101
|
Peng CX, Hu J, Liu D, Hong XP, Wu YY, Zhu LQ, Wang JZ. Disease-modified glycogen synthase kinase-3β intervention by melatonin arrests the pathology and memory deficits in an Alzheimer's animal model. Neurobiol Aging 2013; 34:1555-63. [PMID: 23402899 DOI: 10.1016/j.neurobiolaging.2012.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/17/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
The current therapies for Alzheimer's disease (AD) are merely palliative that cannot arrest the pathologic progression of the disease. Therefore, it is critical to develop treatments that can target the disease-modifying molecule(s). In the present study, we found that treatment of tg2576 mice with melatonin from 4-8 months of age did not improve the pathology or behavioral performance of the mice. However, remarkable attenuation of tau and β-amyloid pathologies with memory improvement were observed when melatonin was supplied from the age of 8-12 months or 4-12 months of the mice; more importantly, the improvements were still significant when the mice survived to old age. We also found that the disease stage-specific alteration of glycogen synthase kinase-3β (GSK-3β) but not protein phosphatase-2A, was correlated with the alterations of the pathology and behavior, and the timely targeting of GSK-3β was critical for the efficacy of melatonin. Our finding suggests that melatonin treatment only at proper timing could arrest AD by targeting the activated GSK-3β, which provides primary evidence for the importance and strategy in developing disease-modifying interventions of AD.
Collapse
Affiliation(s)
- Cai-Xia Peng
- Pathophysiology Department, Key Laboratory of Education Ministry for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | | | | | | | | | |
Collapse
|
102
|
Stöhr O, Schilbach K, Moll L, Hettich MM, Freude S, Wunderlich FT, Ernst M, Zemva J, Brüning JC, Krone W, Udelhoven M, Schubert M. Insulin receptor signaling mediates APP processing and β-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer's disease. AGE (DORDRECHT, NETHERLANDS) 2013; 35:83-101. [PMID: 22057897 PMCID: PMC3543743 DOI: 10.1007/s11357-011-9333-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 10/15/2011] [Indexed: 05/31/2023]
Abstract
In brains from patients with Alzheimer's disease (AD), expression of insulin receptor (IR), insulin-like growth factor-1 receptor (IGF-1R), and insulin receptor substrate proteins is downregulated. A key step in the pathogenesis of AD is the accumulation of amyloid precursor protein (APP) cleavage products, β-amyloid (Aβ)(1-42) and Aβ(1-40). Recently, we and others have shown that central IGF-1 resistance reduces Aβ accumulation as well as Aβ toxicity and promotes survival. To define the role of IR in this context, we crossed neuron-specific IR knockout mice (nIR(-/-)) with Tg2576 mice, a well-established mouse model of an AD-like pathology. Here, we show that neuronal IR deficiency in Tg2576 (nIR(-/-)Tg2576) mice leads to markedly decreased Aβ burden but does not rescue premature mortality of Tg2576 mice. Analyzing APP C-terminal fragments (CTF) revealed decreased α-/β-CTFs in the brains of nIR(-/-)Tg2576 mice suggesting decreased APP processing. Cell based experiments showed that inhibition of the PI3-kinase pathway suppresses endosomal APP cleavage and decreases α- as well as β-secretase activity. Deletion of only one copy of the neuronal IGF-1R partially rescues the premature mortality of Tg2576 mice without altering total amyloid load. Analysis of Tg2576 mice expressing either a dominant negative or constitutively active form of forkhead box-O (FoxO)1 did not reveal any alteration of amyloid burden, APP processing and did not rescue premature mortality in these mice. Thus, our findings identified IR signaling as a potent regulator of Aβ accumulation in vivo. But exclusively decreased IGF-1R expression reduces AD-associated mortality independent of β-amyloid accumulation and FoxO1-mediated transcription.
Collapse
Affiliation(s)
- Oliver Stöhr
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
| | - Katharina Schilbach
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
| | - Lorna Moll
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
| | - Moritz M. Hettich
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
- />Molecular and Cellular Cognition Lab, German Centre for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Susanna Freude
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
- />Cologne excellence cluster in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - F. Thomas Wunderlich
- />Cologne excellence cluster in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- />Max Planck Institute for Neurological Research, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Marianne Ernst
- />Cologne excellence cluster in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- />Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Johanna Zemva
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
| | - Jens C. Brüning
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
- />Cologne excellence cluster in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- />Max Planck Institute for Neurological Research, Zülpicher Straße 47, 50674 Cologne, Germany
- />Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Wilhelm Krone
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
- />Cologne excellence cluster in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Udelhoven
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
- />Cologne excellence cluster in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- />Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, CMMC building 66, 5.012, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Markus Schubert
- />Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str 62, 50931 Cologne, Germany
- />Cologne excellence cluster in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- />Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, CMMC building 66, 5.012, Robert-Koch-Str. 21, 50931 Cologne, Germany
| |
Collapse
|
103
|
Haratake M, Yoshida S, Mandai M, Fuchigami T, Nakayama M. Elevated amyloid-β plaque deposition in dietary selenium-deficient Tg2576 transgenic mice. Metallomics 2013; 5:479-83. [DOI: 10.1039/c3mt00035d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
104
|
Farina N, Isaac MGEKN, Clark AR, Rusted J, Tabet N. Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane Database Syst Rev 2012; 11:CD002854. [PMID: 23152215 PMCID: PMC6464798 DOI: 10.1002/14651858.cd002854.pub3] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vitamin E is a dietary compound that functions as an antioxidant scavenging toxic free radicals. Evidence that free radicals may contribute to the pathological processes of cognitive impairment including Alzheimer's disease has led to interest in the use of vitamin E in the treatment of mild cognitive impairment (MCI) and Alzheimer's dementia (AD). OBJECTIVES To assess the efficacy of vitamin E in the treatment of AD and prevention of progression of MCI to dementia. SEARCH METHODS The Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources were searched on 25 June 2012 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA All unconfounded, double-blind, randomised trials in which treatment with vitamin E at any dose was compared with placebo for patients with AD and MCI. DATA COLLECTION AND ANALYSIS Two review authors independently applied the selection criteria and assessed study quality and extracted and analysed the data. For each outcome measure data were sought on every patient randomised. Where such data were not available an analysis of patients who completed treatment was conducted. It was not possible to pool data between studies owing to a lack of comparable outcome measure. MAIN RESULTS Only three studies met the inclusion criteria: two in an AD population and one in an MCI population. In the first of the AD studies (Sano 1996) the authors reported some benefit from vitamin E (2000 IU/day) with fewer participants reaching an end point of death, institutionalisation, change to a Clinical Dementia Rating (CDR) of three, or loss of two basic activities of daily living within two years. Of patients completing treatment, 58% (45/77) on vitamin E compared with 74% (58/78) on placebo reached one of the end points (odds ratio (OR) 0.49; 95% confidence interval (CI) 0.25 to 0.96). The second AD treatment study (Lloret 2009) explored the effects of vitamin E (800 IU/day) on cognitive progression in relation to oxidative stress levels. Patients whose oxidative stress markers were lowered by vitamin E showed no significant difference in the percentage change in Mini-Mental State Examination (MMSE) score, between baseline and six months, compared to the placebo group. The primary aim of the MCI study (Petersen 2005) was to investigate the effect of vitamin E (2000 IU/day) on the time to progression from MCI to possible or probable AD. A total of 214 of the 769 participants progressed to dementia, with 212 being classified as having possible or probable AD. There was no significant difference in the probability of progression from MCI to AD between the vitamin E group and the placebo group (hazard ratio 1.02; 95% CI 0.74 to 1.41; P = 0.91). AUTHORS' CONCLUSIONS No convincing evidence that vitamin E is of benefit in the treatment of AD or MCI. Future trials assessing vitamin E treatment in AD should not be restricted to alpha-tocopherol.
