a signaling molecule, which is transported to the brain to act on the lamina glia and maintain its integrity. When this signaling pathway is blocked, the lamina glia undergoes a progressive and irreversible degeneration. The primary defect occurs in the trafficking from the late endosome and autophagosome to the lysosome. This defect leads to an accumulation of autophagosomes and subsequent cell degeneration as a result of autophagy. Our findings provide in vivo evidence for a novel aspect of the neuron-glia interaction and a novel role for EGFR signaling in regulating the maintenance and degeneration of the nervous system.
Collapse
Affiliation(s)
- Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Y. Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
105
|
Silke J, Vaux DL. IAP gene deletion and conditional knockout models. Semin Cell Dev Biol 2015; 39:97-105. [DOI: 10.1016/j.semcdb.2014.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/10/2023]
|
106
|
Viral IAPs, then and now. Semin Cell Dev Biol 2015; 39:72-9. [DOI: 10.1016/j.semcdb.2015.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/22/2022]
|
107
|
Mills MK, Nayduch D, Michel K. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis. INSECT MOLECULAR BIOLOGY 2015; 24:105-14. [PMID: 25293805 PMCID: PMC4286502 DOI: 10.1111/imb.12139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biting midges in the genus Culicoides are important vectors of arboviral diseases, including epizootic haemorrhagic disease, bluetongue and most likely Schmallenberg, which cause significant economic burdens worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the difficulty of consistent culturing of certain species and the absence of molecular techniques such as RNA interference (RNAi). Here, we report the establishment of RNAi as a research tool for the adult midge, Culicoides sonorensis. Based on previous research and transcriptome analysis, which revealed putative small interfering RNA pathway member orthologues, we hypothesized that adult C. sonorensis midges have the molecular machinery needed to perform RNA silencing. Injection of control double-stranded RNA targeting green fluorescent protein (dsGFP), into the haemocoel of 2-3-day-old adult female midges resulted in survival curves that support virus transmission. dsRNA injection targeting the newly identified C. sonorensis inhibitor of apoptosis protein 1 (CsIAP1) orthologue resulted in a 40% decrease of transcript levels and 73% shorter median survivals as compared with dsGFP-injected controls. These results reveal the conserved function of IAP1. Importantly, they also demonstrate the feasibility of RNAi by dsRNA injection in adult midges, which will greatly facilitate studies of the underlying mechanisms of vector competence in C. sonorensis.
Collapse
Affiliation(s)
- Mary K. Mills
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - D. Nayduch
- USDA-ARS, Center for Grain and Animal Health Research, Arthropod Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA
| | - K. Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Corresponding author: Kristin Michel,
| |
Collapse
|
108
|
Edman RM, Linger RJ, Belikoff EJ, Li F, Sze SH, Tarone AM, Scott MJ. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos. INSECT MOLECULAR BIOLOGY 2015; 24:58-70. [PMID: 25225046 DOI: 10.1111/imb.12135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C. hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C. hominivorax slam and Lucilia sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L. cuprina. Additionally, we report the isolation of the L. sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L. sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests.
Collapse
Affiliation(s)
- R M Edman
- Department of Genetics, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Wong KKL, Li W, An Y, Duan Y, Li Z, Kang Y, Yan Y. β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network. J Biol Chem 2015; 290:6397-407. [PMID: 25589787 DOI: 10.1074/jbc.m114.629493] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence suggests functional regulation of the Hippo pathway by the actin cytoskeleton, although the detailed molecular mechanism remains incomplete. In a genetic screen, we identified a requirement for β-Spectrin in the posterior follicle cells for the oocyte repolarization process during Drosophila mid-oogenesis. β-spectrin mutations lead to loss of Hippo signaling activity in the follicle cells. A similar reduction of Hippo signaling activity was observed after β-Spectrin knockdown in mammalian cells. We further demonstrated that β-spectrin mutations disrupt the basal actin network in follicle cells. The abnormal stress fiber-like actin structure on the basal side of follicle cells provides a likely link between the β-spectrin mutations and the loss of the Hippo signaling activity phenotype.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- From the Division of Life Science and Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| | - Wenyang Li
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Yanru An
- From the Division of Life Science and Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| | | | | | - Yibin Kang
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Yan Yan
- From the Division of Life Science and Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| |
Collapse
|
110
|
Brás-Pereira C, Casares F, Janody F. The retinal determination gene dachshund restricts cell proliferation by limiting the activity of the Homothorax-Yorkie complex. Development 2015; 142:1470-9. [DOI: 10.1242/dev.113340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022]
Abstract
The Drosophila transcriptional co-activator protein Yorkie and its vertebrate orthologs YAP and TAZ are potent oncogenes, whose activity is normally kept in check by the upstream Hippo kinase module. Upon its translocation into the nucleus, Yorkie forms complexes with several tissue-specific DNA-binding partners, which help to define the tissue-specific target genes of Yorkie. In the progenitor cells of the eye imaginal disc, the DNA-binding transcription factor Homothorax is required for Yorkie-promoted proliferation and survival through regulation of the bantam microRNA (miRNA). The transit from proliferating progenitors to cell cycle quiescent precursors is associated with the progressive loss of Homothorax and gain of Dachshund, a nuclear protein related to the Sno/Ski family of co-repressors. We have identified Dachshund as an inhibitor of Homothorax-Yorkie-mediated cell proliferation. Loss of dachshund induces Yorkie-dependent tissue overgrowth. Conversely, overexpressing dachshund inhibits tissue growth, prevents Yorkie or Homothorax-mediated cell proliferation of disc epithelia and restricts the transcriptional activity of the Yorkie-Homothorax complex on the bantam enhancer in Drosophila cells. In addition, Dachshund collaborates with the Decapentaplegic receptor Thickveins to repress Homothorax and Cyclin B expression in quiescent precursors. The antagonistic roles of Homothorax and Dachshund in Yorkie activity, together with their mutual repression, ensure that progenitor and precursor cells are under distinct proliferation regimes. Based on the crucial role of the human dachshund homolog DACH1 in tumorigenesis, our work suggests that DACH1 might prevent cellular transformation by limiting the oncogenic activity of YAP and/or TAZ.
