101
|
Lin L, Desai R, Wang X, Lo EH, Xing C. Characteristics of primary rat microglia isolated from mixed cultures using two different methods. J Neuroinflammation 2017; 14:101. [PMID: 28482909 PMCID: PMC5422983 DOI: 10.1186/s12974-017-0877-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background Microglial cultures comprise a critically important model system for investigating inflammatory mechanisms in almost all CNS disorders. Mild trypsinization and shaking are the two most commonly used methods to isolate primary microglia from mixed glial cultures. In this study, we characterized and compared microglia obtained using these two methods. Methods Primary rat microglia cultures were prepared from cerebral cortices of 1–2-day-old neonatal Sprague-Dawley rats. After achieving confluency at about 14 days in vitro, microglia were isolated from mixed glial cultures via either mild trypsinization or shaking. The purity of microglia was estimated by flow cytometry. Quantitative real-time PCR was used to measure mRNA expression. TNFα, IL-1β, IL-10, and IGF-1 in cell culture supernatant were measured using ELISA kits. Phagocytic function was assessed using fluorescein-labeled Escherichia coli K-12 BioParticles. Results Mild trypsinization generated a higher yield and purity than shaking. Microglia isolated by mild trypsinization appeared to be in a quiescent state with ramified morphology. Microglia isolated by shaking showed a more heterogenous morphology, including cells with rounded shapes suggestive of activation. Compared with shaking, microglia isolated by trypsinization also had lower baseline phenotype markers (iNOS, CD86, CD206, and arginase 1) and lower levels of cytokines (TNFα, IL-1β, IL-10, and IGF-1) as well as reduced phagocytic capability. Both methods yielded microglia that were responsive to various stimuli such as IL-4, lipopolysaccharide (LPS), or interferon-γ (IFNγ). Although stimulated patterns of gene expression and cytokine release were generally similar, there were also significant differences in terms of absolute response. LPS treatment induced significantly higher levels of TNFα and IL-10 in microglia isolated by mild trypsinization versus shaking. IFNγ induced a lower response in TNFα in microglia obtained by mild trypsinization versus shaking. Conclusions Our results suggest that isolating microglia with the shaking method may induce slight activation even at baseline, and this may affect stimulus responses in subsequent experiments. Caution and attention should be warranted when choosing isolation protocols for primary microglia cultures.
Collapse
Affiliation(s)
- Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA
| | - Rakhi Desai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA.
| | - Changhong Xing
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA.
| |
Collapse
|
102
|
Kimitsuki K, Yamada K, Shiwa N, Inoue S, Nishizono A, Park CH. Pathological lesions in the central nervous system and peripheral tissues of ddY mice with street rabies virus (1088 strain). J Vet Med Sci 2017; 79:970-978. [PMID: 28428485 PMCID: PMC5487800 DOI: 10.1292/jvms.17-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most studies on rabies virus pathogenesis in animal models have employed fixed rabies
viruses, and the results of those employing street rabies viruses have been inconsistent.
Therefore, to clarify the pathogenesis of street rabies virus (1088 strain) in mice,
106 focus forming units were inoculated into the right hindlimb of
ddY mice (6 weeks, female). At 3 days postinoculation (DPI), mild
inflammation was observed in the hindlimb muscle. At 5 DPI, ganglion cells in the right
lumbosacral spinal dorsal root ganglia showed chromatolysis. Axonal degeneration and
inflammatory cells increased with infection progress in the spinal dorsal horn and dorsal
root ganglia. Right hindlimb paralysis was observed from 7 DPI, which progressed to
quadriparalysis. However, no pathological changes were observed in the ventral horn and
root fibers of the spinal cord. Viral antigen was first detected in the right hindlimb
muscle at 3 DPI, followed by the right lumbosacral dorsal root ganglia, dorsal horn of
spinal cord, left red nuclei, medulla oblongata and cerebral cortex (M1 area) at 5 DPI.
These results suggested that the 1088 virus ascended the lumbosacral spinal cord via
mainly afferent fibers at early stage of infection and moved to cerebral cortex (M1 area)
using descending spinal tract. Additionally, we concluded that significant pathological
changes in mice infected with 1088 strain occur in the sensory tract of the spinal cord;
this selective susceptibility results in clinical features of the disease.
Collapse
Affiliation(s)
- Kazunori Kimitsuki
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada, Aomori 034-8628, Japan
| | - Kentaro Yamada
- Research Promotion Project, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Nozomi Shiwa
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada, Aomori 034-8628, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640 Japan
| | - Akira Nishizono
- Research Promotion Project, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.,Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Chun-Ho Park
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 23-35-1, Higashi, Towada, Aomori 034-8628, Japan
| |
Collapse
|
103
|
Guruswamy R, ElAli A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci 2017; 18:ijms18030496. [PMID: 28245599 PMCID: PMC5372512 DOI: 10.3390/ijms18030496] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke constitutes the major cause of death and disability in the industrialized world. The interest in microglia arose from the evidence outlining the role of neuroinflammation in ischemic stroke pathobiology. Microglia constitute the powerhouse of innate immunity in the brain. Microglial cells are highly ramified, and use these ramifications as sentinels to detect changes in brain homeostasis. Once a danger signal is recognized, cells become activated and mount specialized responses that range from eliminating cell debris to secreting inflammatory signals and trophic factors. Originally, it was suggested that microglia play essentially a detrimental role in ischemic stroke. However, recent reports are providing evidence that the role of these cells is more complex than what was originally thought. Although these cells play detrimental role in the acute phase, they are required for tissue regeneration in the post-acute phases. This complex role of microglia in ischemic stroke pathobiology constitutes a major challenge for the development of efficient immunomodulatory therapies. This review aims at providing an overview regarding the role of resident microglia and peripherally recruited macrophages in ischemic pathobiology. Furthermore, the review will highlight future directions towards the development of novel fine-tuning immunomodulatory therapeutic interventions.
Collapse
Affiliation(s)
- Revathy Guruswamy
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec City, QC G1V 4G2, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.
| | - Ayman ElAli
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec City, QC G1V 4G2, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.
| |
Collapse
|
104
|
Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol 2017; 149-150:1-20. [DOI: 10.1016/j.pneurobio.2017.01.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022]
|
105
|
Webster KM, Sun M, Crack P, O'Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 2017; 14:10. [PMID: 28086980 PMCID: PMC5237206 DOI: 10.1186/s12974-016-0786-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023] Open
Abstract
Background Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures. Body We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1β interacting with its receptors, and transforming growth factor-β signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients. Conclusion Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE.
Collapse
Affiliation(s)
- Kyria M Webster
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Mujun Sun
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Peter Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Terence J O'Brien
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Sandy R Shultz
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Bridgette D Semple
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
106
|
Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse. Neuropsychopharmacology 2017; 42:156-177. [PMID: 27402494 PMCID: PMC5143481 DOI: 10.1038/npp.2016.121] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022]
Abstract
Drugs of abuse cause persistent alterations in synaptic plasticity that may underlie addiction behaviors. Evidence suggests glial cells have an essential and underappreciated role in the development and maintenance of drug abuse by influencing neuronal and synaptic functions in multifaceted ways. Microglia and astrocytes perform critical functions in synapse formation and refinement in the developing brain, and there is growing evidence that disruptions in glial function may be implicated in numerous neurological disorders throughout the lifespan. Linking evidence of function in health and under pathological conditions, this review will outline the glial and neuroimmune mechanisms that may contribute to drug-abuse liability, exploring evidence from opioids, alcohol, and psychostimulants. Drugs of abuse can activate microglia and astrocytes through signaling at innate immune receptors, which in turn influence neuronal function not only through secretion of soluble factors (eg, cytokines and chemokines) but also potentially through direct remodeling of the synapses. In sum, this review will argue that neural-glial interactions represent an important avenue for advancing our understanding of substance abuse disorders.
