101
|
Kin Y, Li G, Shibuya M, Maru Y. The Dbl homology domain of BCR is not a simple spacer in P210BCR-ABL of the Philadelphia chromosome. J Biol Chem 2001; 276:39462-8. [PMID: 11502748 DOI: 10.1074/jbc.m105484200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Dbl homology (DH) domain of BCR in P210BCR-ABL (P210/WT) has been thought to have a negative effect on the activation of BCR-ABL because P185BCR-ABL, in which this region is physically deleted, has stronger biochemical and biological activities. To study the role of the DH domain of BCR in the background of P210/WT, the region was replaced with homologous sequences derived from Dbl (P210/Dbl) or CDC24 (P210/CDC24) or with irrelevant sequences from LacZ (P210/LacZ) or luciferase (P210/Luci). Surprisingly, the abilities to transform Rat1 cells or mouse bone marrow cells and induce growth factor independence in interleukin 3-dependent mouse Ba/F3 cells were retained only in P210/Dbl. However, even P210/Dbl could not achieve the wild type level of surviving potential against genotoxins in Rat1 cells and in Ba/F3 cells. Activation of Akt correlated with the biological changes in Rat1 cells but did not correlate with the biological changes in Ba/F3 cells. The DH domain was not tyrosine-phosphorylated in vitro, nor could we find any differences in peptide mapping between in vitro phosphorylated P210/WT and P210/Dbl. Although functions of the DH domain remain to be discovered, we propose that the DH domain makes positive contributions to P210BCR-ABL.
Collapse
Affiliation(s)
- Y Kin
- Department of Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | | | | | | |
Collapse
|
102
|
Abstract
The adapter protein Shc was initially identified as an SH2 containing proto-oncogene involved in growth factor signaling. Since then a number of studies in multiple systems have implicated a role for Shc in signaling via many different types of receptors, such as growth factor receptors, antigen receptors, cytokine receptors, G-protein coupled receptors, hormone receptors and integrins. In addition to the ubiquitous ShcA, two other shc gene products, ShcB and ShcC, which are predominantly expressed in neuronal cells, have also been identified. ShcA knockout mice are embryonic lethal and have clearly suggested an important role for ShcA in vivo. Based on dominant negative studies and mouse embryos deficient in ShcA, a clear role for Shc in leading to mitogen activated protein kinase (MAPK) activation has been established. However MAPK activation may not be the sole function of Shc proteins. Although Shc has also been linked to other signaling events such as c-Myc activation and cell survival, the mechanistic understanding of these signaling events remains poorly characterized. Given the apparently central role that Shc plays signaling via many receptors, delineating the precise mechanism(s) of Shc-mediated signaling may be critical to our understanding of the effects mediated through these receptors.
Collapse
Affiliation(s)
- K S Ravichandran
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, VA 22908, USA.
| |
Collapse
|
103
|
Kardinal C, Konkol B, Lin H, Eulitz M, Schmidt EK, Estrov Z, Talpaz M, Arlinghaus RB, Feller SM. Chronic myelogenous leukemia blast cell proliferation is inhibited by peptides that disrupt Grb2-SoS complexes. Blood 2001; 98:1773-81. [PMID: 11535511 DOI: 10.1182/blood.v98.6.1773] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is commonly characterized by the presence of the p210(Bcr-Abl) oncoprotein. Many downstream effectors of Bcr-Abl have been described, including activation of the Grb2-SoS-Ras-MAP kinase (Erk) pathway. The precise contributions of these signal-transduction proteins in CML blast cells in human patients are not yet well defined. To gain further insight into the importance of Grb2 for CML, peptides that disrupt Grb2-SoS complexes were tested. These high-affinity Grb2-binding peptides (HAGBPs) can autonomously shuttle into cells and function by binding to the N-terminal SH3 domain of Grb2. The HAGBPs were analyzed for their effects on Bcr-Abl-expressing cell lines and freshly isolated CML blast cells from patients. They induced a dramatic decrease in the proliferation of CML cell lines. This was not observed with point-mutated control peptides with abolished Grb2SH3(N) binding. As expected, Grb2-SoS complexes were greatly diminished in the HAGBP-treated cells, and MAP kinase activity was significantly reduced as determined by an activation-specific phospho-MAPK antibody. Furthermore, cell fractions that are enriched for blast cells from CML patients with active disease were also incubated with the Grb2 blocker peptides. The HAGBPs led to a significant proliferation reduction of these cells in the majority of the isolates, but not in all patients' cells. These results show that, in addition to the direct targeting of Bcr-Abl, selective inhibition of Grb2 protein complexes may be a therapeutic option for a significant number of CML patients.
Collapse
Affiliation(s)
- C Kardinal
- Laboratory of Molecular Oncology, Institut für Medizinishe Strahleukunde und Zellforschung, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Hoover RR, Gerlach MJ, Koh EY, Daley GQ. Cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene 2001; 20:5826-35. [PMID: 11593388 DOI: 10.1038/sj.onc.1204549] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2001] [Revised: 03/26/2001] [Accepted: 04/12/2001] [Indexed: 11/09/2022]
Abstract
The Akt, Ras and STAT5 signaling pathways have each been linked to transformation of hematopoietic cells by BCR/ABL. However the relative contributions of these signaling pathways to BCR/ABL mediated cytokine-independent survival, proliferation and resistance to DNA damage-induced apoptosis have not been systematically defined. Here we report that activation of either Akt, Ras or STAT5 confers cytokine-independent survival to IL-3 dependent BaF3 cells. Ras or STAT5, but not Akt, also drives cytokine-independent proliferation and imparts sustained resistance to DNA damage-induced apoptosis. We also show that dominant negative (DN) inhibition of STAT5, but not Ras or Akt, significantly reduces resistance to DNA damage-induced apoptosis in BCR/ABL transformed BaF3 cells. Whereas inhibition of STAT5 or Ras alone does not compromise cytokine-independent proliferation of BaF3-BCR/ABL cells, simultaneous blockade of both STAT5 and Ras reduces proliferation and maximally sensitizes BaF3-BCR/ABL cells to DNA damage induced by gamma-irradiation, suggesting a cooperative role for these two signaling pathways in BCR/ABL transformation. The anti-apoptotic properties of BCR/ABL can be partly explained by an increase in the expression of Pim-1 and Bcl-XL, as ectopic expression of these STAT5 target genes imparts both cytokine-independent survival and partial gamma-radiation resistance. These data illustrate both cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed cells, with STAT5 playing a dominant role in resistance to DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- R R Hoover
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
105
|
Abstract
The Ph chromosome has been genetically linked to CML and ALL. Its chimeric fusion gene product, BCR-ABL, can generate leukemia in mice. This review will discuss selected model systems developed to study BCR-ABL induced leukemia and focuses on what we have learned about the human disease from these models. Five main experimental approaches will be discussed including: (i) Reconstitution of mice with bone marrow cells retrovirally transduced with BCR-ABL; (ii) Transgenic mice expressing BCR-ABL; (iii) Knock-in mice with BCR-ABL expression driven from the endogenous bcr locus; (iv) Development of CML-like disease in mice with loss of function mutations in heterologous genes; and (v) ES in vitro hematopoietic differentiation coupled with regulated BCR-ABL expression.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Cell Differentiation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genetic Linkage
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Oncogene Proteins, Fusion/metabolism
- Phenotype
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Retroviridae/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- S Wong
- Molecular Biology Institute, University of California, Los Angeles, California, CA 90095-1662, USA
| | | |
Collapse
|
106
|
Kin Y, Shibuya M, Maru Y. Inhibition of protein kinase C delta has negative effect on anchorage-independent growth of BCR-ABL-transformed Rat1 cells. Leuk Res 2001; 25:821-5. [PMID: 11489476 DOI: 10.1016/s0145-2126(01)00031-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The BCR-ABL oncoprotein transmits transformation signals mainly through pathways involving Ras, Myc and PI3 kinase. Here we report that inhibition of protein kinase C (PKC) delta had negative influence on anchorage-independent growth of Rat1 cells transformed by BCR-ABL. The effect was observed with delta isoform-specific inhibitor rottlerin, but not with Go6976 that inhibits only conventional isoforms. The kinase activity of delta isoform was found to be roughly two-fold higher in BCR-ABL-expressing Rat1 cells than that in mock. Although overexpression of wild type PKC delta did not enhance soft agar colony number by BCR-ABL-transformed Rat1 cells, that of dominant-negative delta isoform reduced it by approximately 40%.
