101
|
Tong W, Wang Y, Lu Y, Ye T, Song C, Xu Y, Li M, Ding J, Duan Y, Zhang L, Gu W, Zhao X, Yang XA, Jin D. Whole-exome Sequencing Helps the Diagnosis and Treatment in Children with Neurodevelopmental Delay Accompanied Unexplained Dyspnea. Sci Rep 2018; 8:5214. [PMID: 29581464 PMCID: PMC5980106 DOI: 10.1038/s41598-018-23503-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodevelopmental delay accompanied unexplained dyspnea is a highly lethal disease in clinic. This study is to investigate the performance characteristics of trio whole exome sequencing (Trio-WES) in a pediatric setting by presenting our patient cohort and displaying the diagnostic yield. A total of 31 pediatric patients showing neurodevelopmental delay accompanied unexplained dyspnea were admitted to our hospital and referred for molecular genetic testing using Trio-WES. Eight genes namely MMACHC, G6PC, G6PT, ETFDH, OTC, NDUFAF5, SLC22A5, and MAGEL2 were suspected to be responsible for the onset of the clinical symptoms and 6 variants were novel. Standard interpretation according to ACMG guideline showed that the variants were pathogenic. Finally, diagnosis of methylmalonic aciduria and homocystinuria, glycogen storage disease, ornithine transcarbamylase deficiency, glutaric acidemia II, mitochondrial complex 1 deficiency, carnitine deficiency, and Schaaf-Yang syndrome was made in 12 out of the 31 patients. Trio-WES is an effective means for molecular diagnosis of infantile neurodevelopmental delay accompanied unexplained dyspnea. As for molecular etiology identification, when routine potential monogenetic inheritance patterns including de novo, autosomal recessive, autosomal dominant, and X-linked recessive inheritance analysis is negative, physicians should take into account imprinted genes.
Collapse
Affiliation(s)
- Wenjia Tong
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Yajian Wang
- Joy Orient Translational Medicine Research Center Co., Ltd, Beijing, 100875, P.R. China
| | - Yun Lu
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, P.R. China
| | - Tongsheng Ye
- Neonatal Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Conglei Song
- Department of Neurology, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Yuanyuan Xu
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Min Li
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Jie Ding
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Yuanyuan Duan
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Le Zhang
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Weiyue Gu
- Joy Orient Translational Medicine Research Center Co., Ltd, Beijing, 100875, P.R. China
| | - Xiaoling Zhao
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China
| | - Xiu-An Yang
- Beijing Scientific Operation Biotechnology Co., Ltd., Beijing, 100121, P.R. China. .,Cardiac Center Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Danqun Jin
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, 230029, P.R. China.
| |
Collapse
|
102
|
Kotler J, Haig D. The tempo of human childhood: a maternal foot on the accelerator, a paternal foot on the brake. Evol Anthropol 2018; 27:80-91. [PMID: 29575348 PMCID: PMC5947556 DOI: 10.1002/evan.21579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/08/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Relative to the life history of other great apes, that of humans is characterized by early weaning and short interbirth intervals (IBIs). We propose that in modern humans, birth until adrenarche, or the rise in adrenal androgens, developmentally corresponds to the period from birth until weaning in great apes and ancestral hominins. According to this hypothesis, humans achieved short IBIs by subdividing ancestral infancy into a nurseling phase, during which offspring fed at the breast, and a weanling phase, during which offspring fed specially prepared foods. Imprinted genes influence the timing of human weaning and adrenarche, with paternally expressed genes promoting delays in childhood maturation and maternally expressed genes promoting accelerated maturation. These observations suggest that the tempo of human development has been shaped by consequences for the fitness of kin, with faster development increasing maternal fitness at a cost to child fitness. The effects of imprinted genes suggest that the duration of the juvenile period (adrenarche until puberty) has also been shaped by evolutionary conflicts within the family.
Collapse
Affiliation(s)
| | - David Haig
- Harvard University, Department of Organismic & Evolutionary Biology
| |
Collapse
|
103
|
Yang S, Zhao N, Yang Y, Hu Y, Dong H, Zhao R. Mitotically Stable Modification of DNA Methylation in IGF2/H19 Imprinting Control Region Is Associated with Activated Hepatic IGF2 Expression in Offspring Rats from Betaine-Supplemented Dams. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2704-2713. [PMID: 29376352 DOI: 10.1021/acs.jafc.7b05418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.
Collapse
Affiliation(s)
- Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Haibo Dong
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| |
Collapse
|
104
|
Roy SW. Intragenomic Conflict and Immune Tolerance: Do Selfish X-Linked Alleles Drive Skewed X Chromosome Inactivation? Genome Biol Evol 2018; 10:857-862. [PMID: 29092048 PMCID: PMC5861445 DOI: 10.1093/gbe/evx221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2017] [Indexed: 12/18/2022] Open
Abstract
In mammalian females, diploid somatic cells contain two X chromosomes, one of which is transcriptionally silenced, in a process termed X chromosome inactivation (XCI). Whereas XCI is largely random in placental females, many women exhibit skewed XCI (SXCI), in which the vast majority cells have the same X chromosome inactivated. SXCI has serious health consequences, associated with conditions ranging from Alzheimer’s to various autoimmune disorders. SXCI is also associated with outcomes of pregnancies, with higher rates of recurrent spontaneous abortion in women with SXCI. Here, I suggest that SXCI could be driven by selfish X-linked alleles. Consistent with the association of SXCI with autoimmunity, I first note the possibility that recurrent spontaneous abortion could reflect immune rejection of fetuses inheriting alleles from the largely silenced maternal X chromosome. Preferential abortion of fetuses carrying silenced X-linked alleles implies a transmission advantage for X-linked alleles on the largely expressed chromosome, which could drive the emergence of X-linked alleles that make the chromosome resistant to XCI. I discuss the evolutionary dynamics, fitness tradeoffs and implications of this hypothesis, and suggest future directions.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, San Francisco State University
| |
Collapse
|
105
|
Condon DE, Tran PV, Lien YC, Schug J, Georgieff MK, Simmons RA, Won KJ. Defiant: (DMRs: easy, fast, identification and ANnoTation) identifies differentially Methylated regions from iron-deficient rat hippocampus. BMC Bioinformatics 2018; 19:31. [PMID: 29402210 PMCID: PMC5800085 DOI: 10.1186/s12859-018-2037-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Identification of differentially methylated regions (DMRs) is the initial step towards the study of DNA methylation-mediated gene regulation. Previous approaches to call DMRs suffer from false prediction, use extreme resources, and/or require library installation and input conversion. RESULTS We developed a new approach called Defiant to identify DMRs. Employing Weighted Welch Expansion (WWE), Defiant showed superior performance to other predictors in the series of benchmarking tests on artificial and real data. Defiant was subsequently used to investigate DNA methylation changes in iron-deficient rat hippocampus. Defiant identified DMRs close to genes associated with neuronal development and plasticity, which were not identified by its competitor. Importantly, Defiant runs between 5 to 479 times faster than currently available software packages. Also, Defiant accepts 10 different input formats widely used for DNA methylation data. CONCLUSIONS Defiant effectively identifies DMRs for whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing (RRBS), Tet-assisted bisulfite sequencing (TAB-seq), and HpaII tiny fragment enrichment by ligation-mediated PCR-tag (HELP) assays.
Collapse
Affiliation(s)
- David E Condon
- Department of Genetics, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Yu-Chin Lien
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Jonathan Schug
- Department of Genetics, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Kyoung-Jae Won
- Department of Genetics, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
106
|
Patten MM. Selfish X chromosomes and speciation. Mol Ecol 2018; 27:3772-3782. [PMID: 29281152 DOI: 10.1111/mec.14471] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 12/24/2022]
Abstract
In two papers published at about the same time almost thirty years ago, Frank (Evolution, 45, 1991a, 262) and Hurst and Pomiankowski (Genetics, 128, 1991, 841) independently suggested that divergence of meiotic drive systems-comprising genes that cheat meiosis and genes that suppress this cheating-might provide a general explanation for Haldane's rule and the large X-effect in interspecific hybrids. Although at the time, the idea was met with skepticism and a conspicuous absence of empirical support, the tide has since turned. Some of the clearest mechanistic explanations we have for hybrid male sterility involve meiotic drive systems, and several other cases of hybrid sterility are suggestive of a role for meiotic drive. In this article, I review these ideas and their descendants and catalog the current evidence for the meiotic drive model of speciation. In addition, I suggest that meiotic drive is not the only intragenomic conflict to involve the X chromosome and contribute to hybrid incompatibility. Sexually and parentally antagonistic selection pressures can also pit the X chromosome and autosomes against each other. The resulting intragenomic conflicts should lead to co-evolution within populations and divergence between them, thus increasing the likelihood of incompatibilities in hybrids. I provide a sketch of these ideas and interpret some empirical patterns in the light of these additional X-autosome conflicts.