Collapse
|
107
|
Chen NC, Partridge AT, Sell C, Torres C, Martín-García J. Fate of microglia during HIV-1 infection: From activation to senescence? Glia 2016; 65:431-446. [PMID: 27888531 DOI: 10.1002/glia.23081] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Microglia support productive human immunodeficiency virus type 1 (HIV-1) infection and disturbed microglial function could contribute to the development of HIV-associated neurocognitive disorders (HAND). Better understanding of how HIV-1 infection and viral protein exposure modulate microglial function during the course of infection could lead to the identification of novel therapeutic targets for both the eradication of HIV-1 reservoir and treatment of neurocognitive deficits. This review first describes microglial origins and function in the normal central nervous system (CNS), and the changes that occur during aging. We then critically discuss how HIV-1 infection and exposure to viral proteins such as Tat and gp120 affect various aspects of microglial homeostasis including activation, cellular metabolism and cell cycle regulation, through pathways implicated in cellular stress responses including p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). We thus propose that the functions of human microglia evolve during both healthy and pathological aging. Aging-associated dysfunction of microglia comprises phenotypes resembling cellular senescence, which could contribute to cognitive impairments observed in various neurodegenerative diseases. In addition, microglia seems to develop characteristics that could be related to cellular senescence post-HIV-1 infection and after exposure to HIV-1 viral proteins. However, despite its potential role as a component of HAND and likely other neurocognitive disorders, microglia senescence has not been well characterized and should be the focus of future studies, which could have high translational relevance. GLIA 2017;65:431-446.
Collapse
Affiliation(s)
- Natalie C Chen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,MD/PhD Program, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Andrea T Partridge
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Christian Sell
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
108
|
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci 2016; 10:566. [PMID: 27877121 PMCID: PMC5099170 DOI: 10.3389/fnhum.2016.00566] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Stephen C. Noctor
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND InstituteSacramento, CA, USA
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Elly M. Hol
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
109
|
Brenhouse HC, Schwarz JM. Immunoadolescence: Neuroimmune development and adolescent behavior. Neurosci Biobehav Rev 2016; 70:288-299. [PMID: 27260127 PMCID: PMC5412135 DOI: 10.1016/j.neubiorev.2016.05.035] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
The brain is increasingly appreciated to be a constantly rewired organ that yields age-specific behaviors and responses to the environment. Adolescence in particular is a unique period characterized by continued brain maturation, superimposed with transient needs of the organism to traverse a leap from parental dependence to independence. Here we describe how these needs require immune maturation, as well as brain maturation. Our immune system, which protects us from pathogens and regulates inflammation, is in constant communication with our nervous system. Together, neuro-immune signaling regulates our behavioral responses to the environment, making this interaction a likely substrate for adolescent development. We review here the identified as well as understudied components of neuro-immune interactions during adolescence. Synaptic pruning, neurite outgrowth, and neurotransmitter release during adolescence all regulate-and are regulated by-immune signals, which occur via blood-brain barrier dynamics and glial activity. We discuss these processes, as well as how immune signaling during this transitional period of development confers differential effects on behavior and vulnerability to mental illness.
Collapse
Affiliation(s)
- Heather C Brenhouse
- Northeastern University, Psychology Department, 125 Nightingale Hall, Boston, MA 02115, United States.
| | - Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE 19716, United States
| |
Collapse
|
110
|
Strahan JA, Walker WH, Montgomery TR, Forger NG. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain. Dev Neurobiol 2016; 77:753-766. [PMID: 27706925 DOI: 10.1002/dneu.22457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022]
Abstract
Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017.
Collapse
Affiliation(s)
- J Alex Strahan
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - William H Walker
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - Taylor R Montgomery
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - Nancy G Forger
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| |
Collapse
|
111
|
Depth and time-dependent heterogeneity of microglia in mouse hippocampal slice cultures. Neurosci Res 2016; 111:64-9. [DOI: 10.1016/j.neures.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/23/2016] [Accepted: 05/06/2016] [Indexed: 11/23/2022]
|
112
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
113
|
Xu J, Wang T, Wu Y, Jin W, Wen Z. Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by Apoptotic Neuron and Lysophosphatidylcholine. Dev Cell 2016; 38:214-22. [PMID: 27424497 DOI: 10.1016/j.devcel.2016.06.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023]
Abstract
Microglia are CNS-resident macrophages and play important roles in neural development and function. However, how microglial precursors born in peripheral tissues colonize the CNS remains undefined. Using in vivo imaging and genetic manipulation of zebrafish, we showed that microglial precursors enter the optic tectum of the midbrain, where the majority of microglia reside during early development, via the lateral periphery between the eyes and brain and the ventral periphery of the brain in a circulation-independent manner. The colonization of the optic tectum by microglial precursors is dynamic and driven by apoptotic neuronal death, which occurs naturally in the midbrain during neurogenesis. We further show that lysophosphatidylcholine, a phospholipid known to be released from apoptotic cells, can promote microglial precursor entry into the brain via its cognate receptors grp132b. Our study reveals that microglia colonization of developing zebrafish midbrain is triggered by apoptotic neuronal death, possibly via releasing lysophosphatidylcholine.
Collapse
Affiliation(s)
- Jin Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Tienan Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Yi Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Wan Jin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China.
| |
Collapse
|
114
|
Abstract
Many patients with lung cancer, breast cancer, and melanoma develop brain metastases that are resistant to conventional therapy. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with surgery, radiotherapy, and chemotherapy. The outcome of metastasis depends on multiple interactions of unique metastatic cells with host homeostatic mechanisms which the tumor cells exploit for their survival and proliferation. The blood-brain barrier is leaky in metastases that are larger than 0.5-mm diameter because of production of vascular endothelial growth factor by metastatic cells. Brain metastases are surrounded and infiltrated by microglia and activated astrocytes. The interaction with astrocytes leads to up-regulation of multiple genes in the metastatic cells, including several survival genes that are responsible for the increased resistance of tumor cells to cytotoxic drugs. These findings substantiate the importance of the "seed and soil" hypothesis and that successful treatment of brain metastases must include targeting of the organ microenvironment.
Collapse
|
115
|
Frost JL, Schafer DP. Microglia: Architects of the Developing Nervous System. Trends Cell Biol 2016; 26:587-597. [PMID: 27004698 DOI: 10.1016/j.tcb.2016.02.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/18/2022]
Abstract
Microglia are resident macrophages of the central nervous system (CNS), representing 5-10% of total CNS cells. Recent findings reveal that microglia enter the embryonic brain, take up residence before the differentiation of other CNS cell types, and become critical regulators of CNS development. Here, we discuss exciting new work implicating microglia in a range of developmental processes, including regulation of cell number and spatial patterning of CNS cells, myelination, and formation and refinement of neural circuits. Furthermore, we review studies suggesting that these cellular functions result in the modulation of behavior, which has important implications for a variety of neurological disorders.
Collapse
Affiliation(s)
- Jeffrey L Frost
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Dorothy P Schafer
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
116
|
Kim I, Mlsna LM, Yoon S, Le B, Yu S, Xu D, Koh S. A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers. Brain Behav 2015; 5:e00403. [PMID: 26807334 PMCID: PMC4714636 DOI: 10.1002/brb3.403] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/30/2015] [Accepted: 09/02/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Explosive synaptogenesis and synaptic pruning occur in the hippocampus during the first two weeks of postnatal life, coincident with a heightened susceptibility to seizures in rodents. To determine the temporal correlation between microglial development and age-dependent susceptibility and response to seizures, we quantified developmental changes in basal microglia levels and seizure-induced microglial activation in the hippocampus of Cx3Cr1(GFP /+) transgenic mice. METHODS Basal levels of microglia were quantified in the hippocampi of Cx3Cr1(GFP /+) mice at P0, P5, P10, P15, P20, P25, P30, P40, and P60. Seizure susceptibility and seizure-induced microglial activation were assessed in response to febrile seizures (lipopolysaccharide followed by hyperthermia) and kainic acid-induced status epilepticus. RESULTS The density of microglia within the hippocampus increased rapidly after birth, reaching a peak during the second week of life - the age at which the animals became most vulnerable to seizure triggers. In addition, this peak of microglial development and seizure vulnerability during the second postnatal week represented the time of maximal seizure-induced microglia activation. CONCLUSIONS Overreactive innate immunity mediated by activated microglia may exacerbate acute injury to neuronal synapses and contribute to the long-term epileptogenic effects of early-life seizures. Anti-inflammatory therapy targeting excessive production of inflammatory mediators by activated microglia, therefore, may be an effective age-specific therapeutic strategy to minimize neuronal dysfunction and prevent increases in susceptibility to subsequent seizures in developing animals.
