101
|
Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, Mileti E, Galbiati M, Invernizzi P, Adorini L, Penna G, Rescigno M. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 2019; 71:1216-1228. [PMID: 31419514 PMCID: PMC6880766 DOI: 10.1016/j.jhep.2019.08.005] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Fatty liver disease, including non-alcoholic fatty liver (NAFLD) and steatohepatitis (NASH), has been associated with increased intestinal barrier permeability and translocation of bacteria or bacterial products into the blood circulation. In this study, we aimed to unravel the role of both intestinal barrier integrity and microbiota in NAFLD/NASH development. METHODS C57BL/6J mice were fed with high-fat diet (HFD) or methionine-choline-deficient diet for 1 week or longer to recapitulate aspects of NASH (steatosis, inflammation, insulin resistance). Genetic and pharmacological strategies were then used to modulate intestinal barrier integrity. RESULTS We show that disruption of the intestinal epithelial barrier and gut vascular barrier (GVB) are early events in NASH pathogenesis. Mice fed HFD for only 1 week undergo a diet-induced dysbiosis that drives GVB damage and bacterial translocation into the liver. Fecal microbiota transplantation from HFD-fed mice into specific pathogen-free recipients induces GVB damage and epididymal adipose tissue enlargement. GVB disruption depends on interference with the WNT/β-catenin signaling pathway, as shown by genetic intervention driving β-catenin activation only in endothelial cells, preventing GVB disruption and NASH development. The bile acid analogue and farnesoid X receptor agonist obeticholic acid (OCA) drives β-catenin activation in endothelial cells. Accordingly, pharmacologic intervention with OCA protects against GVB disruption, both as a preventive and therapeutic agent. Importantly, we found upregulation of the GVB leakage marker in the colon of patients with NASH. CONCLUSIONS We have identified a new player in NASH development, the GVB, whose damage leads to bacteria or bacterial product translocation into the blood circulation. Treatment aimed at restoring β-catenin activation in endothelial cells, such as administration of OCA, protects against GVB damage and NASH development. LAY SUMMARY The incidence of fatty liver disease is reaching epidemic levels in the USA, with more than 30% of adults having NAFLD (non-alcoholic fatty liver disease), which can progress to more severe non-alcoholic steatohepatitis (NASH). Herein, we show that disruption of the intestinal epithelial barrier and gut vascular barrier are early events in the development of NASH. We show that the drug obeticholic acid protects against barrier disruption and thereby prevents the development of NASH, providing further evidence for its use in the prevention or treatment of NASH.
Collapse
Affiliation(s)
- Juliette Mouries
- Humanitas Clinical and Research Center – IRCCS –, via Manzoni 56, 20089 Rozzano, MI, Italy
| | - Paola Brescia
- Humanitas Clinical and Research Center – IRCCS –, via Manzoni 56, 20089 Rozzano, MI, Italy
| | - Alessandra Silvestri
- Humanitas Clinical and Research Center – IRCCS –, via Manzoni 56, 20089 Rozzano, MI, Italy
| | - Ilaria Spadoni
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele, MI, Italy
| | - Marcel Sorribas
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Reiner Wiest
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Erika Mileti
- European Institute of Oncology, Department of Experimental Oncology, 20139 Milan, MI, Italy
| | - Marianna Galbiati
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, MI, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, MI, Italy
| | | | - Giuseppe Penna
- Humanitas Clinical and Research Center – IRCCS –, via Manzoni 56, 20089 Rozzano, MI, Italy,Postbiotica srl, Via Rita Levi Montalcini, 20090 Pieve Emanuele, MI, Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano, MI, Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele, MI, Italy.
| |
Collapse
|
102
|
Sorribas M, Jakob MO, Yilmaz B, Li H, Stutz D, Noser Y, de Gottardi A, Moghadamrad S, Hassan M, Albillos A, Francés R, Juanola O, Spadoni I, Rescigno M, Wiest R. FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J Hepatol 2019; 71:1126-1140. [PMID: 31295531 DOI: 10.1016/j.jhep.2019.06.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/26/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Pathological bacterial translocation (PBT) in cirrhosis is the hallmark of spontaneous bacterial infections, increasing mortality several-fold. Increased intestinal permeability is known to contribute to PBT in cirrhosis, although the role of the mucus layer has not been addressed in detail. A clear route of translocation for luminal intestinal bacteria is yet to be defined, but we hypothesize that the recently described gut-vascular barrier (GVB) is impaired in experimental portal hypertension, leading to increased accessibility of the vascular compartment for translocating bacteria. MATERIALS Cirrhosis was induced in mouse models using bile-duct ligation (BDL) and CCl4. Pre-hepatic portal-hypertension was induced by partial portal vein ligation (PPVL). Intestinal permeability was compared in these mice after GFP-Escherichia coli or different sized FITC-dextrans were injected into the intestine. RESULTS Healthy and pre-hepatic portal-hypertensive (PPVL) mice lack translocation of FITC-dextran and GFP-E. coli from the small intestine to the liver, whereas BDL and CCl4-induced cirrhotic mice demonstrate pathological translocation, which is not altered by prior thoracic-duct ligation. The mucus layer is reduced in thickness, with loss of goblet cells and Muc2-staining and expression in cirrhotic but not PPVL mice. These changes are associated with bacterial overgrowth in the inner mucus layer and pathological translocation of GFP-E. coli through the ileal epithelium. GVB is profoundly altered in BDL and CCl4-mice with Ileal extravasation of large-sized 150 kDa-FITC-dextran, but only slightly altered in PPVL mice. This pathological endothelial permeability and accessibility in cirrhotic mice is associated with augmented expression of PV1 in intestinal vessels. OCA but not fexaramine stabilizes the GVB, whereas both FXR-agonists ameliorate gut to liver translocation of GFP-E. coli. CONCLUSIONS Cirrhosis, but not portal hypertension per se, grossly impairs the endothelial and muco-epithelial barriers, promoting PBT to the portal-venous circulation. Both barriers appear to be FXR-modulated, with FXR-agonists reducing PBT via the portal-venous route. LAY SUMMARY For intestinal bacteria to enter the systemic circulation, they must cross the mucus and epithelial layer, as well as the gut-vascular barrier. Cirrhosis disrupts all 3 of these barriers, giving bacteria access to the portal-venous circulation and thus, the gut-liver axis. Diminished luminal bile acid availability, cirrhosis and the associated reduction in farnesoid x receptor (FXR) signaling seem, at least partly, to mediate these changes, as FXR-agonists reduce bacterial translocation via the portal-venous route to the liver in cirrhosis.