Collapse
Affiliation(s)
- Y Kin
- Department of Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108, Tokyo, Japan
| | | | | |
Collapse
|
107
|
Nguyen MH, Ho JM, Beattie BK, Barber DL. TEL-JAK2 mediates constitutive activation of the phosphatidylinositol 3'-kinase/protein kinase B signaling pathway. J Biol Chem 2001; 276:32704-13. [PMID: 11435425 DOI: 10.1074/jbc.m103100200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A subset of chromosomal translocations that participate in leukemia involve activated tyrosine kinases. The ets transcription factor, TEL, undergoes translocations with several distinct tyrosine kinases including JAK2. TEL-JAK2 transforms cell lines to factor independence, and constitutive tyrosine kinase activity results in the phosphorylation of several substrates including STAT1, STAT3, and STAT5. In this study we have shown that TEL-JAK2 can constitutively activate the phosphatidylinositol 3'-kinase (PI 3'-kinase) signaling pathway. The regulatory subunit of PI 3'-kinase, p85, associates with TEL-JAK2 in immunoprecipitations, and this was shown to be mediated by the amino-terminal SH2 domain of p85 but independent of a putative p85-binding motif within TEL-JAK2. The scaffolding protein Gab2 can also mediate the association of p85. TEL-JAK2 constitutively phosphorylates the downstream substrate protein kinase B/AKT. Importantly, the pharmacologic PI 3'-kinase inhibitor, LY294002, blocked TEL-JAK2 factor-independent growth and phosphorylation of protein kinase B. However, LY294002 did not alter STAT5 tyrosine phosphorylation, indicating that STAT5 and protein kinase B activation mediated by TEL-JAK2 are independent signaling pathways. Therefore, activation of the PI 3'-kinase signaling pathway is an important event mediated by TEL-JAK2 chromosomal translocations.
Collapse
Affiliation(s)
- M H Nguyen
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | |
Collapse
|
108
|
Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293:876-80. [PMID: 11423618 DOI: 10.1126/science.1062538] [Citation(s) in RCA: 2313] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Clinical studies with the Abl tyrosine kinase inhibitor STI-571 in chronic myeloid leukemia demonstrate that many patients with advanced stage disease respond initially but then relapse. Through biochemical and molecular analysis of clinical material, we find that drug resistance is associated with the reactivation of BCR-ABL signal transduction in all cases examined. In six of nine patients, resistance was associated with a single amino acid substitution in a threonine residue of the Abl kinase domain known to form a critical hydrogen bond with the drug. This substitution of threonine with isoleucine was sufficient to confer STI-571 resistance in a reconstitution experiment. In three patients, resistance was associated with progressive BCR-ABL gene amplification. These studies provide evidence that genetically complex cancers retain dependence on an initial oncogenic event and suggest a strategy for identifying inhibitors of STI-571 resistance.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Base Sequence
- Benzamides
- Blast Crisis/genetics
- Cell Line
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Amplification
- Genes, abl
- Humans
- Hydrogen Bonding
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Molecular Sequence Data
- Philadelphia Chromosome
- Phosphorylation
- Piperazines/metabolism
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Point Mutation
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-crk
- Pyrimidines/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Recurrence
- Signal Transduction
Collapse
Affiliation(s)
- M E Gorre
- Department of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Affiliation(s)
- A J Bridges
- Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
110
|
Abstract
Several methods to model human Ph+ leukemia in laboratory mice are available, including propagation of BCR/ABL-expressing cells in mice, xenotransplantation of primary Ph+ leukemia cells into immunodeficient mice, BCR/ABL transgenic mice, and BCR/ABL retroviral bone marrow transduction and transplantation. Recent studies in these different model systems have yielded important advances in our knowledge of the pathogenesis and therapy of human chronic myeloid leukemia and Ph+ B-lymphoblastic leukemia, and are the subject of this review.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Disease Models, Animal
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, B-Cell/etiology
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Mice
- Mice, Transgenic
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Retroviridae/genetics
- Transduction, Genetic
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R A Van Etten
- The Center for Blood Research, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Abstract
The BCR-ABL oncogene is essential to the pathogenesis of chronic myelogenous leukemia, and immune mechanisms play an important role in control of this disease. Understanding of the molecular pathogenesis of chronic myelogenous leukemia has led to the development of several novel therapies, which can be broadly divided into therapies based on 1) inhibition of the BCR-ABL oncogene expression, 2) inhibition of other genes important to the pathogenesis of chronic myelogenous leukemia, 3) inhibition of BCR-ABL protein function, and 4) immunomodulation. We have systematically reviewed each of these novel therapeutic approaches in this article.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzamides
- Cancer Vaccines/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Clinical Trials, Phase II as Topic
- Clinical Trials, Phase III as Topic
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/therapeutic use
- Farnesyltranstransferase
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, myb
- Hematopoietic Stem Cell Transplantation
- Humans
- Imatinib Mesylate
- Immunotherapy, Adoptive
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Methotrexate/pharmacology
- Models, Biological
- Multicenter Studies as Topic
- Neoplasm Proteins/metabolism
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Phosphorylation
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Processing, Post-Translational
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- RNA, Messenger/antagonists & inhibitors
- RNA, Neoplasm/antagonists & inhibitors
- Signal Transduction/drug effects
- Tetrahydrofolate Dehydrogenase/genetics
Collapse
Affiliation(s)
- B N Jahagirdar
- Stem Cell Institute, Division of Hematology-Oncology and Transplantation, University of Minnesota, Minneapolis, Minn 55455, USA
| | | | | | | |
Collapse
|
112
|
Abstract
Models of chronic myeloid leukemia (CML) have proven invaluable for furthering our understanding of the molecular pathophysiology of this disease. Xenotransplantation of primary human CML cells into immunodeficient mice allows investigation into the nature of the most primitive repopulating cells in this leukemia, but the system is limited by variability and difficulty with experimental manipulation. Accordingly, a large effort has been invested in developing models of CML through expression of the BCR/ABL oncogene in the hematopoietic system of laboratory mice. Despite numerous attempts, an accurate transgenic mouse model of CML has not been produced, possibly because of the toxicity of BCR/ABL. Conditional transgenic mice are a promising new approach to this problem. A more successful strategy is retroviral transduction of BCR/ABL into mouse bone marrow in vitro, followed by transplantation into syngeneic or immunodeficient recipient mice. Recipients of marrow transduced with p210 BCR/ABL develop a fatal myeloproliferative illness that closely resembles human CML. This model is being used to define the signaling pathways required for leukemogenesis by BCR/ABL, and for developing new therapeutic approaches.
Collapse
Affiliation(s)
- R A Van Etten
- The Center for Blood Research and Department of Genetics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
113
|
Holyoake DT. Recent advances in the molecular and cellular biology of chronic myeloid leukaemia: lessons to be learned from the laboratory. Br J Haematol 2001; 113:11-23. [PMID: 11328274 DOI: 10.1046/j.1365-2141.2001.02558.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
MESH Headings
- Animals
- Apoptosis/genetics
- Benzamides
- Cell Adhesion/genetics
- Cell Cycle
- Cell Line, Transformed
- Clinical Trials as Topic
- Cytoskeleton/pathology
- Enzyme Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl
- Genes, abl
- Growth Substances/metabolism
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Transgenic
- Models, Animal
- Philadelphia Chromosome
- Piperazines/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/therapeutic use
- Signal Transduction/genetics
- Stem Cells
- Telomere
Collapse
Affiliation(s)
- D T Holyoake
- Academic Transfusion Medicine Unit, Department of Medicine, Royal Infirmary, Glasgow, UK.
| |
Collapse
|
114
|
Abstract
Multistep carcinogenesis is exemplified by chronic myeloid leukemia with clinical manifestation consisting of a chronic phase and blast crisis. Pathological generation of BCR-ABL (breakpoint cluster region-Abelson) results in growth promotion, differentiation, resistance to apoptosis, and defect in DNA repair in targeted blood cells. Domains in BCR and ABL sequences work in concert to elicit a variety of leukemogenic signals including Ras, STAT5 (signal transducer and activator of transcription-5), Myc, cyclin D1, P13 (phosphatidylinositol 3-kinase), RIN1 (Ras interaction/interference), and activation of actin cytoskeleton. However, the mechanism of differentiation of transformed cells is poorly understood. A mutator phenotype of BCR-ABL could explain the transformation to blast crisis. The aim of this review is to integrate molecular and biological information on BCR, ABL, and BCR-ABL and to focus on how signaling from those molecules mirrors the biological phenotypes of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Blast Crisis/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Leukemic
- Genes, abl
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Accelerated Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/genetics
- Mice
- Mice, Knockout
- Models, Biological
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Oncogene Proteins/chemistry
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phenotype
- Philadelphia Chromosome
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-abl/chemistry
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/physiology
- Proto-Oncogene Proteins c-bcr
- Rats
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan.
| |
Collapse
|
115
|
Abstract
The Philadelphia chromosome generates a chimeric oncogene in which the BCR and c-ABL genes are fused. The product of this oncogene, BCR/ABL, has elevated ABL tyrosine kinase activity, relocates to the cytoskeleton, and phosphorylates multiple cellular substrates. BCR/ABL transforms hematopoietic cells and exerts a wide variety of biological effects, including reduction in growth factor dependence, enhanced viability, and altered adhesion of chronic myelocytic leukemia (CML) cells. Elevated tyrosine kinase activity of BCR/ABL is critical for activating downstream signal transduction and for all aspects of transformation. This review will describe mechanisms of transformation by the BCR/ABL oncogene and opportunities for clinical intervention with specific signal transduction inhibitors such as STI-571 in CML.