Collapse
Affiliation(s)
- Iris Kim
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Lauren M Mlsna
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Stella Yoon
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Brandy Le
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Songtao Yu
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Dan Xu
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Sookyong Koh
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| |
Collapse
|
117
|
Fidan E, Lewis J, Kline AE, Garman RH, Alexander H, Cheng JP, Bondi CO, Clark RSB, Dezfulian C, Kochanek PM, Kagan VE, Bayır H. Repetitive Mild Traumatic Brain Injury in the Developing Brain: Effects on Long-Term Functional Outcome and Neuropathology. J Neurotrauma 2015. [PMID: 26214116 DOI: 10.1089/neu.2015.3958] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although accumulating evidence suggests that repetitive mild TBI (rmTBI) may cause long-term cognitive dysfunction in adults, whether rmTBI causes similar deficits in the immature brain is unknown. Here we used an experimental model of rmTBI in the immature brain to answer this question. Post-natal day (PND) 18 rats were subjected to either one, two, or three mild TBIs (mTBI) or an equivalent number of sham insults 24 h apart. After one or two mTBIs or sham insults, histology was evaluated at 7 days. After three mTBIs or sham insults, motor (d1-5), cognitive (d11-92), and histological (d21-92) outcome was evaluated. At 7 days, silver degeneration staining revealed axonal argyrophilia in the external capsule and corpus callosum after a single mTBI, with a second impact increasing axonal injury. Iba-1 immunohistochemistry showed amoeboid shaped microglia within the amygdalae bilaterally after mTBI. After three mTBI, there were no differences in beam balance, Morris water maze, and elevated plus maze performance versus sham. The rmTBI rats, however, showed impairment in novel object recognition and fear conditioning. Axonal silver staining was observed only in the external capsule on d21. Iba-1 staining did not reveal activated microglia on d21 or d92. In conclusion, mTBI results in traumatic axonal injury and microglial activation in the immature brain with repeated impact exacerbating axonal injury. The rmTBI in the immature brain leads to long-term associative learning deficit in adulthood. Defining the mechanisms damage from rmTBI in the developing brain could be vital for identification of therapies for children.
Collapse
Affiliation(s)
- Emin Fidan
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jesse Lewis
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Anthony E Kline
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert H Garman
- 4 Consultants in Veterinary Pathology, Inc. , Murrysville, Pennsylvania
| | - Henry Alexander
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jeffrey P Cheng
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Corina O Bondi
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert S B Clark
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | - Cameron Dezfulian
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | - Valerian E Kagan
- 3 Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Hülya Bayır
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
118
|
Meng W, Garnett MC, Walker DA, Parker TL. Penetration and intracellular uptake of poly(glycerol-adipate) nanoparticles into three-dimensional brain tumour cell culture models. Exp Biol Med (Maywood) 2015; 241:466-77. [PMID: 26568330 DOI: 10.1177/1535370215610441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/12/2015] [Indexed: 11/16/2022] Open
Abstract
Nanoparticle (NP) drug delivery systems may potentially enhance the efficacy of therapeutic agents. It is difficult to characterize many important properties of NPs in vivo and therefore attempts have been made to use realistic in vitro multicellular spheroids instead. In this paper, we have evaluated poly(glycerol-adipate) (PGA) NPs as a potential drug carrier for local brain cancer therapy. Various three-dimensional (3-D) cell culture models have been used to investigate the delivery properties of PGA NPs. Tumour cells in 3-D culture showed a much higher level of endocytic uptake of NPs than a mixed normal neonatal brain cell population. Differences in endocytic uptake of NPs in 2-D and 3-D models strongly suggest that it is very important to use in vitro 3-D cell culture models for evaluating this parameter. Tumour penetration of NPs is another important parameter which could be studied in 3-D cell models. The penetration of PGA NPs through 3-D cell culture varied between models, which will therefore require further study to develop useful and realistic in vitro models. Further use of 3-D cell culture models will be of benefit in the future development of new drug delivery systems, particularly for brain cancers which are more difficult to study in vivo.
Collapse
Affiliation(s)
- Weina Meng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin C Garnett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Terence L Parker
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
119
|
Xavier AL, Menezes JRL, Goldman SA, Nedergaard M. Fine-tuning the central nervous system: microglial modelling of cells and synapses. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130593. [PMID: 25225087 DOI: 10.1098/rstb.2013.0593] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microglia constitute as much as 10-15% of all cells in the mammalian central nervous system (CNS) and are the only glial cells that do not arise from the neuroectoderm. As the principal CNS immune cells, microglial cells represent the first line of defence in response to exogenous threats. Past studies have largely been dedicated to defining the complex immune functions of microglial cells. However, our understanding of the roles of microglia has expanded radically over the past years. It is now clear that microglia are critically involved in shaping neural circuits in both the developing and adult CNS, and in modulating synaptic transmission in the adult brain. Intriguingly, microglial cells appear to use the same sets of tools, including cytokine and chemokine release as well as phagocytosis, whether modulating neural function or mediating the brain's innate immune responses. This review will discuss recent developments that have broadened our views of neuro-glial signalling to include the contribution of microglial cells.
Collapse
Affiliation(s)
- Anna L Xavier
- Laboratório de Neuroanatomia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| | - João R L Menezes
- Laboratório de Neuroanatomia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Steven A Goldman
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| |
Collapse
|
120
|
Ransohoff RM, Schafer D, Vincent A, Blachère NE, Bar-Or A. Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics 2015; 12:896-909. [PMID: 26306439 PMCID: PMC4604183 DOI: 10.1007/s13311-015-0385-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is the response of the central nervous system (CNS) to disturbed homeostasis and typifies all neurological diseases. The main reactive components of the CNS include microglial cells and infiltrating myeloid cells, astrocytes, oligodendrocytes, and the blood-brain barrier, cytokines, and cytokine signaling. Neuroinflammatory responses may be helpful or harmful, as mechanisms associated with neuroinflammation are involved in normal brain development, as well as in neuropathological processes. This review examines the roles of various cell types that contribute to the immune dysregulation associated with neuroinflammation. Microglia enter the CNS very early in embryonic development and, as such, play an essential role in both the healthy and diseased brain. B-cell diversity contributes to CNS disease through both antibody-dependent and antibody-independent mechanisms. The influences of these B-cell mechanisms on other cell types, including myeloid cells and T cells, are reviewed in relationship to antibody-mediated CNS disorders, paraneoplastic neurological diseases, and multiple sclerosis. New insights into neuroinflammation offer exciting opportunities to investigate potential therapeutic targets for debilitating CNS diseases.