Collapse
Affiliation(s)
- Manus M Patten
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
107
|
Laird MK, McShea H, Murphy CR, McAllan BM, Shaw G, Renfree MB, Thompson MB. Non‐invasive placentation in the marsupials
Macropus eugenii
(Macropodidae) and
Trichosurus vulpecula
(Phalangeridae) involves redistribution of uterine Desmoglein‐2. Mol Reprod Dev 2018; 85:72-82. [DOI: 10.1002/mrd.22940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/10/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Melanie K. Laird
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Hanon McShea
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch InstituteUniversity of SydneySydneyNew South WalesAustralia
| | - Bronwyn M. McAllan
- School of Medical Sciences and Bosch InstituteUniversity of SydneySydneyNew South WalesAustralia
| | - Geoff Shaw
- School of BioSciencesUniversity of MelbourneVictoriaAustralia
| | | | - Michael B. Thompson
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
108
|
Arena R, Zacchini F, Toschi P, Palazzese L, Czernik M, Ptak GE. Developmental peculiarities in placentae of ovine uniparental conceptuses. PLoS One 2017; 12:e0188278. [PMID: 29190766 PMCID: PMC5708791 DOI: 10.1371/journal.pone.0188278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon regulating mono-allelic expression of genes depending on their parental origin. Defective genomic imprinting is involved in several placental disorders, such as intrauterine growth restriction and pre-eclampsia. Uniparental embryos, having maternal-only or paternal-only genomes (parthenogenotes [PAR] and androgenotes [AND], respectively), are useful models to study placentation. The aim of this work was to reveal the effect of parental genome (maternal and paternal) on placentation. To do this, uniparental (AND and PAR) and biparental (CTR) in vitro produced sheep embryos transferred to recipient females were collected at day 20 of pregnancy and their placentae were analyzed. qPCR analysis showed that imprinted genes (H19, IGF2R and DLK1) were expressed accordingly to their parental origin while the expression f DNA methyltransferases () was disregulated, especially in PAR (P < 0.05). AND placentae were significantly hypomethylated compared to both PAR and CTR (P = 0.023). Chorion-allantoid of AND showed impaired development of vessels and reduced mRNA expression of vasculogenetic factors (ANG2 P = 0.05; VEGFR2 P< 0.001; TIE2 P < 0.001). Morphologically, PAR placentae were characterized by abnormal structure of the trophoectodermal epithelium and reduced total number (P<0.03) of Trophoblastic Binucleate Cells. A reduced implantation rate of both classes of uniparental embryos (P<0.03) was also noted. Our results provide new insights into the characterization of uniparental embryos and demonstrate the complementary role of parental genomes for the correct establishment of pregnancy. Thus, our findings may suggest new targets to improve our understanding of the origin of imprinting-related placental dysfunction.
Collapse
Affiliation(s)
- Roberta Arena
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Federica Zacchini
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca Palazzese
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Grażyna Ewa Ptak
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
109
|
Wang L, Chang S, Wang Z, Wang S, Huo J, Ding G, Li R, Liu C, Shangguan S, Lu X, Zhang T, Qiu Z, Wu J. Altered GNAS imprinting due to folic acid deficiency contributes to poor embryo development and may lead to neural tube defects. Oncotarget 2017; 8:110797-110810. [PMID: 29340017 PMCID: PMC5762285 DOI: 10.18632/oncotarget.22731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/29/2017] [Indexed: 01/28/2023] Open
Abstract
Disturbed epigenetic modifications have been linked to the pathogenesis of Neural Tube Defects (NTDs) in those with folate deficiency during pregnancy. However, evidence is lacking to delineate the critical region in epigenome regulated by parental folic acid and mechanisms by which folate deficiency affects normal embryogenesis. Our data from clinical samples revealed the presence of aberrant DNA methylation in GNAS imprinting cluster in NTD samples with low folate concentrations. Results from mouse models indicated that the establishment of GNAS imprinting was influenced by both maternal and paternal folate-deficient diets. Such aberrant GNAS imprinting was present prior to the gametogenesis period. Imprinting in Exon1A/GNAS gDMR was abolished in both spermatozoa and oocytes upon treating with a parental folate-deficient diet (3.6% in spermatozoa, 9.8% in oocytes). Interestingly, loss of imprinting in the GNAS gene cluster altered chromatin structure to an overwhelmingly open structure (58.48% in the folate-free medium group vs. 39.51% in the folate-normal medium group; P < 0.05), and led to a disturbed expression of genes in this region. Furthermore, an elevated cyclic AMP levels was observed in folate acid deficiency group. Our results imply that GNAS imprinting plays major roles in folic acid metabolism regulation during embryogenesis. Aberrant GNAS imprinting is an attribute to NTDs, providing a new perspective for explaining the molecular mechanisms by which folate supplementation in human pregnancy provides protection from NTDs.
Collapse
Affiliation(s)
- Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Zhen Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Junsheng Huo
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Gangqiang Ding
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Rui Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Chi Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Xiaolin Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| |
Collapse
|
110
|
Gardner A, Úbeda F. The meaning of intragenomic conflict. Nat Ecol Evol 2017; 1:1807-1815. [PMID: 29109471 DOI: 10.1038/s41559-017-0354-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023]
Abstract
Recent years have seen an explosion of interest in genes that function for their own good and to the detriment of other genes that reside in the same genome. Such intragenomic conflicts are increasingly recognized to underpin maladaptation and disease. However, progress has been impeded by a lack of clear understanding regarding what intragenomic conflict actually means, and an associated obscurity concerning its fundamental drivers. Here we develop a general theory of intragenomic conflict in which genes are viewed as inclusive-fitness-maximizing agents that come into conflict when their inclusive-fitness interests disagree. This yields a classification of all intragenomic conflicts into three categories according to whether genes disagree about where they have come from, where they are going, or where they currently are. We illustrate each of these three basic categories, survey and classify all known forms of intragenomic conflict, and discuss the implications for organismal maladaptation and human disease.
Collapse
Affiliation(s)
- Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK.
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
111
|
The Genes of Life and Death: A Potential Role for Placental-Specific Genes in Cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201700091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/20/2017] [Indexed: 12/17/2022]
|
112
|
RNA-Seq Analyses Identify Frequent Allele Specific Expression and No Evidence of Genomic Imprinting in Specific Embryonic Tissues of Chicken. Sci Rep 2017; 7:11944. [PMID: 28931927 PMCID: PMC5607270 DOI: 10.1038/s41598-017-12179-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic and genetic cis-regulatory elements in diploid organisms may cause allele specific expression (ASE) – unequal expression of the two chromosomal gene copies. Genomic imprinting is an intriguing type of ASE in which some genes are expressed monoallelically from either the paternal allele or maternal allele as a result of epigenetic modifications. Imprinted genes have been identified in several animal species and are frequently associated with embryonic development and growth. Whether genomic imprinting exists in chickens remains debatable, as previous studies have reported conflicting evidence. Albeit no genomic imprinting has been reported in the chicken embryo as a whole, we interrogated the existence or absence of genomic imprinting in the 12-day-old chicken embryonic brain and liver by examining ASE in F1 reciprocal crosses of two highly inbred chicken lines (Fayoumi and Leghorn). We identified 5197 and 4638 ASE SNPs, corresponding to 18.3% and 17.3% of the genes with a detectable expression in the embryonic brain and liver, respectively. There was no evidence detected of genomic imprinting in 12-day-old embryonic brain and liver. While ruling out the possibility of imprinted Z-chromosome inactivation, our results indicated that Z-linked gene expression is partially compensated between sexes in chickens.