Collapse
Affiliation(s)
- Marcel Sorribas
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Manuel O Jakob
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Hai Li
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - David Stutz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yannik Noser
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea de Gottardi
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sheida Moghadamrad
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Moshin Hassan
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Agustin Albillos
- Department of Gastroenterology, Hospital Universitario Ramón y Cajal, IRYCIS, University of Alcalá, CIBEREHD, Madrid, Spain
| | - Ruben Francés
- Hepatic and Intestinal Immunobiology Group, Universidad Miguel Hernández-CIBERehd, San Juan, Spain
| | - Oriol Juanola
- Hepatic and Intestinal Immunobiology Group, Universidad Miguel Hernández-CIBERehd, San Juan, Spain
| | - Ilaria Spadoni
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele, MI, Italy
| | - Maria Rescigno
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele, MI, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, MI, Italy
| | - Reiner Wiest
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland; Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
103
|
Chen J, Zheng M, Liu J, Luo Y, Yang W, Yang J, Liu J, Zhou J, Xu C, Zhao F, Su M, Zang S, Shi J. Ratio of Conjugated Chenodeoxycholic to Muricholic Acids is Associated with Severity of Nonalcoholic Steatohepatitis. Obesity (Silver Spring) 2019; 27:2055-2066. [PMID: 31657148 DOI: 10.1002/oby.22627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Bile acids (BAs) are important molecules in the progression of nonalcoholic fatty liver disease. This study aimed to investigate BA profile alterations in Chinese nonalcoholic steatohepatitis (NASH) patients. METHODS BA profiles in serum and liver tissues were determined by ultraperformance liquid chromatography coupled to tandem mass spectrometry in patients from two different clinical centers. RESULTS A total of 134 participants were enrolled in this study to serve as the training (n = 87) and validation (n = 47) cohorts. The ratio of circulating conjugated chenodeoxycholic acids to muricholic acids (P = 0.001) was elevated from healthy controls to non-NASH individuals to NASH individuals in a stepwise manner in the training cohort and was positively associated with the histological severity of NASH: steatosis (R2 = 0.12), lobular inflammation (R2 = 0.12), ballooning (R2 = 0.11), and fibrosis stage (R2 = 0.18). The ratio was elevated in the validation cohort of NASH patients (P < 0.001), and it was able to predict NASH (area under the receiver operating characteristic curve: 75%) and significant fibrosis (area under the receiver operating characteristic curve: 71%) in these two cohorts. Moreover, this elevated ratio and impaired farnesoid X receptor signaling were found in the NASH liver. CONCLUSIONS Altered BA profile in NASH is closely associated with the severity of liver lesions, and it has the potential for predicting NASH development.
Collapse
Affiliation(s)
- Jin Chen
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Minghua Zheng
- Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Liu
- Department of Endocrinology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yan Luo
- Department of Transformation Medical platform, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jing Yang
- Department of Transformation Medical platform, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Juan Liu
- Department of Pathology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jingxing Zhou
- Department of Statistics, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Faling Zhao
- Department of Statistics, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingming Su
- Metabo-profile Biotechnology, Shanghai, China
| | - Shufei Zang
- Department of Endocrinology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Junping Shi
- Department of Liver Diseases, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
104
|
Obeticholic acid prevents carbon tetrachloride-induced liver fibrosis through interaction between farnesoid X receptor and Smad3. Int Immunopharmacol 2019; 77:105911. [DOI: 10.1016/j.intimp.2019.105911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
|
105
|
Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases 2019; 7:diseases7040058. [PMID: 31726747 PMCID: PMC6956030 DOI: 10.3390/diseases7040058] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence supports that gut dysbiosis may relate to various liver diseases. Alcoholics with high intestinal permeability had a decrease in the abundance of Ruminnococcus. Intestinal dysmotility, increased gastric pH, and altered immune responses in addition to environmental and genetic factors are likely to cause alcohol-associated gut microbial changes. Alcohol-induced dysbiosis may be associated with gut barrier dysfunction, as microbiota and their products modulate barrier function by affecting epithelial pro-inflammatory responses and mucosal repair functions. High levels of plasma endotoxin are detected in alcoholics, in moderate fatty liver to advanced cirrhosis. Decreased abundance of Faecalibacterium prausnitzii, an anti-inflammatory commensal, stimulating IL-10 secretion and inhibiting IL-12 and interferon-γ expression. Proteobacteria, Enterobacteriaceae, and Escherichia were reported to be increased in NAFLD (nonalcoholic fatty liver disease) patients. Increased abundance of fecal Escherichia to elevated blood alcohol levels in these patients and gut microbiota enriched in alcohol-producing bacteria produce more alcohol (alcohol hypothesis). Some undetermined pathological sequences related to gut dysbiosis may facilitate energy-producing and proinflammatory conditions for the progression of NAFLD. A shortage of autochthonous non-pathogenic bacteria and an overgrowth of potentially pathogenic bacteria are common findings in cirrhotic patients. The ratio of the amounts of beneficial autochthonous taxa (Lachnospiraceae + Ruminococaceae + Veillonellaceae + Clostridiales Incertae Sedis XIV) to those of potentially pathogenic taxa (Enterobacteriaceae + Bacteroidaceae) was low in those with early death and organ failure. Cirrhotic patients with decreased microbial diversity before liver transplantation were more likely to develop post-transplant infections and cognitive impairment related to residual dysbiosis. Patients with PSC had marked reduction of bacterial diversity. Enterococcus and Lactobacillus were increased in PSC patients (without liver cirrhosis.) Treatment-naive PBC patients were associated with altered composition and function of gut microbiota, as well as a lower level of diversity. As serum anti-gp210 antibody has been considered as an index of disease progression, relatively lower species richness and lower abundance of Faecalibacterium spp. in gp210-positive patients are interesting. The dysbiosis-induced altered bacterial metabolites such as a hepatocarcinogenesis promotor DCA, together with a leaky gut and bacterial translocation. Gut protective Akkermansia and butyrate-producing genera were decreased, while genera producing-lipopolysaccharide were increased in early hepatocellular carcinoma (HCC) patients.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
106
|
Simbrunner B, Mandorfer M, Trauner M, Reiberger T. Gut-liver axis signaling in portal hypertension. World J Gastroenterol 2019; 25:5897-5917. [PMID: 31660028 PMCID: PMC6815800 DOI: 10.3748/wjg.v25.i39.5897] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/15/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension (PHT) in advanced chronic liver disease (ACLD) results from increased intrahepatic resistance caused by pathologic changes of liver tissue composition (structural component) and intrahepatic vasoconstriction (functional component). PHT is an important driver of hepatic decompensation such as development of ascites or variceal bleeding. Dysbiosis and an impaired intestinal barrier in ACLD facilitate translocation of bacteria and pathogen-associated molecular patterns (PAMPs) that promote disease progression via immune system activation with subsequent induction of proinflammatory and profibrogenic pathways. Congestive portal venous blood flow represents a critical pathophysiological mechanism linking PHT to increased intestinal permeability: The intestinal barrier function is affected by impaired microcirculation, neoangiogenesis, and abnormal vascular and mucosal permeability. The close bidirectional relationship between the gut and the liver has been termed “gut-liver axis”. Treatment strategies targeting the gut-liver axis by modulation of microbiota composition and function, intestinal barrier integrity, as well as amelioration of liver fibrosis and PHT are supposed to exert beneficial effects. The activation of the farnesoid X receptor in the liver and the gut was associated with beneficial effects in animal experiments, however, further studies regarding efficacy and safety of pharmacological FXR modulation in patients with ACLD are needed. In this review, we summarize the clinical impact of PHT on the course of liver disease, discuss the underlying pathophysiological link of PHT to gut-liver axis signaling, and provide insight into molecular mechanisms that may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Benedikt Simbrunner
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna 1180, Austria
- Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna 1180, Austria
| | - Mattias Mandorfer
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna 1180, Austria
- Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna 1180, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna 1180, Austria
| | - Thomas Reiberger
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna 1180, Austria
- Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna 1180, Austria
| |
Collapse
|
107
|
Tian X, Zhang Z, Li W. Functional Changes of Paneth Cells in the Intestinal Epithelium of Mice with Obstructive Jaundice and After Internal and External Biliary Drainage. Curr Mol Med 2019; 19:746-757. [PMID: 31429688 DOI: 10.2174/1566524019666190820141331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/21/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the functional changes of Paneth cells in the intestinal epithelium of mice with obstructive jaundice (OJ) and after internal biliary drainage (ID) and external biliary drainage (ED). METHODS The experiment was divided into two stages. First stage: Mice were randomly assigned to two groups: (I) sham operation (SH); (II) OJ. The mice were sacrificed before the operation and on the 1st, 3rd, 5th and 7th day after the operation to collect specimens. Second stage: Mice were randomly assigned to four groups: (I) SH; (II) OJ; (III) OJ and ED; and (IV) OJ and ID. They were reoperated on day 5 for biliary drainage procedure. The specimens were collected on day 10. RESULTS The expressions of lysozyme and cryptdin-4 increased first and then decreased over time in group OJ, and the number of Paneth cells decreased gradually with the extension of OJ time(p<0.05. After the secondary operation on the mice to relieve OJ, the number of Paneth cells and expressions of lysozyme and cryptdin-4 in group ID increased more significantly than those in group ED(p<0.05). CONCLUSION OJ could cause intestinal Paneth cells to dysfunction in mice. ID was more significant than ED in restoring the function of Paneth cells. It might be one of the mechanisms that make ID superior to ED.
