101
|
Ugbode CI, Smith I, Whalley BJ, Hirst WD, Rattray M. Sonic hedgehog signalling mediates astrocyte crosstalk with neurons to confer neuroprotection. J Neurochem 2017; 142:429-443. [PMID: 28485896 PMCID: PMC5575469 DOI: 10.1111/jnc.14064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/18/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Sonic hedgehog (SHH) is a glycoprotein associated with development that is also expressed in the adult CNS and released after brain injury. Since the SHH receptors patched homolog‐1 and Smoothened are highly expressed on astrocytes, we hypothesized that SHH regulates astrocyte function. Primary mouse cortical astrocytes derived from embryonic Swiss mouse cortices, were treated with two chemically distinct agonists of the SHH pathway, which caused astrocytes to elongate and proliferate. These changes are accompanied by decreases in the major astrocyte glutamate transporter‐1 and the astrocyte intermediate filament protein glial fibrillary acidic protein. Multisite electrophysiological recordings revealed that the SHH agonist, smoothened agonist suppressed neuronal firing in astrocyte‐neuron co‐cultures and this was abolished by the astrocyte metabolic inhibitor ethylfluoroacetate, revealing that SHH stimulation of metabolically active astrocytes influences neuronal firing. Using three‐dimensional co‐culture, MAP2 western blotting and immunohistochemistry, we show that SHH‐stimulated astrocytes protect neurons from kainate‐induced cell death. Altogether the results show that SHH regulation of astrocyte function represents an endogenous neuroprotective mechanism. ![]()
Collapse
Affiliation(s)
- Christopher I Ugbode
- School of Pharmacy, University of Bradford, Bradford, UK.,School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK.,Department of Biology, University of York, Heslington, UK
| | - Imogen Smith
- School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK.,Portsmouth Brain Tumour Research Centre, University of Portsmouth, Portsmouth, UK
| | - Benjamin J Whalley
- School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK
| | - Warren D Hirst
- Neurodegeneration and Neurologic Diseases, Pfizer Neuroscience Research Unit, Cambridge, Massachusetts, USA
| | - Marcus Rattray
- School of Pharmacy, University of Bradford, Bradford, UK
| |
Collapse
|
102
|
Surface chemistry governs cellular tropism of nanoparticles in the brain. Nat Commun 2017; 8:15322. [PMID: 28524852 PMCID: PMC5454541 DOI: 10.1038/ncomms15322] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are of long-standing interest for the treatment of neurological diseases such as glioblastoma. Most past work focused on methods to introduce nanoparticles into the brain, suggesting that reaching the brain interstitium will be sufficient to ensure therapeutic efficacy. However, optimized nanoparticle design for drug delivery to the central nervous system is limited by our understanding of their cellular deposition in the brain. Here, we investigated the cellular fate of poly(lactic acid) nanoparticles presenting different surface chemistries, after administration by convection-enhanced delivery. We demonstrate that nanoparticles with ‘stealth' properties mostly avoid internalization by all cell types, but internalization can be enhanced by functionalization with bio-adhesive end-groups. We also show that association rates measured in cultured cells predict the extent of internalization of nanoparticles in cell populations. Finally, evaluating therapeutic efficacy in an orthotopic model of glioblastoma highlights the need to balance significant uptake without inducing adverse toxicity. There have been numerous attempts to develop nanomaterials to reach cells of the central nervous system for drug delivery. Here, the authors investigate the cellular fate of polymer-based nanoparticles with varying surface chemistries after administration directly into the brain.
Collapse
|
103
|
Lee HC, Ejserholm F, Gaire J, Currlin S, Schouenborg J, Wallman L, Bengtsson M, Park K, Otto KJ. Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response? J Neural Eng 2017; 14:036026. [PMID: 28470152 DOI: 10.1088/1741-2552/aa68f0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Flexible neural probes are hypothesized to reduce the chronic foreign body response (FBR) mainly by reducing the strain-stress caused by an interplay between the tethered probe and the brain's micromotion. However, a large discrepancy of Young's modulus still exists (3-6 orders of magnitude) between the flexible probes and the brain tissue. This raises the question of whether we need to bridge this gap; would increasing the probe flexibility proportionally reduce the FBR? APPROACH Using novel off-stoichiometry thiol-enes-epoxy (OSTE+) polymer probes developed in our previous work, we quantitatively evaluated the FBR to four types of probes with different softness: silicon (~150 GPa), polyimide (1.5 GPa), OSTE+Hard (300 MPa), and OSTE+Soft (6 MPa). MAIN RESULTS We observed a significant reduction in the fluorescence intensity of biomarkers for activated microglia/macrophages and blood-brain barrier (BBB) leakiness around the three soft polymer probes compared to the silicon probe, both at 4 weeks and 8 weeks post-implantation. However, we did not observe any consistent differences in the biomarkers among the polymer probes. SIGNIFICANCE The results suggest that the mechanical compliance of neural probes can mediate the degree of FBR, but its impact diminishes after a hypothetical threshold level. This infers that resolving the mechanical mismatch alone has a limited effect on improving the lifetime of neural implants.
Collapse
Affiliation(s)
- Heui Chang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America. J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Santos AS, Almeida W, Popik B, Sbardelotto BM, Torrejais MM, Souza MA, Centenaro LA. Characterization of a cerebral palsy‐like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas. Int J Dev Neurosci 2017; 60:48-55. [DOI: 10.1016/j.ijdevneu.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Adriana Souza Santos
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Wellington Almeida
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Bruno Popik
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Bruno Marques Sbardelotto
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Márcia Miranda Torrejais
- Laboratório de Morfologia Experimental, Programa de Pós‐Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Marcelo Alves Souza
- Universidade Federal do Paraná, Rua General Rondon2195, ToledoParanáCEP: 85902‐090Brazil
| | - Lígia Aline Centenaro
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| |
Collapse
|
105
|
Jiang M, Sun L, Feng DX, Yu ZQ, Gao R, Sun YZ, Chen G. Neuroprotection provided by isoflurane pre-conditioning and post-conditioning. Med Gas Res 2017; 7:48-55. [PMID: 28480032 PMCID: PMC5402347 DOI: 10.4103/2045-9912.202910] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isoflurane, a volatile and inhalational anesthetic, has been extensively used in perioperative period for several decades. A large amount of experimental studies have indicated that isoflurane exhibits neuroprotective properties when it is administrated before or after (pre-conditioning and post-conditioning) neurodegenerative diseases (e.g., hypoxic ischemia, stroke and trauma). Multiple mechanisms are involved in isoflurane induced neuroprotection, including activation of glycine and γ-aminobutyric acid receptors, antagonism of ionic channels and alteration of the function and activity of other cellular proteins. Although neuroprotection provided by isoflurane is observed in many animal studies, convincing evidence is lacking in human trials. Therefore, there is still a long way to go before translating its neuroprotective properties into clinical practice.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Liang Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | | | - Zheng-Quan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang First People's Hospital, Soochow University, Zhangjiagang, Jiangsu Province, China
| | - Yuan-Zhao Sun
- Department of Neurosurgery, Huaian Hospital Affiliated of Xuzhou Medical University and Huaian Second People's Hospital, Huaian, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Neurosurgery, Zhangjiagang First People's Hospital, Soochow University, Zhangjiagang, Jiangsu Province, China.,Department of Neurosurgery, Huaian Hospital Affiliated of Xuzhou Medical University and Huaian Second People's Hospital, Huaian, Jiangsu Province, China
| |
Collapse
|
106
|
Kushwaha R, Mishra J, Tripathi S, Khare P, Bandyopadhyay S. Arsenic, Cadmium, and Lead Like Troglitazone Trigger PPARγ-Dependent Poly (ADP-Ribose) Polymerase Expression and Subsequent Apoptosis in Rat Brain Astrocytes. Mol Neurobiol 2017; 55:2125-2149. [DOI: 10.1007/s12035-017-0469-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 02/02/2023]
|
107
|
You T, Bi Y, Li J, Zhang M, Chen X, Zhang K, Li J. IL-17 induces reactive astrocytes and up-regulation of vascular endothelial growth factor (VEGF) through JAK/STAT signaling. Sci Rep 2017; 7:41779. [PMID: 28281545 PMCID: PMC5345044 DOI: 10.1038/srep41779] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/29/2016] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury is a grave neurological disability resulting in neuron degeneration and permanent paralysis. The inflammation triggered by the injury would promote the spinal cord lesion in turn. Activated astrocytes during inflammatory response could promote glial scar formation and contribute to the progression of the spinal cord injury. Interleukin 17 (IL-17) was upregulated in inflammatory responses to contusion or compression of the spinal cord. in this study, IL-17 could induce reactive astrocytes which was indicated by a well-known hallmark glial fibrillary acidic protein (GFAP) in vitro and in vivo. Moreover, we demonstrated that the upregulation of VEGF was induced by IL-17 human astrocytoma cells. In our further investigation, IL-17 induced the expression of VEGF in spinal cord injury by activating JAK/STAT signaling pathway both in vitro and in vivo. In addition, we also found that IL-17 significantly changed tissue preservation and residual urine volumes and blood-spinal cord-barrier integrity in vivo. This newly found IL-17-JAK/STAT-VEGF axis improves our understanding of the molecular mechanism of spinal cord injury during inflammatory response and provides another potential target of spinal cord injury.