Collapse
Affiliation(s)
- Catarina Brás-Pereira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras P-2780-156, Portugal
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Seville 41013, Spain
| | - Florence Janody
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras P-2780-156, Portugal
| |
Collapse
|
111
|
The Hippo pathway as a target of the Drosophila DRE/DREF transcriptional regulatory pathway. Sci Rep 2014; 4:7196. [PMID: 25424907 PMCID: PMC4244634 DOI: 10.1038/srep07196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023] Open
Abstract
The DRE/DREF transcriptional regulatory system has been demonstrated to activate a wide variety of genes with various functions. In Drosophila, the Hippo pathway is known to suppress cell proliferation by inducing apoptosis and cell cycle arrest through inactivation of Yorkie, a transcription co-activator. In the present study, we found that half dose reduction of the hippo (hpo) gene induces ectopic DNA synthesis in eye discs that is suppressed by overexpression of DREF. Half reduction of the hpo gene dose reduced apoptosis in DREF-overexpressing flies. Consistent with these observations, overexpression of DREF increased the levels of hpo and phosphorylated Yorkie in eye discs. Interestingly, the diap1-lacZ reporter was seen to be significantly decreased by overexpression of DREF. Luciferase reporter assays in cultured S2 cells revealed that one of two DREs identified in the hpo gene promoter region was responsible for promoter activity in S2 cells. Furthermore, endogenous hpo mRNA was reduced in DREF knockdown S2 cells, and chromatin immnunoprecipitation assays with anti-DREF antibodies proved that DREF binds specifically to the hpo gene promoter region containing DREs in vivo. Together, these results indicate that the DRE/DREF pathway is required for transcriptional activation of the hpo gene to positively control Hippo pathways.
Collapse
|
112
|
The PERK pathway independently triggers apoptosis and a Rac1/Slpr/JNK/Dilp8 signaling favoring tissue homeostasis in a chronic ER stress Drosophila model. Cell Death Dis 2014; 5:e1452. [PMID: 25299777 PMCID: PMC4649510 DOI: 10.1038/cddis.2014.403] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) has a major role in protein folding. The accumulation of unfolded proteins in the ER induces a stress, which can be resolved by the unfolded protein response (UPR). Chronicity of ER stress leads to UPR-induced apoptosis and in turn to an unbalance of tissue homeostasis. Although ER stress-dependent apoptosis is observed in a great number of devastating human diseases, how cells activate apoptosis and promote tissue homeostasis after chronic ER stress remains poorly understood. Here, using the Drosophila wing imaginal disc as a model system, we validated that Presenilin overexpression induces chronic ER stress in vivo. We observed, in this novel model of chronic ER-stress, a PERK/ATF4-dependent apoptosis requiring downregulation of the antiapoptotic diap1 gene. PERK/ATF4 also activated the JNK pathway through Rac1 and Slpr activation in apoptotic cells, leading to the expression of Dilp8. This insulin-like peptide caused a developmental delay, which partially allowed the replacement of apoptotic cells. Thanks to a novel chronic ER stress model, these results establish a new pathway that both participates in tissue homeostasis and triggers apoptosis through an original regulation.
Collapse
|
113
|
Dodson MW, Leung LK, Lone M, Lizzio MA, Guo M. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo. Dis Model Mech 2014; 7:1351-63. [PMID: 25288684 PMCID: PMC4257004 DOI: 10.1242/dmm.017020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in LRRK2 cause a dominantly inherited form of Parkinson’s disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS)-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling.
Collapse
Affiliation(s)
- Mark W Dodson
- Department of Neurology, University of California, Los Angeles, CA 90095, USA. Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Lok K Leung
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Mohiddin Lone
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Michael A Lizzio
- Department of Neurology, University of California, Los Angeles, CA 90095, USA. Brain Research Institute, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ming Guo
- Department of Neurology, University of California, Los Angeles, CA 90095, USA. Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA. Brain Research Institute, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
114
|
Seo TW, Lee JS, Yoo SJ. Cellular inhibitor of apoptosis protein 1 ubiquitinates endonuclease G but does not affect endonuclease G-mediated cell death. Biochem Biophys Res Commun 2014; 451:644-9. [PMID: 25139236 DOI: 10.1016/j.bbrc.2014.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 11/30/2022]
Abstract
Inhibitors of Apoptosis Proteins (IAPs) are evolutionarily well conserved and have been recognized as the key negative regulators of apoptosis. Recently, the role of IAPs as E3 ligases through the Ring domain was revealed. Using proteomic analysis to explore potential target proteins of DIAP1, we identified Drosophila Endonuclease G (dEndoG), which is known as an effector of caspase-independent cell death. In this study, we demonstrate that human EndoG interacts with IAPs, including human cellular Inhibitor of Apoptosis Protein 1 (cIAP1). EndoG was ubiquitinated by IAPs in vitro and in human cell lines. Interestingly, cIAP1 was capable of ubiquitinating EndoG in the presence of wild-type and mutant Ubiquitin, in which all lysines except K63 were mutated to arginine. cIAP1 expression did not change the half-life of EndoG and cIAP1 depletion did not alter its levels. Expression of dEndoG 54310, in which the mitochondrial localization sequence was deleted, led to cell death that could not be suppressed by DIAP1 in S2 cells. Moreover, EndoG-mediated cell death induced by oxidative stress in HeLa cells was not affected by cIAP1. Therefore, these results indicate that IAPs interact and ubiquitinate EndoG via K63-mediated isopeptide linkages without affecting EndoG levels and EndoG-mediated cell death, suggesting that EndoG ubiquitination by IAPs may serve as a regulatory signal independent of proteasomal degradation.
Collapse
Affiliation(s)
- Tae Woong Seo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji Sun Lee
- Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Soon Ji Yoo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
115
|
Verma P, Tapadia MG. Epithelial immune response in Drosophila malpighian tubules: interplay between Diap2 and ion channels. J Cell Physiol 2014; 229:1078-95. [PMID: 24374974 DOI: 10.1002/jcp.24541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/12/2013] [Indexed: 11/12/2022]
Abstract
Systemic immune response via the Immune deficiency pathway requires Drosophila inhibitor of apoptosis protein 2 to activate the NF-κB transcription factor Relish. Malpighian tubules (MTs), simple epithelial tissue, are the primary excretory organs, performing additional role in providing protection to Drosophila against pathogenic infections. MTs hold a strategic position in Drosophila as one of the larval tissues that are carried over to adults, unlike other larval tissues that are histolysed during pupation. In this paper we show that Diap2 is an important regulator of local epithelial immune response in MTs and depletion of Diap2 from MTs, increases susceptibility of flies to infection. In the absence of Diap2, activation and translocation of Relish to the nucleus is abolished and as a consequence the production of IMD pathway dependent AMPs are reduced. Ion channels, (Na(+)/K(+))-ATPase and V-ATPase, are important for the immune response of MTs and expression of AMPs and the IMD pathway genes are impaired on inhibition of transporters, and they restrict the translocation of Relish into the nucleus. We show that Diap2 could be regulating ion channels, as loss of Diap2 consequently reduces the expression of ion channels and affects the balance of ion concentrations which results in reduced uric acid deposition. Thus Diap2 seems to be a key regulator of epithelial immune response in MTs, perhaps by modulating ion channels.