Collapse
MESH Headings
- Benzamides
- Cell Transformation, Neoplastic/genetics
- Cytoskeleton/metabolism
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Biological
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Philadelphia Chromosome
- Phosphorylation
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein Transport
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Reactive Oxygen Species
- Signal Transduction/physiology
Collapse
Affiliation(s)
- M Sattler
- Department of Adult Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
116
|
Maru Y. Use of glutathione S-transferase and break point cluster region protein as artificial dimerization domains to activate tyrosine kinases. Methods Enzymol 2001; 327:429-40. [PMID: 11045001 DOI: 10.1016/s0076-6879(00)27294-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Y Maru
- Department of Genetics, University of Tokyo, Japan
| |
Collapse
|
117
|
Peters DG, Hoover RR, Gerlach MJ, Koh EY, Zhang H, Choe K, Kirschmeier P, Bishop WR, Daley GQ. Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood 2001; 97:1404-12. [PMID: 11222387 DOI: 10.1182/blood.v97.5.1404] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BCR/ABL, the oncoprotein responsible for chronic myeloid leukemia (CML), transforms hematopoietic cells through both Ras-dependent and -independent mechanisms. Farnesyl protein transferase inhibitors (FTIs) were designed to block mutant Ras signaling, but they also inhibit the growth of transformed cells with wild-type Ras, implying that other farnesylated targets contribute to FTI action. In the current study, the clinical candidate FTI SCH66336 was characterized for its ability to inhibit BCR/ABL transformation. When tested against BCR/ABL-BaF3 cells, a murine cell line that is leukemogenic in mice, SCH66336 potently inhibited soft agar colony formation, slowed proliferation, and sensitized cells to apoptotic stimuli. Quantification of activated guanosine triphosphate (GTP)-bound Ras protein and electrophoretic mobility shift assays for AP-1 DNA binding showed that Ras effector pathways are inhibited by SCH66336. However, SCH66336 was more inhibitory than dominant-negative Ras in assays of soft agar colony formation and cell proliferation, suggesting activity against targets other than Ras. Cell cycle analysis of BCR/ABL-BaF3 cells treated with SCH66336 revealed G2/M blockade, consistent with recent reports that centromeric proteins that regulate the G2/M checkpoint are critical farnesylated targets of FTI action. Mice injected intravenously with BCR/ABL-BaF3 cells developed acute leukemia and died within 4 weeks with massive splenomegaly, elevated white blood cell counts, and anemia. In contrast, nearly all mice treated with SCH66336 survived and have remained disease-free for more than a year. Furthermore, SCH66336 selectively inhibited the hematopoietic colony formation of primary human CML cells. As an oral, nontoxic compound with a mechanism of action distinct from that of ABL tyrosine kinase inhibition, FTI SCH66336 shows promise for the treatment of BCR/ABL-induced leukemia.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/antagonists & inhibitors
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/pathology
- Cell Cycle/drug effects
- Cell Division/drug effects
- Enzyme Inhibitors/metabolism
- Farnesyltranstransferase
- Genes, abl/physiology
- Hematopoietic Stem Cells/drug effects
- Humans
- Leukemia, Experimental/drug therapy
- Leukemia, Experimental/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mice
- Piperidines/pharmacology
- Pyridines/pharmacology
- Spleen/drug effects
- Spleen/pathology
- Survival Rate
- Transformation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D G Peters
- Whitehead Institute, Cambridge, MA; Division of Hematology/ Oncology, Massachusetts General Hospital, Boston, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kabarowski JH, Witte ON. Consequences of BCR-ABL expression within the hematopoietic stem cell in chronic myeloid leukemia. Stem Cells 2001; 18:399-408. [PMID: 11072027 DOI: 10.1002/stem.180399] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic myeloid leukemia (CML) was the first human malignancy shown to be associated with a specific cytogenetic lesion, the Philadelphia chromosomal translocation. Forty years on, many biological and biochemical properties have been ascribed to its molecular product, the BCR-ABL tyrosine kinase fusion protein. However, it has been difficult to establish their precise contribution to the deregulation of normal survival, proliferative and differentiative control in chronic phase CML and the degree to which the involvement of stem cells extends beyond their role as the aetiological target. This review will focus on our current understanding of the pathogenesis of CML from the perspective of stem cell involvement, and how the biological and biochemical properties ascribed to BCR-ABL from studies of in vitro transformation and in vivo leukemogenesis systems relate to the abnormalities manifest in the human disease.
Collapse
Affiliation(s)
- J H Kabarowski
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA.
| | | |
Collapse
|
119
|
Grumbach IM, Mayer IA, Uddin S, Lekmine F, Majchrzak B, Yamauchi H, Fujita S, Druker B, Fish EN, Platanias LC. Engagement of the CrkL adaptor in interferon alpha signalling in BCR-ABL-expressing cells. Br J Haematol 2001; 112:327-36. [PMID: 11167825 DOI: 10.1046/j.1365-2141.2001.02556.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferon alpha (IFNalpha) has significant clinical activity in the treatment of patients with chronic myelogenous leukaemia (CML), but the mechanisms of its selective efficacy in the treatment of the disease are unknown. The CrkL adaptor protein interacts directly with the BCR-ABL fusion protein that causes the malignant transformation and is constitutively phosphorylated in BCR-ABL-expressing cells. In the present study, we provide evidence that CrkL was engaged in IFNalpha-signalling in the CML-derived KT-1 cell line, which expresses BCR-ABL and is sensitive to the growth inhibitory effects of IFNalpha. CrkL is constitutively associated with BCR-ABL in these cells and treatment with IFNalpha had no effect on the BCR-ABL/CrkL interaction. After IFNalpha stimulation, CrkL associated with Stat5, which also underwent phosphorylation in an IFNalpha-dependent manner. The interaction of CrkL with Stat5 was facilitated by the function of both the SH2 and the N-terminus SH3 domains of CrkL. The resulting CrkL-Stat5 complex translocated to the nucleus and could be detected in gel shift assays using elements derived from either the beta-casein promoter or the promoter of the PML gene, an IFNalpha-inducible gene that mediates growth inhibitory responses. In addition to its interaction with Stat5, CrkL interacts with C3G in KT-1 cells and such an interaction regulates the downstream activation of the small GTPase Rap1, which also mediates inhibition of cell proliferation. Thus, despite its engagement by BCR-ABL in CML-derived cells, CrkL mediates activation of downstream signalling pathways in response to the activated type I IFN receptor and such signals may contribute to the generation of the anti-proliferative effects of IFNalpha in CML.
Collapse
Affiliation(s)
- I M Grumbach
- Section of Hematology-Oncology, The University of Illinois at Chicago and West Side VA Hospital, Chicago, IL 60607-7173, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21:840-53. [PMID: 11154271 PMCID: PMC86675 DOI: 10.1128/mcb.21.3.840-853.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bcr-Abl, a fusion protein generated by t(9;22)(q34;q11) translocation, plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). It has been shown that Bcr-Abl contains multiple functional domains and motifs and can disrupt regulation of many signaling pathways and cellular functions. However, the role of specific domains and motifs of Bcr-Abl or of specific signaling pathways in the complex in vivo pathogenesis of CML is not completely known. We have previously shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces a myeloproliferative disorder (MPD) in mice resembling human CML. We have also shown that the Abl kinase activity within Bcr-Abl is essential for Bcr-Abl leukemogenesis, yet activation of the Abl kinase without Bcr sequences is not sufficient to induce MPD in mice. In this study we investigated the role of Bcr sequences within Bcr-Abl in inducing MPD using this murine model for CML. We found that the NH(2)-terminal coiled-coil (CC) domain was both essential and sufficient, even though not efficient, to activate Abl to induce an MPD in mice. Interestingly, deletion of the Src homology 3 domain complemented the deficiencies of the CC-deleted Bcr-Abl in inducing MPD in mice. We further demonstrated that the Grb2 binding site at Y177 played an important role in efficient induction of MPD. These studies directly demonstrated the important roles of Bcr sequences in induction of MPD by Bcr-Abl.