Collapse
Affiliation(s)
- Tao You
- College of Pharmacy, Anhui Medical University, Hefei, China.,Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yihui Bi
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Orthopaedics, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Mingkai Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xuezhou Chen
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Keke Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jun Li
- College of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
108
|
Iser IC, Pereira MB, Lenz G, Wink MR. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation. Med Res Rev 2017; 37:271-313. [PMID: 27617697 DOI: 10.1002/med.21408] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/31/2016] [Accepted: 08/09/2016] [Indexed: 01/03/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer due to its highly invasive nature that impedes the surgical removal of all tumor cells, making relapse inevitable. However, the mechanisms used by glioma cells to invade the surrounding tissue are still unclear. In this context, epithelial-to-mesenchymal transition (EMT) has emerged as a key regulator of this invasive state and although the real relevance of this program in malignant glioma is still controversial, it has been strongly associated with GBM malignancy. EMT is a very complex process regulated by several families of transcriptional factors through many signaling pathways that form a network that allows cancer cells to acquire invasive properties and penetrate the neighboring stroma, resulting in the formation of an advantageous microenvironment for cancer progression and metastasis. In this systematic review, we focus on the molecular mechanisms of EMT including EMT-factors, drug resistance, miRNA, and new therapeutic strategies. In addition, we address controversial questions about mesenchymal shift in GBMs with a bioinformatics analysis to show that in terms of epithelial and mesenchymal phenotype, the majority of GBMs samples analyzed have a profile more mesenchymal than epithelial. If induced, this phenotype can be shifted toward an even more mesenchymal phenotype in an EMT-like process in glioma cells. A better understanding of the molecular regulation of the EMT during tumor spreading will help to provide potential therapeutic interventions to target this program when treating GBM.
Collapse
Affiliation(s)
- Isabele C Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Mariana B Pereira
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guido Lenz
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
109
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
110
|
Hyun HW, Min SJ, Kim JE. CDK5 inhibitors prevent astroglial apoptosis and reactive astrogliosis by regulating PKA and DRP1 phosphorylations in the rat hippocampus. Neurosci Res 2017; 119:24-37. [PMID: 28153522 DOI: 10.1016/j.neures.2017.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
Abstract
Status epilepticus (SE) results in the unique pattern of dynamin-related protein 1 (DRP1)-mediated mitochondrial dynamics, which is associated with astroglial apoptosis and reactive astrogliosis in the regional-specific pattern representing the differential astroglial properties. However, less defined are the epiphenomena/upstream effecters for DRP1 phosphorylation in this process. Since cyclin-dependent kinase 5 (CDK5) is involved in reactive astrogliosis, CDK5 is one of the possible upstream regulators for DRP1 phosphorylation. In the present study, both olomoucine and roscovitine (CDK5 inhibitors) effectively ameliorated SE-induced astroglial apoptosis in the dentate gyrus without changed seizure susceptibility. In addition, they inhibited reactive astrogliosis in the CA1 region independent of neuronal death induced by SE. These effects of CDK5 inhibitors were relevant to abrogation of altered DRP1 phosphorylation ratio and mitochondrial length induced by SE. CDK5 inhibitors also negatively regulated protein kinase A (PKA) activity in astrocytes. Therefore, our findings suggest that CDK5 inhibitors may mitigate astroglial apoptosis and reactive astrogliosis accompanied by modulations of DRP1-mediated mitochondrial dynamics.
Collapse
Affiliation(s)
- Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| |
Collapse
|
111
|
The immunoreactivity of satellite glia of the spinal ganglia of rats treated with monosodium glutamate. ACTA VET BRNO 2017. [DOI: 10.2754/avb201685040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Satellite glia of the peripheral nervous system ganglia provide metabolic protection to the neurons. The aim of this study was to determine the effects of monosodium glutamate administered parenterally to rats on the expression of glial fibrillary acidic protein, S-100β protein and Ki-67 antigen in the satellite glial cells. Adult, 60-day-old male rats received monosodium glutamate at two doses of 2 g/kg b.w. (group 1) and 4 g/kg b.w. (group 2) subcutaneously for 3 consecutive days. Animals in the control group (group C) were treated with corresponding doses of 0.9% sodium chloride. Immediately after euthanasia, spinal ganglia of the lumbar region were dissected. Immunohistochemical peroxidase anti-peroxidase reactions were performed on the sections containing the examined material using antibodies against glial fibrillary acidic protein, S-100β and Ki-67. Next, morphological and morphometric analyses of immunopositive and immunonegative glia were conducted. The data were presented as the mean number of cells with standard deviation. Significant differences were analysed using ANOVA (P < 0.05). In all 63-day-old rats, immunopositivity for the examined proteins glia was observed. Increased number of cells expressing glial fibrillary acidic protein was demonstrated in group 2, whereas the number of S-100β-positive glia grew in the groups with the increasing doses of monosodium glutamate. The results indicate the early stage reactivity of glia in response to increased levels of glutamate in the extracellular space. These changes may be of a neuroprotective nature under the conditions of excitotoxicity induced by the action of this excitatory neurotransmitter.