Collapse
Affiliation(s)
- Puja Verma
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
116
|
Robbins RM, Gbur SC, Beitel GJ. Non-canonical roles for Yorkie and Drosophila Inhibitor of Apoptosis 1 in epithelial tube size control. PLoS One 2014; 9:e101609. [PMID: 25036253 PMCID: PMC4103782 DOI: 10.1371/journal.pone.0101609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/08/2014] [Indexed: 01/05/2023] Open
Abstract
Precise control of epithelial tube size is critical for organ function, yet the molecular mechanisms remain poorly understood. Here, we examine the roles of cell growth and a highly conserved organ growth regulatory pathway in controlling the dimensions of the Drosophila tracheal (airway) system, a well-characterized system for investigating epithelial tube morphogenesis. We find that tracheal tube-size is regulated in unexpected ways by the transcription factor Yorkie (Yki, homolog of mammalian YAP and TAZ) and the Salvador/Warts/Hippo (SWH) kinase pathway. Yki activity typically promotes cell division, inhibits apoptosis, and can promote cell growth. However, reducing Yki activity in developing embryos increases rather than decreases the length of the major tracheal tubes, the dorsal trunks (DTs). Similarly, reduction of Hippo pathway activity, which antagonizes Yki, shortens tracheal DTs. yki mutations do not alter DT cell volume or cell number, indicating that Yki and the Hippo pathway regulate cell shape and apical surface area, but not volume. Yki does not appear to act through known tracheal pathways of apical extracellular matrix, septate junctions (SJs), basolateral or tubular polarity. Instead, the Hippo pathway and Yki appear to act downstream or in parallel to SJs because a double mutant combination of an upstream Hippo pathway activator, kibra, and the SJ component sinu have the short tracheal phenotype of a kibra mutant. We demonstrate that the critical target of Yki in tube size control is Drosophila Inhibitor of Apoptosis 1 (DIAP1), which in turn antagonizes the Drosophila effector caspase, Ice. Strikingly, there is no change in tracheal cell number in DIAP1 or Ice mutants, thus epithelial tube size regulation defines new non-apoptotic roles for Yki, DIAP1 and Ice.
Collapse
Affiliation(s)
- Renée M. Robbins
- Department of Molecular Biosciences and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America
| | - Samantha C. Gbur
- Department of Molecular Biosciences and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America
| | - Greg J. Beitel
- Department of Molecular Biosciences and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
117
|
Multiple mechanisms modulate distinct cellular susceptibilities toward apoptosis in the developing Drosophila eye. Dev Cell 2014; 30:48-60. [PMID: 24981611 DOI: 10.1016/j.devcel.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/09/2014] [Accepted: 05/10/2014] [Indexed: 02/06/2023]
Abstract
Although apoptosis is mechanistically well understood, a comprehensive understanding of how cells modulate their susceptibility toward apoptosis in a developing tissue is lacking. Here, we reveal striking dynamics in the apoptotic susceptibilities of different cell types in the Drosophila retina over a period of only 24 hr. Mitotic cells are extremely susceptible to apoptotic signals, while postmitotic cells have developed several strategies to promote survival. For example, photoreceptor neurons accumulate the inhibitor of apoptosis, Diap1. In unspecified cells, Cullin-3-mediated degradation keeps Diap1 levels low. These cells depend on EGFR signaling for survival. As development proceeds, developmentally older photoreceptors degrade Diap1, resulting in increased apoptosis susceptibility. Finally, R8 photoreceptors have very efficient survival mechanisms independent of EGFR or Diap1. These examples illustrate how complex cellular susceptibility toward apoptosis is regulated in a developing organ. Similar complexities may regulate apoptosis susceptibilities in mammalian development, and tumor cells may take advantage of it.
Collapse
|
118
|
Fernández BG, Jezowska B, Janody F. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene. Oncogene 2014; 33:2027-39. [PMID: 23644660 DOI: 10.1038/onc.2013.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αβ heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.
Collapse
Affiliation(s)
| | - B Jezowska
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - F Janody
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
119
|
Li H, Shang H, Shu D, Zhang H, Ji J, Sun B, Li H, Xie Q. gga-miR-375 plays a key role in tumorigenesis post subgroup J avian leukosis virus infection. PLoS One 2014; 9:e90878. [PMID: 24694742 PMCID: PMC3973669 DOI: 10.1371/journal.pone.0090878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022] Open
Abstract
Avian leukosis is a neoplastic disease caused in part by subgroup J avian leukosis virus J (ALV-J). Micro ribonucleic acids (miRNAs) play pivotal oncogenic and tumour-suppressor roles in tumour development and progression. However, little is known about the potential role of miRNAs in avian leukosis tumours. We have found a novel tumour-suppressor miRNA, gga-miR-375, associated with avian leukosis tumorigenesis by miRNA microarray in a previous report. We have also previously studied the biological function of gga-miR-375; Overexpression of gga-miR-375 significantly inhibited DF-1 cell proliferation, and significantly reduced the expression of yes-associated protein 1 (YAP1) by repressing the activity of a luciferase reporter carrying the 3'-untranslated region of YAP1. This indicates that gga-miR-375 is frequently downregulated in avian leukosis by inhibiting cell proliferation through YAP1 oncogene targeting. Overexpression of gga-miR-375 markedly promoted serum starvation induced apoptosis, and there may be the reason why the tumour cycle is so long in the infected chickens. In vivo assays, gga-miR-375 was significantly downregulated in chicken livers 20 days after infection with ALV-J, and YAP1 was significantly upregulated 20 days after ALV-J infection (P<0.05). We also found that expression of cyclin E, an important regulator of cell cycle progression, was significantly upregulated (P<0.05). Drosophila inhibitor of apoptosis protein 1 (DIAP1), which is related to caspase-dependent apoptosis, was also significantly upregulated after infection. Our data suggests that gga-miR-375 may function as a tumour suppressor thereby regulating cancer cell proliferation and it plays a key role in avian leukosis tumorigenesis.
Collapse
Affiliation(s)
- Hongxin Li
- College of Animal Science, South China Agricultural University, Guangzhou, P R China
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, P R China
| | - Huiqing Shang
- College of Animal Science, South China Agricultural University, Guangzhou, P R China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, P R China
| | - Huanmin Zhang
- United States Department of Agriculture (USDA), Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Jun Ji
- College of Animal Science, South China Agricultural University, Guangzhou, P R China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, P R China
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, P R China
| | - Hongmei Li
- College of Animal Science, South China Agricultural University, Guangzhou, P R China
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, P R China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, P R China
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, P R China
- * E-mail:
| |
Collapse
|
120
|
Dying cells protect survivors from radiation-induced cell death in Drosophila. PLoS Genet 2014; 10:e1004220. [PMID: 24675716 PMCID: PMC3967929 DOI: 10.1371/journal.pgen.1004220] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/20/2014] [Indexed: 12/19/2022] Open
Abstract
We report a phenomenon wherein induction of cell death by a variety of means in wing imaginal discs of Drosophila larvae resulted in the activation of an anti-apoptotic microRNA, bantam. Cells in the vicinity of dying cells also become harder to kill by ionizing radiation (IR)-induced apoptosis. Both ban activation and increased protection from IR required receptor tyrosine kinase Tie, which we identified in a genetic screen for modifiers of ban. tie mutants were hypersensitive to radiation, and radiation sensitivity of tie mutants was rescued by increased ban gene dosage. We propose that dying cells activate ban in surviving cells through Tie to make the latter cells harder to kill, thereby preserving tissues and ensuring organism survival. The protective effect we report differs from classical radiation bystander effect in which neighbors of irradiated cells become more prone to death. The protective effect also differs from the previously described effect of dying cells that results in proliferation of nearby cells in Drosophila larval discs. If conserved in mammals, a phenomenon in which dying cells make the rest harder to kill by IR could have implications for treatments that involve the sequential use of cytotoxic agents and radiation therapy. In multicellular organisms where cells exist in the context of other cells, the behavior of one affects the others. The consequences of such interactions include not just cell fate choices but also life and death decisions. In the wing primordia of Drosophila melanogaster larvae, dying cells release mitogenic signals that stimulate the neighbors to proliferate. Such an effect is proposed to compensate for cell loss and help regenerate the tissue. We report here that, in the same experimental system, dying cells activate a pro-survival microRNA, bantam, in surviving cells. This results in increased protection from the killing effect of ionizing radiation (IR). Activation of ban requires tie, which encodes a receptor tyrosine kinase. tie and ban mutant larvae are hypersensitive to killing by IR, suggesting that the responses described here are important for organismal survival following radiation exposure.