Collapse
Affiliation(s)
| | - Dorothy Schafer
- University of Massachusetts Medical School, Amherst, MA, USA
| | | | | | - Amit Bar-Or
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
121
|
Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems. Trends Immunol 2015; 36:625-636. [DOI: 10.1016/j.it.2015.08.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/16/2023]
|
122
|
Nance E, Porambo M, Zhang F, Mishra MK, Buelow M, Getzenberg R, Johnston M, Kannan RM, Fatemi A, Kannan S. Systemic dendrimer-drug treatment of ischemia-induced neonatal white matter injury. J Control Release 2015; 214:112-20. [PMID: 26184052 PMCID: PMC4732874 DOI: 10.1016/j.jconrel.2015.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023]
Abstract
Extreme prematurity is a major risk factor for perinatal and neonatal brain injury, and can lead to white matter injury that is a precursor for a number of neurological diseases, including cerebral palsy (CP) and autism. Neuroinflammation, mediated by activated microglia and astrocytes, is implicated in the pathogenesis of neonatal brain injury. Therefore, targeted drug delivery to attenuate neuroinflammation may greatly improve therapeutic outcomes in models of perinatal white matter injury. In this work, we use a mouse model of ischemia-induced neonatal white matter injury to study the biodistribution of generation 4, hydroxyl-functionalized polyamidoamine dendrimers. Following systemic administration of the Cy5-labeled dendrimer (D-Cy5), we demonstrate dendrimer uptake in cells involved in ischemic injury, and in ongoing inflammation, leading to secondary injury. The sub-acute response to injury is driven by astrocytes. Within five days of injury, microglial proliferation and migration occurs, along with limited differentiation of oligodendrocytes and oligodendrocyte death. From one day to five days after injury, a shift in dendrimer co-localization occurred. Initially, dendrimer predominantly co-localized with astrocytes, with a subsequent shift towards microglia. Co-localization with oligodendrocytes reduced over the same time period, demonstrating a region-specific uptake based on the progression of the injury. We further show that systemic administration of a single dose of dendrimer-N-acetyl cysteine conjugate (D-NAC) at either sub-acute or delayed time points after injury results in sustained attenuation of the 'detrimental' pro-inflammatory response up to 9days after injury, while not impacting the 'favorable' anti-inflammatory response. The D-NAC therapy also led to improvement in myelination, suggesting reduced white matter injury. Demonstration of treatment efficacy at later time points in the postnatal period provides a greater understanding of how microglial activation and chronic inflammation can be targeted to treat neonatal brain injury. Importantly, it may also provide a longer therapeutic window.
Collapse
Affiliation(s)
- Elizabeth Nance
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD21205, United States
| | - Michael Porambo
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Fan Zhang
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD21205, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Manoj K Mishra
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD21205, United States; Ophthalmology, Wilmer Eye Institute at Johns Hopkins School of Medicine, 21205, United States
| | - Markus Buelow
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Rachel Getzenberg
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Michael Johnston
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD21205, United States; Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, United States; Ophthalmology, Wilmer Eye Institute at Johns Hopkins School of Medicine, 21205, United States
| | - Ali Fatemi
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Sujatha Kannan
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD21205, United States; Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, United States.
| |
Collapse
|
123
|
|
124
|
Abstract
Microglia, the major myeloid cells of the central nervous system (CNS) are implicated in physiologic processes and in the pathogenesis of several CNS disorders. Since their initial description early in the 20th century, our ability to identify and isolate microglia has significantly improved and new research is providing insight into the functions of these cells in sickness and in health. Here, we review recent advances in our understanding of the role of microglia in physiological and pathological processes of the CNS with a focus on multiple sclerosis and Alzheimer's disease. Because of the prominent roles CX3CR1 and its ligand fractalkine played in bringing about these advances, we discuss the physiological and pathological roles of microglia as viewed from the CX3CR1-fractalkine perspective, providing a unique viewpoint. Based on the most recent studies of molecular profiling of microglia, we also propose a molecular and functional definition of microglia that incorporates the properties attributed to these cells in recent years.
Collapse
Affiliation(s)
- Richard M Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Joseph El Khoury
- Division of Infectious Diseases and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
125
|
Wlodarczyk A, Cédile O, Jensen KN, Jasson A, Mony JT, Khorooshi R, Owens T. Pathologic and Protective Roles for Microglial Subsets and Bone Marrow- and Blood-Derived Myeloid Cells in Central Nervous System Inflammation. Front Immunol 2015; 6:463. [PMID: 26441968 PMCID: PMC4562247 DOI: 10.3389/fimmu.2015.00463] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a series of processes designed for eventual clearance of pathogens and repair of damaged tissue. In the context of autoimmune recognition, inflammatory processes are usually considered to be pathological. This is also true for inflammatory responses in the central nervous system (CNS). However, as in other tissues, neuroinflammation can have beneficial as well as pathological outcomes. The complex role of encephalitogenic T cells in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE) may derive from heterogeneity of the myeloid cells with which these T cells interact within the CNS. Myeloid cells, including resident microglia and infiltrating bone marrow-derived cells, such as dendritic cells (DC) and monocytes/macrophages [bone marrow-derived macrophages (BMDM)], are highly heterogeneous populations that may be involved in neurotoxicity and also immunoregulation and regenerative processes. Better understanding and characterization of myeloid cell heterogeneity is essential for future development of treatments controlling inflammation and inducing neuroprotection and neuroregeneration in diseased CNS. Here, we describe and compare three populations of myeloid cells: CD11c+ microglia, CD11c− microglia, and CD11c+ blood-derived cells in terms of their pathological versus protective functions in the CNS of mice with EAE. Our data show that CNS-resident microglia include functionally distinct subsets that can be distinguished by their expression of CD11c. These subsets differ in their expression of Arg-1, YM1, iNOS, IL-10, and IGF-1. Moreover, in contrast to BMDM/DC, both subsets of microglia express protective interferon-beta (IFNβ), high levels of colony-stimulating factor-1 receptor, and do not express the Th1-associated transcription factor T-bet. Taken together, our data suggest that CD11c+ microglia, CD11c− microglia, and infiltrating BMDM/DC represent separate and distinct populations and illustrate the heterogeneity of the CNS inflammatory environment.
Collapse
Affiliation(s)
- Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Oriane Cédile
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Kirstine Nolling Jensen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Agathe Jasson
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark ; Department of Biology, École Normale Supérieure de Lyon , Lyon , France
| | - Jyothi Thyagabhavan Mony
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| |
Collapse
|
126
|
David S, Greenhalgh AD, Kroner A. Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 2015; 307:311-8. [PMID: 26342747 DOI: 10.1016/j.neuroscience.2015.08.064] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/28/2022]
Abstract
Macrophages in the injured spinal cord arise from resident microglia and from infiltrating peripheral myeloid cells. Microglia respond within minutes after central nervous system (CNS) injury and along with other CNS cells signal the influx of their peripheral counterpart. Although some of the functions they carry out are similar, they appear to be specialized to perform particular roles after CNS injury. Microglia and macrophages are very plastic cells that can change their phenotype drastically in response to in vitro and in vivo conditions. They can change from pro-inflammatory, cytotoxic cells to anti-inflammatory, pro-repair phenotypes. The microenvironment of the injured CNS importantly influences macrophage plasticity. This review discusses the phagocytosis and cytokine-mediated effects on macrophage plasticity in the context of spinal cord injury.
Collapse
Affiliation(s)
- S David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - A D Greenhalgh
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada
| | - A Kroner
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
127
|
Bussy C, Al-Jamal KT, Boczkowski J, Lanone S, Prato M, Bianco A, Kostarelos K. Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS NANO 2015; 9:7815-7830. [PMID: 26043308 DOI: 10.1021/acsnano.5b02358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface tunability and their ability to translocate plasma membranes make chemically functionalized carbon nanotubes (f-CNTs) promising intracellular delivery systems for therapeutic or diagnostic purposes in the central nervous system (CNS). The present study aimed to determine the biological impact of different types of multiwalled CNTs (MWNTs) on primary neuronal and glial cell populations isolated from fetal rat frontal cortex (FCO) and striatum (ST). Neurons from both brain regions were generally not affected by exposure to MWNTs as determined by a modified LDH assay. In contrast, the viability of mixed glia was reduced in ST-derived mixed glial cultures, but not in FCO-derived ones. Cytotoxicity was independent of MWNT type or dose, suggesting an inherent sensitivity to CNTs. Characterization of the cell populations in mixed glial cultures prior to nanotube exposure showed higher number of CD11b/c positive cells in the ST-derived mixed glial cultures. After exposure to MWNTs, CNT were uptaken more effectively by CD11b/c positive cells (microglia), compared to GFAP positive cells (astrocytes). When exposed to conditioned media from microglia enriched cultures exposed to MWNTs, ST-derived glial cultures secreted more NO than FCO-derived cells. These results suggested that the more significant cytotoxic response obtained from ST-derived mixed glia cultures was related to the higher number of microglial cells in this brain region. Our findings emphasize the role that resident macrophages of the CNS play in response to nanomaterials and the need to thoroughly investigate the brain region-specific effects toward designing implantable devices or delivery systems to the CNS.