Collapse
Affiliation(s)
- Xiaopeng Tian
- Medical School of Chinese PLA, No. 28, Fuxing Road, Beijing 100853, China.,Department of Gastroenterology, Xingtai People's Hospital, Xingtai, Hebei 054000, China
| | - Zixuan Zhang
- Medical School of Chinese PLA, No. 28, Fuxing Road, Beijing 100853, China
| | - Wen Li
- Medical School of Chinese PLA, No. 28, Fuxing Road, Beijing 100853, China.,Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
108
|
Shimozato N, Namisaki T, Kaji K, Kitade M, Okura Y, Sato S, Moriya K, Seki K, Kawaratani H, Takaya H, Sawada Y, Saikawa S, Nakanishi K, Furukawa M, Fujinaga Y, Kubo T, Asada K, Kitagawa K, Tsuji Y, Kaya D, Ozutsumi T, Akahane T, Mitoro A, Yoshiji H. Combined effect of a farnesoid X receptor agonist and dipeptidyl peptidase-4 inhibitor on hepatic fibrosis. Hepatol Res 2019; 49:1147-1161. [PMID: 31177586 DOI: 10.1111/hepr.13385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
AIM Non-alcoholic steatohepatitis (NASH) has a broad clinicopathological spectrum (inflammation to severe fibrosis). The farnesoid X receptor agonist obeticholic acid (OCA) ameliorates the histological features of NASH; satisfactory antifibrotic effects have not yet been reported. Here, we investigated the combined effects of OCA + a dipeptidyl peptidase-4 inhibitor (sitagliptin) on hepatic fibrogenesis in a rat model of NASH. METHODS Fifty Fischer 344 rats were fed a choline-deficient L-amino-acid-defined (CDAA) diet for 12 weeks. The in vitro and in vivo effects of OCA + sitagliptin were assessed along with hepatic fibrogenesis, lipopolysaccharide-Toll-like receptor 4 (TLR4) regulatory cascade and intestinal barrier function. Direct inhibitory effects of OCA + sitagliptin on activated hepatic stellate cells (Ac-HSCs) were assessed in vitro. RESULTS Treatment with OCA + sitagliptin potentially inhibited hepatic fibrogenesis along with Ac-HSC proliferation and hepatic transforming growth factor (TGF)-β1, α1(I)-procollagen, and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA expression and hydroxyproline levels. Obeticholic acid inhibited hepatic TLR4 expression and increased hepatic matrix metalloproteinase-2 expression. Obeticholic acid decreased intestinal permeability by ameliorating CDAA diet-induced zonula occludens-1 disruption, whereas sitagliptin directly inhibited Ac-HSC proliferation. The in vitro suppressive effects of OCA + sitagliptin on TGF-β1 and α1(I)-procollagen mRNA expression and p38 phosphorylation in Ac-HSCs were almost consistent. Sitagliptin directly inhibited the regulation of Ac-HSC. CONCLUSIONS Treatment with OCA + sitagliptin synergistically affected hepatic fibrogenesis by counteracting endotoxemia induced by intestinal barrier dysfunction and suppressing Ac-HSC proliferation. Thus, OCA + sitagliptin could be a promising therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Naotaka Shimozato
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yasushi Okura
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kenichiro Seki
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroaki Takaya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhiko Sawada
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Soichiro Saikawa
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Keisuke Nakanishi
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Masanori Furukawa
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yukihisa Fujinaga
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Takuya Kubo
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kiyoshi Asada
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Koh Kitagawa
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yuki Tsuji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Daisuke Kaya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Takahiro Ozutsumi
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Takemi Akahane
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Akira Mitoro
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
109
|
Activation of the Nuclear Receptor Fxr Improves Intestinal Cell Tolerance to Ischemia-Reperfusion Injury. Shock 2019; 50:316-323. [PMID: 29028769 DOI: 10.1097/shk.0000000000001019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The farnesoid X receptor (FXR) plays an important role in bile acid metabolism, intestinal homeostasis, and intestinal ischemia-reperfusion (I/R) injury. We aimed to clarify the potential effects of FXR on intestinal epithelial cell tolerance to intestinal I/R injury and reveal the underlying mechanisms. An intestinal I/R injury model was established by the occlusion of the superior mesenteric artery for ischemia for 1 h, followed by reperfusion for 4 h in C57BL/6 (wild type [WT]) and FXR mice. The small intestine injury was assessed by histological analysis. Diamine oxidase and TNF-α levels in the serum were measured. Expressions of Bcl-2, Bax, caspase-3, and cystathionine-γ-lyase (CSE) were determined by immunohostochemical staining. Oxygen-glucose deprivation/reperfusion (OGD/R) was used to make injury in cultured Caco-2 cells pretreated with FXR agonist (INT-747) or DL-propargylglycine (PAG) for 24 h. Cell viability and the expressions of NF-κB, TNF-α, and IL-6 were assessed. Compared with WT I/R mice, FXR knockout mice exacerbated intestinal I/R injury, intestinal epithelial apoptosis, and inflammatory response. The I/R injury in WT mice was alleviated with INT-747 pretreatment. CSE expression increased after intestinal I/R injury in WT but not in FXR mice. INT-747 enhanced Caco-2 cell viability and inhibited inflammatory response by blocking the NF-κB pathway after OGD/R injury, which was diminished by a CSE-specific inhibitor (PAG). Thus, we demonstrated that FXR activation enhances intestinal epithelial cell tolerance to I/R by suppressing the inflammatory response and NF-κB pathway via CSE mediation.