Collapse
|
105
|
Lalonde R, Fukuchi KI, Strazielle C. Neurologic and motor dysfunctions in APP transgenic mice. Rev Neurosci 2012; 23:363-79. [PMID: 23089603 DOI: 10.1515/revneuro-2012-0041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/02/2012] [Indexed: 12/29/2022]
Abstract
The discovery of gene mutations underlying autosomal dominant Alzheimer's disease has enabled researchers to reproduce several hallmarks of this disorder in transgenic mice, notably the formation of Aβ plaques in brain and cognitive deficits. APP transgenic mutants have also been investigated with respect to survival rates, neurologic functions, and motor coordination, which are all susceptible to alteration in Alzheimer dementia. Several transgenic lines expressing human mutated or wild-type APP had higher mortality rates than non-transgenic controls with or without the presence of Aβ plaques. Mortality rates were also elevated in APP transgenic mice with vascular amyloid accumulation, thereby implicating cerebrovascular factors in the precocious death observed in all APP transgenic models. In addition, myoclonic jumping has been described in APP mutants, together with seizure activity, abnormal limb-flexion and paw-clasping reflexes, and motor coordination deficits. The neurologic signs resemble the myoclonic movements, epileptic seizures, pathological reflexes, and gait problems observed in late-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Robert Lalonde
- Departement de Psychologie, Universite de Rouen, Mont-Saint-Aignan, France.
| | | | | |
Collapse
|
106
|
Abstract
There is a substantial body of evidence that spontaneous recurrent seizures occur in a subset of patients with Alzheimer disease (AD), especially the familial forms that have an early onset. In transgenic mice that simulate these genetic forms of AD, seizures or reduced seizure threshold have also been reported. Mechanisms underlying the seizures or reduced seizure threshold in these mice are not yet clear and are likely to be complex, because the synthesis of amyloid β (Aβ) involves many peptides and proteases that influence excitability. Based on transgenic mouse models of AD where Aβ and its precursor are elevated, it has been suggested that seizures are caused by the downregulation of the Nav1.1 sodium channel in a subset of GABAergic interneurons, leading to a reduction in GABAergic inhibition. Another mechanism of hyperexcitability appears to involve tau, because deletion of tau reduces seizures in some of the same transgenic mouse models of AD. Therefore, altered excitability may be as much a characteristic of AD as plaques and tangles-especially for the familial forms of AD.
Collapse
|
107
|
Dubal DB, Broestl L, Worden K. Sex and gonadal hormones in mouse models of Alzheimer's disease: what is relevant to the human condition? Biol Sex Differ 2012; 3:24. [PMID: 23126652 PMCID: PMC3524653 DOI: 10.1186/2042-6410-3-24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/27/2012] [Indexed: 11/10/2022] Open
Abstract
Biologic sex and gonadal hormones matter in human aging and diseases of aging such as Alzheimer's - and the importance of studying their influences relates directly to human health. The goal of this article is to review the literature to date on sex and hormones in mouse models of Alzheimer's disease (AD) with an exclusive focus on interpreting the relevance of findings to the human condition. To this end, we highlight advances in AD and in sex and hormone biology, discuss what these advances mean for merging the two fields, review the current mouse model literature, raise major unresolved questions, and offer a research framework that incorporates human reproductive aging for future studies aimed at translational discoveries in this important area. Unraveling human relevant pathways in sex and hormone-based biology may ultimately pave the way to novel and urgently needed treatments for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dena B Dubal
- Laboratory of Neuroscience and Aging Research, Department of Neurology, Sandler Neurosciences Center, Room 212B, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
108
|
Pan-neuronal expression of APL-1, an APP-related protein, disrupts olfactory, gustatory, and touch plasticity in Caenorhabditis elegans. J Neurosci 2012; 32:10156-69. [PMID: 22836251 DOI: 10.1523/jneurosci.0495-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with Alzheimer's disease show age-related cognitive decline. Postmortem autopsy of their brains shows the presence of large numbers of senile plaques, whose major component is the β-amyloid peptide. The β-amyloid peptide is a cleavage product of the amyloid precursor protein (APP). In addition to the neurodegeneration associated with β-amyloid aggregation in Alzheimer's disease patients, mutations in APP in mammalian model organisms have also been shown to disrupt several behaviors independent of visible amyloid plaque formation. However, the pathways in which APP function are unknown and difficult to unravel in mammals. Here we show that pan-neuronal expression of APL-1, the Caenorhabditis elegans ortholog of APP, disrupts several behaviors, such as olfactory and gustatory learning behavior and touch habituation. These behaviors are mediated by distinct neural circuits, suggesting a broad impact of APL-1 on sensory plasticity in C. elegans. Furthermore, we found that disruption of these three behaviors requires activity of the TGFβ pathway and reduced activity of the insulin pathway. These results suggest pathways and molecular components that may underlie behavioral plasticity in mammals and in patients with Alzheimer's disease.
Collapse
|
109
|
Herault Y, Duchon A, Velot E, Maréchal D, Brault V. The in vivo Down syndrome genomic library in mouse. PROGRESS IN BRAIN RESEARCH 2012; 197:169-97. [PMID: 22541293 DOI: 10.1016/b978-0-444-54299-1.00009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse models are key elements to better understand the genotype-phenotype relationship and the physiopathology of Down syndrome (DS). Even though the mouse will never recapitulate the whole spectrum of intellectual disabilities observed in the DS, mouse models have been developed over the recent decades and have been used extensively to identify homologous genes or entire regions homologous to the human chromosome 21 (Hsa21) that are necessary or sufficient to induce DS cognitive features. In this chapter, we review the principal mouse DS models which have been selected and engineered over the years either for large genomic regions or for a few or a single gene of interest. Their analyses highlight the complexity of the genetic interactions that are involved in DS cognitive phenotypes and also strengthen the hypothesis on the multigenic nature of DS. This review also addresses future research challenges relative to the making of new models and their combination to go further in the characterization of candidates and modifier of the DS features.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational medicine and Neurogenetics program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, Strasbourg, France.
| | | | | | | | | |
Collapse
|
110
|
Wong K, Bumpstead S, Van Der Weyden L, Reinholdt LG, Wilming LG, Adams DJ, Keane TM. Sequencing and characterization of the FVB/NJ mouse genome. Genome Biol 2012; 13:R72. [PMID: 22916792 PMCID: PMC3491372 DOI: 10.1186/gb-2012-13-8-r72] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/23/2012] [Indexed: 01/13/2023] Open
Abstract
Background The FVB/NJ mouse strain has its origins in a colony of outbred Swiss mice established in 1935 at the National Institutes of Health. Mice derived from this source were selectively bred for sensitivity to histamine diphosphate and the B strain of Friend leukemia virus. This led to the establishment of the FVB/N inbred strain, which was subsequently imported to the Jackson Laboratory and designated FVB/NJ. The FVB/NJ mouse has several distinct characteristics, such as large pronuclear morphology, vigorous reproductive performance, and consistently large litters that make it highly desirable for transgenic strain production and general purpose use. Results Using next-generation sequencing technology, we have sequenced the genome of FVB/NJ to approximately 50-fold coverage, and have generated a comprehensive catalog of single nucleotide polymorphisms, small insertion/deletion polymorphisms, and structural variants, relative to the reference C57BL/6J genome. We have examined a previously identified quantitative trait locus for atherosclerosis susceptibility on chromosome 10 and identify several previously unknown candidate causal variants. Conclusion The sequencing of the FVB/NJ genome and generation of this catalog has increased the number of known variant sites in FVB/NJ by a factor of four, and will help accelerate the identification of the precise molecular variants that are responsible for phenotypes observed in this widely used strain.
Collapse
|
111
|
Lalonde R, Strazielle C. Brain regions and genes affecting myoclonus in animals. Neurosci Res 2012; 74:69-79. [PMID: 22824643 DOI: 10.1016/j.neures.2012.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/02/2012] [Accepted: 07/12/2012] [Indexed: 01/26/2023]
Abstract
Myoclonus is defined as large-amplitude rhythmic movements. Brain regions underlying myoclonic jerks include brainstem, cerebellum, and cortex. Gamma-aminobutyric acid (GABA) appears to be the main neurotransmitter involved in myoclonus, possibly interacting with biogenic amines, opiates, acetylcholine, and glycine. Myoclonic jumping is a specific subtype seen in rodents, comprising rearing and hopping continuously against a wall. Myoclonic jumping can be seen in normal mouse strains, possibly as a result of simply being put inside a cage. Like other types, it is also triggered by changes in GABA, 5HT, and dopamine neurotransmission. Implicated brain regions include hippocampus and dorsal striatum, possibly with respect to D(1) dopamine, NMDA, and δ opioid receptors. There is reason to suspect that myoclonic jumping is underreported due to insufficient observations into mouse cages.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, UFR des Sciences Humaines et Sociales, Laboratoire de Psychologie et Neurosciences: Intégration COgnitive du NEurone à la Société (ICONES), 76821 Mont Saint-Aignan Cedex, France.
| | | |
Collapse
|
112
|
Kitazawa M, Medeiros R, Laferla FM. Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des 2012; 18:1131-47. [PMID: 22288400 DOI: 10.2174/138161212799315786] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022]
Abstract
Alzheimer disease (AD) is the leading cause of dementia among elderly. Currently, no effective treatment is available for AD. Analysis of transgenic mouse models of AD has facilitated our understanding of disease mechanisms and provided valuable tools for evaluating potential therapeutic strategies. In this review, we will discuss the strengths and weaknesses of current mouse models of AD and the contribution towards understanding the pathological mechanisms and developing effective therapies.