Collapse
|
112
|
da Cunha Franceschi R, Nardin P, Machado CV, Tortorelli LS, Martinez-Pereira MA, Zanotto C, Gonçalves CA, Zancan DM. Enteric glial reactivity to systemic LPS administration: Changes in GFAP and S100B protein. Neurosci Res 2017; 119:15-23. [PMID: 28063977 DOI: 10.1016/j.neures.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharide (LPS) is used to induce inflammation and promotes nervous system activation. Different regions of the brain present heterogeneous glial responses; thus, in order to verify whether systemic LPS-induced inflammation affects the enteric glia differently across the intestinal segments, we evaluated the expressions of two glial activity markers, GFAP and S100B protein, in different intestine segments, at 1h, 24h and 7days after acute systemic LPS administration (0.25 or 2.5mgkg-1) in rats. Histological inflammatory analysis indicated that the cecum was most affected when compared to the duodenum and proximal colon at the highest doses of LPS. LPS induced an increased S100B content after 24h in all three regions, which decreased at 7days after the highest dose in all regions. Moreover, at 24h, this dose of LPS increased ex-vivo S100B secretion only in the cecum. The highest dose of LPS also increased GFAP in all regions at 24h, but earlier in the cecum, where LPS-induced enteric S100B and GFAP alterations were dependent on dose, time and intestine region. No associated changes in serum S100B were observed. Our results indicate heterogeneous enteric glial responses to inflammatory insult, as observed in distinct brain areas.
Collapse
Affiliation(s)
- Raphaela da Cunha Franceschi
- Laboratory of Comparative Neurobiology, Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Graduate Program in Neuroscience, ICBS, UFRGS, Brazil
| | - Patrícia Nardin
- Laboratory of Calcium-Binding Proteins, Department of Biochemistry, ICBS, UFRGS, Brazil
| | - Clivia Valle Machado
- Laboratory of Comparative Neurobiology, Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Graduate Program in Neuroscience, ICBS, UFRGS, Brazil
| | | | | | - Caroline Zanotto
- Laboratory of Calcium-Binding Proteins, Department of Biochemistry, ICBS, UFRGS, Brazil
| | - Carlos-Alberto Gonçalves
- Graduate Program in Neuroscience, ICBS, UFRGS, Brazil; Laboratory of Calcium-Binding Proteins, Department of Biochemistry, ICBS, UFRGS, Brazil.
| | - Denise Maria Zancan
- Laboratory of Comparative Neurobiology, Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Graduate Program in Neuroscience, ICBS, UFRGS, Brazil
| |
Collapse
|
113
|
Abstract
Reactive astrogliosis occurs after central nervous system (CNS) injuries whereby resident astrocytes form rapid responses along a graded continuum. Following CNS lesions, naïve astrocytes are converted into reactive astrocytes and eventually into scar-forming astrocytes that block axon regeneration and neural repair. It has been known for decades that scarring development and its related extracellular matrix molecules interfere with regeneration of injured axons after CNS injury, but the cellular and molecular mechanisms for controlling astrocytic scar formation and maintenance are not well known. Recent use of various genetic tools has made tremendous progress in better understanding genesis of reactive astrogliosis. Especially, the latest experiments demonstrate environment-dependent plasticity of reactive astrogliosis because reactive astrocytes isolated from injured spinal cord form scarring astrocytes when transplanted into injured spinal cord, but revert in retrograde to naive astrocytes when transplanted into naive spinal cord. The interactions between upregulated type I collagen and its receptor integrin β1 and the N-cadherin-mediated cell adhesion appear to play major roles for local astrogliosis around the lesion. This review centers on the environment-dependent plasticity of reactive astrogliosis after spinal cord injury and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Fatima M Nathan
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
114
|
Segura-Uribe JJ, Pinto-Almazán R, Coyoy-Salgado A, Fuentes-Venado CE, Guerra-Araiza C. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system. Neural Regen Res 2017; 12:1231-1240. [PMID: 28966632 PMCID: PMC5607812 DOI: 10.4103/1673-5374.213536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects.
Collapse
Affiliation(s)
- Julia J Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación Hospital Regional de Alta Especialidad Ixtapaluca, Ixtapaluca, Mexico.,Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Angélica Coyoy-Salgado
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Claudia E Fuentes-Venado
- Clínica de Trastornos del Sueño, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Servicio de Medicina Física y Rehabilitacion, Hospital General de Zona No. 197, Texcoco, Mexico.,Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
115
|
Barthélémy A, Mouchard A, Bouji M, Blazy K, Puigsegur R, Villégier AS. Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25343-25355. [PMID: 27696165 DOI: 10.1007/s11356-016-7758-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The widespread mobile phone use raises concerns on the possible cerebral effects of radiofrequency electromagnetic fields (RF EMF). Reactive astrogliosis was reported in neuroanatomical structures of adaptive behaviors after a single RF EMF exposure at high specific absorption rate (SAR, 6 W/kg). Here, we aimed to assess if neuronal injury and functional impairments were related to high SAR-induced astrogliosis. In addition, the level of beta amyloid 1-40 (Aβ 1-40) peptide was explored as a possible toxicity marker. Sprague Dawley male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for 45 min at 6 W/kg. Memory, emotionality, and locomotion were tested in the fear conditioning, the elevated plus maze, and the open field. Glial fibrillary acidic protein (GFAP, total and cytosolic fractions), myelin basic protein (MBP), and Aβ1-40 were quantified in six brain areas using enzyme-linked immunosorbent assay. According to our data, total GFAP was increased in the striatum (+114 %) at 1.5 W/kg. Long-term memory was reduced, and cytosolic GFAP was increased in the hippocampus (+119 %) and in the olfactory bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1-40 expression modification was shown. Our data corroborates previous studies indicating RF EMF-induced astrogliosis. This study suggests that RF EMF-induced astrogliosis had functional consequences on memory but did not demonstrate that it was secondary to neuronal damage.
Collapse
Affiliation(s)
- Amélie Barthélémy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Amandine Mouchard
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Maladies Neurodégénératives CNRS UMR5293 Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Bouji
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Campus des sciences et technologies, Université Saint-Joseph, Dekwaneh, Mar Roukos, Lebanon
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France
| | - Renaud Puigsegur
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Sous-direction de la police technique et scientifique, 31 Avenue Franklin Roosevelt, 69130, Ecully, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France.
| |
Collapse
|
116
|
Becerra-Calixto A, Cardona-Gómez GP. Neuroprotection Induced by Transplanted CDK5 Knockdown Astrocytes in Global Cerebral Ischemic Rats. Mol Neurobiol 2016; 54:6681-6696. [PMID: 27744570 DOI: 10.1007/s12035-016-0162-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Abstract
Cerebral ischemia is a cerebrovascular episode that generates a high incidence of death and physical and mental disabilities worldwide. Excitotoxicity, release of free radicals, and exacerbated immune response cause serious complications in motor and cognitive areas during both short and long time frames post-ischemia. CDK5 is a kinase that is widely involved in the functions of neurons and astrocytes, and its over-activation is implicated in neurodegenerative processes. In this study, we evaluated the brain parenchymal response to the transplantation of CDK5-knockdown astrocytes into the somatosensory cortex after ischemia in rats. Male Wistar rats were subjected to the two-vessel occlusion (2VO) model of global cerebral ischemia and immediately transplanted with shCDK5miR- or shSCRmiR-transduced astrocytes or with untransduced astrocytes (Control). Our findings showed that animals transplanted with shCDK5miR astrocytes recovered motor and neurological performance better than with those transplanted with WT or shSCRmiR astrocytes. Cell transplantation produced an overall prevention of neuronal loss, and CDK5-knockdown astrocytes significantly increased the immunoreactivity (IR) of endogenous GFAP in branches surrounding blood vessels, accompanied by the upregulation of PECAM-1 IR in the walls of vessels in the motor and somatosensory regions and by an increase in Ki67 IR in the subventricular zone (SVZ), partially associated with the production of BDNF. Together, our data suggest that transplantation of shCDK5miR astrocytes protects the neurovascular unit in ischemic rats, allowing the motor and neurological function recovery.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.