Collapse
Affiliation(s)
- X Zhang
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
121
|
Zhang X, Wong R, Hao SX, Pear WS, Ren R. The SH2 domain of bcr-Abl is not required to induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood 2001; 97:277-87. [PMID: 11133772 DOI: 10.1182/blood.v97.1.277] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bcr-Abl plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). It was previously shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces a myeloproliferative disorder (MPD) in mice resembling human CML. This in vivo experimental system allows the direct determination of the effect of specific domains of Bcr-Abl, or specific signaling pathways, on the complex in vivo pathogenesis of CML. In this report, the function of the SH2 domain of Bcr-Abl in the pathogenesis of CML is examined using this murine model. It was found that the Bcr-Abl SH2 mutants retain the ability to induce a fatal MPD but with an extended latency compared with wild type (wt) Bcr-Abl. Interestingly, in contrast to wt Bcr-Abl-induced disease, which is rapid and monophasic, the disease caused by the Bcr-Abl SH2 mutants is biphasic, consisting of an initial B-lymphocyte expansion followed by a fatal myeloid proliferation. The B-lymphoid expansion was diminished in mixing experiments with bcr-abl/DeltaSH2 and wt bcr-abl cells, suggesting that the Bcr-Abl-induced MPD suppresses B-lymphoid expansion.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Bone Marrow Transplantation
- Disease Models, Animal
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/pharmacology
- Genetic Vectors
- Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Interleukin-3/biosynthesis
- Leukemia, B-Cell/chemically induced
- Leukemia, B-Cell/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/chemically induced
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Mutagenesis, Site-Directed
- Myeloproliferative Disorders/chemically induced
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/metabolism
- Neoplasm Transplantation/methods
- Retroviridae
- Transduction, Genetic
- src Homology Domains/genetics
- src Homology Domains/physiology
Collapse
Affiliation(s)
- X Zhang
- Rosenstiel Basic Medical Sciences Research Center, Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | | | | | | | | |
Collapse
|
122
|
Abstract
Drug resistance, to date, has primarily been attributed to increased drug export or detoxification mechanisms. Despite correlations between drug export and drug resistance, it is increasingly apparent that such mechanisms cannot fully account for chemoresistance in neoplasia. It is now widely accepted that chemotherapeutic drugs kill tumour cells by inducing apoptosis, a genetically regulated cell death programme. Evidence is emerging that the exploitation of survival pathways, which may have contributed to disease development in the first instance, may also be important in the development of the chemoresistance. This review discusses the components of and associations between multiple signalling cascades and their possible contribution to the development of neoplasia and the chemoresistant phenotype.
Collapse
Affiliation(s)
- D M O'Gorman
- Department of Biochemistry, University College Cork, Ireland
| | | |
Collapse
|
123
|
Bhatia R, Munthe HA, Williams AD, Zhang F, Forman SJ, Slovak ML. Chronic myelogenous leukemia primitive hematopoietic progenitors demonstrate increased sensitivity to growth factor-induced proliferation and maturation. Exp Hematol 2000; 28:1401-12. [PMID: 11146162 DOI: 10.1016/s0301-472x(00)00545-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated whether primary chronic myelogenous leukemia (CML) hematopoietic progenitors demonstrated altered proliferation and maturation in response to growth factor (GF) stimulation. The effect of GF stimulation on proliferation and expansion of committed and primitive progenitors (colony forming cells [CFC]) was evaluated. Culture of CML and normal CD34(+) cells with different GF for 7 days resulted in similar expansion of committed progenitors (CFC). In contrast, GF culture conditions that expanded normal primitive progenitors (week-6 long-term culture-initiating cells (LTC-IC)] led to depletion of CML LTC-IC numbers. GF culture also resulted in increased depletion of week-10 extended LTC-IC, which represent an even more primitive progenitor population, from CML compared with normal CD34(+) cells. CML CD34(+) cells enter into cycle more quickly than normal CD34(+) cells and CML CFC expansion was accelerated compared to normal CFC. Evaluation of primitive progenitor proliferation using PKH-26 and single-cell LTC-IC analysis demonstrated that the majority of CML LTC-IC remaining after GF culture originated from divided CD34(+) cells, whereas GF-cultured normal LTC-IC were derived mainly from undivided cells. Depletion of CML primitive progenitor numbers in association with increased proliferation suggests increased sensitivity to GF-induced maturation. These studies indicate that CML primitive progenitors have enhanced sensitivity to GF-induced cell division and maturation. Altered GF responsiveness may contribute to abnormal expansion of malignant myeloid cells in CML. These findings may also be applied toward the development of novel approaches to select benign stem cells in CML.
Collapse
Affiliation(s)
- R Bhatia
- Division of Hematology and Bone Marrow Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Calabrese G, Fantasia D, Franch PG, Morizio E, Stuppia L, Gatta V, Olioso P, Mingarelli R, Spadano A, Palka G. Spectral karyotyping (SKY) refinement of a complex karyotype with t(20;21) in a Ph-positive CML patient submitted to peripheral blood stem cell transplantation. Bone Marrow Transplant 2000; 26:1125-7. [PMID: 11108316 DOI: 10.1038/sj.bmt.1702666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A patient with a Ph-positive chronic myeloid leukaemia (CML) was submitted to allogeneic peripheral blood stem cell transplantation from an HLA-haploidentical related donor 7 years after the diagnosis. Six months later, he showed a disease relapse while cytogenetic analysis displayed a complex karyotype. To characterise the chromosomal rearrangements spectral karyotype (SKY) analysis was used. This redefined all chromosome rearrangements and revealed a t(20;21)(q11;q22). FISH analysis with a specific probe for the AML1 gene disclosed disruption of this gene which was partially translocated on to the long arm of chromosome 20. It is likely that this rearrangement, unusual for CML, was implicated in the disease evolution towards blastic crisis (BC).
Collapse
MESH Headings
- Adult
- Chromosomes, Human, Pair 20
- Chromosomes, Human, Pair 21
- Hematopoietic Stem Cell Transplantation
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Translocation, Genetic
- Transplantation, Homologous
Collapse
Affiliation(s)
- G Calabrese
- Dipartimento di Scienze Biomediche, Università di Chieti, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Lim YM, Wong S, Lau G, Witte ON, Colicelli J. BCR/ABL inhibition by an escort/phosphatase fusion protein. Proc Natl Acad Sci U S A 2000; 97:12233-8. [PMID: 11027300 PMCID: PMC17324 DOI: 10.1073/pnas.210253497] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular transformation by the BCR/ABL oncogene depends on the ABL-encoded tyrosine kinase activity. To block BCR/ABL function, we created a unique tyrosine phosphatase by fusing the catalytic domain of SHP1 (SHP1c) to the ABL binding domain (ABD) of RIN1, an established binding partner and substrate for c-ABL and BCR/ABL. This fusion construct (ABD/SHP1c) binds to BCR/ABL in cells and functions as an active phosphatase. ABD/SHP1c effectively suppressed BCR/ABL function as judged by reductions in transformation of fibroblast cells, growth factor independence of hematopoietic cell lines, and proliferation of primary bone marrow cells. In addition, the leukemogenic properties of BCR/ABL in a murine model system were blocked by coexpression of ABD/SHP1c. Both the "escort" function provided by ABD and the inhibitor function provided by the phosphatase of SHP1c were necessary for effective BCR/ABL interference. Expression of ABD/SHP1c also reversed the transformed phenotype of K562, a human leukemia-derived cell line. These results have direct implications for leukemia therapeutics and suggest an approach to block aberrant signal transduction in other pathologies through the use of appropriately designed escort/inhibitors.