Collapse
Affiliation(s)
- Masashi Kitazawa
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | | | | |
Collapse
|
113
|
Verret L, Mann EO, Hang GB, Barth AMI, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody I, Mucke L, Palop JJ. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 2012; 149:708-21. [PMID: 22541439 DOI: 10.1016/j.cell.2012.02.046] [Citation(s) in RCA: 870] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 12/14/2011] [Accepted: 02/22/2012] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.
Collapse
Affiliation(s)
- Laure Verret
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol Aging 2012; 34:211-25. [PMID: 22727275 DOI: 10.1016/j.neurobiolaging.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/17/2012] [Accepted: 05/22/2012] [Indexed: 01/15/2023]
Abstract
Levels of educational and occupational attainment, as components of cognitive reserve, may modify the relationship between the pathological hallmarks and cognition in Alzheimer's disease (AD). We examined whether exposure of a Tg2576 transgenic mouse model of AD to environmental enrichment (EE) at a specific period during the amyloidogenic process favored the establishment of a cognitive reserve. We found that exposure to EE during early adulthood of Tg2576 mice--before amyloidogenesis has started--reduced the severity of AD-related cognitive deficits more efficiently than exposure later in life, when the pathology is already present. Interestingly, early-life exposure to EE, while slightly reducing forebrain surface covered by amyloid plaques, did not significantly impact aberrant inhibitory remodeling in the hippocampus of Tg2576 mice. Thus, transient early-life exposure to EE exerts long-lasting protection against cognitive impairment during AD pathology. In addition, these data define the existence of a specific life time frame during which stimulatory activity most efficiently builds a cognitive reserve, limiting AD progression and favoring successful aging.
Collapse
|
115
|
Neuroprotective Activity of Sibjeondaebo-tang on Aβ Peptide-Induced Damages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:459894. [PMID: 22666290 PMCID: PMC3361192 DOI: 10.1155/2012/459894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/12/2012] [Indexed: 11/23/2022]
Abstract
Background. Sibjeondaebo-tang (SJDBT) has been used to treat diverse disorders including neuropsychiatric disabilities in traditional Korean medicine.
Objective. The present study aims to investigate the potential effects of SJDBT on neuroprotection against Aβ peptide-induced damage using in vitro culture and in vivo rat brain systems. Materials and Methods. PC12 cell viability was analyzed by MTT assay, and neurite arborizations and caspase 3 protein signals in cultured PC12 cells and in vivo cortical neurons were analyzed by immunofluorescence staining. Phospho-Erk1/2 protein was analyzed by immunofluorescence staining and western blot analysis. Results. In PC12 cells, atrophied cell body and reduced neurite extension by Aβ treatment were recovered by SJDBT treatment. Caspase 3 protein signals were increased in Aβ-treated PC12 cells, but SJDBT treatment decreased apoptotic cell death. Caspase 3 activation in cortical neurons, which was induced similarly by Aβ treatment, was reduced by SJDBT treatment. Furthermore, phospho-Erk1/2 protein levels, which had been decreased by Aβ treatment, were elevated in the cortical neurons by SJDBT treatment. Conclusion. These data show that SJDBT may play a role in protecting from damages induced by Aβ in neuronal tissue and further suggest that SJDBT can be explored as the potential therapeutic target for AD treatments in human.
Collapse
|
116
|
Jiménez-Palomares M, Ramos-Rodríguez JJ, López-Acosta JF, Pacheco-Herrero M, Lechuga-Sancho AM, Perdomo G, García-Alloza M, Cózar-Castellano I. Increased Aβ production prompts the onset of glucose intolerance and insulin resistance. Am J Physiol Endocrinol Metab 2012; 302:E1373-80. [PMID: 22414803 DOI: 10.1152/ajpendo.00500.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes (T2D) mellitus and Alzheimer's disease (AD) are two prevalent diseases with comparable pathophysiological features and genetic predisposition. Patients with AD are more susceptible to develop T2D. However, the molecular mechanism linking AD and T2D remains elusive. In this study, we have generated a new mouse model to test the hypothesis that AD would prompt the onset of T2D in mice. To test our hypothesis, we crossed Alzheimer APPswe/PS1dE9 (APP/PS1) transgenic mice with mice partially deficient in leptin signaling (db/+). Body weight, plasma glucose, and insulin levels were monitored. Phenotypic characterization of glucose metabolism was performed using glucose and insulin tolerance tests. β-Cell mass, islet volume, and islet number were analyzed by histomorphometry. APP/PS1 coexpression in mice with intact leptin receptor signaling did not show any metabolic perturbations in glucose metabolism or insulin sensitivity. In contrast, APP/PS1 coexpression in db/+ mice resulted in nonfasting hyperglycemia, hyperinsulinemia, and hypercholesterolemia without changes in body weight. Conversely, fasting blood glucose and cholesterol levels remained unchanged. Coinciding with altered glucose metabolism, APP/PS1 coexpression in db/+ mice resulted in glucose intolerance, insulin resistance, and impaired insulin signaling. In addition, histomorphometric analysis of pancreata revealed augmented β-cell mass. Taken together, these findings provide experimental evidence to support the notion that aberrant Aβ production might be a mechanistic link underlying the pathology of insulin resistance and T2D in AD.
Collapse
Affiliation(s)
- Margarita Jiménez-Palomares
- Hospital Universitario Puerta del Mar, Planta 9°, Unidad de Investigación, Avda. Ana de Viya 21, Cádiz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell Mol Life Sci 2012; 69:2409-27. [PMID: 22581365 DOI: 10.1007/s00018-012-1015-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity. Accumulating evidence indicates that activation of the NOX2 enzyme complex in microglia is neurotoxic, both through the production of extracellular reactive oxygen species that damage neighboring neurons as well as the initiation of redox signaling in microglia that amplifies the pro-inflammatory response. More specifically, evidence supports that NOX2 redox signaling enhances microglial sensitivity to pro-inflammatory stimuli, and amplifies the production of neurotoxic cytokines, to promote chronic and neurotoxic microglial activation. Here, we describe the evidence denoting the role of NOX2 in microglia-mediated neurotoxicity with an emphasis on Alzheimer's and Parkinson's disease, describe available inhibitors that have been tested, and detail evidence of the neuroprotective and therapeutic potential of targeting this enzyme complex to regulate microglia.
Collapse
|
118
|
Lalonde R, Fukuchi K, Strazielle C. APP transgenic mice for modelling behavioural and psychological symptoms of dementia (BPSD). Neurosci Biobehav Rev 2012; 36:1357-75. [PMID: 22373961 PMCID: PMC3340431 DOI: 10.1016/j.neubiorev.2012.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 12/17/2022]
Abstract
The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioural and psychological symptoms of Alzheimer dementia (BPSD). In particular, open-field, spontaneous alternation, and elevated plus-maze tasks as well as aggression are modified in several APP transgenic mice relative to non-transgenic controls. However, depending on the precise murine models, changes in open-field and elevated plus-maze exploration occur in either direction, either increased or decreased relative to controls. It remains to be determined which neurotransmitter changes are responsible for this variability, in particular with respect to GABA, 5HT, and dopamine.