Collapse
Affiliation(s)
- Cyrill Bussy
- Nanomedicine Lab, Faculty of Medical & Human Sciences & National Graphene Institute, University of Manchester , AV Hill Building, Manchester M13 9PT, United Kingdom
- Faculty of Life Sciences, University College London , Brunswick Square, London WC1N 1AX, United Kingdom
| | - Khuloud T Al-Jamal
- Faculty of Life Sciences, University College London , Brunswick Square, London WC1N 1AX, United Kingdom
| | - Jorge Boczkowski
- INSERM U955, Institut Mondor de Recherche Biomédicale , Créteil F-94010 , France
- Université Paris Est Val de Marne (UPEC) , Créteil F-94010, France
- AP-HP, Hôpital Henri Mondor, Service de Physiologie Explorations Fonctionnelles , Créteil F-94010, France
| | - Sophie Lanone
- INSERM U955, Institut Mondor de Recherche Biomédicale , Créteil F-94010 , France
- Université Paris Est Val de Marne (UPEC) , Créteil F-94010, France
- Hôpital Intercommunal de Créteil , Service de Pneumologie et Pathologie Professionnelle, Créteil F-94000, France
| | - Maurizio Prato
- Center of Excellence for Nanostructured Materials, Department of Pharmaceutical Sciences, University of Trieste , Trieste 34127, Italy
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire , UPR 3572, Immunopathologie et Chimie Thérapeutiques, 67000 Strasbourg, France
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Medical & Human Sciences & National Graphene Institute, University of Manchester , AV Hill Building, Manchester M13 9PT, United Kingdom
- Faculty of Life Sciences, University College London , Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
128
|
Microglia Function in Central Nervous System Development and Plasticity. Cold Spring Harb Perspect Biol 2015; 7:a020545. [PMID: 26187728 DOI: 10.1101/cshperspect.a020545] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nervous system comprises a remarkably diverse and complex network of different cell types, which must communicate with one another with speed, reliability, and precision. Thus, the developmental patterning and maintenance of these cell populations and their connections with one another pose a rather formidable task. Emerging data implicate microglia, the resident myeloid-derived cells of the central nervous system (CNS), in the spatial patterning and synaptic wiring throughout the healthy, developing, and adult CNS. Importantly, new tools to specifically manipulate microglia function have revealed that these cellular functions translate, on a systems level, to effects on overall behavior. In this review, we give a historical perspective of work to identify microglia function in the healthy CNS and highlight exciting new work in the field that has identified roles for these cells in CNS development, maintenance, and plasticity.
Collapse
|
129
|
Squarzoni P, Thion MS, Garel S. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front Neurosci 2015; 9:248. [PMID: 26236185 PMCID: PMC4505395 DOI: 10.3389/fnins.2015.00248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Neocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cell populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells.
Collapse
Affiliation(s)
- Paola Squarzoni
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Morgane S Thion
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Sonia Garel
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| |
Collapse
|
130
|
Ginhoux F, Prinz M. Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 2015; 7:a020537. [PMID: 26134003 DOI: 10.1101/cshperspect.a020537] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS), which sit in close proximity to neural structures and are intimately involved in brain homeostasis. The microglial population also plays fundamental roles during neuronal expansion and differentiation, as well as in the perinatal establishment of synaptic circuits. Any change in the normal brain environment results in microglial activation, which can be detrimental if not appropriately regulated. Aberrant microglial function has been linked to the development of several neurological and psychiatric diseases. However, microglia also possess potent immunoregulatory and regenerative capacities, making them attractive targets for therapeutic manipulation. Such rationale manipulations will, however, require in-depth knowledge of their origins and the molecular mechanisms underlying their homeostasis. Here, we discuss the latest advances in our understanding of the origin, differentiation, and homeostasis of microglial cells and their myelomonocytic relatives in the CNS.
Collapse
Affiliation(s)
- Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, 79106 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
131
|
Gordon S, Plüddemann A, Martinez Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 2015; 262:36-55. [PMID: 25319326 PMCID: PMC4231239 DOI: 10.1111/imr.12223] [Citation(s) in RCA: 525] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development and throughout adult life, macrophages derived from hematopoietic progenitors are seeded throughout the body, initially in the absence of inflammatory and infectious stimuli as tissue-resident cells, with enhanced recruitment, activation, and local proliferation following injury and pathologic insults. We have learned a great deal about macrophage properties ex vivo and in cell culture, but their phenotypic heterogeneity within different tissue microenvironments remains poorly characterized, although it contributes significantly to maintaining local and systemic homeostasis, pathogenesis, and possible treatment. In this review, we summarize the nature, functions, and interactions of tissue macrophage populations within their microenvironment and suggest questions for further investigation.
Collapse
Affiliation(s)
- Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
132
|
Kälin S, Heppner FL, Bechmann I, Prinz M, Tschöp MH, Yi CX. Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol 2015; 11:339-51. [PMID: 25824676 DOI: 10.1038/nrendo.2015.48] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Findings from rodent and human studies show that the presence of inflammatory factors is positively correlated with obesity and the metabolic syndrome. Obesity-associated inflammatory responses take place not only in the periphery but also in the brain. The hypothalamus contains a range of resident glial cells including microglia, macrophages and astrocytes, which are embedded in highly heterogenic groups of neurons that control metabolic homeostasis. This complex neural-glia network can receive information directly from blood-borne factors, positioning it as a metabolic sensor. Following hypercaloric challenge, mediobasal hypothalamic microglia and astrocytes enter a reactive state, which persists during diet-induced obesity. In established mouse models of diet-induced obesity, the hypothalamic vasculature displays angiogenic alterations. Moreover, proopiomelanocortin neurons, which regulate food intake and energy expenditure, are impaired in the arcuate nucleus, where there is an increase in local inflammatory signals. The sum total of these events is a hypothalamic innate immune reactivity, which includes temporal and spatial changes to each cell population. Although the exact role of each participant of the neural-glial-vascular network is still under exploration, therapeutic targets for treating obesity should probably be linked to individual cell types and their specific signalling pathways to address each dysfunction with cell-selective compounds.
Collapse
Affiliation(s)
- Stefanie Kälin
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment &Technische Universität München, 85748, Munich, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Breisacher Str. 64, D-79106 Freiburg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment &Technische Universität München, 85748, Munich, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
133
|
Stefano GB, Kream RM. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med Sci Monit 2015; 21:1478-84. [PMID: 25997954 PMCID: PMC4451716 DOI: 10.12659/msm.894437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammals and invertebrates, the activities of neuro- and immuno-competent cells, e.g., glia, which are present in nervous tissues, are deemed of critical importance to normative neuronal function. The responsiveness of invertebrate and vertebrate immuno-competent glia to a common set of signal molecules, such as nitric oxide and endogenous morphine, is functionally linked to physiologically driven innate immunological and neuronal activities. Importantly, the presence of a common, evolutionarily conserved, set of signal molecules in comparative animal groups strongly suggests an expansive intermediate metabolic profile dependent on high output mitochondrial ATP production and utilization. Normative bidirectional neural-immune communication across invertebrate and vertebrate species requires common anatomical and biochemical substrates and pathways involved in energy production and mitochondrial integrity. Within this closed-loop system, abnormal perturbation of the respective tissue functions will have profound ramifications in functionally altering associated nervous and vascular systems and it is highly likely that the initial trigger to the induction of a physiologically debilitating pro-inflammatory state is a micro-environmental hypoxic event. This is surmised by the need for an unwavering constant oxygen supply. In this case, temporal perturbations of normative oxygen tension may be tolerated for short, but not extended, periods and ischemic/hypoxic perturbations in oxygen delivery represent significant physiological challenges to overall cellular and multiple organ system viability. Hence, hypoxic triggering of multiple pro-inflammatory events, if not corrected, will promote pathophysiological amplification leading to a deleterious cascade of bio-senescent cellular and molecular signaling pathways, which converge to markedly impair mitochondrial energy utilization and ATP production.