Collapse
|
121
|
Fan X, Huang Q, Ye X, Lin Y, Chen Y, Lin X, Qu J. Drosophila USP5 controls the activation of apoptosis and the Jun N-terminal kinase pathway during eye development. PLoS One 2014; 9:e92250. [PMID: 24643212 PMCID: PMC3958489 DOI: 10.1371/journal.pone.0092250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
The Jun N-terminal kinase pathway plays an important role in inducing programmed cell death (apoptosis) and is activated in a variety of contexts. The deubiquitinating enzymes (DUBs) are proteases regulating the protein stability by ubiquitin-proteasome system. Here, for the first time, we report the phenotypes observed during eye development that are induced by deleting Drosophila USP5 gene, which encodes one of the USP subfamily of DUBs. usp5 mutants displayed defects in photoreceptor differentiation. Using genetic epistasis analysis and molecular markers, we show that most of these phenotypes are caused by the activation of apoptosis and JNK pathway. These data may provide a mechanistic model for understanding the mammalian usp5 gene.
Collapse
Affiliation(s)
- Xiaolan Fan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinzhu Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Chen
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
122
|
Src tyrosine kinase signaling antagonizes nuclear localization of FOXO and inhibits its transcription factor activity. Sci Rep 2014; 4:4048. [PMID: 24513978 PMCID: PMC3920272 DOI: 10.1038/srep04048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/07/2014] [Indexed: 12/28/2022] Open
Abstract
Biochemical experiments in mammalian cells have linked Src family kinase activity to the insulin signaling pathway. To explore the physiological link between Src and a central insulin pathway effector, we investigated the effect of different Src signaling levels on the Drosophila transcription factor dFOXO in vivo. Ectopic activation of Src42A in the starved larval fatbody was sufficient to drive dFOXO out of the nucleus. When Src signaling levels were lowered by means of loss-of-function mutations or pharmacological inhibition, dFOXO localization was shifted to the nucleus in growing animals, and transcription of the dFOXO target genes d4E-BP and dInR was induced. dFOXO loss-of-function mutations rescued the induction of dFOXO target gene expression and the body size reduction of Src42A mutant larvae, establishing dFOXO as a critical downstream effector of Src signaling. Furthermore, we provide evidence that the regulation of FOXO transcription factors by Src is evolutionarily conserved in mammalian cells.
Collapse
|
123
|
Ikmi A, Gaertner B, Seidel C, Srivastava M, Zeitlinger J, Gibson MC. Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program. Mol Biol Evol 2014; 31:1375-90. [PMID: 24509725 PMCID: PMC4032125 DOI: 10.1093/molbev/msu071] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene yes-associated protein (Yap)/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling.
Collapse
Affiliation(s)
- Aissam Ikmi
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MODepartment of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MODepartment of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
124
|
Inhibitors of apoptosis proteins (IAPs) are required for effective T-cell expansion/survival during antiviral immunity in mice. Blood 2014; 123:659-68. [DOI: 10.1182/blood-2013-01-479543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Key Points
IAPs are required for survival and expansion of activated T cells. IAP antagonists sensitize to tumor necrosis factor (TNF)-induced cell death of activated T cells during viral infection.
Collapse
|
125
|
Abstract
Inhibitor of apoptosis (IAP) proteins interface with, and regulate a large number of, cell signaling pathways. If there is a common theme to these pathways, it is that they are involved in the development of the immune system, immune responses, and unsurprisingly, given their name, cell death. Beyond that it is difficult to discover an underlying logic because sometimes IAPs are required to inhibit or prevent signaling, whereas in other cases they are required for signaling to take place. In whatever role they play, they are recruited into signaling complexes and function as ubiquitin E3 ligases, via their RING domains. This review discusses IAP regulation of signaling pathways and focuses on the mammalian IAPs, XIAP, c-IAP1, and c-IAP2, with a particular emphasis on techniques and methods that were used to uncover their roles. We also provide a perspective on targeting IAP proteins for therapeutic intervention and methods used to define the clinical relevance of IAP proteins.
Collapse
Affiliation(s)
- John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, USA.
| |
Collapse
|
126
|
Singh MD, Raj K, Sarkar S. Drosophila Myc, a novel modifier suppresses the poly(Q) toxicity by modulating the level of CREB binding protein and histone acetylation. Neurobiol Dis 2013; 63:48-61. [PMID: 24291519 DOI: 10.1016/j.nbd.2013.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/06/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022] Open
Abstract
Polyglutamine or poly(Q) disorders are dominantly inherited neurodegenerative diseases characterised by progressive loss of neurons in cerebellum, basal ganglia and cortex in adult human brain. Overexpression of human form of mutant SCA3 protein with 78 poly(Q) repeats leads to the formation of inclusion bodies and increases the cellular toxicity in Drosophila eye. The present study was directed to identify a genetic modifier of poly(Q) diseases that could be utilised as a potential drug target. The initial screening process was influenced by the fact of lower prevalence of cancer among patients suffering with poly(Q) disorders which appears to be related to the intrinsic biological factors. We investigated if Drosophila Myc (a homologue of human cMyc proto-oncogene) harbours intrinsic property of suppressing cellular toxicity induced by an abnormally long stretch of poly(Q). We show for the first time that targeted overexpression of Drosophila Myc (dMyc) mitigates the poly(Q) toxicity in eye and nervous systems. Upregulation of dMyc results in a significant reduction in accumulation of inclusion bodies with residual poly(Q) aggregates localising into cytoplasm. We demonstrate that dMyc mediated suppression of poly(Q) toxicity is achieved by alleviating the cellular level of CBP and improved histone acetylation, resulting restoration of transcriptional machinery which are otherwise abbreviated due to poly(Q) disease conditions. Moreover, our study also provides a rational justification of the enigma of poly(Q) patients showing resistance to the predisposition of cancer.