Collapse
Affiliation(s)
- R Lalonde
- Département de Psychologie, Faculté des Sciences, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | |
Collapse
|
119
|
Hall AM, Roberson ED. Mouse models of Alzheimer's disease. Brain Res Bull 2012; 88:3-12. [PMID: 22142973 PMCID: PMC3546481 DOI: 10.1016/j.brainresbull.2011.11.017] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/11/2011] [Accepted: 11/21/2011] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting 35 million people today. The search for new treatments is made ever more urgent by prospects for increasing prevalence due to population aging. Mouse models are one of the most important research tools for finding new treatments for AD. Here, we review those models. We begin by briefly reviewing the AD genetics on which mouse models are based and then consider the most common mouse models of AD, including mice transgenic for human amyloid precursor protein (hAPP) and beta-amyloid (Aβ), mice expressing mutant presenilin genes, mice modeling tau's role in AD, and apolipoprotein E models. The discussion highlights key features and important differences between these mouse models. We conclude with a discussion about the role of AD mouse models in the translational pipeline.
Collapse
Affiliation(s)
- Alicia M Hall
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
120
|
Schumacher T, Krohn M, Hofrichter J, Lange C, Stenzel J, Steffen J, Dunkelmann T, Paarmann K, Fröhlich C, Uecker A, Plath AS, Sommer A, Brüning T, Heinze HJ, Pahnke J. ABC transporters B1, C1 and G2 differentially regulate neuroregeneration in mice. PLoS One 2012; 7:e35613. [PMID: 22545122 PMCID: PMC3335815 DOI: 10.1371/journal.pone.0035613] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters are essential regulators of organismic homeostasis, and are particularly important in protecting the body from potentially harmful exogenous substances. Recently, an increasing number of in vitro observations have indicated a functional role of ABC transporters in the differentiation and maintenance of stem cells. Therefore, we sought to determine brain-related phenotypic changes in animals lacking the expression of distinct ABC transporters (ABCB1, ABCG2 or ABCC1). METHODOLOGY AND PRINCIPAL FINDINGS Analyzing adult neurogenesis in ABC transporter-deficient animals in vivo and neuronal stem/progenitor cells in vitro resulted in complex findings. In vivo, the differentiation of neuronal progenitors was hindered in ABC transporter-deficient mice (ABCB1(0/0)) as evidenced by lowered numbers of doublecortin(+) (-36%) and calretinin(+) (-37%) cells. In vitro, we confirmed that this finding is not connected to the functional loss of single neural stem/progenitor cells (NSPCs). Furthermore, assessment of activity, exploratory behavior, and anxiety levels revealed behavioral alterations in ABCB1(0/0) and ABCC1(0/0) mice, whereas ABCG2(0/0) mice were mostly unaffected. CONCLUSION AND SIGNIFICANCE Our data show that single ABC transporter-deficiency does not necessarily impair neuronal progenitor homeostasis on the single NSPC level, as suggested by previous studies. However, loss of distinct ABC transporters impacts global brain homeostasis with far ranging consequences, leading to impaired neurogenic functions in vivo and even to distinct behavioral phenotypes. In addition to the known role of ABC transporters in proteopathies such as Parkinson's disease and Alzheimer's disease, our data highlight the importance of understanding the general function of ABC transporters for the brain's homeostasis and the regeneration potential.
Collapse
Affiliation(s)
- Toni Schumacher
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Markus Krohn
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jacqueline Hofrichter
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Cathleen Lange
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Jan Stenzel
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Tina Dunkelmann
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Kristin Paarmann
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Christina Fröhlich
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Annekathrin Uecker
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Anne-Sophie Plath
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexandra Sommer
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Thomas Brüning
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hans-Jochen Heinze
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Jens Pahnke
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| |
Collapse
|
121
|
Alzheimer's disease and related dementias. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
122
|
Matsuki T, Zaka M, Guerreiro R, van der Brug MP, Cooper JA, Cookson MR, Hardy JA, Howell BW. Identification of Stk25 as a genetic modifier of Tau phosphorylation in Dab1-mutant mice. PLoS One 2012; 7:e31152. [PMID: 22355340 PMCID: PMC3280280 DOI: 10.1371/journal.pone.0031152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022] Open
Abstract
Hyperphosphorylation of the microtubule binding protein Tau is a feature of a number of neurodegenerative diseases, including Alzheimer's disease. Tau is hyperphosphorylated in the hippocampus of dab1-null mice in a strain-dependent manner; however, it has not been clear if the Tau phosphorylation phenotype is a secondary effect of the morbidity of these mutants. The dab1 gene encodes a docking protein that is required for normal brain lamination and dendritogenesis as part of the Reelin signaling pathway. We show that dab1 gene inactivation after brain development leads to Tau hyperphosphorylation in anatomically normal mice. Genomic regions that regulate the phospho Tau phenotype in dab1 mutants have previously been identified. Using a microarray gene expression comparison between dab1-mutants from the high-phospho Tau expressing and low-phospho Tau expressing strains, we identified Stk25 as a differentially expressed modifier of dab1-mutant phenotypes. Stk25 knockdown reduces Tau phosphorylation in embryonic neurons. Furthermore, Stk25 regulates neuronal polarization and Golgi morphology in an antagonistic manner to Dab1. This work provides insights into the complex regulation of neuronal behavior during brain development and provides insights into the molecular cascades that regulate Tau phosphorylation.
Collapse
Affiliation(s)
- Tohru Matsuki
- Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Mariam Zaka
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rita Guerreiro
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcel P. van der Brug
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan A. Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Hardy
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian W. Howell
- Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
123
|
Caenorhabditis elegans as a model organism to study APP function. Exp Brain Res 2011; 217:397-411. [PMID: 22038715 DOI: 10.1007/s00221-011-2905-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/05/2011] [Indexed: 12/20/2022]
Abstract
The brains of Alzheimer's disease patients show an increased number of senile plaques compared with normal patients. The major component of the plaques is the β-amyloid peptide, a cleavage product of the amyloid precursor protein (APP). Although the processing of APP has been well-described, the physiological functions of APP and its cleavage products remain unclear. This article reviews the multifunctional roles of an APP orthologue, the C. elegans APL-1. Understanding the function of APL-1 may provide insights into the functions and signaling pathways of human APP. In addition, the physiological effects of introducing human β-amyloid peptide into C. elegans are also reviewed. The C. elegans system provides a powerful genetic model to identify genes regulating the molecular mechanisms underlying intracellular β-amyloid peptide accumulation.
Collapse
|
124
|
Wang Y, Liu J, Zhang Z, Wang X, Zhang C. Structure and permeability changes of the blood-brain barrier in APP/PS1 mice: an Alzheimer’s disease animal model. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411030135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
125
|
Roberson ED, Hope OA, Martin RC, Schmidt D. Geriatric epilepsy: research and clinical directions for the future. Epilepsy Behav 2011; 22:103-11. [PMID: 21596624 DOI: 10.1016/j.yebeh.2011.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/01/2023]
Abstract
There is a growing awareness of the need for improved treatment and care of older adults with epilepsy. The present review article highlights key clinical and research issues in the emerging field of geriatric epilepsy. Drs. Martin and Schmidt explore the scope of the problems in the field, outline topic areas including cognitive health/dementia, and diagnostic challenges, and also present important research questions that should be considered for the future. As part of this presentation, we will highlight the work of two promising young investigators whose work holds great promise for the field of geriatric epilepsy. Dr. Roberson will discuss his work focusing on the relationship of epilepsy and cognitive impairment, particularly as it relates to Alzheimer's disease pathology including tau and its role in epileptiform activity. Dr. Hope will outline key issues, as well as her work, relating to defining and measuring quality care in geriatric epilepsy.