Collapse
Affiliation(s)
- Y M Lim
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
126
|
Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G1 phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 2000. [DOI: 10.1182/blood.v96.6.2284] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chronic myelogenous leukemia (CML) is a clonal disorder of a pluripotent hematopoietic stem cells characterized by a chimericbcr-abl gene giving rise to a p210Bcr-Ablprotein with dysregulated tyrosine kinase activity. Radicicol, a macrocyclic antifungal antibiotic, binds to the N-terminal of heat shock protein 90 (Hsp90) and destabilizes Hsp90-associated proteins such as Raf-1. This study investigated the effect of radicicol, novel oxime derivatives of radicicol (KF25706 and KF58333), and herbimycin A (HA), a benzoquinoid ansamycin antibiotic, on the growth and differentiation of human K562 CML cells. Although KF25706 and KF58333 induced the expression of glycophorin A in K562 cells, radicicol and HA caused erythroid differentiation transiently. Cell cycle analysis showed that G1 phase accumulation was observed in K562 cells treated with KF58333. KF58333 treatment depleted p210Bcr-Abl, Raf-1, and cellular tyrosine phosphorylated proteins in K562 cells, whereas radicicol and HA showed transient depletion of these proteins. KF58333 also down-regulated the level of cell cycle–dependent kinases 4 and 6 and up-regulated cell cycle–dependent kinase inhibitor p27Kip1protein without an effect on the level of Erk and Hsp90 proteins. Immunoprecipitation analysis showed that p210Bcr-Abl formed multiple complexes with Hsp90, some containing p23 and others Hsp70; KF58333 treatment dissociated p210Bcr-Abl from Hsp90/p23 chaperone complexes. Furthermore, KF58333 induced apoptosis in K562 cells and administration of KF58333 prolonged the survival time of SCID mice inoculated with K562 cells. These results suggest that KF58333 may have therapeutic potential for the treatment of CML that involves abnormal cellular proliferation induced by p210Bcr-Abl.
Collapse
|
127
|
Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G1 phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 2000. [DOI: 10.1182/blood.v96.6.2284.h8002284_2284_2291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a clonal disorder of a pluripotent hematopoietic stem cells characterized by a chimericbcr-abl gene giving rise to a p210Bcr-Ablprotein with dysregulated tyrosine kinase activity. Radicicol, a macrocyclic antifungal antibiotic, binds to the N-terminal of heat shock protein 90 (Hsp90) and destabilizes Hsp90-associated proteins such as Raf-1. This study investigated the effect of radicicol, novel oxime derivatives of radicicol (KF25706 and KF58333), and herbimycin A (HA), a benzoquinoid ansamycin antibiotic, on the growth and differentiation of human K562 CML cells. Although KF25706 and KF58333 induced the expression of glycophorin A in K562 cells, radicicol and HA caused erythroid differentiation transiently. Cell cycle analysis showed that G1 phase accumulation was observed in K562 cells treated with KF58333. KF58333 treatment depleted p210Bcr-Abl, Raf-1, and cellular tyrosine phosphorylated proteins in K562 cells, whereas radicicol and HA showed transient depletion of these proteins. KF58333 also down-regulated the level of cell cycle–dependent kinases 4 and 6 and up-regulated cell cycle–dependent kinase inhibitor p27Kip1protein without an effect on the level of Erk and Hsp90 proteins. Immunoprecipitation analysis showed that p210Bcr-Abl formed multiple complexes with Hsp90, some containing p23 and others Hsp70; KF58333 treatment dissociated p210Bcr-Abl from Hsp90/p23 chaperone complexes. Furthermore, KF58333 induced apoptosis in K562 cells and administration of KF58333 prolonged the survival time of SCID mice inoculated with K562 cells. These results suggest that KF58333 may have therapeutic potential for the treatment of CML that involves abnormal cellular proliferation induced by p210Bcr-Abl.
Collapse
|
128
|
Nieborowska-Skorska M, Slupianek A, Skorski T. Progressive changes in the leukemogenic signaling in BCR/ABL-transformed cells. Oncogene 2000; 19:4117-24. [PMID: 10962572 DOI: 10.1038/sj.onc.1203754] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous study indicated that BCR/ABL SH2 domain and BCR/ABL SH3 domain+SH2 domain complex are required for immediate activation of the phosphatidylinositol-3 kinase PI-3k)--> Akt serine/threonine kinase pathway and of the signal transducer and activator of transcription 5 (STAT5), respectively, in hematopoietic cells. We show here that the defect in activation of PI-3k/Akt by BCR/ABL DeltaSH2 mutant (SH2 domain deleted) and of STAT5 by BCR/ABL DeltaSH3+DeltaSH2 mutant (SH3 and SH2 domains deleted) is not permanent and both Akt and STAT5 could be 're-activated' by in vitro culture. This phenomenon was responsible for increased resistance to apoptosis, growth factor-independent proliferation and leukemogenesis in SCID mice. Incubation of cells with BCR/ABL tyrosine kinase inhibitor STI571 abrogated the 're-activation' of Akt or STAT5 by BCR/ABL SH3+SH2 mutants in some clones, in the others Akt and STAT5 activation became independent on BCR/ABL kinase activity. The immediate upstream activators of Akt and STAT5 such as PI-3k and Jak-2 were also activated. In addition, the common beta subunit of IL-3/IL-5/GM-CSF receptor was tyrosine phosphorylated in the clones in which 're-activation' was dependent on the BCR/ABL kinase activity. These results suggested that 're-activation' of Akt and STAT5, in the absence of functional BCR/ABL SH3+SH2 domains, may be achieved by two different mechanisms: (i) BCR/ABL kinase-dependent activation of alternative pathway(s) and (ii) additional genetic changes stimulating Akt and STAT5 independently of BCR/ABL. Oncogene (2000) 19, 4117 - 4124
Collapse
Affiliation(s)
- M Nieborowska-Skorska
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, PA 19122, USA
| | | | | |
Collapse
|
129
|
The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000. [DOI: 10.1182/blood.v96.2.664] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The BCR/ABL oncogene results from a balanced translocation between chromosomes 9 and 22 and is found in patients with chronic myeloid leukemia (CML) and in some patients with acute B-lymphoid leukemia. The Bcr/Abl fusion protein is a constitutively active tyrosine kinase that stimulates several intracellular signaling pathways, including activation of Ras through direct binding of the SH2-containing adapter protein Grb2 to Bcr tyrosine 177. A tyrosine-to-phenylalanine mutation (Y177F) at this site blocks the co-association of Bcr/Abl and Grb2 in vivo and impairs focus formation by Bcr/Abl in fibroblasts. However, the Bcr/Abl Y177F mutant can transform hematopoietic cell lines and primary bone marrow cells in vitro, so the importance of the Bcr/Abl–Grb2 interaction to myeloid and lymphoid leukemogenesis in vivo is unclear. We have recently demonstrated the efficient induction of CML-like myeloproliferative disease by BCR/ABL in a murine bone marrow transduction/transplantation model system. The Y177F mutation greatly attenuates the myeloproliferative disease induced by BCR/ABL, with mice developing B- and T-lymphoid leukemias of longer latency. In addition, the v-abl oncogene of Abelson murine leukemia virus, whose protein product lacks interaction with Grb2, is completely defective for the induction of CML-like disease. These results suggest that direct binding of Grb2 is required for the efficient induction of CML-like myeloproliferative disease by oncogenic Abl proteins.
Collapse
|
130
|
The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000. [DOI: 10.1182/blood.v96.2.664.014k52_664_670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BCR/ABL oncogene results from a balanced translocation between chromosomes 9 and 22 and is found in patients with chronic myeloid leukemia (CML) and in some patients with acute B-lymphoid leukemia. The Bcr/Abl fusion protein is a constitutively active tyrosine kinase that stimulates several intracellular signaling pathways, including activation of Ras through direct binding of the SH2-containing adapter protein Grb2 to Bcr tyrosine 177. A tyrosine-to-phenylalanine mutation (Y177F) at this site blocks the co-association of Bcr/Abl and Grb2 in vivo and impairs focus formation by Bcr/Abl in fibroblasts. However, the Bcr/Abl Y177F mutant can transform hematopoietic cell lines and primary bone marrow cells in vitro, so the importance of the Bcr/Abl–Grb2 interaction to myeloid and lymphoid leukemogenesis in vivo is unclear. We have recently demonstrated the efficient induction of CML-like myeloproliferative disease by BCR/ABL in a murine bone marrow transduction/transplantation model system. The Y177F mutation greatly attenuates the myeloproliferative disease induced by BCR/ABL, with mice developing B- and T-lymphoid leukemias of longer latency. In addition, the v-abl oncogene of Abelson murine leukemia virus, whose protein product lacks interaction with Grb2, is completely defective for the induction of CML-like disease. These results suggest that direct binding of Grb2 is required for the efficient induction of CML-like myeloproliferative disease by oncogenic Abl proteins.