Collapse
Affiliation(s)
- M Dhruba Singh
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Kritika Raj
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
127
|
The zinc finger homeodomain-2 gene of Drosophila controls Notch targets and regulates apoptosis in the tarsal segments. Dev Biol 2013; 385:350-65. [PMID: 24144920 DOI: 10.1016/j.ydbio.2013.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 10/06/2013] [Accepted: 10/12/2013] [Indexed: 12/19/2022]
Abstract
The development of the Drosophila leg is a good model to study processes of pattern formation, cell death and segmentation. Such processes require the coordinate activity of different genes and signaling pathways that progressively subdivide the leg territory into smaller domains. One of the main pathways needed for leg development is the Notch pathway, required for determining the proximo-distal axis of the leg and for the formation of the joints that separate different leg segments. The mechanisms required to coordinate such events are largely unknown. We describe here that the zinc finger homeodomain-2 (zfh-2) gene is highly expressed in cells that will form the leg joints and needed to establish a correct size and pattern in the distal leg. There is an early requirement of zfh-2 to establish the correct proximo-distal axis, but zfh-2 is also needed at late third instar to form the joint between the fourth and fifth tarsal segments. The expression of zfh-2 requires Notch activity but zfh-2 is necessary, in turn, to activate Notch targets such as Enhancer of split and big brain. zfh-2 is controlled by the Drosophila activator protein 2 gene and regulates the late expression of tarsal-less. In the absence of zfh-2 many cells ectopically express the pro-apoptotic gene head involution defective, activate caspase-3 and are positive for acridine orange, indicating they undergo apoptosis. Our results demonstrate the key role of zfh-2 in the control of cell death and Notch signaling during leg development.
Collapse
|
128
|
Fereres S, Simón R, Busturia A. A novel dRYBP–SCF complex functions to inhibit apoptosis in Drosophila. Apoptosis 2013; 18:1500-12. [DOI: 10.1007/s10495-013-0897-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
129
|
Nowak K, Seisenbacher G, Hafen E, Stocker H. Nutrient restriction enhances the proliferative potential of cells lacking the tumor suppressor PTEN in mitotic tissues. eLife 2013; 2:e00380. [PMID: 23853709 PMCID: PMC3707060 DOI: 10.7554/elife.00380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/06/2013] [Indexed: 01/20/2023] Open
Abstract
How single cells in a mitotic tissue progressively acquire hallmarks of cancer is poorly understood. We exploited mitotic recombination in developing Drosophila imaginal tissues to analyze the behavior of cells devoid of the tumor suppressor PTEN, a negative regulator of PI3K signaling, under varying nutritional conditions. Cells lacking PTEN strongly overproliferated specifically in nutrient restricted larvae. Although the PTEN mutant cells were sensitive to starvation, they successfully competed with neighboring cells by autonomous and non-autonomous mechanisms distinct from cell competition. The overgrowth was strictly dependent on the activity of the downstream components Akt/PKB and TORC1, and a reduction in amino acid uptake by reducing the levels of the amino acid transporter Slimfast caused clones of PTEN mutant cells to collapse. Our findings demonstrate how limiting nutritional conditions impact on cells lacking the tumor suppressor PTEN to cause hyperplastic overgrowth. DOI:http://dx.doi.org/10.7554/eLife.00380.001 Mutations are permanent changes to a cell’s genome. If one or more mutations result in a cell proliferating in an unregulated manner, it is referred to as a cancer cell. The generation of cancer cells is a relatively common occurrence within organisms, but these rogue cells are generally recognized and destroyed by the organism’s immune system. However, when the immune system fails to identify and eliminate cancer cells, they can proliferate to form malignant, life-threatening tumors. Mutations in a gene called PTEN are often found within cells that develop into cancerous tumors. This gene is normally expressed as a protein that is involved in the regulation of cell division, preventing cells from growing and dividing too quickly. However, when the protein PTEN is absent or non-functional, cells experience enhanced growth, proliferation, and survival. Such cells are also thought to be resistant to nutrient restriction, but the mechanism responsible for this resistance is not well understood. Here, Nowak et al. investigate the behavior of cells lacking PTEN in a fly model under a variety of nutritional conditions. When the supply of nutrients is limited, cells lacking PTEN shift resources from cell growth to cell multiplication. This appears to allow PTEN-deficient cells to outcompete neighboring wild-type cells; Nowak et al. suggest these rapidly proliferating cells are capable of effectively hoarding nutrient stores, both in their immediate vicinity and organism-wide. Further studies that focus on changes in gene expression may be able to uncover the mechanism that allows PTEN-deficient cells to proliferate when nutrients are restricted. Moreover, by shedding light on a factor that has an important influence on tumor development, these results may have implications for cancer treatment strategies. DOI:http://dx.doi.org/10.7554/eLife.00380.002
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Molecular Systems Biology , ETH Zürich , Zürich , Switzerland
| | | | | | | |
Collapse
|
130
|
Wang K, Lin B. Inhibitor of apoptosis proteins (IAPs) as regulatory factors of hepatic apoptosis. Cell Signal 2013; 25:1970-80. [PMID: 23770286 DOI: 10.1016/j.cellsig.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 12/29/2022]
Abstract
IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
| | | |
Collapse
|
131
|
Ly LL, Suyari O, Yoshioka Y, Tue NT, Yoshida H, Yamaguchi M. dNF-YB plays dual roles in cell death and cell differentiation during Drosophila eye development. Gene 2013; 520:106-18. [DOI: 10.1016/j.gene.2013.02.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/16/2013] [Accepted: 02/23/2013] [Indexed: 11/16/2022]
|
132
|
Baek M, Enriquez J, Mann RS. Dual role for Hox genes and Hox co-factors in conferring leg motoneuron survival and identity in Drosophila. Development 2013; 140:2027-38. [PMID: 23536569 DOI: 10.1242/dev.090902] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult Drosophila walk using six multi-jointed legs, each controlled by ∼50 leg motoneurons (MNs). Although MNs have stereotyped morphologies, little is known about how they are specified. Here, we describe the function of Hox genes and homothorax (hth), which encodes a Hox co-factor, in Drosophila leg MN development. Removing either Hox or Hth function from a single neuroblast (NB) lineage results in MN apoptosis. A single Hox gene, Antennapedia (Antp), is primarily responsible for MN survival in all three thoracic segments. When cell death is blocked, partially penetrant axon branching errors are observed in Hox mutant MNs. When single MNs are mutant, errors in both dendritic and axon arborizations are observed. Our data also suggest that Antp levels in post-mitotic MNs are important for specifying their identities. Thus, in addition to being essential for survival, Hox and hth are required to specify accurate MN morphologies in a level-dependent manner.