Collapse
|
110
|
Samant H, Manatsathit W, Dies D, Shokouh-Amiri H, Zibari G, Boktor M, Alexander JS. Cholestatic liver diseases: An era of emerging therapies. World J Clin Cases 2019; 7:1571-1581. [PMID: 31367616 PMCID: PMC6658370 DOI: 10.12998/wjcc.v7.i13.1571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Recently the field of cholestasis has expanded enormously reflecting an improved understanding of the molecular mechanisms underlying bile secretion and its perturbation in chronic cholestatic disease. Novel anti-cholestatic therapeutic options have been developed for patients not favorably responding to ursodeoxycholic acid (UDCA), the current standard treatment for cholestatic liver disease. Important novel treatment targets now also include nuclear receptors involved in bile acid (BA) homoeostasis like farnesoid X receptor and G protein-coupled receptors e.g., the G-protein-coupled BA receptor "transmembrane G coupled receptor 5". Fibroblast growth factor-19 and enterohepatic BA transporters also deserve attention as additional drug targets as does the potential treatment agent norUDCA. In this review, we discuss recent and future promising therapeutic agents and their potential molecular mechanisms in cholestatic liver disorders.
Collapse
Affiliation(s)
- Hrishikesh Samant
- Division of Gastroenterology and Hepatology, Department of medicine, LSU health, Shreveport, LA 71103, United States
- John C McDonald Transplant Center, Willis Knighton Medical Center, Shreveport, LA 71103, United States
| | - Wuttiporn Manatsathit
- Division of Gastroenterology and Hepatology, University of Nebraska, Omaha, NE 68194, United States
| | - David Dies
- John C McDonald Transplant Center, Willis Knighton Medical Center, Shreveport, LA 71103, United States
| | - Hosein Shokouh-Amiri
- John C McDonald Transplant Center, Willis Knighton Medical Center, Shreveport, LA 71103, United States
| | - Gazi Zibari
- John C McDonald Transplant Center, Willis Knighton Medical Center, Shreveport, LA 71103, United States
| | - Moheb Boktor
- Division of Gastroenterology and Hepatology, Department of medicine, LSU health, Shreveport, LA 71103, United States
| | - Jonathan Steve Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University, School of Medicine, Shreveport, LA 71103, United States
| |
Collapse
|
111
|
Cai Q, Liu W, Zhu M, Sheng J. Microbial Infections as a Trigger for Acute-on-Chronic Liver Failure: A Review. Med Sci Monit 2019; 25:4773-4783. [PMID: 31282874 PMCID: PMC6611219 DOI: 10.12659/msm.915637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbial infection is an important cause of acute-on-chronic liver failure (ACLF), which is a syndrome that results in multiple organ dysfunction or failure and is accompanied by an increased short-term risk of mortality. Early detection and treatment of microbial infection can effectively reduce the mortality of patients with ACLF. However, antimicrobial resistance has recently increased due to the increased use of antimicrobial agents. Therefore, it is important to choose appropriate antibiotics and antifungal agents for early prevention or treatment of patients with microbial infection and ACLF to reduce the occurrence of drug resistance and to reduce patient mortality. This review summarizes the current status in the understanding of the epidemiology, pathogenesis, early diagnosis, treatment, and strategies for prevention of microbial infection in patients with ACLF.
Collapse
Affiliation(s)
- Qun Cai
- Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Liu
- Hangzhou Mutai Nursing Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Mingyan Zhu
- Department of Infectious Disease, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, China (mainland)
| | - Jifang Sheng
- Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
112
|
Abstract
The term blood-bile barrier (BBlB) refers to the physical structure within a hepatic lobule that compartmentalizes and hence segregates sinusoidal blood from canalicular bile. Thus, this barrier provides physiological protection in the liver, shielding the hepatocytes from bile toxicity and restricting the mixing of blood and bile. BBlB is primarily composed of tight junctions; however, adherens junction, desmosomes, gap junctions, and hepatocyte bile transporters also contribute to the barrier function of the BBlB. Recent findings also suggest that disruption of BBlB is associated with major hepatic diseases characterized by cholestasis and aberrations in BBlB thus may be a hallmark of many chronic liver diseases. Several molecular signaling pathways have now been shown to play a role in regulating the structure and function and eventually contribute to regulation of the BBlB function within the liver. In this review, we will discuss the structure and function of the BBlB, summarize the methods to assess the integrity and function of BBlB, discuss the role of BBlB in liver pathophysiology, and finally, discuss the mechanisms of BBlB regulation. Collectively, this review will demonstrate the significance of the BBlB in both liver homeostasis and hepatic dysfunction.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan Pal Monga
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
113
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Bile Acid Receptors and Gastrointestinal Functions. LIVER RESEARCH 2019; 3:31-39. [PMID: 32368358 PMCID: PMC7197881 DOI: 10.1016/j.livres.2019.01.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids modulate several gastrointestinal functions including electrolyte secretion and absorption, gastric emptying, and small intestinal and colonic motility. High concentrations of bile acids lead to diarrhea and are implicated in the development of esophageal, gastric and colonic cancer. Alterations in bile acid homeostasis are also implicated in the pathophysiology of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Our understanding of the mechanisms underlying these effects of bile acids on gut functions has been greatly enhanced by the discovery of bile acid receptors, including the nuclear receptors: farnesoid X receptor (FXR), vitamin D receptor (VDR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR); and the G protein-coupled receptors: Takeda G protein-coupled receptor (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic acetylcholine receptor M3 (M3R).. For example, various studies provided evidence demonstrating the anti-inflammatory effects FXR and TGR5 activation in models of intestinal inflammation. In addition, TGR5 activation in enteric neurons was recently shown to increase colonic motility, which may lead to bile acid-induced diarrhea. Interestingly, TGR5 induces the secretion of glucagon-like peptide-1 (GLP-1) from L-cells to enhance insulin secretion and modulate glucose metabolism. Because of the importance of these receptors, agonists of TGR5 and intestine-specific FXR agonists are currently being tested as an option for the treatment of diabetes mellitus and primary bile acid diarrhea, respectively. This review summarizes current knowledge of the functional roles of bile acid receptors in the gastrointestinal tract.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL,To whom correspondence should be addressed: Waddah A. Alrefai, MD: Research Career Scientist, Jesse Brown VA Medical Center, Professor of Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; ; Tel. (312) 569-7429; Fax. (312) 569-8114
| |
Collapse
|
114
|
Suk KT, Kim DJ. Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:193-204. [PMID: 30791767 DOI: 10.1080/17474124.2019.1569513] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common and increasing liver diseases worldwide with a prevalence of 20-33%. NAFLD may progress to fibrosis, compensated cirrhosis, advanced cirrhosis, or hepatocellular carcinoma. Despite the increasing prevalence of NAFLD, definitive medical treatment has not been established, with the exception of lifestyle modification with exercise. Because of the direct connection via portal vein between the intestines and the liver (gut-gut microbiota-liver axis), gut microbiota and associated dysbiosis have been known as regulators in the pathophysiology of NAFLD. Area covered: New therapeutic approaches for modulation of gut microbiota have been proposed and the effectiveness of new therapies including probiotics, prebiotics, synbiotics, bile acid regulation, absorbent, and fecal microbiota transplantation have been demonstrated in recent several studies. This review focuses on the available evidences for new therapies modulating gut microbiota in the management and the prevention of NAFLD. Expert commentary: Gut-gut microbiota-liver axis may play an important role in the etiology of many liver diseases, including NAFLD. It is logical to seek the manipulation of this axis, and further studies are required to understand the underlying precise mechanisms of microbiota-modulation on NAFLD.