Collapse
|
131
|
Renshaw MW, Lewis JM, Schwartz MA. The c-Abl tyrosine kinase contributes to the transient activation of MAP kinase in cells plated on fibronectin. Oncogene 2000; 19:3216-9. [PMID: 10918577 DOI: 10.1038/sj.onc.1203667] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous work showed that integrin stimulation triggers activation of the c-Abl tyrosine kinase and its transient localization to focal adhesions. We now report that plating cells on fibronectin triggers association of Grb2 with c-Abl, suggesting possible involvement of c-Abl with integrin activation of the MAP kinase pathway. Expression of a kinase-defective c-Abl specifically inhibited the transient induction of Erk2 activity following cell adhesion. Together with the known ability of activated, oncogenic forms of c-Abl to activate Ras and the MAP kinase pathway, these data suggest that c-Abl contributes to the integrin induction of MAP kinase activity.
Collapse
Affiliation(s)
- M W Renshaw
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
132
|
Lionberger JM, Wilson MB, Smithgall TE. Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck. J Biol Chem 2000; 275:18581-5. [PMID: 10849448 DOI: 10.1074/jbc.c000126200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcr-Abl is the constitutively active protein-tyrosine kinase expressed as a result of the Philadelphia translocation in chronic myelogenous leukemia. Bcr-Abl is coupled to many of the same signaling pathways normally regulated by hematopoietic cytokines. Recent work shows that Hck, a member of the Src tyrosine kinase family with myeloid-restricted expression, associates with and is activated by Bcr-Abl. Here we investigated the mechanism of Hck interaction with Bcr-Abl and the requirement for Hck activation in Bcr-Abl transformation signaling. Binding studies demonstrated that the Hck SH3 and SH2 domains are sufficient for interaction with Bcr-Abl in vitro. Hck binding localizes to the Abl SH2, SH3, and kinase domains as well as the distal portion of the C-terminal tail. To address the requirement for endogenous Src family kinase activation in Bcr-Abl signaling, a kinase-defective mutant of Hck was stably expressed in the cytokine-dependent myeloid leukemia cell line DAGM. Kinase-defective Hck dramatically suppressed Bcr-Abl-induced outgrowth of these cells in the absence of cytokine compared with a control cell line expressing beta-galactosidase. In contrast, kinase-defective Hck did not affect cell proliferation in response to interleukin-3, suggesting that the effect is specific for Bcr-Abl. These data show that Hck interacts with Bcr-Abl through a complex mechanism involving kinase-dependent and -independent components and that interaction with Hck or other Src family members is essential for transformation signaling by Bcr-Abl.
Collapse
Affiliation(s)
- J M Lionberger
- Department of Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
133
|
Warren D, Heilpern AJ, Berg K, Rosenberg N. The carboxyl terminus of v-Abl protein can augment SH2 domain function. J Virol 2000; 74:4495-504. [PMID: 10775585 PMCID: PMC111963 DOI: 10.1128/jvi.74.10.4495-4504.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abelson murine leukemia virus (Ab-MLV) transforms NIH 3T3 and pre-B cells via expression of the v-Abl tyrosine kinase. Although the enzymatic activity of this molecule is absolutely required for transformation, other regions of the protein are also important for this response. Among these are the SH2 domain, involved in phosphotyrosine-dependent protein-protein interactions, and the long carboxyl terminus, which plays an important role in transformation of hematopoietic cells. Important signals are sent from each of these regions, and transformation is most likely orchestrated by the concerted action of these different parts of the protein. To explore this idea, we compared the ability of the v-Src SH2 domain to substitute for that of v-Abl in the full-length P120 v-Abl protein and in P70 v-Abl, a protein that lacks the carboxyl terminus characteristic of Abl family members. Ab-MLV strains expressing P70/S2 failed to transform NIH 3T3 cells and demonstrated a greatly reduced capacity to mediate signaling events associated with the Ras-dependent mitogen-activated protein (MAP) kinase pathway. In contrast, Ab-MLV strains expressing P120/S2 were indistinguishable from P120 with respect to these features. Analyses of additional mutants demonstrated that the last 162 amino acids of the carboxyl terminus were sufficient to restore transformation. These data demonstrate that an SH2 domain with v-Abl substrate specificity is required for NIH 3T3 transformation in the absence of the carboxyl terminus and suggest that cooperativity between the extreme carboxyl terminus and the SH2 domain facilitates the transmission of transforming signals via the MAP kinase pathway.
Collapse
Affiliation(s)
- D Warren
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
134
|
Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL. The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf. Mol Cell Biol 2000; 20:1179-86. [PMID: 10648603 PMCID: PMC85238 DOI: 10.1128/mcb.20.4.1179-1186.2000] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Bcr-Abl tyrosine kinase constitutively activates cytokine signal transduction pathways that stimulate growth and prevent apoptosis in hematopoietic cells. The antiapoptotic action of interleukin-3 (IL-3) has been linked to a signaling pathway which inactivates the proapoptotic protein Bad by phosphorylation through kinases such as Akt and Raf. Here we report also that expression of Bcr-Abl leads to phosphorylation of Bad in hematopoietic cells. Bad phosphorylation induced by Bcr-Abl is kinase dependent, requires phosphatidylinositol 3-kinase (PI3-kinase), and mitochondrial targeting of Raf, and occurs independently of Erk. The ability of Bcr-Abl to confer cytokine-independent survival to hematopoietic cells was compromised by inhibitors of PI3-kinase, as well as by a dominant negative form of Raf targeted to the mitochondria. Furthermore, when the capacity of Bcr-Abl to phosphorylate Bad was completely blocked by dominant negative Raf, a subpopulation of cells remained viable, providing evidence for Bad-independent survival pathways. This alternative survival pathway remained PI3-kinase dependent. Finally, Bcr-Abl, but not IL-3, inhibited the proapoptotic activity of overexpressed Bad. We conclude that the antiapoptotic function of Bcr-Abl is mediated through pathways involving PI3-kinase and Raf and that survival can occur in the absence of Bad phosphorylation.
Collapse
Affiliation(s)
- M S Neshat
- Department of Medicine, Molecular Biology Institute, University of California, Los Angeles, 90095-1678, USA
| | | | | | | | | |
Collapse
|
135
|
Affiliation(s)
- W S Pear
- University of Pennsylvania, Department of Pathology, Institute for Medicine and Engineering, 611 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, USA
| |
Collapse
|
136
|
Abstract
The patterns of genetic change, clonal evolution, natural history and latency are very different in the paediatric leukaemias compared with adult epithelial cancers but are similar to those in other childhood cancers of mesenchymal stem cell origin. This distinction has a biological logic in the context of the selective pressures for clonal emergence in different developmental and cellular contexts and has a major impact on curability. Most childhood leukaemias and some other mesenchymal stem cell tumours are of fetal origin and can metastasize without corruption of restraints on cell proliferation or bypassing apoptosis. In marked contrast to most invasive or metastatic epithelial carcinomas in adults, these former cancers then retain sensitivity to therapeutic apoptosis. Moreover, their abbreviated and less complex evolutionary status is associated with less genetic diversity and instability, minimising opportunity for clonal selection for resistance. A minority of leukaemias in children and a higher fraction in adults do, however, have genetic alterations that bypass cell cycle controls and apoptosis imposition. These are the 'bad news' genotypes. The cellular and molecular diversity of acute leukaemia impacts also on aetiology. Paediatric acute leukaemias can be initiated prenatally by illegitimate recombination and fusion gene formation in fetal haemopoiesis. For acute lymphoblastic leukaemia (ALL) in children, twin studies suggest that a secondary postnatal molecular event is also required. This may be promoted by an abnormal or delayed response to common infections. Even for a classic case of a cancer that is intrinsically curable by systematic chemotherapy i.e. childhood ALL, prevention may turn out to be the preferred option.