| |
Collapse
|
117
|
Zhang Z, Bassam B, Thomas AG, Williams M, Liu J, Nance E, Rojas C, Slusher BS, Kannan S. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain. Neurobiol Dis 2016; 94:116-28. [PMID: 27326668 PMCID: PMC5394739 DOI: 10.1016/j.nbd.2016.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/05/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by impaired astrocyte function and GCPII upregulation in activated microglia.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Bassam Bassam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Jinhuan Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Elizabeth Nance
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Barbara S Slusher
- Neurology, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
118
|
Kleiderman S, Gutbier S, Ugur Tufekci K, Ortega F, Sá JV, Teixeira AP, Brito C, Glaab E, Berninger B, Alves PM, Leist M. Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon-γ. Stem Cells 2016; 34:2861-2874. [PMID: 27603577 DOI: 10.1002/stem.2483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 01/05/2023]
Abstract
Conversion of astrocytes to neurons, via de-differentiation to neural stem cells (NSC), may be a new approach to treat neurodegenerative diseases and brain injuries. The signaling factors affecting such a cell conversion are poorly understood, and they are hard to identify in complex disease models or conventional cell cultures. To address this question, we developed a serum-free, strictly controlled culture system of pure and homogeneous "astrocytes generated from murine embryonic stem cells (ESC)." These stem cell derived astrocytes (mAGES), as well as standard primary astrocytes resumed proliferation upon addition of FGF. The signaling of FGF receptor tyrosine kinase converted GFAP-positive mAGES to nestin-positive NSC. ERK phosphorylation was necessary, but not sufficient, for cell cycle re-entry, as EGF triggered no de-differentiation. The NSC obtained by de-differentiation of mAGES were similar to those obtained directly by differentiation of ESC, as evidenced by standard phenotyping, and also by transcriptome mapping, metabolic profiling, and by differentiation to neurons or astrocytes. The de-differentiation was negatively affected by inflammatory mediators, and in particular, interferon-γ strongly impaired the formation of NSC from mAGES by a pathway involving phosphorylation of STAT1, but not the generation of nitric oxide. Thus, two antagonistic signaling pathways were identified here that affect fate conversion of astrocytes independent of genetic manipulation. The complex interplay of the respective signaling molecules that promote/inhibit astrocyte de-differentiation may explain why astrocytes do not readily form neural stem cells in most diseases. Increased knowledge of such factors may provide therapeutic opportunities to favor such conversions. Stem Cells 2016;34:2861-2874.
Collapse
Affiliation(s)
- Susanne Kleiderman
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| | - Simon Gutbier
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| | - Kemal Ugur Tufekci
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Inciralti, Izmir, Turkey
| | - Felipe Ortega
- Institute/Department of Physiological Chemistry, Research Group Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Biochemistry and Molecular Biology, Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Complutense University, Avenue Puerta de Hierro, Institute of Neurochemistry (IUIN), Spain and Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - João V Sá
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Catarina Brito
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Benedikt Berninger
- Institute/Department of Physiological Chemistry, Research Group Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Marcel Leist
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| |
Collapse
|
119
|
Fan Y, He JJ. HIV-1 Tat Induces Unfolded Protein Response and Endoplasmic Reticulum Stress in Astrocytes and Causes Neurotoxicity through Glial Fibrillary Acidic Protein (GFAP) Activation and Aggregation. J Biol Chem 2016; 291:22819-22829. [PMID: 27609520 DOI: 10.1074/jbc.m116.731828] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
HIV-1 Tat is a major culprit for HIV/neuroAIDS. One of the consistent hallmarks of HIV/neuroAIDS is reactive astrocytes or astrocytosis, characterized by increased cytoplasmic accumulation of the intermediate filament glial fibrillary acidic protein (GFAP). We have shown that that Tat induces GFAP expression in astrocytes and that GFAP activation is indispensable for astrocyte-mediated Tat neurotoxicity. However, the underlying molecular mechanisms are not known. In this study, we showed that Tat expression or GFAP expression led to formation of GFAP aggregates and induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in astrocytes. In addition, we demonstrated that GFAP up-regulation and aggregation in astrocytes were necessary but also sufficient for UPR/ER stress induction in Tat-expressing astrocytes and for astrocyte-mediated Tat neurotoxicity. Importantly, we demonstrated that inhibition of Tat- or GFAP-induced UPR/ER stress by the chemical chaperone 4-phenylbutyrate significantly alleviated astrocyte-mediated Tat neurotoxicity in vitro and in the brain of Tat-expressing mice. Taken together, these results show that HIV-1 Tat expression leads to UPR/ER stress in astrocytes, which in turn contributes to astrocyte-mediated Tat neurotoxicity, and raise the possibility of developing HIV/neuroAIDS therapeutics targeted at UPR/ER stress.
Collapse
Affiliation(s)
- Yan Fan
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Johnny J He
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
120
|
Jurič DM, Kržan M, Lipnik-Stangelj M. Histamine and astrocyte function. Pharmacol Res 2016; 111:774-783. [DOI: 10.1016/j.phrs.2016.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/11/2016] [Accepted: 07/24/2016] [Indexed: 12/31/2022]
|
121
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
122
|
Sugawara T, Himes B, Kowada M, Murray M, Tessler A, Battisti WP. Putative Inhibitory Extracellular Matrix Molecules Do Not Prevent Dorsal Root Regeneration into Fetal Spinal Cord Transplants. Neurorehabil Neural Repair 2016. [DOI: 10.1177/154596839901300206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We examined the distribution of several extracellular matrix molecules (ECM) and their relationship to regenerating axons in embryonic day 14 spinal cord transplants 1 to 12 weeks after transplantation into adult rats. We used immunocytochemical tech niques to label chondroitin sulfate proteoglycans (CSPGs) and tenascin-C in adjacent sections. Synthesis of these molecules by astrocytes is thought to be one mechanism by which astrocytes inhibit regeneration in the central nervous system (CNS); glial fibrillary acidic protein antibody was used to label astrocytes and examine their rela tionship to both the ECM molecules and regenerating calcitonin gene-related pep tide (CORP)-contammg dorsal roots. We also compared the expression and distribu tion of these five markers in transplants with normal spinal cord development.
Collapse
|
123
|
Abstract
All nervous system cell types can be induced with cytokines or bacterial products to make nitric oxide, at least in culture. The signaling pathways invoked by inducers that result in transcriptional activation of the nitric oxide synthase gene are becoming clear, and modulators of this induction have been discovered. Much suggestive and, recently, more definitive evidence has accumulated for induction of nitric oxide synthase in glial cells in vivo associated with viral infection, as well as in animal models of trauma, ischemia, and autoimmunity. Whether nitric oxide from this source contributes to or limits the attendant conditions is not yet clear. The Neuroscientist 2:90-99, 1996
Collapse
Affiliation(s)
| | - Dana Grzybicki
- Department of Pathology University of Iowa College of
Medicine Iowa City, Iowa
| |
Collapse
|
124
|
Cheli VT, Santiago González DA, Smith J, Spreuer V, Murphy GG, Paez PM. L-type voltage-operated calcium channels contribute to astrocyte activation In vitro. Glia 2016; 64:1396-415. [PMID: 27247164 DOI: 10.1002/glia.23013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 03/11/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022]
Abstract
We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415.