Collapse
Affiliation(s)
- Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
126
|
López-Ramos JC, Jurado-Parras MT, Sanfeliu C, Acuña-Castroviejo D, Delgado-García JM. Learning capabilities and CA1-prefrontal synaptic plasticity in a mice model of accelerated senescence. Neurobiol Aging 2011; 33:627.e13-26. [PMID: 21664007 DOI: 10.1016/j.neurobiolaging.2011.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/23/2011] [Accepted: 04/02/2011] [Indexed: 01/23/2023]
Abstract
SAMP8 mice represent a suitable model of accelerated senescence as compared with SAMR1 animals presenting normal aging. Five-month-old SAMP8 mice presented reflex eyelid responses like those of SAMR1 controls, but were incapable of acquiring classically-conditioned eye blink responses in a trace (230 milliseconds [ms] of interstimulus interval) paradigm. Although SAMP8 mice presented a normal paired-pulse facilitation of the hippocampal CA1-medial prefrontal synapse, an input/output curve study revealed smaller field excitatory postsynaptic potentials (fEPSPs) in response to strong stimulations of the CA1-prefrontal pathway. Moreover, SAMP8 mice did not show any activity-dependent potentiation of the CA1-prefrontal synapse across the successive conditioning sessions shown by SAMR1 animals. In addition, SAMP8 mice presented a functional deficit during an object recognition test, continuing to explore the familiar object when controls moved to the novel one. Alert behaving SAMP8 mice presented a significant deficit in long-term potentiation (LTP) at the CA1-medial prefrontal synapse. According to the present results, SAMP8 mice present noticeable functional deficits in hippocampal and prefrontal cortical circuits directly related with the acquisition and storage of new motor and cognitive abilities.
Collapse
|
127
|
Cui S, Xiong F, Hong Y, Jung JU, Li XS, Liu JZ, Yan R, Mei L, Feng X, Xiong WC. APPswe/Aβ regulation of osteoclast activation and RAGE expression in an age-dependent manner. J Bone Miner Res 2011; 26:1084-98. [PMID: 21542009 PMCID: PMC3126661 DOI: 10.1002/jbmr.299] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), one of the most dreaded neurodegenerative disorders, is characterized by cortical and cerebrovascular amyloid β peptide (Aβ) deposits, neurofibrillary tangles, chronic inflammation, and neuronal loss. Increased bone fracture rates and reduced bone density are commonly observed in patients with AD, suggesting one or more common denominators between both disorders. However, very few studies are available that have addressed this issue. Here, we present evidence for a function of amyloid precursor protein (APP) and Aβ in regulating osteoclast (OC) differentiation in vitro and in vivo. Tg2576 mice, which express the Swedish mutation of APP (APPswe) under the control of a prion promoter, exhibit biphasic effects on OC activation, with an increase of OCs in younger mice (< 4 months old), but a decrease in older Tg2576 mice (> 4 months old). The increase of OCs in young Tg2576 mice appears to be mediated by Aβ oligomers and receptor for advanced glycation end products (RAGE) expression in bone marrow macrophages (BMMs). However, the decrease of OC formation and activity in older Tg2576 mice may be due to the increase of soluble rage (sRAGE) in aged Tg2576 mice, an inhibitor of RANKL-induced osteoclastogenesis. These results suggest an unexpected function of APPswe/Aβ, reveal a mechanism underlying altered bone remodeling in AD patients, and implicate APP/Aβ and RAGE as common denominators for both AD and osteoporosis.
Collapse
Affiliation(s)
- Shun Cui
- Institute of Molecular Medicine & Genetics and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 2011; 31:700-11. [PMID: 21228179 DOI: 10.1523/jneurosci.4152-10.2011] [Citation(s) in RCA: 513] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-β peptide (Aβ) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aβ. However, the mechanisms by which Aβ, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aβ and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aβ and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aβ, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.
Collapse
|
129
|
Scullion G, Kendall D, Marsden C, Sunter D, Pardon MC. Chronic treatment with the α2-adrenoceptor antagonist fluparoxan prevents age-related deficits in spatial working memory in APP×PS1 transgenic mice without altering β-amyloid plaque load or astrocytosis. Neuropharmacology 2011; 60:223-34. [DOI: 10.1016/j.neuropharm.2010.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/16/2010] [Accepted: 09/03/2010] [Indexed: 12/12/2022]
|
130
|
Troy CM, Akpan N, Jean YY. Regulation of Caspases in the Nervous System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:265-305. [DOI: 10.1016/b978-0-12-385504-6.00007-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
131
|
Kalifa S, Polston EK, Allard JS, Manaye KF. Distribution patterns of cannabinoid CB1 receptors in the hippocampus of APPswe/PS1ΔE9 double transgenic mice. Brain Res 2010; 1376:94-100. [PMID: 21192920 DOI: 10.1016/j.brainres.2010.12.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/02/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
Abstract
Cannabinoids have neuroprotective effects that are exerted primarily through cannabinoid CB1 receptors in the brain. This study characterized CB1 receptor distribution in the double transgenic (dtg) APP(swe)/PS1(ΔE9) mouse model for Alzheimer's disease. Immunohistochemical labeling of CB1 protein in non-transgenic mice revealed that CB1 was highly expressed in the hippocampus, with the greatest density of CB1 protein observed in the combined hippocampal subregions CA2 and CA3 (CA2/3). CB1 immunoreactivity in the CA1 and CA2/3 hippocampal regions was significantly decreased in the dtg APP(swe)/PS1(ΔE9) mice compared to non-transgenic littermates. Reduced CB1 expression in dtg APP(swe)/PS1(ΔE9) mice was associated with astroglial proliferation and elevated expression of the cytokines inducible nitric oxide synthase and tumor necrosis factor alpha. This finding suggests an anti-inflammatory effect of cannabinoids that is mediated by CB1 receptor, particularly in the CA2/3 region of the hippocampus. Furthermore, the study suggests a decreased CB1 receptor expression may result in diminished anti-inflammatory processes, exacerbating the neuropathology associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Kalifa
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
132
|
Palmer J, Love S. Endothelin receptor antagonists: potential in Alzheimer's disease. Pharmacol Res 2010; 63:525-31. [PMID: 21193044 DOI: 10.1016/j.phrs.2010.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is believed to be initiated by the accumulation of neurotoxic forms of Aβ peptide within the brain. AD patients show reduction of cerebral blood flow (CBF), the extent of the reduction correlating with the impairment of cognition. There is evidence that cerebral hypoperfusion precedes and may even trigger the onset of dementia in AD. Cerebral hypoperfusion impairs neuronal function, reduces the clearance of Aβ peptide and other toxic metabolites from the brain, and upregulates Aβ production. Studies in animal models of AD have shown the reduction in CBF to be more than would be expected for the reduction in neuronal metabolic activity. Aβ may contribute to the reduction in CBF in AD, as both Aβ₁₋₄₀ and Aβ₁₋₄₂ induce cerebrovascular dysfunction. Aβ₁₋₄₀ acts directly on cerebral arteries to cause cerebral smooth muscle cell contraction. Aβ₁₋₄₂ causes increased neuronal production and release of endothelin-1 (ET-1), a potent vasoconstrictor, and upregulation of endothelin-converting enzyme-2 (ECE-2), the enzyme which cleaves ET-1 from its inactive precursor. ET-1 and ECE-2 are also elevated in AD, making it likely that upregulation of the ECE-2-ET-1 axis by Aβ₁₋₄₂ contributes to the chronic reduction of CBF in AD. At present, only a few symptomatic treatment options exist for AD. The involvement of ET-1 in the pathogenesis of endothelial dysfunction associated with elevated Aβ indicates the potential for endothelin receptor antagonists in the treatment of AD. It has already been demonstrated that the endothelin receptor antagonist bosentan, preserves aortic and carotid endothelial function in Tg2576 mice, and our findings suggest that endothelin receptor antagonists may be beneficial in maintaining CBF in AD.
Collapse
Affiliation(s)
- Jennifer Palmer
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Frenchay Hospital, Bristol BS16 1LE, United Kingdom.
| | | |
Collapse
|
133
|
Balducci C, Forloni G. APP transgenic mice: their use and limitations. Neuromolecular Med 2010; 13:117-37. [PMID: 21152995 DOI: 10.1007/s12017-010-8141-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/20/2010] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most widespread form of dementia. Its histopathological hallmarks include vascular and extracellular β-amyloid (Aβ) deposition and intraneuronal neurofibrillary tangles (NFTs). Gradual decline of cognitive functions linked to progressive synaptic loss makes patients unable to store new information in the earlier stages of the pathology, later becoming completely dependent because they are unable to do even elementary daily life actions. Although more than a hundred years have passed since Alois Alzheimer described the first case of AD, and despite many years of intense research, there are still many crucial points to be discovered in the neuropathological pathway. The development of transgenic mouse models engineered with overexpression of the amyloid precursor protein carrying familial AD mutations has been extremely useful. Transgenic mice present the hallmarks of the pathology, and histological and behavioural examination supports the amyloid hypothesis. As in human AD, extracellular Aβ deposits surrounded by activated astrocytes and microglia are typical features, together with synaptic and cognitive defects. Although animal models have been widely used, they are still being continuously developed in order to recapitulate some missing aspects of the disease. For instance, AD therapeutic agents tested in transgenic mice gave encouraging results which, however, were very disappointing in clinical trials. Neuronal cell death and NFTs typical of AD are much harder to replicate in these mice, which thus offer a fundamental but still imperfect tool for understanding and solving dementia pathology.