Collapse
Affiliation(s)
- M Greaves
- LRF Centre for the Cell and Molecular Biology of Leukaemia, Institute of Cancer Research, Chester Beatty Laboratories, London, U.K.
| |
Collapse
|
137
|
Cong F, Yuan B, Goff SP. Characterization of a novel member of the DOK family that binds and modulates Abl signaling. Mol Cell Biol 1999; 19:8314-25. [PMID: 10567556 PMCID: PMC84915 DOI: 10.1128/mcb.19.12.8314] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel member of the p62(dok) family of proteins, termed DOKL, is described. DOKL contains features of intracellular signaling molecules, including an N-terminal PH (pleckstrin homology) domain, a central PTB (phosphotyrosine binding) domain, and a C-terminal domain with multiple potential tyrosine phosphorylation sites and proline-rich regions, which might serve as docking sites for SH2- and SH3-containing proteins. The DOKL gene is predominantly expressed in bone marrow, spleen, and lung, although low-level expression of the RNA can also be detected in other tissues. DOKL and p62(dok) bind through their PTB domains to the Abelson tyrosine kinase in a kinase-dependent manner in both yeast and mammalian cells. DOKL is phosphorylated by the Abl tyrosine kinase in vivo. In contrast to p62(dok), DOKL lacks YxxP motifs in the C terminus and does not bind to Ras GTPase-activating protein (RasGAP) upon phosphorylation. Overexpression of DOKL, but not p62(dok), suppresses v-Abl-induced mitogen-activated protein (MAP) kinase activation but has no effect on constitutively activated Ras- and epidermal growth factor-induced MAP kinase activation. The inhibitory effect requires the PTB domain of DOKL. Finally, overexpression of DOKL in NIH 3T3 cells inhibits the transforming activity of v-Abl. These results suggest that DOKL may modulate Abl function.
Collapse
Affiliation(s)
- F Cong
- Department of Biological Sciences, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
138
|
Affiliation(s)
- R Chopra
- Christie Hospital and Paterson Institute for Cancer Research, Manchester, UK
| | | | | |
Collapse
|
139
|
Sjöblom T, Boureux A, Rönnstrand L, Heldin CH, Ghysdael J, Ostman A. Characterization of the chronic myelomonocytic leukemia associated TEL-PDGF beta R fusion protein. Oncogene 1999; 18:7055-62. [PMID: 10597306 DOI: 10.1038/sj.onc.1203190] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The t(5;12) translocation, associated with chronic myelomonocytic leukemia, generates a novel gene encoding a protein, TEL-PDGF beta R, composed of the 154 amino-terminal amino acids of the transcription factor TEL and the transmembrane and intracellular part of the PDGF beta-receptor (PDGF beta R). TEL also occurs as a tumor-associated fusion partner for the tyrosine kinases c-ABL, JAK2 and TRK-C. Previous studies have demonstrated growth promoting activity of TEL-PDGF beta R and also indicated that the TEL moiety activates the tyrosine kinase of the PDGF beta R through the formation of TEL-PDGF beta R oligomers. We demonstrate that tyrosine phosphorylation of the fusion protein can be attenuated through overexpression of the TEL part of TEL-PDGF beta R, suggesting a strategy for antagonizing the signaling of TEL-PDGF beta R, and other TEL-fusion proteins containing tyrosine kinase domains. Comparison of BaF/3 cell lines expressing TEL-PDGF beta R and ligand-stimulated PDGF beta R revealed that only TEL-PDGF beta R expression conferred IL-3-independent growth, suggesting differences in signaling capacity of the two proteins. Finally, tyrosine residues 17 and 27 in TEL-PDGF beta R was identified as autophosphorylation sites in TEL-PDGF beta R.
Collapse
Affiliation(s)
- T Sjöblom
- Ludwig Institute for Cancer Research, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
140
|
Ghaffari S, Wu H, Gerlach M, Han Y, Lodish HF, Daley GQ. BCR-ABL and v-SRC tyrosine kinase oncoproteins support normal erythroid development in erythropoietin receptor-deficient progenitor cells. Proc Natl Acad Sci U S A 1999; 96:13186-90. [PMID: 10557295 PMCID: PMC23922 DOI: 10.1073/pnas.96.23.13186] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Erythropoietin (Epo)-independent differentiation of erythroid progenitors is a major characteristic of myeloproliferative disorders, including chronic myeloid leukemia. Epo receptor (EpoR) signaling is crucial for normal erythroid development, as evidenced by the properties of Epo(-/-) and EpoR(-/-) mice, which contain a normal number of fetal liver erythroid progenitors but die in utero from a severe anemia attributable to the absence of red cell maturation. Here we show that two constitutively active cytoplasmic protein tyrosine kinases, P210(BCR-ABL) and v-SRC, can functionally replace the EpoR and support full proliferation, differentiation, and maturation of fetal liver erythroid progenitors from EpoR(-/-) mice. These protein tyrosine kinases can also partially complement the myeloid growth factors IL-3, IL-6, and Steel factor, which are normally required in addition to Epo for erythroid development. Additionally, BCR-ABL mutants that lack residues necessary for transformation of fibroblasts or bone marrow cells can fully support normal erythroid development. These results demonstrate that activated tyrosine kinase oncoproteins implicated in tumorigenesis and human leukemia can functionally complement for cytokine receptor signaling pathways to support normal erythropoiesis in EpoR-deficient cells. Moreover, terminal differentiation of erythroid cells requires generic signals provided by activated protein tyrosine kinases and does not require a specific signal unique to a cytokine receptor.
Collapse
Affiliation(s)
- S Ghaffari
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
141
|
Darley RL, Burnett AK. Mutant RAS inhibits neutrophil but not macrophage differentiation and allows continued growth of neutrophil precursors. Exp Hematol 1999; 27:1599-608. [PMID: 10560907 DOI: 10.1016/s0301-472x(99)00100-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutational activation of RAS is the most common molecular abnormality in myeloid leukemias. In order to better understand its role in leukemogenesis, we have devised a model based on the multipotent cell line, FDCP-mix. We show that expression of mutant RAS in FDCP-mix strongly inhibits terminal neutrophil differentiation under the influence of G-CSF plus GM-CSF at the metamyelocyte stage, whereas macrophage differentiation was unaffected. In addition, whereas control cultures differentiated and became postmitotic under these conditions, FDCP-mix cells expressing mutant RAS continued to proliferate indefinitely while maintaining a metamyelocytic phenotype. Labeling of these cultures with the fluorescent tracking dye, PKH26, showed that this extended proliferative capacity resulted from continued division of metamyelocytes in the culture. Dissection of the growth factor response of these cells demonstrated that GM-CSF was critical in maintaining proliferation and inhibiting the differentiation of these cells. We further show the block in neutrophil differentiation could be partially overcome by treatment with low-dose Ara C, suggesting that maintenance of cell cycle progression may be partly responsible for the anti-differentiation effect of this oncogene. These findings suggest that activation of RAS is able to specifically inhibit terminal neutrophil differentiation and in so doing promotes continued division of metamyelocyte cells.
Collapse
Affiliation(s)
- R L Darley
- Department of Haematology, University of Wales College of Medicine, Cardiff, United Kingdom.
| | | |
Collapse
|
142
|
Gross AW, Zhang X, Ren R. Bcr-Abl with an SH3 deletion retains the ability To induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy. Mol Cell Biol 1999; 19:6918-28. [PMID: 10490629 PMCID: PMC84687 DOI: 10.1128/mcb.19.10.6918] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The bcr-abl oncogene plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). The fusion of Bcr sequences to Abl constitutively activates the Abl protein tyrosine kinase. We have recently shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces in mice a myeloproliferative disease resembling human CML and that Abl kinase activity is essential for Bcr-Abl to induce a CML-like myeloproliferative disease. However, it is not known if activation of the Abl kinase alone is sufficient to induce a myeloproliferative disease. In this study, we examined the role of the Abl SH3 domain of Bcr-Abl in induction of myeloproliferative disease and tested whether c-Abl activated by SH3 deletion can induce a CML-like disease. We found that Bcr-Abl with an Abl SH3 deletion still induced a CML-like disease in mice. In contrast, c-Abl activated by SH3 deletion induced only lymphoid malignancies in mice and did not stimulate the growth of myeloid colonies from 5-fluorouracil-treated bone marrow cells in vitro. These results indicate that Bcr sequences in Bcr-Abl play additional roles in inducing myeloproliferative disease beyond simply activating the Abl kinase domain and that functions of the Abl SH3 domain are either not required or redundant in Bcr-Abl-induced myeloproliferative disease. The results also suggest that the type of hematological neoplasm induced by an abl oncogene is influenced not only by what type of hematopoietic cells the oncogene is targeted into but also by the intrinsic oncogenic properties of the particular abl oncogene. In addition, we found that DeltaSH3 c-Abl induced less activation of Akt and STAT5 than did Bcr-Abl, suggesting that activation of these pathways plays a critical role in inducing a CML-like disease.