Collapse
Affiliation(s)
- Veronica T Cheli
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Diara A Santiago González
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Jessica Smith
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Vilma Spreuer
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Geoffrey G Murphy
- Department of Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Pablo M Paez
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| |
Collapse
|
125
|
Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep 2016; 6:26876. [PMID: 27241024 PMCID: PMC4886511 DOI: 10.1038/srep26876] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022] Open
Abstract
Human Immunodeficiency Virus type-1 (HIV)-associated neurocognitive disorder is characterized by recruitment of activated/infected leukocytes into the CNS via disrupted Blood Brain Barrier (BBB) that contributes to persistent neuro-inflammation. In this report, humanized NOD/scid-IL2Rγcnull mice were used to establish that impaired Sonic hedgehog (Shh) signaling is associated with loss of BBB function and neurological damage, and that modulating Shh signaling can rescue these detrimental effects. Plasma viral load, p24 levels and CD4+ T cells were measured as markers of productive HIV infection. These mice also showed impaired exclusion of Evans blue dye from the brain, increased plasma levels of S100B, an astrocytic protein, and down-regulation of tight junction proteins Occludin and Claudin5, collectively indicating BBB dysfunction. Further, brain tissue from HIV+ mice indicated reduced synaptic density, neuronal atrophy, microglial activation, and astrocytosis. Importantly, reduced expression of Shh and Gli1 was also observed in these mice, demonstrating diminished Shh signaling. Administration of Shh mimetic, smoothened agonist (SAG) restored BBB integrity and also abated the neuropathology in infected mice. Together, our results suggest a neuroprotective role for Shh signaling in the context of HIV infection, underscoring the therapeutic potential of SAG in controlling HAND pathogenesis.
Collapse
|
126
|
Blood biomarkers for brain injury: What are we measuring? Neurosci Biobehav Rev 2016; 68:460-473. [PMID: 27181909 DOI: 10.1016/j.neubiorev.2016.05.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/28/2022]
Abstract
Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury.
Collapse
|
127
|
Nicchia GP, Pisani F, Simone L, Cibelli A, Mola MG, Dal Monte M, Frigeri A, Bagnoli P, Svelto M. Glio-vascular modifications caused by Aquaporin-4 deletion in the mouse retina. Exp Eye Res 2016; 146:259-268. [DOI: 10.1016/j.exer.2016.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/08/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
|
128
|
Hong X, Sin WC, Harris AL, Naus CC. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 2016; 6:15566-77. [PMID: 25978028 PMCID: PMC4558171 DOI: 10.18632/oncotarget.3904] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
Abstract
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.
Collapse
Affiliation(s)
- Xiaoting Hong
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada.,Department of Pharmacology & Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - Wun Chey Sin
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| | - Andrew L Harris
- Department of Pharmacology & Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| |
Collapse
|
129
|
Abstract
Astrocytes are the most explored non-neuronal cells in the brain under neurophysiological and neurodegenerative conditions. Extensive research has been done to understand their specific role during neuropathological conditions but still the existing findings could not conclude their mechanism of action and their specific role in neurodegenerative conditions. This review discusses their physiological and pathological roles, their activation, morphological alterations and their probable use in search of new therapeutic targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarika Singh
- a 1 Toxicology Division, CSIR-CDRI , Lucknow , India.,b 2 Department of Biochemistry and Biophysics , University of California , San Francisco, San Francisco , CA , USA
| | - Neeraj Joshi
- a 1 Toxicology Division, CSIR-CDRI , Lucknow , India.,b 2 Department of Biochemistry and Biophysics , University of California , San Francisco, San Francisco , CA , USA
| |
Collapse
|
130
|
Wilson CL, Hayward SL, Kidambi S. Astrogliosis in a dish: substrate stiffness induces astrogliosis in primary rat astrocytes. RSC Adv 2016; 6:34447-34457. [PMID: 32742641 PMCID: PMC7394306 DOI: 10.1039/c5ra25916a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Astrogliosis due to brain injury or disease can lead to varying molecular and morphological changes in astrocytes. Magnetic resonance elastography and ultrasound have demonstrated that brain stiffness varies with age and disease state. However, there is a lack in understanding the role of varied stiffness on the progression of astrogliosis highlighting a critical need to engineer in vitro models that mimic disease stages. Such models need to incorporate the dynamic changes in the brain microenvironment including the stiffness changes. In this study we developed a polydimethyl siloxane (PDMS) based platform that modeled the physiologically relevant stiffness of brain in both a healthy (200 Pa) and diseased (8000 Pa) state to investigate the effect of stiffness on astrocyte function. We observed that astrocytes grown on soft substrates displayed a consistently more quiescent phenotype while those on stiff substrates displayed an astrogliosis-like morphology. In addition to morphological changes, astrocytes cultured on stiff substrates demonstrated significant increase in other astrogliosis hallmarks - cellular proliferation and glial fibrillary acidic protein (GFAP) protein expression. Furthermore, culturing astrocytes on a stiff surface resulted in increased reactive oxygen species (ROS) production, increased super oxide dismutase activity and decreased glutamate uptake. Our platform lends itself for study of potential therapeutic strategies for brain injury focusing on the intricate brain microenvironment-astrocytes signaling pathways.
Collapse
Affiliation(s)
- Christina L Wilson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N 16 Street, 207 Othmer Hall, NE, 68588, USA
| | - Stephen L Hayward
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N 16 Street, 207 Othmer Hall, NE, 68588, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N 16 Street, 207 Othmer Hall, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16 St, Lincoln, NE, 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska-Lincoln, 316C Leverton Hall, 1700 35 Street, NE, 68583, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, 42nd and Emile Street, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
131
|
Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1862:483-91. [DOI: 10.1016/j.bbadis.2015.11.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
|
132
|
Nikolakopoulou AM, Koeppen J, Garcia M, Leish J, Obenaus A, Ethell IM. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury. ASN Neuro 2016; 8:1-18. [PMID: 26928051 PMCID: PMC4774052 DOI: 10.1177/1759091416630220] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.
Collapse
Affiliation(s)
| | - Jordan Koeppen
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| | - Michael Garcia
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Joshua Leish
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, Loma Linda University, CA, USA
| | - Iryna M Ethell
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| |
Collapse
|
133
|
Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain. Neural Plast 2016; 2016:8607038. [PMID: 27006834 PMCID: PMC4783563 DOI: 10.1155/2016/8607038] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 11/24/2022] Open
Abstract
Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.
Collapse
|
134
|
Effects of chronic constriction injury and spared nerve injury, two models of neuropathic pain, on the numbers of neurons and glia in the rostral ventromedial medulla. Neurosci Lett 2016; 617:82-7. [PMID: 26861198 DOI: 10.1016/j.neulet.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 12/26/2022]
Abstract
In previous studies we have reported that spinal nerve ligation (SNL), a model of neuropathic pain, results in the loss of over 20% of neurons in the rostral portion of the ventromedial medulla (RVM) in rats, 10 days after SNL. The RVM is involved in pain modulation and we have proposed that loss of pain inhibition from the RVM, including loss of RVM serotonin neurons, contributes to the increased hypersensitivity observed after SNL. In the present study we examined whether RVM neuronal loss occurs in two other models of neuropathic pain, chronic constriction injury (CCI) and spared nerve injury (SNI). We found no evidence for neuronal loss 10 days after either nerve injury, a time when robust tactile hypersensitivity is present in both CCI and SNI. We conclude that loss of RVM neurons appears not to be required for expression of tactile hypersensitivity in these models of neuropathic pain.