Collapse
Affiliation(s)
- Claudia Balducci
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, via G. La Masa, 19, 20156, Milan, Italy.
| | | |
Collapse
|
134
|
Abstract
Alzheimer’s disease, a neurodegenerative disorder, is associated with various pathological alterations to the blood–brain barrier, including disruption to the inter-endothelial tight junction proteins, altered expression of transport proteins involved in drug efflux, a reduction in cerebral blood flow and a thickening of the brain capillary basement membrane. There are many conflicting reports on whether such changes alter the ability of endogenous proteins to extravasate into the brain parenchyma, and there are even fewer reports focusing on the potential impact of these changes on drug transport into the CNS. The purpose of this review is to critically evaluate how the reported changes to the blood–brain barrier in Alzheimer’s disease have (or have not) resulted in altered CNS drug delivery, and to highlight the requirement for more rigorous and systematic studies in this field for the benefit of drug discovery and delivery scientists.
Collapse
|
135
|
Abstract
Alzheimer's disease (AD), the most common cause of dementia among the elderly, may either represent the far end of a continuum that begins with age-related memory decline or a distinct pathobiological process. Although mice that faithfully model all aspects of AD do not yet exist, current mouse models have provided valuable insights into specific aspects of AD pathogenesis. We will argue that transgenic mice expressing amyloid precursor protein should be considered models of accelerated brain aging or asymptomatic AD, and the results of interventional studies in these mice should be considered in the context of primary prevention. Studies in mice have pointed to the roles of soluble beta-amyloid (Abeta) oligomers and soluble tau in disease pathogenesis and support a model in which soluble Abeta oligomers trigger synaptic dysfunction, but formation of abnormal tau species leads to neuron death and cognitive decline severe enough to warrant a dementia diagnosis.
Collapse
Affiliation(s)
- Karen H Ashe
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
136
|
Fitzjohn SM, Kuenzi F, Morton RA, Rosahl TW, Lewis H, Smith D, Seabrook GR, Collingridge GL. A study of long-term potentiation in transgenic mice over-expressing mutant forms of both amyloid precursor protein and presenilin-1. Mol Brain 2010; 3:21. [PMID: 20630068 PMCID: PMC2912307 DOI: 10.1186/1756-6606-3-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/14/2010] [Indexed: 12/31/2022] Open
Abstract
Synaptic transmission and long-term potentiation (LTP) in the CA1 region of hippocampal slices have been studied during ageing of a double transgenic mouse strain relevant to early-onset familial Alzheimer's disease (AD). This strain, which over-expresses both the 695 amino acid isoform of human amyloid precursor protein (APP) with K670N and M671L mutations and presenilin 1 with the A246E mutation, has accelerated amyloidosis and plaque formation. There was a decrease in synaptic transmission in both wildtype and transgenic mice between 2 and 9 months of age. However, preparing slices from 14 month old animals in kynurenic acid (1 mM) counteracted this age-related deficit. Basal transmission and paired-pulse facilitation was similar between the two groups at all ages (2, 6, 9 and 14 months) tested. Similarly, at all ages LTP, induced either by theta burst stimulation or by multiple tetani, was normal. These data show that a prolonged, substantially elevated level of Abeta are not sufficient to cause deficits in the induction or expression of LTP in the CA1 hippocampal region.
Collapse
Affiliation(s)
- Stephen M Fitzjohn
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, UK.
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Zahs KR, Ashe KH. 'Too much good news' - are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer's disease? Trends Neurosci 2010; 33:381-9. [PMID: 20542579 DOI: 10.1016/j.tins.2010.05.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 12/23/2022]
Abstract
Scores of compounds ameliorate cognitive deficits or neuropathology in transgenic mouse models of Alzheimer's disease (AD), yet these triumphs in mice have not translated into successful therapies for people. Why have studies in mice failed to predict results of human trials? We argue that most transgenic mouse 'models of AD' actually simulate the asymptomatic phase of the disease, and the results of interventional studies in these mice should be considered in the context of disease prevention. In addition, recent advances in imaging technology and biomarker discovery should aid in comparisons of mouse and human neurological status and, importantly, might allow us to predict better the response of people to drugs tested in mice.
Collapse
Affiliation(s)
- Kathleen R Zahs
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
138
|
Elder GA, Gama Sosa MA, De Gasperi R. Transgenic mouse models of Alzheimer's disease. ACTA ACUST UNITED AC 2010; 77:69-81. [PMID: 20101721 DOI: 10.1002/msj.20159] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease is the most common cause of senile dementia in the United States and Europe. At present, there is no effective treatment. Given the disease's prevalence and poor prognosis, the development of animal models has been a high research priority. Transgenic modeling has been pursued on the basis of the amyloid hypothesis and has taken advantage of mutations in the amyloid precursor protein and the presenilins that cause familial forms of Alzheimer's disease. Modeling has been most aggressively pursued in mice, for which the techniques of genetic modification are well developed. Transgenic mouse models now exist that mimic a range of Alzheimer's disease-related pathologies. Although none of the models fully replicates the human disease, the models have contributed significant insights into the pathophysiology of beta-amyloid toxicity, particularly with respect to the effects of different beta-amyloid species and the possible pathogenic role of beta-amyloid oligomers. They have also been widely used in the preclinical testing of potential therapeutic modalities and have played a pivotal role in the development of immunotherapies for Alzheimer's disease that are currently in clinical trials. These models will, without a doubt, continue to play central roles in preclinical testing and be used as tools for developing insights into the biological basis of Alzheimer's disease.
Collapse
Affiliation(s)
- Gregory A Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| | | | | |
Collapse
|
139
|
España J, Giménez-Llort L, Valero J, Miñano A, Rábano A, Rodriguez-Alvarez J, LaFerla FM, Saura CA. Intraneuronal beta-amyloid accumulation in the amygdala enhances fear and anxiety in Alzheimer's disease transgenic mice. Biol Psychiatry 2010; 67:513-21. [PMID: 19664757 DOI: 10.1016/j.biopsych.2009.06.015] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive memory decline and neuropsychiatric symptoms. Despite common emotional symptoms in AD such as anxiety and fear are associated with a more rapid cognitive decline, the pathological mechanisms involved in these behavioral changes remain largely elusive. In this study, we examined the pathological mechanisms of emotional behavior in well-established AD transgenic mice expressing human mutant beta-amyloid (Abeta) precursor protein (APP(Ind) and APP(Sw,Ind)) and tau (3xTg-AD). METHODS We evaluated unconditioned and conditioned fear-induced freezing behavior and spatial memory in APP(Ind), APP(Sw,Ind), and 3xTg-AD transgenic mice. The Abeta and tau pathologies and signaling pathways involved in emotional processing were studied by immunohistochemistry and immunoblotting analyses. RESULTS The APP(Ind)/APP(Sw,Ind) and 3xTg-AD transgenic mice displayed at early ages enhanced innate and conditioned fear symptoms and spatial memory deficits coinciding with enhanced accumulation of Abeta in gamma-aminobutyric acid (GABA)ergic and glutamatergic neurons, respectively, of the basolateral amygdala (BLA). Similarly, the number of neurons with intraneuronal Abeta40 and Abeta42 was significantly increased in the BLA of human AD brains. Fear responses might reflect an influence of anxiety, because the anxiolytic compounds valproate, diazepam, and buspirone reduced efficiently unconditioned and conditioned fear responses in APP transgenic mice. In addition, phosphorylation of extracellular signal-regulated kinase (ERK)1/2, which is critical for acquisition and consolidation of fear conditioning, was increased in the amygdala of APP transgenic mice after cued conditioning. CONCLUSIONS We propose a deleterious role of intraneuronal Abeta on amygdala-dependent emotional responses by affecting the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway.