Collapse
Affiliation(s)
- Myungin Baek
- Department of Biological Sciences, Columbia University, 701 W. 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
133
|
The Drosophila ortholog of MLL3 and MLL4, trithorax related, functions as a negative regulator of tissue growth. Mol Cell Biol 2013; 33:1702-10. [PMID: 23459941 DOI: 10.1128/mcb.01585-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human MLL genes (MLL1 to MLL4) and their Drosophila orthologs, trithorax (trx) and trithorax related (trr), encode proteins capable of methylating histone H3 on lysine 4. MLL1 and MLL2 are most similar to trx, while MLL3 and MLL4 are more closely related to trr. Several MLL genes are mutated in human cancers, but how these proteins regulate cell proliferation is not known. Here we show that trr mutant cells have a growth advantage over their wild-type neighbors and display changes in the levels of multiple proteins that regulate growth and cell division, including Notch, Capicua, and cyclin B. trr mutant clones display markedly reduced levels of H3K4 monomethylation without obvious changes in the levels of H3K4 di- and trimethylation. The trr mutant phenotype resembles that of Utx, which encodes a H3K27 demethylase, consistent with the observation that Trr and Utx are found in the same protein complex. In contrast to the overgrowth displayed by trr mutant tissue, trx clones are underrepresented, express low levels of the antiapoptotic protein Diap1, and exhibit only modest changes in global levels of H3K4 methylation. Thus, in Drosophila eye imaginal discs, Trr, likely functioning together with Utx, restricts tissue growth. In contrast, Trx appears to promote cell survival.
Collapse
|
134
|
Silke J, Meier P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008730. [PMID: 23378585 DOI: 10.1101/cshperspect.a008730] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Misregulated innate immune signaling and cell death form the basis of much human disease pathogenesis. Inhibitor of apoptosis (IAP) protein family members are frequently overexpressed in cancer and contribute to tumor cell survival, chemo-resistance, disease progression, and poor prognosis. Although best known for their ability to regulate caspases, IAPs also influence ubiquitin (Ub)-dependent pathways that modulate innate immune signaling via activation of nuclear factor κB (NF-κB). Recent research into IAP biology has unearthed unexpected roles for this group of proteins. In addition, the advances in our understanding of the molecular mechanisms that IAPs use to regulate cell death and innate immune responses have provided new insights into disease states and suggested novel intervention strategies. Here we review the functions assigned to those IAP proteins that act at the intersection of cell death regulation and inflammatory signaling.
Collapse
Affiliation(s)
- John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.
| | | |
Collapse
|
135
|
Rudrapatna VA, Bangi E, Cagan RL. Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep 2013; 14:172-7. [PMID: 23306653 DOI: 10.1038/embor.2012.217] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 12/04/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022] Open
Abstract
Tumours evolve several mechanisms to evade apoptosis, yet many resected carcinomas show significantly elevated caspase activity. Moreover, caspase activity is positively correlated with tumour aggression and adverse patient outcome. These observations indicate that caspases might have a functional role in promoting tumour invasion and metastasis. Using a Drosophila model of invasion, we show that precise effector caspase activity drives cell invasion without initiating apoptosis. Affected cells express the matrix metalloprotinase Mmp1 and invade by activating Jnk. Our results link Jnk and effector caspase signalling during the invasive process and suggest that tumours under apoptotic stresses from treatment, immune surveillance or intrinsic signals might be induced further along the metastatic cascade.
Collapse
Affiliation(s)
- Vivek A Rudrapatna
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | |
Collapse
|
136
|
Rallis A, Lu B, Ng J. Molecular chaperones protect against JNK- and Nmnat-regulated axon degeneration in Drosophila. J Cell Sci 2012; 126:838-49. [PMID: 23264732 DOI: 10.1242/jcs.117259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Axon degeneration is observed at the early stages of many neurodegenerative conditions and this often leads to subsequent neuronal loss. We previously showed that inactivating the c-Jun N-terminal kinase (JNK) pathway leads to axon degeneration in Drosophila mushroom body (MB) neurons. To understand this process, we screened candidate suppressor genes and found that the Wallerian degeneration slow (Wld(S)) protein blocked JNK axonal degeneration. Although the nicotinamide mononucleotide adenylyltransferase (Nmnat1) portion of Wld(S) is required, we found that its nicotinamide adenine dinucleotide (NAD(+)) enzyme activity and the Wld(S) N-terminus (N70) are dispensable, unlike axotomy models of neurodegeneration. We suggest that Wld(S)-Nmnat protects against axonal degeneration through chaperone activity. Furthermore, ectopically expressed heat shock proteins (Hsp26 and Hsp70) also protected against JNK and Nmnat degeneration phenotypes. These results suggest that molecular chaperones are key in JNK- and Nmnat-regulated axonal protective functions.
Collapse
Affiliation(s)
- Andrew Rallis
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|
137
|
Abstract
Cell-cell interactions within the tumour microenvironment have crucial roles in epithelial tumorigenesis. Using Drosophila genetics, we show that the oncoprotein Src controls tumour microenvironment by Jun N-terminal kinase (JNK)-dependent regulation of the Hippo pathway. Clones of cells with elevated Src expression activate the Rac-Diaphanous and Ras-mitogen-activated protein kinase (MAPK) pathways, which cooperatively induce F-actin accumulation, thereby leading to activation of the Hippo pathway effector Yorkie (Yki). Simultaneously, Src activates the JNK pathway, which antagonizes the autonomous Yki activity and causes propagation of Yki activity to neighbouring cells, resulting in the overgrowth of surrounding tissue. Our data provide a mechanism to explain how oncogenic mutations regulate tumour microenvironment through cell-cell communication.
Collapse
|
138
|
Non-cell autonomous control of apoptosis by ligand-independent Hedgehog signaling in Drosophila. Cell Death Differ 2012; 20:302-11. [PMID: 23018595 DOI: 10.1038/cdd.2012.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hedgehog (Hh) signaling is important for development and homeostasis in vertebrates and invertebrates. Ligand-independent, deregulated Hh signaling caused by loss of negative regulators such as Patched causes excessive cell proliferation, leading to overgrowth in Drosophila and tumors in humans, including basal-cell carcinoma and medulloblastoma. We show that in Drosophila deregulated Hh signaling also promotes cell survival by increasing the resistance to apoptosis. Surprisingly, cells with deregulated Hh activity do not protect themselves from apoptosis; instead, they promote cell survival of neighboring wild-type cells. This non-cell autonomous effect is mediated by Hh-induced Notch signaling, which elevates the protein levels of Drosophila inhibitor of apoptosis protein-1 (Diap-1), conferring resistance to apoptosis. In summary, we demonstrate that deregulated Hh signaling not only promotes proliferation but also cell survival of neighboring cells. This non-cell autonomous control of apoptosis highlights an underappreciated function of deregulated Hh signaling, which may help to generate a supportive micro-environment for tumor development.