Collapse
|
134
|
Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina. Exp Eye Res 2015; 136:116-30. [PMID: 25952657 DOI: 10.1016/j.exer.2015.04.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
The microglia are the immune cells of the central nervous system and, also the retina. They fulfil several tasks of surveillance in the healthy retina. In case of an injury or disease, microglia become activated and tries to repair the damage. However, in a lot of cases it does not work, and microglia deteriorate the situation by releasing toxic and pro-inflammatory compounds. Moreover, they further promote degenerative processes by attacking and phagocytosing damaged neurones and photoreceptors that otherwise would possibly have the chance to survive. Such deleterious action of the microglia has been observed in degeneration of retinal ganglion cells and photoreceptors, and it takes place in hereditary diseases, infections as well as in case of traumatic or light injuries. Therefore, a number of attempts has been undertaken so far to inhibit the microglia, with varying success. The task remains to study behaviour of the microglia and their interaction with other retinal cell populations in more detail with respect to released factors and expressed receptors including the time points of the corresponding events. The goal has to be to find a better balance between helpful and detrimental actions of the microglia.
Collapse
Affiliation(s)
- Lu Li
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Nicole Eter
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Peter Heiduschka
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany.
| |
Collapse
|
135
|
Abstract
Microglia are macrophages that colonize the brain during development to establish a resident population of professional phagocytes that protect against invading pathogens and contribute to brain development and homeostasis. As such, these cells sit at the interface between immunology and neurobiology. In addition to their key roles in brain physiology, microglia offer a great opportunity to address central questions in biology relating to how migrating cells find their positions in the embryo, adopt a behavior that is appropriate for that position, and interact with their local environment. We aim, in this review, to survey key recent advances in microglial research.
Collapse
Affiliation(s)
- Alessandra Maria Casano
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Francesca Peri
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
136
|
Abstract
Purpose of review The present review describes new advances in our understanding of the role of glial cells in the pathogenesis of glaucoma. It is becoming clear that retinal glia should not be studied in isolation in glaucoma because glia have dynamic and diverse interactions with a range of different cell types that could influence the disease process. Recent findings Microglial activity is modulated by signals from retinal ganglion cells and macroglia that influence RGC survival in various models of injury. New studies suggest that circulating monocytic populations may play a role in mediating the immune response to glaucoma. Astrocytes have been found to develop discrete localized processes that interact with a specific subset of retinal ganglion cells, possibly responding to the expression of phagocytic signals by stressed retinal ganglion cells. Summary Retinal glia constitute a highly versatile population that interacts with various cells to maintain homeostasis and limit disease. Defining the mechanisms that underlie glial communication could enable the development of more selective therapeutic targets, with great potential clinical applications.
Collapse
|
137
|
Elmore MRP, Lee RJ, West BL, Green KN. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation. PLoS One 2015; 10:e0122912. [PMID: 25849463 PMCID: PMC4388515 DOI: 10.1371/journal.pone.0122912] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/16/2015] [Indexed: 12/23/2022] Open
Abstract
Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the original resident microglia without any apparent adverse effects in healthy adult mice.
Collapse
Affiliation(s)
- Monica R. P. Elmore
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, California, United States of America
| | - Rafael J. Lee
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, California, United States of America
| | - Brian L. West
- Plexxikon Inc., Berkeley, California, United States of America
| | - Kim N. Green
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
138
|
Pagani F, Paolicelli RC, Murana E, Cortese B, Di Angelantonio S, Zurolo E, Guiducci E, Ferreira TA, Garofalo S, Catalano M, D'Alessandro G, Porzia A, Peruzzi G, Mainiero F, Limatola C, Gross CT, Ragozzino D. Defective microglial development in the hippocampus of Cx3cr1 deficient mice. Front Cell Neurosci 2015; 9:111. [PMID: 25873863 PMCID: PMC4379915 DOI: 10.3389/fncel.2015.00111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/11/2015] [Indexed: 11/13/2022] Open
Abstract
Microglial cells participate in brain development and influence neuronal loss and synaptic maturation. Fractalkine is an important neuronal chemokine whose expression increases during development and that can influence microglia function via the fractalkine receptor, CX3CR1. Mice lacking Cx3cr1 show a variety of neuronal defects thought to be the result of deficient microglia function. Activation of CX3CR1 is important for the proper migration of microglia to sites of injury and into the brain during development. However, little is known about how fractalkine modulates microglial properties during development. Here we examined microglial morphology, response to ATP, and K+ current properties in acute brain slices from Cx3cr1 knockout mice across postnatal hippocampal development. We found that fractalkine signaling is necessary for the development of several morphological and physiological features of microglia. Specifically, we found that the occurrence of an outward rectifying K+ current, typical of activated microglia, that peaked during the second and third postnatal week, was reduced in Cx3cr1 knockout mice. Fractalkine signaling also influenced microglial morphology and ability to extend processes in response to ATP following its focal application to the slice. Our results reveal the developmental profile of several morphological and physiological properties of microglia and demonstrate that these processes are modulated by fractalkine signaling.
Collapse
Affiliation(s)
- Francesca Pagani
- Center for Life Nanoscience - Istituto Italiano di Tecnologia@Sapienza, Rome Italy
| | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zürich, Zürich Switzerland ; Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Italy
| | - Emanuele Murana
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy
| | - Barbara Cortese
- Consiglio Nazionale delle Ricerche - Institute of Inorganic Methodologies and Plasmas, Department of Physics, Sapienza University of Rome, Rome Italy
| | - Silvia Di Angelantonio
- Center for Life Nanoscience - Istituto Italiano di Tecnologia@Sapienza, Rome Italy ; Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy
| | - Emanuele Zurolo
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Eva Guiducci
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Italy
| | - Tiago A Ferreira
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli, Italy
| | - Alessandra Porzia
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nanoscience - Istituto Italiano di Tecnologia@Sapienza, Rome Italy
| | - Fabrizio Mainiero
- Department of Experimental Medicine, Sapienza University of Rome Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli, Italy
| | - Cornelius T Gross
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli, Italy
| |
Collapse
|
139
|
Telomere dysfunction reduces microglial numbers without fully inducing an aging phenotype. Neurobiol Aging 2015; 36:2164-75. [PMID: 25892207 DOI: 10.1016/j.neurobiolaging.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 12/16/2022]
Abstract
The susceptibility of the aging brain to neurodegenerative disease may in part be attributed to cellular aging of the microglial cells that survey it. We investigated the effect of cellular aging induced by telomere shortening on microglia by the use of mice lacking the telomerase RNA component (TERC) and design-based stereology. TERC knockout (KO) mice had a significantly reduced number of CD11b(+) microglia in the dentate gyrus. Because of an even greater reduction in dentate gyrus volume, microglial density was, however, increased. Microglia in TERC KO mice maintained a homogenous distribution and normal expression of CD45 and CD68 and the aging marker, ferritin, but were morphologically distinct from microglia in both adult and old wild-type mice. TERC KO mice also showed increased cellular apoptosis and impaired spatial learning. Our results suggest that individual microglia are relatively resistant to telomerase deficiency during steady state conditions, despite an overall reduction in microglial numbers. Furthermore, telomerase deficiency and aging may provide disparate cues leading to distinct changes in microglial morphology and phenotype.