Collapse
Affiliation(s)
- Ki Tae Suk
- a Division of Gastroenterology and Hepatology , Hallym University College of Medicine , Chuncheon , South Korea
| | - Dong Joon Kim
- a Division of Gastroenterology and Hepatology , Hallym University College of Medicine , Chuncheon , South Korea
| |
Collapse
|
115
|
Ding W, Fan YY, Zhang C, Fu L, Chen X, Xu DX. Obeticholic acid differentially regulates hepatic injury and inflammation at different stages of D-galactosamine/lipopolysaccharide-evoked acute liver failure. Eur J Pharmacol 2019; 850:150-157. [PMID: 30772394 DOI: 10.1016/j.ejphar.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
The farnesoid X receptor (FXR) is a ligand-activated transcription factor that regulates genes involved in bile acid metabolism. Accumulating data demonstrate that FXR has an anti-inflammatory activity. The present study aimed to investigate the effect of obeticholic acid (OCA), a novel synthetic FXR agonist, on D-galactosamine (GalN)/lipopolysaccharide (LPS)-evoked acute liver injury. All mice except controls were intraperitoneally injected with GalN (300 mg/kg) plus LPS (2.5 μg/kg). Some mice were pretreated with OCA (10 mg/kg) 48, 24 and 1 h before GalN/LPS. As expected, pretreatment with OCA alleviated hepatocyte apoptosis at early and middle stages of GalN/LPS-induced acute liver failure. By contrast, pretreatment with OCA augmented hepatic injury and inflammatory cell infiltration at middle stage of GalN/LPS-induced acute liver failure. Additional experiment found that OCA inhibited hepatic NF-κB activation at early and middle stages of GalN/LPS-induced acute liver failure. Interestingly, OCA inhibited hepatic proinflammatory cytokine tnf-α and il-6 but upregulated hepatic anti-inflammatory cytokine il-10 at early stage of GalN/LPS-induced acute liver failure. By contrast, OCA suppressed hepatic anti-inflammatory cytokine tgf-β and il-10 at middle stage of GalN/LPS-induced acute liver injury. These results suggest that FXR agonist OCA differentially regulates hepatic injury and inflammation at different stages of GalN/LPS-evoked acute liver failure.
Collapse
Affiliation(s)
- Wen Ding
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Yuan-Yuan Fan
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xi Chen
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
116
|
van Zutphen T, Bertolini A, de Vries HD, Bloks VW, de Boer JF, Jonker JW, Kuipers F. Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handb Exp Pharmacol 2019; 256:207-234. [PMID: 31236687 DOI: 10.1007/164_2019_233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Farnesoid X receptor controls bile acid metabolism, both in the liver and intestine. This potent nuclear receptor not only maintains homeostasis of its own ligands, i.e., bile acids, but also regulates glucose and lipid metabolism as well as the immune system. These findings have led to substantial interest for FXR as a therapeutic target and to the recent approval of an FXR agonist for treating primary biliary cholangitis as well as ongoing clinical trials for other liver diseases. Given that FXR biology is complex, including moderate expression in tissues outside of the enterohepatic circulation, temporal expression of isoforms, posttranscriptional modifications, and the existence of several other bile acid-responsive receptors such as TGR5, clinical application of FXR modulators warrants thorough understanding of its actions. Recent findings have demonstrated remarkable physiological effects of targeting FXR specifically in the intestine (iFXR), thereby avoiding systemic release of modulators. These include local effects such as improvement of intestinal barrier function and intestinal cholesterol turnover, as well as systemic effects such as improvements in glucose homeostasis, insulin sensitivity, and nonalcoholic fatty liver disease (NAFLD). Intriguingly, metabolic improvements have been observed with both an iFXR agonist that leads to production of enteric Fgf15 and increased energy expenditure in adipose tissues and antagonists by reducing systemic ceramide levels and hepatic glucose production. Here we review the recent findings on the role of intestinal FXR and its targeting in metabolic disease.
Collapse
Affiliation(s)
- Tim van Zutphen
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Anna Bertolini
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Hilde D de Vries
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
117
|
Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression From NAFLD to NASH. Transplantation 2019; 103:e1-e13. [DOI: 10.1097/tp.0000000000002480] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
118
|
Friedman ES, Li Y, Shen TCD, Jiang J, Chau L, Adorini L, Babakhani F, Edwards J, Shapiro D, Zhao C, Carr RM, Bittinger K, Li H, Wu GD. FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology 2018; 155:1741-1752.e5. [PMID: 30144429 PMCID: PMC6279623 DOI: 10.1053/j.gastro.2018.08.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Intestinal bacteria can modify the composition of bile acids and bile acids, which are regulated by the farnesoid X receptor, affect the survival and growth of gut bacteria. We studied the effects of obeticholic acid (OCA), a bile acid analogue and farnesoid X receptor agonist, on the intestinal microbiomes of humans and mice. METHODS We performed a phase I study in 24 healthy volunteers given OCA (5, 10, or 25 mg/d for 17 days). Fecal and plasma specimens were collected at baseline (day 0) and on days 17 (end of dosing) and 37 (end of study). The fecal specimens were analyzed by shotgun meta-genomic sequencing. A Uniref90 high-stringency genomic analysis was used to assign specific genes to the taxonomic signature of bacteria whose abundance was associated with OCA. Male C57BL/6 mice were gavage fed daily with water, vehicle, or OCA (10 mg/kg) for 2 weeks. Small intestine luminal contents were collected by flushing with saline and fecal pellets were collected at baseline and day 14. Mouse samples were analyzed by 16S-tagged sequencing. Culture experiments were performed to determine the taxonomic-specific effects of bile acids and OCA on bacterial growth. RESULTS Suppression of endogenous bile acid synthesis by OCA in subjects led to a reversible induction of gram-positive bacteria that are found in the small intestine and are components of the diet and oral microbiota. We found that bile acids decreased proliferation of these bacteria in minimum inhibitory concentration assays. In these organisms, there was an increase in the representation of microbial genomic pathways involved in DNA synthesis and amino acid metabolism with OCA treatment of subjects. Consistent with these findings, mice fed OCA had lower endogenous bile acid levels and an increased proportion of Firmicutes, specifically in the small intestine, compared with mice fed water or vehicle. CONCLUSIONS In studying the effects of OCA in humans and mice, we found evidence for interactions between bile acids and features of the small intestinal microbiome. These findings indicate that farnesoid X receptor activation alters the intestinal microbiota and could provide opportunities for microbiome biomarker discovery or new approaches to engineering the human microbiome. ClinicalTrials.gov, NCT01933503.