Collapse
|
113
|
Schultheiss CS, Laggai S, Czepukojc B, Hussein UK, List M, Barghash A, Tierling S, Hosseini K, Golob-Schwarzl N, Pokorny J, Hachenthal N, Schulz M, Helms V, Walter J, Zimmer V, Lammert F, Bohle RM, Dandolo L, Haybaeck J, Kiemer AK, Kessler SM. The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress 2017; 1:37-54. [PMID: 31225433 PMCID: PMC6551655 DOI: 10.15698/cst2017.10.105] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The long non-coding RNA (lncRNA) H19 represents a maternally expressed and epigenetically regulated imprinted gene product and is discussed to have either tumor-promoting or tumor-suppressive actions. Recently, H19 was shown to be regulated under inflammatory conditions. Therefore, aim of this study was to determine the function of H19 in hepatocellular carcinoma (HCC), an inflammation-associated type of tumor. In four different human HCC patient cohorts H19 was distinctly downregulated in tumor tissue compared to normal or non-tumorous adjacent tissue. We therefore determined the action of H19 in three different human hepatoma cell lines (HepG2, Plc/Prf5, and Huh7). Clonogenicity and proliferation assays showed that H19 overexpression could suppress tumor cell survival and proliferation after treatment with either sorafenib or doxorubicin, suggesting chemosensitizing actions of H19. Since HCC displays a highly chemoresistant tumor entity, cell lines resistant to doxorubicin or sorafenib were established. In all six chemoresistant cell lines H19 expression was significantly downregulated. The promoter methylation of the H19 gene was significantly different in chemoresistant cell lines compared to their sensitive counterparts. Chemoresistant cells were sensitized after H19 overexpression by either increasing the cytotoxic action of doxorubicin or decreasing cell proliferation upon sorafenib treatment. An H19 knockout mouse model (H19Δ3) showed increased tumor development and tumor cell proliferation after treatment with the carcinogen diethylnitrosamine (DEN) independent of the reciprocally imprinted insulin-like growth factor 2 (IGF2). In conclusion, H19 suppresses hepatocarcinogenesis, hepatoma cell growth, and HCC chemoresistance. Thus, mimicking H19 action might be a potential target to overcome chemoresistance in future HCC therapy.
Collapse
Affiliation(s)
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Usama K Hussein
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Faculty of Science, Beni-Suef University, Bani Suwaif, Egypt
| | - Markus List
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Ahmad Barghash
- School of Electrical Engineering and Information Technology, German Jordanian University, Amman, Jordan
| | - Sascha Tierling
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Kevan Hosseini
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | - Juliane Pokorny
- Institute of Pathology, Saarland University, Campus Homburg, Homburg (Saar), Germany
| | - Nina Hachenthal
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Marcel Schulz
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Cluster of Excellence in Multimodal Computing and Interaction, Saarland Informatics Campus, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Vincent Zimmer
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg (Saar), Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg (Saar), Germany
| | - Rainer M Bohle
- Institute of Pathology, Saarland University, Campus Homburg, Homburg (Saar), Germany
| | - Luisa Dandolo
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, Graz, Austria.,Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
114
|
Jangam D, Feschotte C, Betrán E. Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet 2017; 33:817-831. [PMID: 28844698 DOI: 10.1016/j.tig.2017.07.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
Transposable elements (TEs) are selfish genetic units that typically encode proteins that enable their proliferation in the genome and spread across individual hosts. Here we review a growing number of studies that suggest that TE proteins have often been co-opted or 'domesticated' by their host as adaptations to a variety of evolutionary conflicts. In particular, TE-derived proteins have been recurrently repurposed as part of defense systems that protect prokaryotes and eukaryotes against the proliferation of infectious or invasive agents, including viruses and TEs themselves. We argue that the domestication of TE proteins may often be the only evolutionary path toward the mitigation of the cost incurred by their own selfish activities.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
115
|
John RM. Imprinted genes and the regulation of placental endocrine function: Pregnancy and beyond. Placenta 2017; 56:86-90. [DOI: 10.1016/j.placenta.2017.01.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
|
116
|
Wells JCK, Nesse RM, Sear R, Johnstone RA, Stearns SC. Evolutionary public health: introducing the concept. Lancet 2017; 390:500-509. [PMID: 28792412 DOI: 10.1016/s0140-6736(17)30572-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/02/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Randolph M Nesse
- Centre for Evolution and Medicine, Arizona State University, Phoenix, AZ, USA
| | - Rebecca Sear
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Stephen C Stearns
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
117
|
He H, Ye A, Perera BPU, Kim J. YY1's role in the Peg3 imprinted domain. Sci Rep 2017; 7:6427. [PMID: 28743993 PMCID: PMC5526879 DOI: 10.1038/s41598-017-06817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022] Open
Abstract
The ICR (Imprinting Control Region) of the Peg3 (Paternally Expressed Gene 3) domain contains an unusual cluster of YY1 binding sites. In the current study, these YY1 binding sites were mutated to characterize the unknown roles in the mouse Peg3 domain. According to the results, paternal and maternal transmission of the mutant allele did not cause any major effect on the survival of the pups. In the mutants, the maternal-specific DNA methylation on the ICR was properly established and maintained, causing no major effect on the imprinting of the domain. In contrast, the paternal transmission resulted in changes in the expression levels of several genes: down-regulation of Peg3 and Usp29 and up-regulation of Zim1. These changes were more pronounced during the neonatal stage than during the adult stage. In the case of Peg3 and Zim1, the levels of the observed changes were also different between males and females, suggesting the different degrees of YY1 involvement between two sexes. Overall, the results indicated that YY1 is mainly involved in controlling the transcriptional levels, but not the DNA methylation, of the Peg3 domain.
Collapse
Affiliation(s)
- Hongzhi He
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - An Ye
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
118
|
Saldivar Lemus Y, Vielle-Calzada JP, Ritchie MG, Macías Garcia C. Asymmetric paternal effect on offspring size linked to parent-of-origin expression of an insulin-like growth factor. Ecol Evol 2017. [PMID: 28649356 PMCID: PMC5478053 DOI: 10.1002/ece3.3025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sexual reproduction brings together reproductive partners whose long‐term interests often differ, raising the possibility of conflict over their reproductive investment. Males that enhance maternal investment in their offspring gain fitness benefits, even if this compromises future reproductive investment by iteroparous females. When the conflict occurs at a genomic level, it may be uncovered by crossing divergent populations, as a mismatch in the coevolved patterns of paternal manipulation and maternal resistance may generate asymmetric embryonic growth. We report such an asymmetry in reciprocal crosses between populations of the fish Girardinichthys multiradiatus. We also show that a fragment of a gene which can influence embryonic growth (Insulin‐Like Growth Factor 2; igf2) exhibits a parent‐of‐origin methylation pattern, where the maternally inherited igf2 allele has much more 5′ cytosine methylation than the paternally inherited allele. Our findings suggest that male manipulation of maternal investment may have evolved in fish, while the parent‐of‐origin methylation pattern appears to be a potential candidate mechanism modulating this antagonistic coevolution process. However, disruption of other coadaptive processes cannot be ruled out, as these can lead to similar effects as conflict.
Collapse
|
119
|
Jiang J, Shen B, O’Connell JR, VanRaden PM, Cole JB, Ma L. Dissection of additive, dominance, and imprinting effects for production and reproduction traits in Holstein cattle. BMC Genomics 2017; 18:425. [PMID: 28558656 PMCID: PMC5450346 DOI: 10.1186/s12864-017-3821-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/25/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Although genome-wide association and genomic selection studies have primarily focused on additive effects, dominance and imprinting effects play an important role in mammalian biology and development. The degree to which these non-additive genetic effects contribute to phenotypic variation and whether QTL acting in a non-additive manner can be detected in genetic association studies remain controversial. RESULTS To empirically answer these questions, we analyzed a large cattle dataset that consisted of 42,701 genotyped Holstein cows with genotyped parents and phenotypic records for eight production and reproduction traits. SNP genotypes were phased in pedigree to determine the parent-of-origin of alleles, and a three-component GREML was applied to obtain variance decomposition for additive, dominance, and imprinting effects. The results showed a significant non-zero contribution from dominance to production traits but not to reproduction traits. Imprinting effects significantly contributed to both production and reproduction traits. Interestingly, imprinting effects contributed more to reproduction traits than to production traits. Using GWAS and imputation-based fine-mapping analyses, we identified and validated a dominance association signal with milk yield near RUNX2, a candidate gene that has been associated with milk production in mice. When adding non-additive effects into the prediction models, however, we observed little or no increase in prediction accuracy for the eight traits analyzed. CONCLUSIONS Collectively, our results suggested that non-additive effects contributed a non-negligible amount (more for reproduction traits) to the total genetic variance of complex traits in cattle, and detection of QTLs with non-additive effect is possible in GWAS using a large dataset.