Collapse
|
140
|
Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 2015; 227:145-170. [PMID: 25846618 DOI: 10.1007/978-3-662-46450-2_8] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic pain, both inflammatory and neuropathic, is a debilitating condition in which the pain experience persists after the painful stimulus has resolved. The efficacy of current treatment strategies using opioids, NSAIDS and anticonvulsants is limited by the extensive side effects observed in patients, underlining the necessity for novel therapeutic targets. Preclinical models of chronic pain have recently provided evidence for a critical role played by glial cells in the mechanisms underlying the chronicity of pain, both at the site of damage in the periphery and in the dorsal horn of the spinal cord. Here microglia and astrocytes respond to the increased input from the periphery and change morphology, increase in number and release pro-nociceptive mediators such as ATP, cytokines and chemokines. These gliotransmitters can sensitise neurons by activation of their cognate receptors thereby contributing to central sensitization which is fundamental for the generation of allodynia, hyperalgesia and spontaneous pain.
Collapse
Affiliation(s)
- Elizabeth Amy Old
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
141
|
Thomas J, Mustafa S, Johnson J, Nicotra L, Hutchinson M. The relationship between opioids and immune signalling in the spinal cord. Handb Exp Pharmacol 2015; 227:207-238. [PMID: 25846621 DOI: 10.1007/978-3-662-46450-2_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Opioids are considered the gold standard for the treatment of moderate to severe pain. However, heterogeneity in analgesic efficacy, poor potency and side effects are associated with opioid use, resulting in dose limitations and suboptimal pain management. Traditionally thought to exhibit their analgesic actions via the activation of the neuronal G-protein-coupled opioid receptors, it is now widely accepted that neuronal activity of opioids cannot fully explain the initiation and maintenance of opioid tolerance, hyperalgesia and allodynia. In this review we will highlight the evidence supporting the role of non-neuronal mechanisms in opioid signalling, paying particular attention to the relationship of opioids and immune signalling.
Collapse
Affiliation(s)
- Jacob Thomas
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia,
| | | | | | | | | |
Collapse
|
142
|
Codeine-induced hyperalgesia and allodynia: investigating the role of glial activation. Transl Psychiatry 2014; 4:e482. [PMID: 25386959 PMCID: PMC4259992 DOI: 10.1038/tp.2014.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 12/27/2022] Open
Abstract
Chronic morphine therapy has been associated with paradoxically increased pain. Codeine is a widely used opioid, which is metabolized to morphine to elicit analgesia. Prolonged morphine exposure exacerbates pain by activating the innate immune toll-like receptor-4 (TLR4) in the central nervous system. In silico docking simulations indicate codeine also docks to MD2, an accessory protein for TLR4, suggesting potential to induce TLR4-dependent pain facilitation. We hypothesized codeine would cause TLR4-dependent hyperalgesia/allodynia that is disparate from its opioid receptor-dependent analgesic rank potency. Hyperalgesia and allodynia were assessed using hotplate and von Frey tests at days 0, 3 and 5 in mice receiving intraperitoneal equimolar codeine (21 mg kg(-1)), morphine (20 mg kg(-1)) or saline, twice daily. This experiment was repeated in animals with prior partial nerve injury and in TLR4 null mutant mice. Interventions with interleukin-1 receptor antagonist (IL-1RA) and glial-attenuating drug ibudilast were assessed. Analyses of glial activation markers (glial fibrillary acid protein and CD11b) in neuronal tissue were conducted at the completion of behavioural testing. Despite providing less acute analgesia (P=0.006), codeine induced similar hotplate hyperalgesia to equimolar morphine vs saline (-9.5 s, P<0.01 and -7.3 s, P<0.01, respectively), suggesting codeine does not rely upon conversion to morphine to increase pain sensitivity. This highlights the potential non-opioid receptor-dependent nature of codeine-enhanced pain sensitivity-although the involvement of other codeine metabolites cannot be ruled out. IL-1RA reversed codeine-induced hyperalgesia (P<0.001) and allodynia (P<0.001), and TLR4 knock-out protected against codeine-induced changes in pain sensitivity. Glial attenuation with ibudilast reversed codeine-induced allodynia (P<0.001), and thus could be investigated further as potential treatment for codeine-induced pain enhancement.
Collapse
|
143
|
Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer's disease; A source of heterogeneity and target for personalized therapy. Neuroscience 2014; 302:103-11. [PMID: 25286385 DOI: 10.1016/j.neuroscience.2014.09.061] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/30/2022]
Abstract
Neuroinflammation has long been known as an accompanying pathology of Alzheimer's disease. Microglia surrounding amyloid plaques in the brain of Auguste D were described in the original publication of Alois Alzheimer. It is only quite recently, however, that we have a more complete appreciation for the diverse roles of neuroinflammation in neurodegenerative disorders such as Alzheimer's. While gaps in our knowledge remain, and conflicting data are abound in the field, our understanding of the complexities and heterogeneous functions of the inflammatory response in Alzheimer's is vastly improved. This review article will discuss some of the roles of neuroinflammation in Alzheimer's disease, in particular, how understanding heterogeneity in the individual inflammatory response can be used in therapeutic development and as a mechanism of personalizing our treatment of the disease.
Collapse
Affiliation(s)
- C H Latta
- University of Kentucky, Sanders-Brown Center on Aging, Department of Physiology, Lexington, KY 40536, USA; The University of Manchester, Department of Biology, Manchester M13 9PL, United Kingdom
| | - H M Brothers
- University of Kentucky, Sanders-Brown Center on Aging, Department of Physiology, Lexington, KY 40536, USA
| | - D M Wilcock
- University of Kentucky, Sanders-Brown Center on Aging, Department of Physiology, Lexington, KY 40536, USA.
| |
Collapse
|
144
|
Schapansky J, Nardozzi JD, LaVoie MJ. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease. Neuroscience 2014; 302:74-88. [PMID: 25284317 DOI: 10.1016/j.neuroscience.2014.09.049] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
The proteins alpha-synuclein (αSyn) and leucine rich repeat kinase 2 (LRRK2) are both key players in the pathogenesis of the neurodegenerative disorder Parkinson's disease (PD), but establishing a functional link between the two proteins has proven elusive. Research studies for these two proteins have traditionally and justifiably focused in neuronal cells, but recent studies indicate that each protein could play a greater pathological role elsewhere. αSyn is expressed at high levels within neurons, but they also secrete the protein into the extracellular milieu, where it can have broad ranging effects in the nervous system and relevance to disease etiology. Similarly, low neuronal LRRK2 expression and activity suggests that LRRK2-related functions could be more relevant in cells with higher expression, such as brain-resident microglia. Microglia are monocytic immune cells that protect neurons from noxious stimuli, including pathological αSyn species, and microglial activation is believed to contribute to neuroinflammation and neuronal death in PD. Interestingly, both αSyn and LRRK2 can be linked to microglial function. Secreted αSyn can directly activate microglia, and can be taken up by microglia for clearance, while LRRK2 has been implicated in the intrinsic regulation of microglial activation and of lysosomal degradation processes. Based on these observations, the present review will focus on how PD-associated mutations in LRRK2 could potentially alter microglial biology with respect to neuronally secreted αSyn, resulting in cell dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- J Schapansky
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States
| | - J D Nardozzi
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States
| | - M J LaVoie
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
145
|
Solga AC, Pong WW, Walker J, Wylie T, Magrini V, Apicelli AJ, Griffith M, Griffith OL, Kohsaka S, Wu GF, Brody DL, Mardis ER, Gutmann DH. RNA-sequencing reveals oligodendrocyte and neuronal transcripts in microglia relevant to central nervous system disease. Glia 2014; 63:531-548. [PMID: 25258010 DOI: 10.1002/glia.22754] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
Abstract
Expression profiling of distinct central nervous system (CNS) cell populations has been employed to facilitate disease classification and to provide insights into the molecular basis of brain pathology. One important cell type implicated in a wide variety of CNS disease states is the resident brain macrophage (microglia). In these studies, microglia are often isolated from dissociated brain tissue by flow sorting procedures [fluorescence-activated cell sorting (FACS)] or from postnatal glial cultures by mechanic isolation. Given the highly dynamic and state-dependent functions of these cells, the use of FACS or short-term culture methods may not accurately capture the biology of brain microglia. In the current study, we performed RNA-sequencing using Cx3cr1(+/GFP) labeled microglia isolated from the brainstem of 6-week-old mice to compare the transcriptomes of FACS-sorted versus laser capture microdissection (LCM). While both isolation techniques resulted in a large number of shared (common) transcripts, we identified transcripts unique to FACS-isolated and LCM-captured microglia. In particular, ∼50% of these LCM-isolated microglial transcripts represented genes typically associated with neurons and glia. While these transcripts clearly localized to microglia using complementary methods, they were not translated into protein. Following the induction of murine experimental autoimmune encephalomyelitis, increased oligodendrocyte and neuronal transcripts were detected in microglia, while only the myelin basic protein oligodendrocyte transcript was increased in microglia after traumatic brain injury. Collectively, these findings have implications for the design and interpretation of microglia transcriptome-based investigations.