Collapse
Affiliation(s)
- Elliot S. Friedman
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack Jiang
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian Chau
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luciano Adorini
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Farah Babakhani
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Jeffrey Edwards
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - David Shapiro
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rotonya M. Carr
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gary D. Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Correspondence:
| |
Collapse
|
119
|
Bernardi M, Caraceni P. Novel perspectives in the management of decompensated cirrhosis. Nat Rev Gastroenterol Hepatol 2018; 15:753-764. [PMID: 30026556 DOI: 10.1038/s41575-018-0045-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current approaches to the management of patients with decompensated cirrhosis are based on targeted strategies aimed at preventing or treating specific complications of the disease. The improved knowledge of the pathophysiological background of advanced cirrhosis, represented by a sustained systemic inflammation strictly linked to a circulatory dysfunction, provides a novel paradigm for the management of these patients, with the ambitious target of modifying the course of the disease by preventing the onset of complications and multiorgan failure; these interventions will eventually improve patients' quality of life, prolong survival and reduce health-care costs. Besides aetiological treatments, these goals could be achieved by persistently antagonizing key pathophysiological events, such as portal hypertension, abnormal bacterial translocation from the gut, liver damage, systemic inflammation, circulatory dysfunction and altered immunological responses. Interestingly, in addition to strategies based on new therapeutic agents, these targets can be tackled by employing drugs that are already used in patients with cirrhosis for different indications or in other clinical settings, including non-absorbable oral antibiotics, non-selective β-blockers, human albumin and statins. The scope of the present Review includes reporting updated information on the treatments that promise to influence the course of advanced cirrhosis and thus act as disease-modifying agents.
Collapse
Affiliation(s)
- Mauro Bernardi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
120
|
Cho MS, Kim SY, Suk KT, Kim BY. Modulation of gut microbiome in nonalcoholic fatty liver disease: pro-, pre-, syn-, and antibiotics. J Microbiol 2018; 56:855-867. [PMID: 30377993 DOI: 10.1007/s12275-018-8346-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common types of liver diseases worldwide and its incidence continues to increase. NAFLD occurs when the body can no longer effectively store excess energy in the adipose tissue. Despite the increasing prevalence of NAFLD, making lifestyle changes, including increased exercise, is often an elusive goal for patients with NAFLD. The liver directly connects to the gut-gastrointestinal milieu via the portal vein, which are all part of the gut-liver axis. Therefore, the gut-microbiome and microbial products have been actively studied as likely key factors in NAFLD pathophysiology. Hence, dysbiosis of the gut microbiome and therapeutic manipulation of the gut-liver axis are being investigated. Novel therapeutic approaches for modulating gut microbiota through the administration of probiotics, prebiotics, synbiotics, and antibiotics have been proposed with numerous promising initial reports on the effectiveness and clinical applications of these approaches. This review delves into the current evidence on novel therapies that modulate gut microbiota and discusses ongoing clinical trials targeting the gut-liver axis for the management and prevention of NAFLD.
Collapse
Affiliation(s)
| | - Sang Yeol Kim
- Division of Gastroenterology and Hepatology, College of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ki Tae Suk
- Division of Gastroenterology and Hepatology, College of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea.
| | | |
Collapse
|
121
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2018; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
122
|
Inoue T, Nakayama J, Moriya K, Kawaratani H, Momoda R, Ito K, Iio E, Nojiri S, Fujiwara K, Yoneda M, Yoshiji H, Tanaka Y. Gut Dysbiosis Associated With Hepatitis C Virus Infection. Clin Infect Dis 2018; 67:869-877. [PMID: 29718124 DOI: 10.1093/cid/ciy205] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Little is known about the effect of hepatitis C virus (HCV) infection on gut microbiota and the relationship between alteration of gut microbiota and chronic hepatitis C (CHC) progression. We performed a comparative study of gut microbiota composition between CHC patients and healthy individuals. METHODS Fecal samples from 166 CHC patients were compared with those from 23 healthy individuals; the gut microbiota community was analyzed using 16S ribosomal RNA gene sequencing. CHC patients were diagnosed with persistently normal serum alanine aminotransferase without evidence of liver cirrhosis (LC) (PNALT, n = 18), chronic hepatitis (CH, n = 84), LC (n = 40), and hepatocellular carcinoma in LC (n = 24). RESULTS Compared with healthy individuals, bacterial diversity was lower in persons with HCV infection, with a decrease in the order Clostridiales and an increase in Streptococcus and Lactobacillus. Microbiota dysbiosis already appeared in the PNALT stage with the transient increase in Bacteroides and Enterobacteriaceae. Predicted metagenomics of microbial communities showed an increase in the urease gene mainly encoded by viridans streptococci during CHC progression, consistent with a significantly higher fecal pH in CH and LC patients than in healthy individuals or those in the PNALT stage. CONCLUSIONS HCV infection is associated with gut dysbiosis, even in patients with mild liver disease. Additionally, overgrowth of viridans streptococci can account for hyperammonemia in CH and LC. Further studies would help to propose a novel treatment strategy because the gut microbiome can be therapeutically altered, potentially reducing the complications of chronic liver disease.
Collapse
Affiliation(s)
- Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Kashihara
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Kashihara
| | - Rie Momoda
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka
| | - Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute
| | - Etsuko Iio
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences
| | - Shunsuke Nojiri
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences
| | - Masashi Yoneda
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Kashihara
| | - Yasuhito Tanaka
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
123
|
Systemic Inflammation and Acute-on-Chronic Liver Failure: Too Much, Not Enough. Can J Gastroenterol Hepatol 2018; 2018:1027152. [PMID: 30155448 PMCID: PMC6093057 DOI: 10.1155/2018/1027152] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
ACLF is a specific, but complex and multifactorial form of acute decompensation of cirrhosis and is characterized by an extraordinary dynamic natural course, rapidly evolving organ failure, and high short-term mortality. Dysbalanced immune function is central to its pathogenesis and outcome with an initial excessive systemic inflammatory response that drives organ failure and mortality. Later in its course, immuno-exhaustion/immunoparalysis prevails predisposing the patient to secondary infectious events and reescalation in end-organ dysfunction and mortality. The management of patients with ACLF is still poorly defined. However, as its pathophysiology is gradually being unravelled, potential therapeutic targets emerge that warrant further study such as restoring or substituting albumin via plasma exchange or via albumin dialysis and evaluating usefulness of TLR4 antagonists, modulators of gut dysbiosis (pre- or probiotics), and FXR-agonists.