Collapse
Affiliation(s)
- A W Gross
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | |
Collapse
|
143
|
Peters KL, Smithgall TE. Tyrosine phosphorylation enhances the SH2 domain-binding activity of Bcr and inhibits Bcr interaction with 14-3-3 proteins. Cell Signal 1999; 11:507-14. [PMID: 10405761 DOI: 10.1016/s0898-6568(99)00021-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cellular Bcr protein consists of an N-terminal serine/threonine kinase domain, a central guanine nucleotide exchange factor homology region and a C-terminal GTPase-activating protein domain. Previous work in our laboratory established that Bcr is a major transformation-related substrate for the v-Fps tyrosine kinase, and tyrosine phosphorylation of Bcr induces Bcr-Grb-2/SOS association in vivo through the Src homology 2 (SH2) domain of Grb-2. In the present study, we mapped the region of Bcr tyrosine phosphorylation by c-Fes, the human homologue of v-Fps, to Bcr N-terminal amino acids 162-413 by using a baculovirus/Sf-9 cell co-expression system. Tyrosine phosphorylation of Bcr by Fes greatly enhanced the binding of Bcr to the SH2 domains of multiple signalling molecules in vitro, including Grb-2, Ras GTPase activating protein, phospholipase C-gamma, the 85,000 M(r) subunit of phosphatidylinositol 3'-kinase, and the Abl tyrosine kinase. In contrast with SH2 binding, tyrosine phosphorylation of Bcr reduced its ability to associate with the 14-3-3 protein Bap-1 (Bcr-associated protein-1), a Bcr substrate and member of a family of phosphoserine-binding adaptor proteins. These experiments provide in vitro evidence that tyrosine phosphorylation may modulate the interaction of Bcr with multiple growth-regulatory signalling pathways.
Collapse
Affiliation(s)
- K L Peters
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha 68198, USA
| | | |
Collapse
|
144
|
Zou X, Calame K. Signaling pathways activated by oncogenic forms of Abl tyrosine kinase. J Biol Chem 1999; 274:18141-4. [PMID: 10373409 DOI: 10.1074/jbc.274.26.18141] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- X Zou
- Department of Biochemistry and Molecular Biophysics and Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
145
|
Oliff A. Farnesyltransferase inhibitors: targeting the molecular basis of cancer. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:C19-30. [PMID: 10382537 DOI: 10.1016/s0304-419x(99)00007-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
146
|
Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, Skorski T. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189:1229-42. [PMID: 10209040 PMCID: PMC2193033 DOI: 10.1084/jem.189.8.1229] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)5 is constitutively activated in BCR/ ABL-expressing cells, but the mechanisms and functional consequences of such activation are unknown. We show here that BCR/ABL induces phosphorylation and activation of STAT5 by a mechanism that requires the BCR/ABL Src homology (SH)2 domain and the proline-rich binding site of the SH3 domain. Upon expression in 32Dcl3 growth factor-dependent myeloid precursor cells, STAT5 activation-deficient BCR/ABL SH3+SH2 domain mutants functioned as tyrosine kinase and activated Ras, but failed to protect from apoptosis induced by withdrawal of interleukin 3 and/or serum and did not induce leukemia in severe combined immunodeficiency mice. In complementation assays, expression of a dominant-active STAT5B mutant (STAT5B-DAM), but not wild-type STAT5B (STAT5B-WT), in 32Dcl3 cells transfected with STAT5 activation-deficient BCR/ABL SH3+SH2 mutants restored protection from apoptosis, stimulated growth factor-independent cell cycle progression, and rescued the leukemogenic potential in mice. Moreover, expression of a dominant-negative STAT5B mutant (STAT5B-DNM) in 32Dcl3 cells transfected with wild-type BCR/ABL inhibited apoptosis resistance, growth factor-independent proliferation, and the leukemogenic potential of these cells. In retrovirally infected mouse bone marrow cells, expression of STAT5B-DNM inhibited BCR/ABL-dependent transformation. Moreover, STAT5B-DAM, but not STAT5B-WT, markedly enhanced the ability of STAT5 activation-defective BCR/ABL SH3+SH2 mutants to induce growth factor-independent colony formation of primary mouse bone marrow progenitor cells. However, STAT5B-DAM did not rescue the growth factor-independent colony formation of kinase-deficient K1172R BCR/ABL or the triple mutant Y177F+R522L+ Y793F BCR/ABL, both of which also fail to activate STAT5. Together, these data demonstrate that STAT5 activation by BCR/ABL is dependent on signaling from more than one domain and document the important role of STAT5-regulated pathways in BCR/ABL leukemogenesis.
Collapse
Affiliation(s)
- M Nieborowska-Skorska
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
AbstractThe Bcr-Abl oncogene, found in Philadelphia chromosome-positive myelogenous leukemia (CML), activates Ras and triggers the stress-activated protein kinase (SAPK or Jun NH2-terminal kinase [JNK]) pathway. Interruption of Ras or SAPK activation dramatically reduces Bcr-Abl–mediated transformation. Here, we report that Bcr-Abl through a Ras-dependent pathway signals the serine/threonine protein kinase GCKR (Germinal Center Kinase Related) leading to SAPK activation. Either an oncogenic form of Ras or Bcr-Abl enhances GCKR catalytic activity and its activation of SAPK, whereas inhibition of GCKR impairs Bcr-Abl–induced SAPK activation. Bcr-Abl mutants that are impaired for GCKR activation are also unable to activate SAPK. Consistent with GCKR being a functional target in CML, GCKR is constitutively active in CML cell lines and found in association with Bcr-Abl. Our results indicate that GCKR is a downstream target of Bcr-Abl and strongly implicate GCKR as a mediator of Bcr-Abl in its transformation of cells.
Collapse
|
148
|
GCKR Links the Bcr-Abl Oncogene and Ras to the Stress-Activated Protein Kinase Pathway. Blood 1999. [DOI: 10.1182/blood.v93.4.1338.404k27_1338_1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bcr-Abl oncogene, found in Philadelphia chromosome-positive myelogenous leukemia (CML), activates Ras and triggers the stress-activated protein kinase (SAPK or Jun NH2-terminal kinase [JNK]) pathway. Interruption of Ras or SAPK activation dramatically reduces Bcr-Abl–mediated transformation. Here, we report that Bcr-Abl through a Ras-dependent pathway signals the serine/threonine protein kinase GCKR (Germinal Center Kinase Related) leading to SAPK activation. Either an oncogenic form of Ras or Bcr-Abl enhances GCKR catalytic activity and its activation of SAPK, whereas inhibition of GCKR impairs Bcr-Abl–induced SAPK activation. Bcr-Abl mutants that are impaired for GCKR activation are also unable to activate SAPK. Consistent with GCKR being a functional target in CML, GCKR is constitutively active in CML cell lines and found in association with Bcr-Abl. Our results indicate that GCKR is a downstream target of Bcr-Abl and strongly implicate GCKR as a mediator of Bcr-Abl in its transformation of cells.
Collapse
|
149
|
Abstract
The patterns of genetic change, clonal evolution, natural history and latency are very different in the paediatric leukaemias compared with adult epithelial cancers but are similar to those in other childhood cancers of mesenchymal stem cell origin. This distinction has a biological logic in the context of the selective pressures for clonal emergence in different developmental and cellular contexts and has a major impact on curability. Most childhood leukaemias and some other mesenchymal stem cell tumours are of fetal origin and can metastasize without corruption of restraints on cell proliferation or bypassing apoptosis. In marked contrast to most invasive or metastatic epithelial carcinomas in adults, these former cancers then retain sensitivity to therapeutic apoptosis. Moreover, their abbreviated and less complex evolutionary status is associated with less genetic diversity and instability, minimising opportunity for clonal selection for resistance. A minority of leukaemias in children and a higher fraction in adults do, however, have genetic alterations that bypass cell cycle controls and apoptosis imposition. These are the 'bad news' genotypes. The cellular and molecular diversity of acute leukaemia impacts also on aetiology. Paediatric acute leukaemias can be initiated prenatally by illegitimate recombination and fusion gene formation in fetal haemopoiesis. For acute lymphoblastic leukaemia (ALL) in children, twin studies suggest that a secondary postnatal molecular event is also required. This may be promoted by an abnormal or delayed response to common infections. Even for a classic case of a cancer that is intrinsically curable by systematic chemotherapy i.e. childhood ALL, prevention may turn out to be the preferred option.
Collapse
Affiliation(s)
- M Greaves
- LRF Centre for the Cell and Molecular Biology of Leukaemia, Chester Beatty Laboratories, London, U.K.
| |
Collapse
|
150
|
Verfaillie CM. Chronic myelogenous leukemia: from pathogenesis to therapy. JOURNAL OF HEMATOTHERAPY 1999; 8:3-13. [PMID: 10192297 DOI: 10.1089/106161299320523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
MESH Headings
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Oncogenes
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- C M Verfaillie
- Department of Medicine, University of Minnesota Cancer Center, Minneapolis 55455, USA
| |
Collapse
|