Collapse
Affiliation(s)
- Anne C Solga
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | - Winnie W Pong
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | - Jason Walker
- The Genome Institute, Washington University School of Medicine
| | - Todd Wylie
- The Genome Institute, Washington University School of Medicine
| | - Vincent Magrini
- The Genome Institute, Washington University School of Medicine
| | - Anthony J Apicelli
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | | | - Obi L Griffith
- The Genome Institute, Washington University School of Medicine
| | - Shinichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | - David L Brody
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | - Elaine R Mardis
- The Genome Institute, Washington University School of Medicine
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| |
Collapse
|
146
|
Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neurosci Biobehav Rev 2014; 45:168-82. [DOI: 10.1016/j.neubiorev.2014.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 01/22/2023]
|
147
|
Microglia Modulate Wiring of the Embryonic Forebrain. Cell Rep 2014; 8:1271-9. [DOI: 10.1016/j.celrep.2014.07.042] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/28/2014] [Accepted: 07/23/2014] [Indexed: 11/19/2022] Open
|
148
|
Sauter KA, Pridans C, Sehgal A, Bain CC, Scott C, Moffat L, Rojo R, Stutchfield BM, Davies CL, Donaldson DS, Renault K, McColl BW, Mowat AM, Serrels A, Frame MC, Mabbott NA, Hume DA. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS One 2014; 9:e105429. [PMID: 25137049 PMCID: PMC4138162 DOI: 10.1371/journal.pone.0105429] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 01/09/2023] Open
Abstract
The MacBlue transgenic mouse uses the Csf1r promoter and first intron to drive expression of gal4-VP16, which in turn drives a cointegrated gal4-responsive UAS-ECFP cassette. The Csf1r promoter region used contains a deletion of a 150 bp conserved region covering trophoblast and osteoclast-specific transcription start sites. In this study, we examined expression of the transgene in embryos and adult mice. In embryos, ECFP was expressed in the large majority of macrophages derived from the yolk sac, and as the liver became a major site of monocytopoiesis. In adults, ECFP was detected at high levels in both Ly6C+ and Ly6C- monocytes and distinguished them from Ly6C+, F4/80+, CSF1R+ immature myeloid cells in peripheral blood. ECFP was also detected in the large majority of microglia and Langerhans cells. However, expression was lost from the majority of tissue macrophages, including Kupffer cells in the liver and F4/80+ macrophages of the lung, kidney, spleen and intestine. The small numbers of positive cells isolated from the liver resembled blood monocytes. In the gut, ECFP+ cells were identified primarily as classical dendritic cells or blood monocytes in disaggregated cell preparations. Immunohistochemistry showed large numbers of ECFP+ cells in the Peyer's patch and isolated lymphoid follicles. The MacBlue transgene was used to investigate the effect of treatment with CSF1-Fc, a form of the growth factor with longer half-life and efficacy. CSF1-Fc massively expanded both the immature myeloid cell (ECFP-) and Ly6C+ monocyte populations, but had a smaller effect on Ly6C- monocytes. There were proportional increases in ECFP+ cells detected in lung and liver, consistent with monocyte infiltration, but no generation of ECFP+ Kupffer cells. In the gut, there was selective infiltration of large numbers of cells into the lamina propria and Peyer's patches. We discuss the use of the MacBlue transgene as a marker of monocyte/macrophage/dendritic cell differentiation.
Collapse
Affiliation(s)
- Kristin A. Sauter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Clare Pridans
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Anuj Sehgal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Calum C. Bain
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Charlotte Scott
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lindsey Moffat
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Rocío Rojo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Ben M. Stutchfield
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland, United Kingdom
| | - Claire L. Davies
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - David S. Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Kathleen Renault
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Barry W. McColl
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Alan M. Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Alan Serrels
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, Midlothian, Scotland, United Kingdom
| | - Margaret C. Frame
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, Midlothian, Scotland, United Kingdom
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| |
Collapse
|
149
|
Jenkins SJ, Hume DA. Homeostasis in the mononuclear phagocyte system. Trends Immunol 2014; 35:358-67. [PMID: 25047416 DOI: 10.1016/j.it.2014.06.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 01/09/2023]
Abstract
The mononuclear phagocyte system (MPS) is a family of functionally related cells including bone marrow precursors, blood monocytes, and tissue macrophages. We review the evidence that macrophages and dendritic cells (DCs) are separate lineages and functional entities, and examine whether the traditional view that monocytes are the immediate precursors of tissue macrophages needs to be refined based upon evidence that macrophages can extensively self-renew and can be seeded from yolk sac/foetal liver progenitors with little input from monocytes thereafter. We review the role of the growth factor colony-stimulating factor (CSF)1, and present a model consistent with the concept of the MPS in which local proliferation and monocyte recruitment are connected to ensure macrophages occupy their well-defined niche in most tissues.
Collapse
Affiliation(s)
- Stephen J Jenkins
- University of Edinburgh, Centre for Inflammation Research, Edinburgh EH16 4TJ, UK
| | - David A Hume
- University of Edinburgh, The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
150
|
Abstract
Human immunodeficiency virus (HIV) invades the brain early during infection and generates a chronic inflammatory microenvironment that can eventually result in neurological disease, even in the absence of significant viral replication. Thus, HIV-1 infection of the brain has been characterized both as a neuroimmunological and neurodegenerative disorder. While the brain and central nervous system (CNS) have historically been regarded as immune privileged or immunologically quiescent, newer concepts of CNS immunity suggest an important if not defining role for innate immune responses generated by glial cells. Innate immunity may be the first line of defense against HIV infection of the brain and CNS, with multiple cellular elements providing responses that can be anti-viral and neuroprotective, but also potentially neurotoxic, impairing neurogenesis and promoting neuronal apoptosis. To investigate the effects of HIV exposure on neurogenesis and neuronal survival, we have studied the responses of human neuroepithelial progenitor (NEP) cells, which undergo directed differentiation into astrocytes and neurons in vitro. We identified a group of genes that were differentially expressed in NEP-derived cells during virus exposure. This included genes that are strongly related to interferon-induced responses and antigen presentation. Moreover, we observed that the host factor apolipoprotein E influences the innate immune response expressed by these cells, with a more robust response in the apolipoprotein E3/E3 genotype cultures compared to the apolipoprotein E3/E4 counterparts. Thus, neuroepithelial progenitors and their differentiated progeny recognize HIV and respond to it by mounting an innate immune response with a vigor that is influenced by the host factor apolipoprotein E.
Collapse
|