Collapse
Affiliation(s)
- Judit España
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Ewald CY, Li C. Understanding the molecular basis of Alzheimer's disease using a Caenorhabditis elegans model system. Brain Struct Funct 2010; 214:263-83. [PMID: 20012092 PMCID: PMC3902020 DOI: 10.1007/s00429-009-0235-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/17/2009] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the United States. At the cellular level, the brains of AD patients are characterized by extracellular dense plaques and intracellular neurofibrillary tangles whose major components are the beta-amyloid peptide and tau, respectively. The beta-amyloid peptide is a cleavage product of the amyloid precursor protein (APP); mutations in APP have been correlated with a small number of cases of familial Alzheimer's disease. APP is the canonical member of the APP family, whose functions remain unclear. The nematode Caenorhabditis elegans, one of the premier genetic workhorses, is being used in a variety of ways to address the functions of APP and determine how the beta-amyloid peptide and tau can induce toxicity. First, the function of the C. elegans APP-related gene, apl-1, is being examined. Although different organisms may use APP and related proteins, such as APL-1, in different functional contexts, the pathways in which they function and the molecules with which they interact are usually conserved. Second, components of the gamma-secretase complex and their respective functions are being revealed through genetic analyses in C. elegans. Third, to address questions of toxicity, onset of degeneration, and protective mechanisms, different human beta-amyloid peptide and tau variants are being introduced into C. elegans and the resultant transgenic lines examined. Here, we summarize how a simple system such as C. elegans can be used as a model to understand APP function and suppression of beta-amyloid peptide and tau toxicity in higher organisms.
Collapse
Affiliation(s)
- Collin Y. Ewald
- Graduate Center and Department of Biology, City College of the City University of New York, MR526, 160 Convent Avenue, New York, NY 10031, USA
| | - Chris Li
- Graduate Center and Department of Biology, City College of the City University of New York, MR526, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
141
|
Abstract
Synaptotagmins (Syts) are transmembrane proteins involved in the regulation of membrane trafficking. Here, we summarize literature data that provide growing evidence that several Syts are involved in the pathophysiological mechanisms of temporal lobe epilepsy and Parkinson's disease, as well as few reports related to brain ischemia and Alzheimer's disease (AD). We also report new data from our laboratories, showing changes of the expression of several Syts in Tg2576 mouse model of AD that may be related to neuroinflammation surrounding the beta-amyloid plaques. Furthermore, we demonstrate N-methyl-D-aspartate receptor-mediated upregulation of Syt 4 mRNA in a model of excitotoxic striatal lesion induced by unilateral striatal injection of quinolinic acid, associating the upregulation of Syt 4 with mechanisms of excitotoxicity. We propose that pharmacological manipulation of Syt expression in animal models of neurodegeneration should be further explored, as it may help to clarify the role of individual Syt isoforms in the regulation of membrane trafficking in neurodegeneration.
Collapse
Affiliation(s)
- Gordana Glavan
- Medical Faculty, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
142
|
Ajmo JM, Bailey LA, Howell MD, Cortez LK, Pennypacker KR, Mehta HN, Morgan D, Gordon MN, Gottschall PE. Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw. J Neurochem 2010; 113:784-95. [PMID: 20180882 DOI: 10.1111/j.1471-4159.2010.06647.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aggregation of amyloid-beta (Abeta) in the forebrain of Alzheimer's disease (AD) subjects may disturb the molecular organization of the extracellular microenvironment that modulates neural and synaptic plasticity. Proteoglycans are major components of this extracellular environment. To test the hypothesis that Abeta, or another amyloid precursor protein (APP) dependent mechanism modifies the accumulation and/or turnover of extracellular proteoglycans, we examined whether the expression and processing of brevican, an abundant extracellular, chondroitin sulfate (CS)-bearing proteoglycan, were altered in brains of Abeta-depositing transgenic mice (APPsw - APP gene bearing the Swedish mutation) as a model of AD. The molecular size of CS chains attached to brevican was smaller in hippocampal tissue from APPsw mice bearing Abeta deposits compared to non-transgenic mice, likely because of changes in the CS chains. Also, the abundance of the major proteolytic fragment of brevican was markedly diminished in extracts from several telencephalic regions of APPsw mice compared to non-transgenic mice, yet these immunoreactive fragments appeared to accumulate adjacent to the plaque edge. These results suggest that Abeta or APP exert inhibitory effects on proteolytic cleavage mechanisms responsible for synthesis and turnover of proteoglycans. As proteoglycans stabilize synaptic structure and inhibit molecular plasticity, defective brevican processing observed in Abeta-bearing mice and potentially end-stage human AD, may contribute to deficient neural plasticity.
Collapse
Affiliation(s)
- Joanne M Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Janus C, Welzl H. Mouse models of neurodegenerative diseases: criteria and general methodology. Methods Mol Biol 2010; 602:323-345. [PMID: 20012407 DOI: 10.1007/978-1-60761-058-8_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The major symptom of Alzheimer's disease is rapidly progressing dementia, coinciding with the formation of amyloid and tau deposits in the central nervous system, and neuronal death. At present familial cases of dementias provide the most promising foundation for modelling neurodegeneration. We describe the mnemonic and other major behavioral symptoms of tauopathies, briefly outline the genetics underlying familiar cases and discuss the arising implications for modelling the disease in mostly transgenic mouse lines. We then depict to what degree the most recent mouse models replicate pathological and cognitive characteristics observed in patients.There is no universally valid behavioral test battery to evaluate mouse models. The selection of individual tests depends on the behavioral and/or memory system in focus, the type of a model and how well it replicates the pathology of a disease and the amount of control over the genetic background of the mouse model. However it is possible to provide guidelines and criteria for modelling the neurodegeneration, setting up the experiments and choosing relevant tests. One should not adopt a "one (trans)gene, one disease" interpretation, but should try to understand how the mouse genome copes with the protein expression of the transgene in question. Further, it is not possible to recommend some mouse models over others since each model is valuable within its own constraints, and the way experiments are performed often reflects the idiosyncratic reality of specific laboratories. Our purpose is to improve bridging molecular and behavioural approaches in translational research.
Collapse
Affiliation(s)
- Christopher Janus
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | | |
Collapse
|
144
|
Perucho J, Casarejos MJ, Rubio I, Rodriguez-Navarro JA, Gómez A, Ampuero I, Rodal I, Solano RM, Carro E, de Yébenes JG, Mena MA. The effects of parkin suppression on the behaviour, amyloid processing, and cell survival in APP mutant transgenic mice. Exp Neurol 2010; 221:54-67. [DOI: 10.1016/j.expneurol.2009.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/11/2009] [Accepted: 09/29/2009] [Indexed: 12/30/2022]
|
145
|
Liu RM, van Groen T, Katre A, Cao D, Kadisha I, Ballinger C, Wang L, Carroll SL, Li L. Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer's disease. Neurobiol Aging 2009; 32:1079-89. [PMID: 19604604 DOI: 10.1016/j.neurobiolaging.2009.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/03/2009] [Accepted: 06/11/2009] [Indexed: 12/21/2022]
Abstract
Accumulation of amyloid beta peptide (Aβ) in the brain is a pathological hallmark of Alzheimer's disease (AD); the underlying mechanism, however, is not well understood. In this study, we show that expression of plasminogen activator inhibitor 1 (PAI-1), a physiological inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), increases with age in the brain of wild type and Aβ precursor protein-presenilin 1 (APP/PS1) transgenic mice as well as in AD patients. Most importantly, we show that knocking out the PAI-1 gene dramatically reduces Aβ burden in the brain of APP/PS1 mice but has no effect on the levels of full-length APP, alpha or beta C-terminal fragments. Furthermore, we show that knocking out the PAI-1 gene leads to increases in the activities of tPA and plasmin, and the plasmin activity inversely correlates with the amounts of SDS insoluble Aβ40 and Aβ42. Together, these data suggest that increased PAI-1 expression/activity contributes importantly to Aβ accumulation during aging and in AD probably by inhibiting plasminogen activation and thus Aβ degradation.