Collapse
Affiliation(s)
- Jicai Jiang
- Department of Animal and Avian Sciences, University of Maryland, 2123 Animal Science Building, College Park, MD 20742 USA
| | - Botong Shen
- Department of Animal and Avian Sciences, University of Maryland, 2123 Animal Science Building, College Park, MD 20742 USA
| | | | - Paul M. VanRaden
- Animal Genomics and Improvement Laboratory, USDA, Building 5, Beltsville, MD 20705 USA
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, USDA, Building 5, Beltsville, MD 20705 USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, 2123 Animal Science Building, College Park, MD 20742 USA
| |
Collapse
|
120
|
Hillman PR, Christian SGB, Doan R, Cohen ND, Konganti K, Douglas K, Wang X, Samollow PB, Dindot SV. Genomic imprinting does not reduce the dosage of UBE3A in neurons. Epigenetics Chromatin 2017; 10:27. [PMID: 28515788 PMCID: PMC5433054 DOI: 10.1186/s13072-017-0134-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ubiquitin protein E3A ligase gene (UBE3A) gene is imprinted with maternal-specific expression in neurons and biallelically expressed in all other cell types. Both loss-of-function and gain-of-function mutations affecting the dosage of UBE3A are associated with several neurodevelopmental syndromes and psychological conditions, suggesting that UBE3A is dosage-sensitive in the brain. The observation that loss of imprinting increases the dosage of UBE3A in brain further suggests that inactivation of the paternal UBE3A allele evolved as a dosage-regulating mechanism. To test this hypothesis, we examined UBE3A transcript and protein levels among cells, tissues, and species with different imprinting states of UBE3A. RESULTS Overall, we found no correlation between the imprinting status and dosage of UBE3A. Importantly, we found that maternal Ube3a protein levels increase in step with decreasing paternal Ube3a protein levels during neurogenesis in mouse, fully compensating for loss of expression of the paternal Ube3a allele in neurons. CONCLUSIONS Based on our findings, we propose that imprinting of UBE3A does not function to reduce the dosage of UBE3A in neurons but rather to regulate some other, as yet unknown, aspect of gene expression or protein function.
Collapse
Affiliation(s)
- Paul R. Hillman
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
| | - Sarah G. B. Christian
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Ryan Doan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Interdisciplinary Genetics Program, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
| | - Kranti Konganti
- Institute for Genome Science and Society, Texas A&M University, College Station, TX 77845 USA
| | - Kory Douglas
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Paul B. Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Scott V. Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843 USA
| |
Collapse
|
121
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
122
|
Abstract
Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.
Collapse
Affiliation(s)
- Andrew Chess
- Department of Genetics and Genomic Sciences, Department of Developmental and Regenerative Biology, Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574;
| |
Collapse
|
123
|
Ueda M, Aichinger E, Gong W, Groot E, Verstraeten I, Vu LD, De Smet I, Higashiyama T, Umeda M, Laux T. Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes Dev 2017; 31:617-627. [PMID: 28404632 PMCID: PMC5393056 DOI: 10.1101/gad.292409.116] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/13/2017] [Indexed: 11/25/2022]
Abstract
In this study, Ueda et al. show that paternal SSP/YDA signaling directly phosphorylates WRKY2 that in turn up-regulates transcription of the major patterning gene WOX8 in the plant zygote. Their results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning in plants. In many plants, the asymmetric division of the zygote sets up the apical–basal axis of the embryo. Unlike animals, plant zygotes are transcriptionally active, implying that plants have evolved specific mechanisms to control transcriptional activation of patterning genes in the zygote. In Arabidopsis, two pathways have been found to regulate zygote asymmetry: YODA (YDA) mitogen-activated protein kinase (MAPK) signaling, which is potentiated by sperm-delivered mRNA of the SHORT SUSPENSOR (SSP) membrane protein, and up-regulation of the patterning gene WOX8 by the WRKY2 transcription factor. How SSP/YDA signaling is transduced into the nucleus and how these pathways are integrated have remained elusive. Here we show that paternal SSP/YDA signaling directly phosphorylates WRKY2, which in turn leads to the up-regulation of WOX8 transcription in the zygote. We further discovered the transcription factors HOMEODOMAIN GLABROUS11/12 (HDG11/12) as maternal regulators of zygote asymmetry that also directly regulate WOX8 transcription. Our results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning.
Collapse
Affiliation(s)
- Minako Ueda
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.,Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Laboratory of Plant Growth Regulation, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Ernst Aichinger
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Wen Gong
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Edwin Groot
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Inge Verstraeten
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.,Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Exploratory Research for Advanced Technology (ERATO), Japan Science and Tech Agency (JST), Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masaaki Umeda
- Laboratory of Plant Growth Regulation, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan.,CREST, JST, Ikoma, Nara 630-0192 Japan
| | - Thomas Laux
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
124
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|
125
|
Ellery SJ, Della Gatta PA, Bruce CR, Kowalski GM, Davies-Tuck M, Mockler JC, Murthi P, Walker DW, Snow RJ, Dickinson H. Creatine biosynthesis and transport by the term human placenta. Placenta 2017; 52:86-93. [PMID: 28454702 DOI: 10.1016/j.placenta.2017.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Creatine is an amino acid derivative that is involved in preserving ATP homeostasis. Previous studies suggest an important role for the creatine kinase circuit for placental ATP turnover. Creatine is obtained from both the diet and endogenous synthesis, usually along the renal-hepatic axis. However, some tissues with a high-energy demand have an inherent capacity to synthesise creatine. In this study, we determined if the term human placenta has the enzymatic machinary to synthesise creatine. METHODS Eleven placentae were collected following elective term caesarean section. Samples from the 4 quadrants of each placenta were either fixed in formalin or frozen. qPCR was used to determine the mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (SLC6A8). Protein expression of AGAT and GAMT was quantified by Western blot, and observations of cell localisation of AGAT, GAMT and SLC6A8 made with immunohistochemistry. Synthesis of guanidinoacetate (GAA; creatine precursor) and creatine in placental homogenates was determined via GC-MS and HPLC, respectively. RESULTS AGAT, GAMT and SLC6A8 mRNA and protein were detected in the human placenta. AGAT staining was identified in stromal and endothelial cells of the fetal capillaries. GAMT and SLC6A8 staining was localised to the syncytiotrophoblast of the fetal villi. Ex vivo, tissue homogenates produce both GAA (4.6 nmol mg protein-1h-1) and creatine (52.8 nmol mg protein-1h-1). DISCUSSION The term human placenta has the capacity to synthesise creatine. These data present a new understanding of placental energy metabolism.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus, Melbourne, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus, Melbourne, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus, Melbourne, Australia
| | - Miranda Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Joanne C Mockler
- Department of Obstetrics and Gynaecology, Monash University & Monash Health, Melbourne, Australia
| | - Padma Murthi
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Rod J Snow
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus, Melbourne, Australia
| | - Hayley Dickinson
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.
| |
Collapse
|
126
|
Hollegaard B, Lykke JA, Boomsma JJ. Time from pre-eclampsia diagnosis to delivery affects future health prospects of children. EVOLUTION MEDICINE AND PUBLIC HEALTH 2017; 2017:53-66. [PMID: 28421136 PMCID: PMC5387983 DOI: 10.1093/emph/eox004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Background and objectives Pre-eclampsia often has detrimental health effects for pregnant women and their fetuses, but whether exposure in the womb has long-term health-consequences for children as they grow up remains poorly understood. We assessed overall morbidity of children following exposure to either mild or severe pre-eclampsia up to 30 years after birth and related disease risks to duration of exposure, i.e. the time from diagnosis to delivery. Methodology We did a registry-based retrospective cohort study in Denmark covering the years 1979–2009, using the separate diagnoses of mild and severe pre-eclampsia and the duration of exposure as predictor variables for specific and overall risks of later disease. We analysed 3 537 525 diagnoses for 14 disease groups, accumulated by 758 524 singleton children, after subdividing deliveries in six gestational age categories, partialing out effects of eight potentially confounding factors. Results Exposure to mild pre-eclampsia appeared to have consistent negative effects on health later in life, although only a few specific disease cases remained significant after corrections for multiple testing. Morbidity risks associated with mild pre-eclampsia were of similar magnitude as those associated with severe pre-eclampsia. Apart from this overall trend in number of diagnoses incurred across disease groups, hazard ratios for several disorders also increased with the duration of exposure, including disorders related to the metabolic syndrome. Conclusions and implications Maternal pre-eclampsia has lasting effects on offspring health and differences between exposure to severe and mild pre-eclampsia appear to be less than previously assumed. Our results suggest that it would be prudent to include the long-term health prospects of children in the complex clinical management of mild pre-eclampsia.