Collapse
|
135
|
Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya SS, Erceg S. Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells 2016; 33:1036-41. [PMID: 25728093 DOI: 10.1002/stem.1959] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) usually results in long lasting locomotor and sensory neuron degeneration below the injury. Astrocytes normally play a decisive role in mechanical and metabolic support of neurons, but in the spinal cord they cause injury, exerting well-known detrimental effects that contribute to glial scar formation and inhibition of axon outgrowth. Cell transplantation is considered a promising approach for replacing damaged cells and promoting neuroprotective and neuroregenerative repair, but the effects of the grafted cells on local tissue and the regenerative properties of endogenous neural stem cells in the injured spinal cord are largely unknown. During the last 2 decades cumulative evidence from diverse animal models has indicated that reactive astrocytes in synergy with transplanted cells could be beneficial for injury in multiple ways, including neuroprotection and axonal growth. In this review, we specifically focus on the dual opposing roles of reactive astrocytes in SCI and how they contribute to the creation of a permissive environment when combined with transplanted cells as the influential components for a local regenerative niche. Modulation of reactive astrocyte function might represent an extremely attractive new therapy to enhance the functional outcomes in patients.
Collapse
Affiliation(s)
- Dunja Lukovic
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
136
|
Nguyen JK, Jorfi M, Buchanan KL, Park DJ, Foster EJ, Tyler DJ, Rowan SJ, Weder C, Capadona JR. Influence of resveratrol release on the tissue response to mechanically adaptive cortical implants. Acta Biomater 2016; 29:81-93. [PMID: 26553391 PMCID: PMC4727752 DOI: 10.1016/j.actbio.2015.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 01/10/2023]
Abstract
The stability and longevity of recordings obtained from intracortical microelectrodes continues to remain an area of concern for neural interfacing applications. The limited longevity of microelectrode performance has been associated with the integrity of the blood brain barrier (BBB) and the neuroinflammatory response to the microelectrode. Here, we report the investigation of an additive approach that targets both mechanical and chemical factors believed to contribute to chronic BBB instability and the neuroinflammatory response associated with implanted intracortical microelectrodes. The implants investigated were based on a mechanically adaptive, compliant nanocomposite (NC), which reduces the tissue response and tissue strain. This material was doped with various concentrations of the antioxidant resveratrol with the objective of local and rapid delivery. In vitro analysis of resveratrol release, antioxidant activity, and cytotoxicity suggested that a resveratrol content of 0.01% was optimal for in vivo assessment. Thus, probes made from the neat NC reference and probes containing resveratrol (NC Res) were implanted into the cortical tissue of rats for up to sixteen weeks. Histochemical analysis suggested that at three days post-implantation, neither materials nor therapeutic approaches (independently or in combination) could alter the initial wound healing response. However, at two weeks post-implantation, the NC Res implant showed a reduction in activated microglia/macrophages and improvement in neuron density at the tissue-implant interface when compared to the neat NC reference. However, sixteen weeks post-implantation, when the antioxidant was exhausted, NC Res and the neat NC reference exhibited similar tissue responses. The data show that NC Res provides short-term, short-lived benefits due to the antioxidant release, and a long-term reduction in neuroinflammation on account of is mechanical adaptive, compliant nature. Together, these results demonstrate that local delivery of resveratrol can provide an additive advantage by providing a consistent reduction in the tissue response.
Collapse
Affiliation(s)
- Jessica K Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151 W/APT, Cleveland, OH 44106-1702, USA
| | - Mehdi Jorfi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Kelly L Buchanan
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151 W/APT, Cleveland, OH 44106-1702, USA
| | - Daniel J Park
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA
| | - E Johan Foster
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; Virginia Tech, Department of Materials Science & Engineering & Macromolecules and Interfaces Institute, 445 Old Turner Street, 213 Holden Hall, Blacksburg, VA 24061, USA
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151 W/APT, Cleveland, OH 44106-1702, USA
| | - Stuart J Rowan
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, OH 44106-7202, USA
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151 W/APT, Cleveland, OH 44106-1702, USA.
| |
Collapse
|
137
|
Fearing BV, Van Dyke ME. Activation of Astrocytes <i>in Vitro</i> by Macrophages Polarized with Keratin Biomaterial Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojrm.2016.51001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
138
|
Fan Y, Timani KA, He JJ. STAT3 and its phosphorylation are involved in HIV-1 Tat-induced transactivation of glial fibrillary acidic protein. Curr HIV Res 2015; 13:55-63. [PMID: 25613134 DOI: 10.2174/1570162x13666150121115804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 01/31/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat protein is a major pathogenic factor in HIV-associated neurological diseases; it exhibits direct neurotoxicity and indirect astrocyte-mediated neurotoxicity. We have shown that Tat alone is capable of activating glial fibrillary acidic protein (GFAP) expression and inducing astrocytosis involving sequential activation of early growth response protein 1 (Egr-1) and p300. In this study, we determined the roles of signal transducer and activator of transcription 3 (STAT3) in Tat-induced GFAP transactivation. STAT3 expression and phosphorylation led to significant increases in GFAP transcription and protein expression. Tat expression was associated with increased STAT3 expression and phosphorylation in Tat-expressing astrocytes and HIV-infected astrocytes. GFAP, Egr-1 and p300 transcription and protein expression all showed positive response to STAT3 and its phosphorylation. Importantly, knockdown of STAT3 resulted in significant decreases in Tat-induced GFAP and Egr-1 transcription and protein expression. Taken together, these findings show that STAT3 is involved in and acts upstream of Egr1 and p300 in the Tat-induced GFAP transactivation cascade and suggest important roles of STAT3 in controlling astrocyte proliferation and activation in the HIV-infected central nervous system.
Collapse
Affiliation(s)
| | | | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| |
Collapse
|
139
|
Siman R, Cocca R, Dong Y. The mTOR Inhibitor Rapamycin Mitigates Perforant Pathway Neurodegeneration and Synapse Loss in a Mouse Model of Early-Stage Alzheimer-Type Tauopathy. PLoS One 2015; 10:e0142340. [PMID: 26540269 PMCID: PMC4634963 DOI: 10.1371/journal.pone.0142340] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
The perforant pathway projection from layer II of the entorhinal cortex to the hippocampal dentate gyrus is especially important for long-term memory formation, and is preferentially vulnerable to developing a degenerative tauopathy early in Alzheimer's disease (AD) that may spread over time trans-synaptically. Despite the importance of the perforant pathway to the clinical onset and progression of AD, a therapeutic has not been identified yet that protects it from tau-mediated toxicity. Here, we used an adeno-associated viral vector-based mouse model of early-stage AD-type tauopathy to investigate effects of the mTOR inhibitor and autophagy stimulator rapamycin on the tau-driven loss of perforant pathway neurons and synapses. Focal expression of human tau carrying a P301L mutation but not eGFP as a control in layer II of the lateral entorhinal cortex triggered rapid degeneration of these neurons, loss of lateral perforant pathway synapses in the dentate gyrus outer molecular layer, and activation of neuroinflammatory microglia and astroglia in the two locations. Chronic systemic rapamycin treatment partially inhibited phosphorylation of a mechanistic target of rapamycin substrate in brain and stimulated LC3 cleavage, a marker of autophagic flux. Compared with vehicle-treated controls, rapamycin protected against the tau-induced neuronal loss, synaptotoxicity, reactive microgliosis and astrogliosis, and activation of innate neuroimmunity. It did not alter human tau mRNA or total protein levels. Finally, rapamycin inhibited trans-synaptic transfer of human tau expression to the dentate granule neuron targets for the perforant pathway, likely by preventing the synaptic spread of the AAV vector in response to pathway degeneration. These results identify systemic rapamycin as a treatment that protects the entorhinal cortex and perforant pathway projection from tau-mediated neurodegeneration, axonal and synapse loss, and neuroinflammatory reactive gliosis. The findings support the potential for slowing the progression of AD by abrogating tau-mediated neurotoxicity at its earliest neuropathological stages.