Collapse
|
139
|
Landin Malt A, Cagliero J, Legent K, Silber J, Zider A, Flagiello D. Alteration of TEAD1 expression levels confers apoptotic resistance through the transcriptional up-regulation of Livin. PLoS One 2012; 7:e45498. [PMID: 23029054 PMCID: PMC3454436 DOI: 10.1371/journal.pone.0045498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background TEA domain (TEAD) proteins are highly conserved transcription factors involved in embryonic development and differentiation of various tissues. More recently, emerging evidences for a contribution of these proteins towards apoptosis and cell proliferation regulation have also been proposed. These effects appear to be mediated by the interaction between TEAD and its co-activator Yes-Associated Protein (YAP), the downstream effector of the Hippo tumour suppressor pathway. Methodology/Principal Findings We further investigated the mechanisms underlying TEAD-mediated apoptosis regulation and showed that overexpression or RNAi-mediated silencing of the TEAD1 protein is sufficient to protect mammalian cell lines from induced apoptosis, suggesting a proapoptotic function for TEAD1 and a non physiological cytoprotective effect for overexpressed TEAD1. Moreover we show that the apoptotic resistance conferred by altered TEAD1 expression is mediated by the transcriptional up-regulation of Livin, a member of the Inhibitor of Apoptosis Protein (IAP) family. In addition, we show that overexpression of a repressive form of TEAD1 can induce Livin up-regulation, indicating that the effect of TEAD1 on Livin expression is indirect and favoring a model in which TEAD1 activates a repressor of Livin by interacting with a limiting cofactor that gets titrated upon TEAD1 up-regulation. Interestingly, we show that overexpression of a mutated form of TEAD1 (Y421H) implicated in Sveinsson's chorioretinal atrophy that strongly reduces its interaction with YAP as well as its activation, can induce Livin expression and protect cells from induced apoptosis, suggesting that YAP is not the cofactor involved in this process. Conclusions/Significance Taken together our data reveal a new, Livin-dependent, apoptotic role for TEAD1 in mammals and provide mechanistic insight downstream of TEAD1 deregulation in cancers.
Collapse
Affiliation(s)
| | | | | | | | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, Equipe de Génétique Moléculaire de la Différenciation, IJM, UMR 7592 CNRS, Paris, France
- * E-mail: (AZ); (DF)
| | - Domenico Flagiello
- Univ Paris Diderot, Sorbonne Paris Cité, Equipe de Génétique Moléculaire de la Différenciation, IJM, UMR 7592 CNRS, Paris, France
- * E-mail: (AZ); (DF)
| |
Collapse
|
140
|
Selcho M, Pauls D, el Jundi B, Stocker RF, Thum AS. The Role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol 2012; 520:3764-85. [DOI: 10.1002/cne.23152] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
141
|
Sweeney ST, Hidalgo A, de Belle JS, Keshishian H. Genetic systems for functional cell ablation in Drosophila. Cold Spring Harb Protoc 2012; 2012:950-6. [PMID: 22949708 DOI: 10.1101/pdb.top068361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about the origin, fate, or function of these cells in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. This article describes genetic systems for functional cell ablation in Drosophila. Genetic ablation consists of delivering a toxin or death-inducing gene under the control of a cell-specific enhancer, or by means of the GAL4 system. Because of the wide range of existing enhancers, toxins and death genes can be targeted to virtually any cell of choice, allowing for cell-type-specificity. Genetic ablation is less expensive and less labor-intensive than laser ablation. It allows one to analyze the effects of eliminating every cell of a given type within an embryo, and also allows the examination of populations rather than individuals.
Collapse
|
142
|
Foronda D, Martín P, Sánchez-Herrero E. Drosophila Hox and sex-determination genes control segment elimination through EGFR and extramacrochetae activity. PLoS Genet 2012; 8:e1002874. [PMID: 22912593 PMCID: PMC3415437 DOI: 10.1371/journal.pgen.1002874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022] Open
Abstract
The formation or suppression of particular structures is a major change occurring in development and evolution. One example of such change is the absence of the seventh abdominal segment (A7) in Drosophila males. We show here that there is a down-regulation of EGFR activity and fewer histoblasts in the male A7 in early pupae. If this activity is elevated, cell number increases and a small segment develops in the adult. At later pupal stages, the remaining precursors of the A7 are extruded under the epithelium. This extrusion requires the up-regulation of the HLH protein Extramacrochetae and correlates with high levels of spaghetti-squash, the gene encoding the regulatory light chain of the non-muscle myosin II. The Hox gene Abdominal-B controls both the down-regulation of spitz, a ligand of the EGFR pathway, and the up-regulation of extramacrochetae, and also regulates the transcription of the sex-determining gene doublesex. The male Doublesex protein, in turn, controls extramacrochetae and spaghetti-squash expression. In females, the EGFR pathway is also down-regulated in the A7 but extramacrochetae and spaghetti-squash are not up-regulated and extrusion of precursor cells is almost absent. Our results show the complex orchestration of cellular and genetic events that lead to this important sexually dimorphic character change.
Collapse
Affiliation(s)
| | | | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
143
|
Cai N, Liu NN, Zhao N, Wan C, Hu YD, Zhou Y, Chen L. Expressions of survivin and vascular endothelial growth factor in a Murine model of proliferative retinopathy. Int J Ophthalmol 2012; 5:293-6. [PMID: 22773975 DOI: 10.3980/j.issn.2222-3959.2012.03.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 05/20/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To examine the expression of survivin and vascular endothelial growth factor(VEGF) during the development of retinal neovascularization (NV) in a mouse model. METHODS A well-characterized murine model of retinal NV was used to study the expression of survivin and VEGF. NV of the retina was induced in mice by exposure to 75% O(2) from postnatal day P7 to P12, followed by return to room air from P12 to P17. Expression of survivin and VEGF protein was analyzed by Immunohistochemistry. In addition, mouse model of proliferative retinopathy was analyzed by retinal fluorescein angiography and quantification analysis. RESULTS The normal mice had both superfiekal and deep vascular layers that extended from the optic nerve to the periphery. In intraocular pressure(IOP) mice were characterized by represent a typical pattern of pathological retinal NV. There are less or little nuclei of new vessels vascular endothelial cell breaking through the inner retinal than in retinopathy of prematurity (ROP) mice, large clusters of blood vessels were adherent to the internal limiting membrane(ILM) (0.27±0.20 vs 23.38±1.027, t=9.454, P<0.001). During the angiogenic period from P13 to P17, survivin and VEGF protein expression increased in experimental retinas compared with control samples(2.56±0.46 vs 3.34±0.40, t=17.43, P<0.01: 2.18±0.75 vs 4.34±0.25, t=19.61, P<0.01). Protein levels of VEGF and survivn has significantly positive correlation (P<0.05, r=0.411). CONCLUSION Correlation was made at the protein levels of survivin expression compared with that of VEGF in a murine model of retinal NV, which suggests a temporal role for survivin and VEGF in new vessel formation in response to hypoxic stimulation.