Collapse
Affiliation(s)
- Birgitte Hollegaard
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Lykke
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
127
|
Singh J, Clavijo Michelangeli JA, Gezan SA, Lee H, Vallejos CE. Maternal Effects on Seed and Seedling Phenotypes in Reciprocal F 1 Hybrids of the Common Bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2017; 8:42. [PMID: 28174586 PMCID: PMC5259735 DOI: 10.3389/fpls.2017.00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 05/21/2023]
Abstract
Maternal control of seed size in the common bean provides an opportunity to study genotype-independent seed weight effects on early seedling growth and development. We set out to test the hypothesis that the early heterotrophic growth of bean seedlings is determined by both the relative amount of cotyledon storage reserves and the genotype of the seedling, provided the hybrid genotype could be fully expressed in the seedlings. The hypothesis was tested via comparison of seed weight and seedling growth phenotypes of small-seeded (wild, ~0.10 g) and large-seeded (landrace, ~0.55 g) parents and their reciprocal F1 hybrids. Akaike's Information Criteria were used to estimate growth parameters and identify the phenotypic model that best represented the data. The analysis presented here indicates that the hybrid embryo genotype is not fully expressed during both seed and seedling growth and development. The analysis presented here shows that seed growth and development are controlled by the sporophyte. The strong similarity in seed size and shape of the reciprocal hybrid seed with seeds of the maternal parents is evidence of this control. The analysis also indicates that since the maternal sporophyte controls seed size and therefore the amount of cotyledon reserves, the maternal sporophyte indirectly controls early seedling growth because the cotyledons are the primary nutrient source during heterotrophic growth. The most interesting and surprising results indicated that the maternal effects extended to the root architecture of the reciprocal hybrid seedlings. This phenomenon could not be explained by seed size, but by alterations in the control of the pattern of gene expression of the seedling, which apparently was set by a maternally controlled mechanism. Although seed weight increase was the main target of bean domestication, it also had positive repercussions on early-growth traits and stand establishment.
Collapse
Affiliation(s)
- Jugpreet Singh
- Department of Horticultural Sciences, University of FloridaGainesville, FL, USA
| | | | - Salvador A. Gezan
- School of Forest Resources and Conservation, University of FloridaGainesville, FL, USA
| | - Hyungwon Lee
- Department of Horticultural Sciences, University of FloridaGainesville, FL, USA
| | - C. Eduardo Vallejos
- Department of Horticultural Sciences, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| |
Collapse
|
128
|
Rahat B, Mahajan A, Bagga R, Hamid A, Kaur J. Epigenetic modifications at DMRs of placental genes are subjected to variations in normal gestation, pathological conditions and folate supplementation. Sci Rep 2017; 7:40774. [PMID: 28098215 PMCID: PMC5241688 DOI: 10.1038/srep40774] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/01/2016] [Indexed: 01/13/2023] Open
Abstract
Invasive placentation and cancer development shares many similar molecular and epigenetic pathways. Paternally expressed, growth promoting genes (SNRPN, PEG10 and MEST) which are known to play crucial role in tumorogenesis, are not well studied during placentation. This study reports for the first time of the impact of gestational-age, pathological conditions and folic acid supplementation on dynamic nature of DNA and histone methylation present at their differentially methylated regions (DMRs). Here, we reported the association between low DNA methylation/H3K27me3 and higher expression of SNRPN, PEG10 and MEST in highly proliferating normal early gestational placenta. Molar and preeclamptic placental villi, exhibited aberrant changes in methylation levels at DMRs of these genes, leading to higher and lower expression of these genes, respectively, in reference to their respective control groups. Moreover, folate supplementation could induce gene specific changes in mRNA expression in placental cell lines. Further, MEST and SNRPN DMRs were observed to show the potential to act as novel fetal DNA markers in maternal plasma. Thus, variation in methylation levels at these DMRs regulate normal placentation and placental disorders. Additionally, the methylation at these DMRs might also be susceptible to folic acid supplementation and has the potential to be utilized in clinical diagnosis.
Collapse
Affiliation(s)
- Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rashmi Bagga
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, 180001, Jammu, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
129
|
Nonogaki H. Seed Biology Updates - Highlights and New Discoveries in Seed Dormancy and Germination Research. FRONTIERS IN PLANT SCIENCE 2017; 8:524. [PMID: 28443117 PMCID: PMC5387071 DOI: 10.3389/fpls.2017.00524] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/24/2017] [Indexed: 05/05/2023]
Abstract
An understanding of the biology of seeds has been greatly advanced in recent years. The progresses, particularly in the field of seed dormancy and germination research, have been made at a remarkable speed. Some of the possible epigenetic mechanisms, including an involvement of non-coding RNA, which were predicted for DELAY OF GERMINATION1 just a few years ago, have now been demonstrated with strong molecular and genetic evidence. Imprinting, or parent-of-origin-specific gene silencing/expression, which was characterized particularly for developing seeds, was also found in imbibed seeds and suggested for dormancy mechanisms. Hormone biology in seeds, which is the most advanced and almost a traditional area of seed research, also presents a new dimension. Upstream regulators of hormone metabolism and hormone transporters, such as abscisic acid and gibberellin influx/efflux carriers, have been identified. Characterization of the novel posttranslational modification pathways, including the N-end rule and S-nitrosylation pathways, which play a critical role in turnover of the major hormone signal transduction proteins, also expanded our knowledge about the complexity of hormone signaling in seeds. These progresses made at the molecular level are significant steps toward a better understanding of how seeds translate soil and other environmental signals into their internal hormone biology and make an important decision to stay dormant or commence with germination.
Collapse
|
130
|
Wojciechowicz B, Kotwica G, Kołakowska J, Zglejc K, Martyniak M, Franczak A. The alterations in endometrial and myometrial transcriptome at the time of maternal recognition of pregnancy in pigs. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
131
|
Parental and sexual conflicts over the Peg3 imprinted domain. Sci Rep 2016; 6:38136. [PMID: 27901122 PMCID: PMC5128876 DOI: 10.1038/srep38136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
In the current study, the imprinting control region of the mouse Peg3 domain was deleted to test its functional impact on animal growth and survival. The paternal transmission of the deletion resulted in complete abolition of the transcription of two paternally expressed genes, Peg3 and Usp29, causing the reduced body weight of the pups. In contrast, the maternal transmission resulted in the unexpected transcriptional up-regulation of the remaining paternal allele of both Peg3 and Usp29, causing the increased body weight and survival rates. Thus, the imprinted maternal allele of the ICR may be a suppressor antagonistic to the active paternal allele of the ICR, suggesting a potential intralocus allelic conflict. The opposite outcomes between the two transmissions also justify the functional compromise that the maternal allele has become epigenetically repressed rather than genetically deleted during mammalian evolution. The mice homozygous for the deletion develop normally but with a skewed sex ratio, one male per litter, revealing its sex-biased effect. Overall, the Peg3 locus may have evolved to an imprinted domain to cope with both parental and sexual conflicts driven by its growth-stimulating paternal versus growth-suppressing maternal alleles.