Collapse
Affiliation(s)
- Robert Siman
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan Cocca
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yina Dong
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
140
|
Cao Z, Wu XF, Peng Y, Zhang R, Li N, Yang JY, Zhang SQ, Zhang WQ, Zhao J, Li S. Scorpion Venom Heat-Resistant Peptide Attenuates Glial Fibrillary Acidic Protein Expression via c-Jun/AP-1. Cell Mol Neurobiol 2015; 35:1073-9. [PMID: 26134308 PMCID: PMC11486269 DOI: 10.1007/s10571-015-0215-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/20/2015] [Indexed: 01/02/2023]
Abstract
Scorpion venom has been used in the Orient to treat central nervous system diseases for many years, and the protein/peptide toxins in Buthus martensii Karsch (BmK) venom are believed to be the effective components. Scorpion venom heat-resistant peptide (SVHRP) is an active component of the scorpion venom extracted from BmK. In a previous study, we found that SVHRP could inhibit the formation of a glial scar, which is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, in the epileptic hippocampus. However, the cellular and molecular mechanisms underlying this process remain to be clarified. The results of the present study indicate that endogenous GFAP expression in primary rat astrocytes was attenuated by SVHRP. We further demonstrate that the suppression of GFAP was primarily mediated by inhibiting both c-Jun expression and its binding with AP-1 DNA binding site and other factors at the GFAP promoter. These results support that SVHRP contributes to reducing GFAP at least in part by decreasing the activity of the transcription factor AP-1. In conclusion, the effects of SVHRP on astrocytes with respect to the c-Jun/AP-1 signaling pathway in vitro provide a practical basis for studying astrocyte activation and inhibition and a scientific basis for further studies of traditional medicine.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Xue-Fei Wu
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Yan Peng
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Rui Zhang
- Liaoning Engineering Technology Centre of Target-Based Nature Products for Prevention and Treatment of Ageing-Related Neurodegeneration, Dalian, 116044, China
| | - Na Li
- Liaoning Engineering Technology Centre of Target-Based Nature Products for Prevention and Treatment of Ageing-Related Neurodegeneration, Dalian, 116044, China
| | - Jin-Yi Yang
- Department of Urology, Dalian Friendship Hospital, Dalian, 116001, China
| | - Shu-Qin Zhang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Wan-Qin Zhang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Jie Zhao
- Liaoning Engineering Technology Centre of Target-Based Nature Products for Prevention and Treatment of Ageing-Related Neurodegeneration, Dalian, 116044, China.
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
141
|
Chen C, Chan A, Wen H, Chung SH, Deng W, Jiang P. Stem and Progenitor Cell-Derived Astroglia Therapies for Neurological Diseases. Trends Mol Med 2015; 21:715-729. [PMID: 26443123 DOI: 10.1016/j.molmed.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
Astroglia are a major cellular constituent of the central nervous system (CNS) and play crucial roles in brain development, function, and integrity. Increasing evidence demonstrates that astroglia dysfunction occurs in a variety of neurological disorders ranging from CNS injuries to genetic diseases and chronic degenerative conditions. These new insights herald the concept that transplantation of astroglia could be of therapeutic value in treating the injured or diseased CNS. Recent technological advances in the generation of human astroglia from stem and progenitor cells have been prominent. We propose that a better understanding of the suitability of astroglial cells in transplantation as well as of their therapeutic effects in animal models may lead to the establishment of astroglia-based therapies to treat neurological diseases.
Collapse
Affiliation(s)
- Chen Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Albert Chan
- Department of Pediatrics, University of California, Davis, CA, USA
| | - Han Wen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | | | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.
| | - Peng Jiang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
142
|
Broux B, Gowing E, Prat A. Glial regulation of the blood-brain barrier in health and disease. Semin Immunopathol 2015; 37:577-90. [PMID: 26245144 DOI: 10.1007/s00281-015-0516-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022]
Abstract
The brain is the organ with the highest metabolic demand in the body. Therefore, it needs specialized vasculature to provide it with the necessary oxygen and nutrients, while protecting it against pathogens and toxins. The blood-brain barrier (BBB) is very tightly regulated by specialized endothelial cells, two basement membranes, and astrocytic endfeet. The proximity of astrocytes to the vessel makes them perfect candidates to influence the function of the BBB. Moreover, other glial cells are also known to contribute to either BBB quiescence or breakdown. In this review, we summarize the knowledge on glial regulation of the BBB during development, in homeostatic conditions in the adult, and during neuroinflammatory responses.
Collapse
Affiliation(s)
- Bieke Broux
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
- Hasselt University, Biomedical Research Institute and transnationale Universiteit Limburg, School of Life Sciences, Agoralaan, Building C, 3590, Diepenbeek, Belgium
| | - Elizabeth Gowing
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Alexandre Prat
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9.
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
143
|
Komin N, Moein M, Ellisman MH, Skupin A. Multiscale Modeling Indicates That Temperature Dependent [Ca2+]i Spiking in Astrocytes Is Quantitatively Consistent with Modulated SERCA Activity. Neural Plast 2015; 2015:683490. [PMID: 26347125 PMCID: PMC4539483 DOI: 10.1155/2015/683490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/19/2015] [Indexed: 11/17/2022] Open
Abstract
Changes in the cytosolic Ca(2+) concentration ([Ca(2+)]i) are the most predominant active signaling mechanism in astrocytes that can modulate neuronal activity and is assumed to influence neuronal plasticity. Although Ca(2+) signaling in astrocytes has been intensively studied in the past, our understanding of the signaling mechanism and its impact on tissue level is still incomplete. Here we revisit our previously published data on the strong temperature dependence of Ca(2+) signals in both cultured primary astrocytes and astrocytes in acute brain slices of mice. We apply multiscale modeling to test the hypothesis that the temperature dependent [Ca(2+)]i spiking is mainly caused by the increased activity of the sarcoendoplasmic reticulum ATPases (SERCAs) that remove Ca(2+) from the cytosol into the endoplasmic reticulum. Quantitative comparison of experimental data with multiscale simulations supports the SERCA activity hypothesis. Further analysis of multiscale modeling and traditional rate equations indicates that the experimental observations are a spatial phenomenon where increasing pump strength leads to a decoupling of Ca(2+) release sites and subsequently to vanishing [Ca(2+)]i spikes.