Collapse
|
124
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
125
|
Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765. Eur J Nutr 2018; 58:1647-1658. [DOI: 10.1007/s00394-018-1709-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
|
126
|
Origins of Portal Hypertension in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2018; 63:563-576. [PMID: 29368124 DOI: 10.1007/s10620-017-4903-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) advanced to cirrhosis is often complicated by clinically significant portal hypertension, which is primarily caused by increased intrahepatic vascular resistance. Liver fibrosis has been identified as a critical determinant of this process. However, there is evidence that portal venous pressure may begin to rise in the earliest stages of NAFLD when fibrosis is far less advanced or absent. The biological and clinical significance of these early changes in sinusoidal homeostasis remains unclear. Experimental and human observations indicate that sinusoidal space restriction due to hepatocellular lipid accumulation and ballooning may impair sinusoidal flow and generate shear stress, increasingly disrupting sinusoidal microcirculation. Sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells are key partners of hepatocytes affected by NAFLD in promoting endothelial dysfunction through enhanced contractility, capillarization, adhesion and entrapment of blood cells, extracellular matrix deposition, and neovascularization. These biomechanical and rheological changes are aggravated by a dysfunctional gut-liver axis and splanchnic vasoregulation, culminating in fibrosis and clinically significant portal hypertension. We may speculate that increased portal venous pressure is an essential element of the pathogenesis across the entire spectrum of NAFLD. Improved methods of noninvasive portal venous pressure monitoring will hopefully give new insights into the pathobiology of NAFLD and help efforts to identify patients at increased risk for adverse outcomes. In addition, novel drug candidates targeting reversible components of aberrant sinusoidal circulation may prevent progression in NAFLD.
Collapse
|
127
|
Gitto S, Guarneri V, Sartini A, Andreone P. The use of obeticholic acid for the management of non-viral liver disease: current clinical practice and future perspectives. Expert Rev Gastroenterol Hepatol 2018; 12:165-171. [PMID: 29082798 DOI: 10.1080/17474124.2018.1399060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Farnesoid X nuclear receptor is involved in the regulation of lipid and glucose metabolism, though mainly in the homeostasis of bile acids. Indeed, the agonists of farnesoid X nuclear receptor represent promising drugs. Areas covered: Obeticholic acid, a novel semisynthetic analogue of the naturally occurring bile acid, has led to encouraging preliminary results in both cholestatic and metabolic liver disease. In patients with primary biliary cholangitis, obeticholic acid determines a significant biochemical improvement although the effects on liver fibrosis are lacking. Obeticholic acid has been suggested for the treatment of nonalcoholic liver disease with good laboratory results. In cirrhotic animal models, the drug seems to reduce both portal hypertension and gut bacterial translocation. Expert commentary: The use of obeticholic acid for the treatment of primary biliary cholangitis shows satisfying results. However, some open questions remain unresolved. Herein, we provide an overview of the current knowledge about the use of obeticholic acid in the field of nonviral chronic liver diseases. We tried to give a global point of view using a translational approach.
Collapse
Affiliation(s)
- Stefano Gitto
- a Department of Medical and Surgical Sciences , University of Bologna and Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
- b Centro di Ricerca per lo Studio delle Epatiti, Dipartimento di Scienze Mediche e Chirurgiche , University of Bologna , Bologna , Italy
| | - Valeria Guarneri
- a Department of Medical and Surgical Sciences , University of Bologna and Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
- b Centro di Ricerca per lo Studio delle Epatiti, Dipartimento di Scienze Mediche e Chirurgiche , University of Bologna , Bologna , Italy
| | - Alessandro Sartini
- c Department of Gastroenterology , University of Modena and Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena , Modena , Italy
| | - Pietro Andreone
- a Department of Medical and Surgical Sciences , University of Bologna and Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
- b Centro di Ricerca per lo Studio delle Epatiti, Dipartimento di Scienze Mediche e Chirurgiche , University of Bologna , Bologna , Italy
| |
Collapse
|
128
|
Baiges A, Hernández-Gea V, Bosch J. Pharmacologic prevention of variceal bleeding and rebleeding. Hepatol Int 2017; 12:68-80. [PMID: 29210030 DOI: 10.1007/s12072-017-9833-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Variceal bleeding is a major complication of portal hypertension, which is associated with significant mortality. Moreover, patients surviving a variceal bleeding episode have very high risk of rebleeding, which is associated with mortality as high as that of the first bleed. Because of this, prevention of bleeding from gastroesophageal varices has been one of the main therapeutic goals since the advent of the first effective therapies for portal hypertension. AIM This review deals with the present day state-of-the-art pharmacological prevention of variceal bleeding in primary and secondary prophylaxis. RESULTS Pharmacological therapy aims to decrease portal pressure (PP) by acting on the pathophysiological mechanisms of portal hypertension such as increased hepatic vascular tone and splanchnic vasodilatation. Propranolol and nadolol block the beta-1 in the heart and the peripheral beta-2 adrenergic receptors. Beta-1 blockade of cardiac receptors reduces heart rate and cardiac output and subsequently decreases flow into splanchnic circulation. Beta-2 blockade leads to unopposed alpha-1 adrenergic activity that causes splanchnic vasoconstriction and reduction of portal inflow. Both effects contribute to reduction in PP. Carvedilol is more powerful in reducing hepatic venous pressure gradient (HVPG) than traditional nonselective beta-blockers (NSBBs) and achieves good hemodynamic response in nearly 75 % of cases. Simvastatin and atorvastatin improve endothelial dysfunction mainly by enhancing endothelial nitric oxide synthase (eNOS) expression and phosphorylation and NO production. In addition, statins deactivate hepatic stellate cells and ameliorate hepatic fibrogenesis. These effects cause a decrease in HVPG and improve liver microcirculation and hepatocyte perfusion in patients with cirrhosis. In addition, several promising drugs under development may change the management of portal hypertension in the coming years. CONCLUSION This review provides a background on the most important aspects of the treatment of portal hypertension in patients with compensated and decompensated liver cirrhosis. However, despite the great improvement in the prevention of variceal bleeding over the last years, further therapeutic options are needed.
Collapse
Affiliation(s)
- Anna Baiges
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, C.Villarroel 170, 08036, Barcelona, Spain
| | - Virginia Hernández-Gea
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, C.Villarroel 170, 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Barcelona, España
| | - Jaime Bosch
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, University of Barcelona, C.Villarroel 170, 08036, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Barcelona, España. .,Swiss Liver Group, Inselspital, Bern University, Bern, Switzerland.
| |
Collapse
|
129
|
Xiong X, Ren Y, Cui Y, Li R, Wang C, Zhang Y. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation. Biomed Pharmacother 2017; 96:1292-1298. [PMID: 29174575 DOI: 10.1016/j.biopha.2017.11.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. OBJECTIVE The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. RESULTS 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. CONCLUSION Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes.
Collapse
Affiliation(s)
- Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China
| | - Yuqian Ren
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China
| | - Rui Li
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China.
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China.
| |
Collapse
|
130
|
Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R. Targeting the gut-liver axis in liver disease. J Hepatol 2017; 67:1084-1103. [PMID: 28526488 DOI: 10.1016/j.jhep.2017.05.007] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
The gut-liver axis is widely implicated in the pathogenesis of liver diseases, where it is increasingly the focus of clinical research. Recent studies trialling an array of therapeutic and preventative strategies have yielded promising results. Considering these strategies, the armamentarium for targeting the gut-liver axis will continue to expand. Further clinical trials, translated from our current knowledge of the gut-liver axis, promise an exciting future in liver treatment.