Collapse
|
132
|
Benonisdottir S, Oddsson A, Helgason A, Kristjansson RP, Sveinbjornsson G, Oskarsdottir A, Thorleifsson G, Davidsson OB, Arnadottir GA, Sulem G, Jensson BO, Holm H, Alexandersson KF, Tryggvadottir L, Walters GB, Gudjonsson SA, Ward LD, Sigurdsson JK, Iordache PD, Frigge ML, Rafnar T, Kong A, Masson G, Helgason H, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Epigenetic and genetic components of height regulation. Nat Commun 2016; 7:13490. [PMID: 27848971 PMCID: PMC5116096 DOI: 10.1038/ncomms13490] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023] Open
Abstract
Adult height is a highly heritable trait. Here we identified 31.6 million sequence variants by whole-genome sequencing of 8,453 Icelanders and tested them for association with adult height by imputing them into 88,835 Icelanders. Here we discovered 13 novel height associations by testing four different models including parent-of-origin (|β|=0.4-10.6 cm). The minor alleles of three parent-of-origin signals associate with less height only when inherited from the father and are located within imprinted regions (IGF2-H19 and DLK1-MEG3). We also examined the association of these sequence variants in a set of 12,645 Icelanders with birth length measurements. Two of the novel variants, (IGF2-H19 and TET1), show significant association with both adult height and birth length, indicating a role in early growth regulation. Among the parent-of-origin signals, we observed opposing parental effects raising questions about underlying mechanisms. These findings demonstrate that common variations affect human growth by parental imprinting.
Collapse
Affiliation(s)
| | | | - Agnar Helgason
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Department of Anthropology, University of Iceland, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | - Gerald Sulem
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.,Icelandic Cancer Registry, 105 Reykjavik, Iceland
| | | | | | - Lucas D Ward
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Paul D Iordache
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Reykjavik University, 101 Reykjavik, Iceland
| | | | | | - Augustine Kong
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | - Gisli Masson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
133
|
Greenberg MVC, Glaser J, Borsos M, Marjou FE, Walter M, Teissandier A, Bourc'his D. Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth. Nat Genet 2016; 49:110-118. [PMID: 27841881 DOI: 10.1038/ng.3718] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
The potential for early embryonic events to program epigenetic states that influence adult physiology remains an important question in health and development. Using the imprinted Zdbf2 locus as a paradigm for the early programming of phenotypes, we demonstrate here that chromatin changes that occur in the pluripotent embryo can be dispensable for embryogenesis but instead signal essential regulatory information in the adult. The Liz (long isoform of Zdbf2) transcript is transiently expressed in early embryos and embryonic stem cells (ESCs). This transcription locally promotes de novo DNA methylation upstream of the Zdbf2 promoter, which antagonizes Polycomb-mediated repression of Zdbf2. Strikingly, mouse embryos deficient for Liz develop normally but fail to activate Zdbf2 in the postnatal brain and show indelible growth reduction, implying a crucial role for a Liz-dependent epigenetic switch. This work provides evidence that transcription during an early embryonic timeframe can program a stable epigenetic state with later physiological consequences.
Collapse
Affiliation(s)
| | - Juliane Glaser
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Máté Borsos
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | | | - Marius Walter
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Aurélie Teissandier
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France.,École des Mines, Paris, France
| | - Déborah Bourc'his
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| |
Collapse
|
134
|
Byars SG, Boomsma JJ. Opposite differential risks for autism and schizophrenia based on maternal age, paternal age, and parental age differences. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:286-98. [PMID: 27637201 PMCID: PMC5026125 DOI: 10.1093/emph/eow023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
Background and objectives: Effects of maternal and paternal age on offspring autism and schizophrenia risks have been studied for over three decades, but inconsistent risks have often been found, precluding well-informed speculation on why these age-related risks might exist. Methodology: To help clarify this situation we analysed a massive single population sample from Denmark including the full spectrum of autistic and schizophrenic disorders (eliminating between-study confounding), used up to 30 follow-up years, controlled for over 20 potentially confounding factors and interpret the ultimate causation of the observed risk patterns using generally accepted principles of parent-offspring conflict and life-history theory. Results: We evaluated the effects of paternal age, maternal age and parental age difference on offspring mental disorders and found consistently similar risk patterns for related disorders and markedly different patterns between autistic and schizophrenic disorders. Older fathers and mothers both conferred increased risk for autistic but not schizophrenic disorders, but autism risk was reduced in younger parents and offspring of younger mothers had increased risk for many schizophrenic disorders. Risk for most disorders also increased when parents were more dissimilarly aged. Monotonically increasing autism risk is consistent with mutation accumulation as fathers’ age, but this explanation is invalid for schizophrenic disorders, which were not related to paternal age and were negatively correlated with maternal age. Conclusions and implications: We propose that the observed maternally induced risk patterns ultimately reflect a shifting ancestral life-history trade-off between current and future reproduction, mediated by an initially high but subsequently decreasing tendency to constrain foetal provisioning as women proceed from first to final pregnancy.
Collapse
Affiliation(s)
- Sean G Byars
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia Present address: Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
135
|
Dent CL, Humby T, Lewis K, Plagge A, Fischer-Colbrie R, Wilkins JF, Wilkinson LS, Isles AR. Impulsive choices in mice lacking imprinted Nesp55. GENES BRAIN AND BEHAVIOR 2016; 15:693-701. [PMID: 27509352 DOI: 10.1111/gbb.12316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Genomic imprinting is the process whereby germline epigenetic events lead to parent-of-origin specific monallelic expression of a number of key mammalian genes. The imprinted gene Nesp is expressed from the maternal allele only and encodes for Nesp55 protein. In the brain, Nesp55 is found predominately in discrete areas of the hypothalamus and midbrain. Previously, we have shown that loss of Nesp55 gives rise to alterations in novelty-related behaviour. Here, we extend these findings and demonstrate, using the Nespm/+ mouse model, that loss of Nesp55 leads to impulsive choices as measured by a delayed-reinforcement task, whereby Nespm/+ mice were less willing to wait for a delayed, larger reward, preferring instead to choose an immediate, smaller reward. These effects were highly specific as performance in another component of impulsive behaviour, the ability to stop a response once started as assayed in the stop-signal reaction time task, was equivalent to controls. We also showed changes in the serotonin system, a key neurotransmitter pathway mediating impulsive behaviour. First, we demonstrated that Nesp55 is co-localized with serotonin and then went on to show that in midbrain regions there were reductions in mRNA expression of the serotonin-specific genes Tph2 and Slc6a4, but not the dopamine-specific gene Th in Nespm/+ mice; suggesting an altered serotonergic system could contribute, in part, to the changes in impulsive behaviour. These data provide a novel mode of action for genomic imprinting in the brain and may have implications for pathological conditions characterized by maladaptive response control.
Collapse
Affiliation(s)
- C L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| | - T Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - K Lewis
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| | - A Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - R Fischer-Colbrie
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | - L S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute.,Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - A R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| |
Collapse
|
136
|
Tschirren B, Ziegler AK, Pick JL, Okuliarová M, Zeman M, Giraudeau M. Matrilineal inheritance of a key mediator of prenatal maternal effects. Proc Biol Sci 2016; 283:20161676. [PMID: 27629040 PMCID: PMC5031669 DOI: 10.1098/rspb.2016.1676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Sex-linkage is predicted to evolve in response to sex-specific or sexually antagonistic selection. In line with this prediction, most sex-linked genes are associated with reproduction in the respective sex. In addition to traits directly involved in fertility and fecundity, mediators of maternal effects may be predisposed to evolve sex-linkage, because they indirectly affect female fitness through their effect on offspring phenotype. Here, we test for sex-linked inheritance of a key mediator of prenatal maternal effects in oviparous species, the transfer of maternally derived testosterone to the eggs. Consistent with maternal inheritance, we found that in Japanese quail (Coturnix japonica) granddaughters resemble their maternal (but not their paternal) grandmother in yolk testosterone deposition. This pattern of resemblance was not due to non-genetic priming effects of testosterone exposure during prenatal development, as an experimental manipulation of yolk testosterone levels did not affect the females' testosterone transfer to their own eggs later in life. Instead, W chromosome and/or mitochondrial variation may underlie the observed matrilineal inheritance pattern. Ultimately, the inheritance of mediators of maternal effects along the maternal line will allow for a fast and direct response to female-specific selection, thereby affecting the dynamics of evolutionary processes mediated by maternal effects.