Collapse
Affiliation(s)
- Niko Komin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
- National Centre for Microscopy and Imaging Research, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0608, USA
| | - Mahsa Moein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Mark H. Ellisman
- National Centre for Microscopy and Imaging Research, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0608, USA
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
- National Centre for Microscopy and Imaging Research, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0608, USA
| |
Collapse
|
144
|
Mitra S, Siddiqui WA, Khandelwal S. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem Biol Interact 2015; 238:138-50. [DOI: 10.1016/j.cbi.2015.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/11/2015] [Accepted: 06/08/2015] [Indexed: 12/28/2022]
|
145
|
Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene 2015; 35:1504-16. [DOI: 10.1038/onc.2015.210] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 01/03/2023]
|
146
|
Kesby JP, Heaton RK, Young JW, Umlauf A, Woods SP, Letendre SL, Markou A, Grant I, Semenova S. Methamphetamine Exposure Combined with HIV-1 Disease or gp120 Expression: Comparison of Learning and Executive Functions in Humans and Mice. Neuropsychopharmacology 2015; 40:1899-909. [PMID: 25652249 PMCID: PMC4839513 DOI: 10.1038/npp.2015.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/15/2015] [Accepted: 01/27/2015] [Indexed: 11/09/2022]
Abstract
Methamphetamine dependence is a common comorbid condition among people living with HIV, and may exacerbate HIV-associated neurocognitive disorders. Animal models of neuroAIDS suggest that the gp120 protein may also cause cognitive impairment. The present work evaluated the separate and combined effects of HIV/gp120 and methamphetamine on learning and executive functions in both humans and transgenic mice. Human participants were grouped by HIV serostatus (HIV+ or HIV-) and lifetime methamphetamine dependence (METH+ or METH-). A neurocognitive test battery included domain-specific assessments of learning and executive functions. Mice (gp120+ and gp120-) were exposed to either a methamphetamine binge (METH+) or saline (METH-), then tested in the attentional-set-shifting task to assess learning and executive functions. In humans, HIV status was associated with significant impairments in learning, but less so for executive functions. The frequency of learning impairments varied between groups, with the greatest impairment observed in the HIV+/METH+ group. In mice, gp120 expression was associated with impairments in learning but not reversal learning (executive component). The greatest proportion of mice that failed to complete the task was observed in the gp120+/METH+ group, suggesting greater learning impairments. Our cross-species study demonstrated that HIV in humans and gp120 in mice impaired learning, and that a history of methamphetamine exposure increased the susceptibility to HIV-associated neurocognitive deficits in both species. Finally, the similar pattern of results in both species suggest that the gp120 protein may contribute to HIV-associated learning deficits in humans.
Collapse
Affiliation(s)
- James P Kesby
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robert K Heaton
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jared W Young
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Anya Umlauf
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven P Woods
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Igor Grant
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C 0603, La Jolla, CA 92093, USA, Tel: +858 534 1528, Fax: +858 534 9917, E mail:
| |
Collapse
|
147
|
Abstract
Astrocytes form borders (glia limitans) that separate neural from non-neural tissue along perivascular spaces, meninges and tissue lesions in the CNS. Transgenic loss-of-function studies reveal that astrocyte borders and scars serve as functional barriers that restrict the entry of inflammatory cells into CNS parenchyma in health and disease. Astrocytes also have powerful pro-inflammatory potential. Thus, astrocytes are emerging as pivotal regulators of CNS inflammatory responses. This Review discusses evidence that astrocytes have crucial roles in attracting and restricting CNS inflammation, with important implications for diverse CNS disorders.
Collapse
Affiliation(s)
- Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
148
|
Guo JH, Ma W, Yang JW, Gao Y, Liang Z, Liu J, Wang DY, Luo T, Cheng JR, Li LY. Expression pattern of NeuN and GFAP during human fetal spinal cord development. Childs Nerv Syst 2015; 31:863-72. [PMID: 25904356 DOI: 10.1007/s00381-015-2713-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/12/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE The development of the human embryonic spinal cord is very complicated, and many cell types are involved in the process. However, the morphological characteristics of neuronal and glial cells during the development of the human fetal spinal cord have not been described. We investigated the systemic distributions and expression pattern of the cell type-specific markers Neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP) during the development of the human fetal spinal cord, in order to clarify the detailed developmental changes of neuronal and glial cells in chronological and spatial aspects. METHODS A total of 35 fetuses, aged 3 weeks to 8 months of gestation (E3W-E8M), were studied. The markers used for immunohistochemical study were NeuN and GFAP. RESULTS The intracellular makers NeuN and GFAP were widely detected expression in different structures and cells during the development of the human fetal spinal cord, including the following: central canal, neuroepithelial layer, internal limiting membrane, mantle layer, marginal layer, basal plate, alar plate, ependymal layer, gray matter, white matter, neuron, astrocytes, and nerve fibers. However, there was an absence of GFAP in astrocytes during early fetal spinal cord development until E9W, and the appearance of GFAP-positive reactivity was later than that of neurons. CONCLUSIONS We consider that NeuN and GFAP can be used to identify neuronal and glial cells during the development of the human fetal spinal cord, and their distribution differs both chronologically and spatially. These characteristic expression patterns would give us a clue to better understand the developmental characteristics of the human spinal cord.
Collapse
Affiliation(s)
- Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Ohkawa Y, Momota H, Kato A, Hashimoto N, Tsuda Y, Kotani N, Honke K, Suzumura A, Furukawa K, Ohmi Y, Natsume A, Wakabayashi T, Furukawa K. Ganglioside GD3 Enhances Invasiveness of Gliomas by Forming a Complex with Platelet-derived Growth Factor Receptor α and Yes Kinase. J Biol Chem 2015; 290:16043-58. [PMID: 25940087 DOI: 10.1074/jbc.m114.635755] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Indexed: 11/06/2022] Open
Abstract
There have been a few studies on the ganglioside expression in human glioma tissues. However, the role of these gangliosides such as GD3 and GD2 has not been well understood. In this study we employed a genetically engineered mouse model of glioma to clarify the functions of GD3 in gliomas. Forced expression of platelet-derived growth factor B in cultured astrocytes derived from p53-deficient mice resulted in the expression of GD3 and GD2. GD3-positive astrocytes exhibited increased cell growth and invasion activities along with elevated phosphorylation of Akt and Yes kinase. By enzyme-mediated activation of radical sources reaction and mass spectrometry, we identified PDGF receptor α (PDGFRα) as a GD3-associated molecule. GD3-positive astrocytes showed a significant amount of PDGFRα in glycolipid-enriched microdomains/rafts compared with GD3-negative cells. Src kinase family Yes was co-precipitated with PDGFRα, and its pivotal role in the increased cell invasion of GD3-positive astrocytes was demonstrated by silencing with anti-Yes siRNA. Direct association between PDGFRα and GD3 was also shown, suggesting that GD3 forms ternary complex with PDGFRα and Yes. The fact that GD3, PDGFRα, and activated Yes were colocalized in lamellipodia and the edge of tumors in cultured cells and glioma tissues, respectively, suggests that GD3 induced by platelet-derived growth factor B enhances PDGF signals in glycolipid-enriched microdomain/rafts, leading to the promotion of malignant phenotypes such as cell proliferation and invasion in gliomas.
Collapse
Affiliation(s)
- Yuki Ohkawa
- From the Department of Biochemistry II, the Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan, the Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | - Hiroyuki Momota
- the Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Akira Kato
- the Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | | | | | - Norihiro Kotani
- the Department of Biochemistry, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Koichi Honke
- the Department of Biochemistry, Kochi University Medical School, Kohasu, Okou-cho, Nankoku, Kochi 783-8505, Japan
| | - Akio Suzumura
- the Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furou-cho, Chikusa-ku, Nagoya 464-8601, Japan, and
| | - Keiko Furukawa
- From the Department of Biochemistry II, the Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | | | - Atsushi Natsume
- the Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Toshihiko Wakabayashi
- the Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Koichi Furukawa
- From the Department of Biochemistry II, the Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| |
Collapse
|
150
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|