Collapse
Affiliation(s)
- Na Cai
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | | | | | | | | | | | | |
Collapse
|
144
|
Kagey JD, Brown JA, Moberg KH. Regulation of Yorkie activity in Drosophila imaginal discs by the Hedgehog receptor gene patched. Mech Dev 2012; 129:339-49. [PMID: 22705500 DOI: 10.1016/j.mod.2012.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/06/2012] [Accepted: 05/10/2012] [Indexed: 12/19/2022]
Abstract
The Hedgehog (Hh) pathway was first defined by its role in segment polarity in the Drosophila melanogaster embryonic epidermis and has since been linked to many aspects of vertebrate development and disease. In humans, mutation of the Patched1 (PTCH1) gene, which encodes an inhibitor of Hh signaling, leads to tumors of the skin and pediatric brain. Despite the high level of conservation between the vertebrate and invertebrate Hh pathways, studies in Drosophila have yet to find direct evidence that ptc limits organ size. Here we report identification of Drosophila ptc in a screen for mutations that require a synergistic apoptotic block in order to drive overgrowth. Developing imaginal discs containing clones of ptc mutant cells immortalized by the concurrent loss of the Apaf-1-related killer (Ark) gene are overgrown due, in large part, to the overgrowth of wild type portions of these discs. This phenotype correlates with overexpression of the morphogen Dpp in ptc,Ark double-mutant cells, leading to elevated phosphorylation of the Dpp pathway effector Mad (p-Mad) in cells surrounding ptc,Ark mutant clones. p-Mad functions with the Hippo pathway oncoprotein Yorkie (Yki) to induce expression of the pro-growth/anti-apoptotic microRNA bantam. Accordingly, Yki activity is elevated among wild type cells surrounding ptc,Ark clones and alleles of bantam and yki dominantly suppress the enlarged-disc phenotype produced by loss of ptc. These data suggest that ptc can regulate Yki in a non-cell autonomous manner and reveal an intercellular link between the Hh and Hippo pathways that may contribute to growth-regulatory properties of the Hh pathway in development and disease.
Collapse
Affiliation(s)
- Jacob D Kagey
- Department of Biology, University of Detroit Mercy, Detroit, MI, USA.
| | | | | |
Collapse
|
145
|
The application of genome-wide RNAi screens in exploring varieties of signaling transduction pathways. Methods Mol Biol 2012; 843:217-27. [PMID: 22222536 DOI: 10.1007/978-1-61779-523-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cardiovascular development is a precisely coordinated process at multilevels. It involves cross-talking among numerous signaling transduction pathways to ensure proper cell polarity, migration, proliferation, differentiation, and programmed death. Here, genome-wide RNA interference screens in Drosophila cells are introduced as novel approaches to discover potential regulators, with special emphases on (1) cell growth and viability, and (2) receptor tyrosine kinase and extracellular-signal-regulated kinase signaling pathway.
Collapse
|
146
|
CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nat Cell Biol 2012; 14:409-15. [PMID: 22388889 PMCID: PMC3319494 DOI: 10.1038/ncb2447] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/26/2012] [Indexed: 12/22/2022]
Abstract
Chronic stress in the endoplasmic reticulum (ER) underlies many degenerative and metabolic diseases involving apoptosis of vital cells. A well-established example is autosomal dominant retinitis pigmentosa (ADRP), an age-related retinal degenerative disease caused by mutant rhodopsins. Similar mutant alleles of Drosophila Rhodopsin-1 also impose stress on the ER and cause age-related retinal degeneration in that organism. Well-characterized signalling responses to ER stress, referred to as the unfolded protein response (UPR), induce various ER quality control genes that can suppress such retinal degeneration. However, how cells activate cell death programs after chronic ER stress remains poorly understood. Here, we report the identification of a signalling pathway mediated by cdk5 and mekk1 required for ER-stress-induced apoptosis. Inactivation of these genes specifically suppressed apoptosis, without affecting other protective branches of the UPR. CDK5 phosphorylates MEKK1, and together, they activate the JNK pathway for apoptosis. Moreover, disruption of this pathway can delay the course of age-related retinal degeneration in a Drosophila model of ADRP. These findings establish a previously unrecognized branch of ER-stress response signalling involved in degenerative diseases.
Collapse
|
147
|
Domingues C, Ryoo HD. Drosophila BRUCE inhibits apoptosis through non-lysine ubiquitination of the IAP-antagonist REAPER. Cell Death Differ 2012; 19:470-7. [PMID: 21886178 PMCID: PMC3235231 DOI: 10.1038/cdd.2011.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 11/10/2022] Open
Abstract
Active caspases execute apoptosis to eliminate superfluous or harmful cells in animals. In Drosophila, living cells prevent uncontrolled caspase activation through an inhibitor of apoptosis protein (IAP) family member, dIAP1, and apoptosis is preceded by the expression of IAP-antagonists, such as Reaper, Hid and Grim. Strong genetic modifiers of this pathway include another IAP family gene encoding an E2 ubiquitin conjugating enzyme domain, dBruce. Although the genetic effects of dBruce mutants are well documented, molecular targets of its encoded protein have remained elusive. Here, we report that dBruce targets Reaper for ubiquitination through an unconventional mechanism. Specifically, we show that dBruce physically interacts with Reaper, dependent upon Reaper's IAP-binding (IBM) and GH3 motifs. Consistently, Reaper levels were elevated in a dBruce -/- background. Unexpectedly, we found that dBruce also affects the levels of a mutant form of Reaper without any internal lysine residues, which normally serve as conventional ubiquitin acceptor sites. Furthermore, we were able to biochemically detect ubiquitin conjugation on lysine-deficient Reaper proteins, and knockdown of dBruce significantly reduced the extent of this ubiquitination. Our results indicate that dBruce inhibits apoptosis by promoting IAP-antagonist ubiquitination on unconventional acceptor sites.
Collapse
Affiliation(s)
- C Domingues
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - H D Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
148
|
Feltham R, Khan N, Silke J. IAPS and ubiquitylation. IUBMB Life 2012; 64:411-8. [DOI: 10.1002/iub.565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/25/2011] [Indexed: 11/11/2022]
|
149
|
Lee JS, Lee SK, Youn HD, Yoo SJ. C-terminal binding protein-mediated transcriptional repression is regulated by X-linked inhibitor of apoptosis protein. Biochem Biophys Res Commun 2012; 417:175-81. [DOI: 10.1016/j.bbrc.2011.11.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 10/15/2022]
|
150
|
Bischoff M. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila. Dev Biol 2011; 363:179-90. [PMID: 22230614 PMCID: PMC3314956 DOI: 10.1016/j.ydbio.2011.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/29/2022]
Abstract
Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis.
Collapse
Affiliation(s)
- Marcus Bischoff
- University of Cambridge, Department of Zoology, Cambridge, UK.
| |
Collapse
|