Collapse
Affiliation(s)
- R-M Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Kiyota T, Yamamoto M, Xiong H, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. PLoS One 2009; 4:e6197. [PMID: 19593388 PMCID: PMC2703798 DOI: 10.1371/journal.pone.0006197] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/01/2009] [Indexed: 01/14/2023] Open
Abstract
Background The linkages between neuroinflammation and Alzheimer's disease (AD) pathogenesis are well established. What is not, however, is how specific immune pathways and proteins affect the disease. To this end, we previously demonstrated that transgenic over-expression of CCL2 enhanced microgliosis and induced diffuse amyloid plaque deposition in Tg2576 mice. This rodent model of AD expresses a Swedish β-amyloid (Aβ) precursor protein mutant. Methodology/Principal Findings We now report that CCL2 transgene expression accelerates deficits in spatial and working memory and hippocampal synaptic transmission in β-amyloid precursor protein (APP) mice as early as 2–3 months of age. This is followed by increased numbers of microglia that are seen surrounding Aβ oligomers. CCL2 does not suppress Aβ degradation. Rather, CCL2 and tumor necrosis factor-α directly facilitated Aβ uptake, intracellular Aβ oligomerization, and protein secretion. Conclusions/Significance We posit that CCL2 facilitates Aβ oligomer formation in microglia and propose that such events accelerate memory dysfunction by affecting Aβ seeding in the brain.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Masaru Yamamoto
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Huangui Xiong
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mary P. Lambert
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - William L. Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Richard M. Ransohoff
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Tsuneya Ikezu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
147
|
Mohajeri MH, Leuba G. Prevention of age-associated dementia. Brain Res Bull 2009; 80:315-25. [PMID: 19576269 DOI: 10.1016/j.brainresbull.2009.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
The advancement of medical sciences during the last century has resulted in a considerable increase in life expectancy. As more people live to old age, one of the most fundamental questions of the 21st century is whether the number of individuals suffering from dementia will also continue to increase. Alzheimer's disease (AD) accounts for the majority of cases of dementia in the elderly, but there is currently no curative treatment available. Several strategies have been introduced for treatment, the most recent strategy of which was the immunization of patients using antibodies against Abeta, which is a naturally occurring, even though misfolded peptide in the AD brain. Both active and passive immunization routes have been shown to reduce the pathology associated with Abeta accumulation in brains of genetically designed animal models. However, despite tremendous efforts, no unequivocal proof of therapeutic efficacy could be shown in AD patients. Particularly, the persistence of the neurofibrillary tangles in immunized brains and the issue of inducing cerebral amyloid angiopathy are major limiting factors of antibody therapy. Furthermore, physical activity, a healthy immune system and nutritional habits are suggested to protect against the onset of age-associated dementia. Thus, accumulative evidence suggests that an early integrated strategy, combining pharmacological, immunological, nutritional and life-style factors, is the most pragmatic approach to delay the onset and progression of age-associated dementia.
Collapse
Affiliation(s)
- M Hasan Mohajeri
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
148
|
Abstract
The processing of amyloid precursor protein (APP) to Abeta is an important event in the pathogenesis of Alzheimer's disease, but the physiological function of APP is not well understood. Our previous work has shown that APP processing and Abeta production are regulated by the extracellular matrix protein Reelin. In the present study, we examined whether Reelin interacts with APP, and the functional consequences of that interaction in vitro. Using coimmunoprecipitation, we found that Reelin interacted with APP through the central domain of Reelin (repeats 3-6) and the E1 extracellular domain of APP. Reelin increased cell surface levels of APP and decreased endocytosis of APP in hippocampal neurons in vitro. In vivo, Reelin levels were increased in brains of APP knock-out mice and decreased in APP-overexpressing mice. RNA interference knockdown of APP decreased neurite outgrowth in vitro and prevented Reelin from increasing neurite outgrowth. Knock-out of APP or Reelin decreased dendritic arborization in cortical neurons in vivo, and APP overexpression increased dendritic arborization. APP and Reelin have previously been shown to promote neurite outgrowth through interactions with integrins. We confirmed that APP interacted with alpha3beta1 integrin, and alpha3beta1 integrin altered APP trafficking and processing. Addition of an alpha3beta1 integrin antibody prevented APP and Reelin-induced neurite outgrowth. These findings demonstrate that Reelin interacts with APP, potentially having important effects on neurite development.
Collapse
|
149
|
Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horré K, Van Houtvin T, Esselmann H, Paul S, Schäfer MK, Berezovska O, Hyman BT, Sprangers B, Sciot R, Moons L, Jucker M, Yang Z, May PC, Karran E, Wiltfang J, D’Hooge R, De Strooper B. gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer's disease. Science 2009; 324:639-42. [PMID: 19299585 PMCID: PMC2740474 DOI: 10.1126/science.1171176] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gamma-secretase complex plays a role in Alzheimer's disease and cancer progression. The development of clinically useful inhibitors, however, is complicated by the role of the gamma-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different gamma-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B gamma-secretase in a mouse Alzheimer's disease model led to improvements of Alzheimer's disease-relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total gamma-secretase activity in the human brain, and thus specific targeting of Aph1B-containing gamma-secretase complexes may help generate less toxic therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Lutgarde Serneels
- Department for Molecular and Developmental Genetics, VIB, KULeuven, Herestraat 49, 3000 Leuven, Belgium
- Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jérôme Van Biervliet
- Department for Molecular and Developmental Genetics, VIB, KULeuven, Herestraat 49, 3000 Leuven, Belgium
- Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium
| | - Katleen Craessaerts
- Department for Molecular and Developmental Genetics, VIB, KULeuven, Herestraat 49, 3000 Leuven, Belgium
- Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tim Dejaegere
- Department for Molecular and Developmental Genetics, VIB, KULeuven, Herestraat 49, 3000 Leuven, Belgium
- Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium
| | - Katrien Horré
- Department for Molecular and Developmental Genetics, VIB, KULeuven, Herestraat 49, 3000 Leuven, Belgium
- Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tine Van Houtvin
- Department for Molecular and Developmental Genetics, VIB, KULeuven, Herestraat 49, 3000 Leuven, Belgium
- Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hermann Esselmann
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Department of Psychiatry and Psychotherapy, Rhine State Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Sabine Paul
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Department of Psychiatry and Psychotherapy, Rhine State Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Martin K. Schäfer
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps University, D-35032 Marburg, Germany
| | - Oksana Berezovska
- Harvard Medical School, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disorders, Charlestown, MA 02129, USA
| | - Bradley T. Hyman
- Harvard Medical School, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disorders, Charlestown, MA 02129, USA
| | - Ben Sprangers
- Laboratory of Experimental Transplantation, KULeuven, 3000 Leuven, Belgium
| | - Raf Sciot
- Laboratory of Morphology and Molecular Pathology, KULeuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KULeuven, 3000 Leuven, Belgium
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Zhixiang Yang
- Neuroscience Discovery Research, Lilly Research Labs, Eli Lilly and Co., Indianapolis, IN 46285, USA
| | - Patrick C. May
- Neuroscience Discovery Research, Lilly Research Labs, Eli Lilly and Co., Indianapolis, IN 46285, USA
| | - Eric Karran
- Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Department of Psychiatry and Psychotherapy, Rhine State Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Rudi D’Hooge
- Laboratory of Biological Psychology, Department of Psychology, KULeuven, 3000 Leuven, Belgium
| | - Bart De Strooper
- Department for Molecular and Developmental Genetics, VIB, KULeuven, Herestraat 49, 3000 Leuven, Belgium
- Center for Human Genetics, KULeuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
150
|
Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J Neurosci 2009; 29:1977-86. [PMID: 19228952 DOI: 10.1523/jneurosci.2984-08.2009] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The accumulation of amyloid-beta (Abeta) peptides in the brain of patients with Alzheimer's disease (AD) may arise from an imbalance between Abeta production and clearance. Overexpression of the Abeta-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Abeta levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Abeta oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Abeta oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Abeta levels by 50% and effectively prevented early Abeta deposition in the neocortex and hippocampus. However, it did not reduce levels of Abeta trimers and Abeta*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Abeta affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysin's inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Abeta oligomers. Reduction of Abeta oligomers will likely be required for anti-Abeta treatments to improve cognitive functions.
Collapse
|