Collapse
Affiliation(s)
- Barbara Tschirren
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ann-Kathrin Ziegler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joel L Pick
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Monika Okuliarová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Mathieu Giraudeau
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
137
|
Wang X, Werren JH, Clark AG. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia. PLoS Biol 2016; 14:e1002500. [PMID: 27380029 PMCID: PMC4933354 DOI: 10.1371/journal.pbio.1002500] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. RNA-sequencing and whole-genome bisulfite sequencing in the hybrid offspring of two Nasonia parasitoid wasp species revealed strong cis-regulation of methylation and allele-specific expression. No gene was found to display genomic imprinting. The relationship between methylation of genomic DNA and expression of the genes that it encodes—and how this relationship changes during evolution—has been widely studied in mammals, but remains less well understood for insects. Here we analyze the expressed mRNA transcripts and genomic DNA methylation of the hybrid offspring of a pair of Nasonia parasitoid wasp species, producing a wealth of information about the regulation of gene expression. We find that variation in DNA sequence impacts expression on the same strand (called “cis-regulation”), and that cytosine methylation state is also associated in cis with the regulatory consequences of this base alteration. We show that these wasp species lack differential expression dependent on parent-of-origin (called “genomic imprinting”), and that in the hybrids the alleles retain the methylation status of the parental species in a strong cis-regulated fashion. Transcript abundances were also largely driven in a cis-regulated manner, consistent with a correlation between methylation status and expression levels. Despite the many differences between Nasonia and mammals in the impact of genomic DNA methylation, in both groups the use of methylated cytosine has been co-opted in ways that help tune gene expression.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| |
Collapse
|
138
|
Faster reproductive rates trade off against offspring growth in wild chimpanzees. Proc Natl Acad Sci U S A 2016; 113:7780-5. [PMID: 27354523 DOI: 10.1073/pnas.1522168113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life history theory predicts a trade-off between offspring quality and quantity. Among large-bodied mammals, prolonged lactation and infant dependence suggest particularly strong potential for a quality-quantity trade-off to exist. Humans are one of the only such species to have been examined, providing mixed evidence under a peculiar set of circumstances, including extensive nutritional provisioning by nonmothers and extrasomatic wealth transmission. Here, we examine trade-offs between reproductive rate and one aspect of offspring quality (body size) in wild chimpanzees (Pan troglodytes schweinfurthii), a species with long periods of infant dependence and little direct provisioning. Juvenile lean body mass, estimated using urinary creatinine excretion, was positively associated with the interval to the next sibling's birth. These effects persisted into adolescence and were not moderated by maternal identity. Maternal depletion could not explain poor offspring growth, as older mothers had larger offspring, and low maternal energy balance during lactation predicted larger, not smaller, juvenile size. Instead, our data suggest that offspring growth suffers when mothers wean early to invest in new reproductive efforts. These findings indicate that chimpanzee mothers with the resources to do so prioritize production of new offspring over prolonged investment in current offspring.
Collapse
|
139
|
A Novel Mutant Allele of Pw1/Peg3 Does Not Affect Maternal Behavior or Nursing Behavior. PLoS Genet 2016; 12:e1006053. [PMID: 27187722 PMCID: PMC4871489 DOI: 10.1371/journal.pgen.1006053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 04/23/2016] [Indexed: 11/25/2022] Open
Abstract
Parental imprinting is a mammalian-specific form of epigenetic regulation in which one allele of a gene is silenced depending on its parental origin. Parentally imprinted genes have been shown to play a role in growth, metabolism, cancer, and behavior. Although the molecular mechanisms underlying parental imprinting have been largely elucidated, the selective advantage of silencing one allele remains unclear. The mutant phenotype of the imprinted gene, Pw1/Peg3, provides a key example to illustrate the hypothesis on a coadaptation between mother and offspring, in which Pw1/Peg3 is required for a set of essential maternal behaviors, such as nursing, nest building, and postnatal care. We have generated a novel Pw1/Peg3 mutant allele that targets the last exon for the PW1 protein that contains >90% of the coding sequence resulting in a loss of Pw1/Peg3 expression. In contrast to previous reports that have targeted upstream exons, we observe that maternal behavior and lactation are not disrupted upon loss of Pw1/Peg3. Both paternal and homozygous Pw1/Peg3 mutant females nurse and feed their pups properly and no differences are detected in either oxytocin neuron number or oxytocin plasma levels. In addition, suckling capacities are normal in mutant pups. Consistent with previous reports, we observe a reduction of postnatal growth. These results support a general role for Pw1/Peg3 in the regulation of body growth but not maternal care and lactation. Parental genomic imprinting is a mammalian-specific form of epigenetic control that regulates genes differently depending upon whether they are paternally or maternally inherited. The selective advantage of genomic imprinting is poorly understood and has been the subject of numerous theories. In the last several decades, mouse genetic studies have revealed that imprinted genes regulate embryonic and postnatal growth, metabolism, stem cells, neuronal functions, and most notably, behavior. The paternally expressed gene Pw1/Peg3 was one of the first imprinted genes shown to influence maternal behaviors essential for pup survival and growth. Several key studies have demonstrated that Pw1/Peg3 is required for proper nursing and milk ejection by the mother and suckling by the offspring. These previous observations have provided a strong support for the coadaptation theory of imprinting, which proposes that imprinted genes regulate the use of resources between mother and progeny to optimize their survival and future reproductive success. Here we describe that Pw1/Peg3 mutant females exhibit intact maternal behaviors and do not display milk ejection defects. In addition, mutant pups are able to nurse properly.
Collapse
|
140
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
141
|
Hu Y, Rosa GJM, Gianola D. Incorporating parent-of-origin effects in whole-genome prediction of complex traits. Genet Sel Evol 2016; 48:34. [PMID: 27091137 PMCID: PMC4834899 DOI: 10.1186/s12711-016-0213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/04/2016] [Indexed: 12/24/2022] Open
Abstract
Background Parent-of-origin effects are due to differential contributions of paternal and maternal lineages to offspring phenotypes. Such effects include, for example, maternal effects in several species. However, epigenetically induced parent-of-origin effects have recently attracted attention due to their potential impact on variation of complex traits. Given that prediction of genetic merit or phenotypic performance is of interest in the study of complex traits, it is relevant to consider parent-of-origin effects in such predictions. We built a whole-genome prediction model that incorporates parent-of-origin effects by considering parental allele substitution effects of single nucleotide polymorphisms and gametic relationships derived from a pedigree (the POE model). We used this model to predict body mass index in a mouse population, a trait that is presumably affected by parent-of-origin effects, and also compared the prediction performance to that of a standard additive model that ignores parent-of-origin effects (the ADD model). We also used simulated data to assess the predictive performance of the POE model under various circumstances, in which parent-of-origin effects were generated by mimicking an imprinting mechanism. Results The POE model did not predict better than the ADD model in the real data analysis, probably due to overfitting, since the POE model had far more parameters than the ADD model. However, when applied to simulated data, the POE model outperformed the ADD model when the contribution of parent-of-origin effects to phenotypic variation increased. The superiority of the POE model over the ADD model was up to 8 % on predictive correlation and 5 % on predictive mean squared error. Conclusions The simulation and the negative result obtained in the real data analysis indicated that, in order to gain benefit from the POE model in terms of prediction, a sizable contribution of parent-of-origin effects to variation is needed and such variation must be captured by the genetic markers fitted. Recent studies, however, suggest that most parent-of-origin effects stem from epigenetic regulation but not from a change in DNA sequence. Therefore, integrating epigenetic information with genetic markers may help to account for parent-of-origin effects in whole-genome prediction.
Collapse
Affiliation(s)
- Yaodong Hu
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.,Department of Dairy Science, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA
| |
Collapse
|
142
|
Tillo D, Mukherjee S, Vinson C. Inheritance of Cytosine Methylation. J Cell Physiol 2016; 231:2346-52. [DOI: 10.1002/jcp.25350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Desiree Tillo
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| | - Sanjit Mukherjee
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| | - Charles Vinson
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
143
|
Griffith OW, Brandley MC, Belov K, Thompson MB. Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii. Dev Genes Evol 2016; 226:79-85. [PMID: 26943808 DOI: 10.1007/s00427-016-0531-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022]
Abstract
Genomic imprinting is a process that results in the differential expression of genes depending on their parent of origin. It occurs in both plants and live-bearing mammals, with imprinted genes typically regulating the ability of an embryo to manipulate the maternal provision of nutrients. Genomic imprinting increases the potential for selection to act separately on paternally and maternally expressed genes, which increases the number of opportunities that selection can facilitate embryonic control over maternal nutrient provision. By looking for imprinting in an independent matrotrophic lineage, the viviparous lizard Pseudemoia entrecasteauxii (Scincidae), we test the hypothesis that genomic imprinting facilitates the evolution of substantial placental nutrient transport to embryos (matrotrophy). We sequenced transcriptomes from the embryonic component of lizard placentae to determine whether there are parent-of-origin differences in expression of genes that are imprinted in mammals. Of these genes, 19 had sufficiently high expression in the lizard to identify polymorphisms in transcribed sequences. We identified bi-allelic expression in 17 genes (including insulin-like growth factor 2), indicating that neither allele was imprinted. These data suggest that either genomic imprinting has not evolved in this matrotrophic skink or, if it has, it has evolved in different genes to mammals. We outline how these hypotheses can be tested. This study highlights important differences between mammalian and reptile pregnancy and the absence of any shared imprinting genes reflects fundamental differences in the way that pregnancy has evolved in these two lineages.
Collapse
Affiliation(s)
- Oliver W Griffith
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA.
| | - Matthew C Brandley
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
- New York University - Sydney, The Rocks, New South Wales, 2000, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Michael B Thompson
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
144
|
Rautiala P, Gardner A. Intragenomic Conflict over Soldier Allocation in Polyembryonic Parasitoid Wasps. Am Nat 2016; 187:E106-15. [PMID: 27028082 DOI: 10.1086/685082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding the selection pressures that have driven the evolution of sterile insect castes has been the focus of decades of intense scientific debate. An amenable empirical test bed for theory on this topic is provided by the sterile-soldier caste of polyembryonic parasitoid wasps. The function of these soldiers has been a source of controversy, with two basic hypotheses emerging: the "brood-benefit" hypothesis that they provide an overall benefit for their siblings and the "sex-ratio-conflict" hypothesis that the soldiers mediate a conflict between brothers and sisters by killing their opposite-sex siblings. Here, we investigate the divergent sex-ratio optima of a female embryo's maternal-origin and paternal-origin genes, to determine the potential for, and direction of, intragenomic conflict over soldiering. We then derive contrasting empirically testable predictions concerning the patterns of genomic imprinting that are expected to arise out of this intragenomic conflict, for the brood-benefit versus the sex-ratio-conflict hypothesis of soldier function.
Collapse
|
145
|
Lyssenko V, Groop L, Prasad RB. Genetics of Type 2 Diabetes: It Matters From Which Parent We Inherit the Risk. Rev Diabet Stud 2016; 12:233-42. [PMID: 27111116 DOI: 10.1900/rds.2015.12.233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes (T2D) results from a co-occurrence of genes and environmental factors. There are more than 120 genetic loci suggested to be associated with T2D, or with glucose and insulin levels in European and multi-ethnic populations. Risk of T2D is higher in the offspring if the mother rather than the father has T2D. Genetically, this can be associated with a unique parent-of-origin (PoO) transmission of risk alleles, and it relates to genetic programming during the intrauterine period, resulting in the inability to increase insulin secretion in response to increased demands imposed by insulin resistance later in life. Such PoO transmission is seen for variants in the KLF14, KCNQ1, GRB10, TCF7L2, THADA, and PEG3 genes. Here we describe T2D susceptibility genes associated with defects in insulin secretion, and thereby risk of overt T2D. This review emphasizes the need to consider distorted parental transmission of risk alleles by exploring the genetic risk of T2D.
Collapse
Affiliation(s)
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Rashmi B Prasad
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmö, Sweden
| |
Collapse
|
146
|
Abstract
Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development.
Collapse
|
147
|
Hanna CW, Peñaherrera MS, Saadeh H, Andrews S, McFadden DE, Kelsey G, Robinson WP. Pervasive polymorphic imprinted methylation in the human placenta. Genome Res 2016; 26:756-67. [PMID: 26769960 PMCID: PMC4889973 DOI: 10.1101/gr.196139.115] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/07/2016] [Indexed: 01/19/2023]
Abstract
The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Maria S Peñaherrera
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada; Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Heba Saadeh
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Deborah E McFadden
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada; Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
148
|
Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ, Baigel R, Brimioulle M, Iglesias-Platas I, Apostolidou S, Aggarwal R, Whittaker JC, Syngelaki A, Nicolaides KH, Regan L, Monk D, Stanier P. The role and interaction of imprinted genes in human fetal growth. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140074. [PMID: 25602077 PMCID: PMC4305174 DOI: 10.1098/rstb.2014.0074] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.
Collapse
Affiliation(s)
- Gudrun E Moore
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Miho Ishida
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Charalambos Demetriou
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Lara Al-Olabi
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Lydia J Leon
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Anna C Thomas
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sayeda Abu-Amero
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jennifer M Frost
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jaime L Stafford
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Yao Chaoqun
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J Duncan
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Rachel Baigel
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Marina Brimioulle
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Isabel Iglesias-Platas
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sophia Apostolidou
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Reena Aggarwal
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - John C Whittaker
- Noncommunicable Disease Epidemiology Unit, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK
| | - Lesley Regan
- Department of Obstetrics and Gynaecology, Imperial College London, St Mary's Campus, London W2 1NY, UK
| | - David Monk
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Philip Stanier
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
149
|
Wells JCK. Between Scylla and Charybdis: renegotiating resolution of the 'obstetric dilemma' in response to ecological change. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140067. [PMID: 25602071 DOI: 10.1098/rstb.2014.0067] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hominin evolution saw the emergence of two traits-bipedality and encephalization-that are fundamentally linked because the fetal head must pass through the maternal pelvis at birth, a scenario termed the 'obstetric dilemma'. While adaptive explanations for bipedality and large brains address adult phenotype, it is brain and pelvic growth that are subject to the obstetric dilemma. Many contemporary populations experience substantial maternal and perinatal morbidity/mortality from obstructed labour, yet there is increasing recognition that the obstetric dilemma is not fixed and is affected by ecological change. Ecological trends may affect growth of the pelvis and offspring brain to different extents, while the two traits also differ by a generation in the timing of their exposure. Two key questions arise: how can the fit between the maternal pelvis and the offspring brain be 'renegotiated' as the environment changes, and what nutritional signals regulate this process? I argue that the potential for maternal size to change across generations precludes birthweight being under strong genetic influence. Instead, fetal growth tracks maternal phenotype, which buffers short-term ecological perturbations. Nevertheless, rapid changes in nutritional supply between generations can generate antagonistic influences on maternal and offspring traits, increasing the risk of obstructed labour.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, 30 Guilford St., London WC1N 1EH, UK
| |
Collapse
|
150
|
Kirkbride RC, Yu HH, Nah G, Zhang C, Shi X, Chen ZJ. An Epigenetic Role for Disrupted Paternal Gene Expression in Postzygotic Seed Abortion in Arabidopsis Interspecific Hybrids. MOLECULAR PLANT 2015; 8:1766-75. [PMID: 0 DOI: 10.1016/j.molp.2015.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/07/2015] [Accepted: 09/13/2015] [Indexed: 05/10/2023]
Abstract
Interspecific hybrids often increase the levels of heterozygosity and hybrid vigor, but some interspecific hybrid seeds are aborted shortly after fertilization. The mechanism behind this postzygotic seed abortion is poorly understood. Here, we report genome-wide analysis of allelic expression changes in developing siliques and seeds in three F1 interspecific crosses between Arabidopsis thaliana (Col, Ler, or C24) and Arabidopsis arenosa. The majority of maternally expressed genes (MEGs) were shared among all three F1 interspecific crosses, whereas ∼90% of 272 paternally expressed genes (PEGs) were found only in one or two F1 crosses, suggesting a role for disrupted paternal gene expression in seed abortion that varies in different crosses. Consistent with this notion, 12 PEGs in the infertile interspecific hybrids matched MEGs in fertile intraspecific hybrids. This disruption of PEGs in the interspecific hybrids was consistent with the upregulation of the genes in the paternal-excess interploidy cross (2X6) between a diploid mother and a hexaploid father, leading to the seed abortion. Moreover, a subset of PEGs in the interspecific crosses were also upregulated in the intraspecific hybrid met1XWT or meaXWT, in which the mutant of MET1 (DNA METHYLTRANSFERASE1) or MEDEA, a Polycomb Repressive Complex2 gene, was used as the maternal parent. These data suggest that maternal epigenetic factors and paternal gene expression play important roles in the postzygotic seed abortion in interspecific hybrids or neo-allopolyploids.
Collapse
Affiliation(s)
- Ryan C Kirkbride
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Helen Hong Yu
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gyoungju Nah
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Changqing Zhang
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaoli Shi
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|