Collapse
Affiliation(s)
- Reiner Wiest
- Gastroenterology, University Hospital, 3010 Bern, Switzerland.
| | - Agustin Albillos
- Hospital Universitario Ramón y Cajal, Gastroenterology and Hepatology, Madrid, Spain
| | - Michael Trauner
- Medical University Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Vienna, Austria
| | - Jasmohan S Bajaj
- Virginia Commonwealth University and McGuire VA Medical Center, GI/Hepatology, VA, USA
| | - Rajiv Jalan
- University College London, Institute of Hepatology, London, UK
| |
Collapse
|
131
|
Namisaki T, Moriya K, Kitade M, Takeda K, Kaji K, Okura Y, Shimozato N, Sato S, Nishimura N, Seki K, Kawaratani H, Takaya H, Sawada Y, Akahane T, Saikawa S, Nakanishi K, Kubo T, Furukawa M, Noguchi R, Asada K, Kitagawa K, Ozutsumi T, Tsuji Y, Kaya D, Fujinaga Y, Yoshiji H. Effect of combined farnesoid X receptor agonist and angiotensin II type 1 receptor blocker on hepatic fibrosis. Hepatol Commun 2017; 1:928-945. [PMID: 29404501 PMCID: PMC5721465 DOI: 10.1002/hep4.1104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
The farnesoid X receptor (FXR) agonist, a bile acid-activated nuclear receptor, has been shown to improve the histologic features of nonalcoholic steatohepatitis (NASH); however, a satisfactory effect on hepatic fibrosis has not been achieved. We aimed to investigate the combined effect of FXR agonist and angiotensin II type 1 receptor blocker on hepatic fibrogenesis in rat models of NASH. For 8 weeks, two rat models of NASH were developed. Otsuka Long-Evans Tokushima Fatty (OLETF) rats were administered intraperitoneal injections of 1 mL/kg pig serum (PS) twice a week, whereas Fischer-344 rats were fed a choline-deficient, L-amino acid-defined diet (CDAA). The in vitro and in vivo effects of an FXR agonist (INT747) and an angiotensin II type 1 receptor blocker (losartan) on hepatic fibrogenesis were evaluated. In PS-administered OLETF rats, INT747 and losartan had potent inhibitory effects on hepatic fibrogenesis with suppression of hepatic stellate cell (HSC) activation and expression of transforming growth factor β1 and toll-like receptor 4. INT747 decreased intestinal permeability by ameliorating zonula occuludens-1 disruption, whereas losartan directly suppressed activated-HSC (Ac-HSC) regulation. The in vitro inhibitory effects of INT747 and losartan on messenger RNA expressions of transforming growth factor β1, toll-like receptor 4, and myeloid differentiation factor 88 and phosphorylation of nuclear factor-κB and mothers against decapentaplegic homolog 3 in Ac-HSC were almost in parallel. Losartan directly inhibited the regulation of Ac-HSC. Likewise, INT747 in combination with losartan was beneficial on hepatic fibrogenesis in rats fed with CDAA diet. The therapeutic effects of these agents were almost comparable between PS-administered OLETF and CDAA-treated rats. Conclusion: INT747 and losartan synergistically suppressed hepatic fibrogenesis by reversing gut barrier dysfunction and inhibiting Ac-HSC proliferation. Combined therapy may represent a promising novel approach for NASH. (Hepatology Communications 2017;1:928-945).
Collapse
Affiliation(s)
- Tadashi Namisaki
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Kei Moriya
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Mitsuteru Kitade
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Kosuke Takeda
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Kosuke Kaji
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Yasushi Okura
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Naotaka Shimozato
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Shinya Sato
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Norihisa Nishimura
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Kenichiro Seki
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Hideto Kawaratani
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Hiroaki Takaya
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Yasuhiko Sawada
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Takemi Akahane
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Soichiro Saikawa
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Keisuke Nakanishi
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Takuya Kubo
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Masanori Furukawa
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Ryuichi Noguchi
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Kiyoshi Asada
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Koh Kitagawa
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Takahiro Ozutsumi
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Yuki Tsuji
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Daisuke Kaya
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Yukihisa Fujinaga
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| | - Hitoshi Yoshiji
- Third Department of Internal MedicineNara Medical UniversityKashiharaJapan
| |
Collapse
|
132
|
Abstract
Cirrhosis is a prevalent cause of morbidity and mortality, especially for those at an advanced decompensated stage. Cirrhosis development and progression involves several important interorgan communications, and recently, the gut microbiome has been implicated in pathophysiology of the disease. Dysbiosis, defined as a pathological change in the microbiome, has a variable effect on the compensated versus decompensated stage of cirrhosis. Adverse microbial changes, both in composition and function, can act at several levels within the gut (stool and mucosal) and have also been described in the blood and oral cavity. While dysbiosis in the oral cavity could be a source of systemic inflammation, current cirrhosis treatment modalities are targeted toward the gut-liver axis and do not address the oral microbiome. As interventions designed to modulate oral dysbiosis may delay progression of cirrhosis, a better understanding of this process is of the utmost importance. The concept of oral microbiota dysbiosis in cirrhosis is relatively new; therefore, this review will highlight the emerging role of the oral-gut-liver axis and introduce perspectives for future research.
Collapse
Affiliation(s)
- Chathur Acharya
- Department of Gastroenterology and Hepatology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia, USA
| | - Sinem Esra Sahingur
- Department of Periodontics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S. Bajaj
- Department of Gastroenterology and Hepatology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia, USA
| |
Collapse
|
133
|
Legry V, Francque S, Haas JT, Verrijken A, Caron S, Chávez-Talavera O, Vallez E, Vonghia L, Dirinck E, Verhaegen A, Kouach M, Lestavel S, Lefebvre P, Van Gaal L, Tailleux A, Paumelle R, Staels B. Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. J Clin Endocrinol Metab 2017; 102:3783-3794. [PMID: 28938455 DOI: 10.1210/jc.2017-01397] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
CONTEXT Bile acids (BAs) are signaling molecules controlling energy homeostasis that can be both toxic and protective for the liver. BA alterations have been reported in obesity, insulin resistance (IR), and nonalcoholic steatohepatitis (NASH). However, whether BA alterations contribute to NASH independently of the metabolic status is unclear. OBJECTIVE To assess BA alterations associated with NASH independently of body mass index and IR. DESIGN AND SETTING Patients visiting the obesity clinic of the Antwerp University Hospital (a tertiary referral facility) were recruited from 2006 to 2014. PATIENTS Obese patients with biopsy-proven NASH (n = 32) and healthy livers (n = 26) were matched on body mass index and homeostasis model assessment of IR. MAIN OUTCOME MEASURES Transcriptomic analyses were performed on liver biopsies. Plasma concentrations of 21 BA species and 7α-hydroxy-4-cholesten-3-one, a marker of BA synthesis, were determined by liquid chromatography-tandem mass spectrometry. Plasma fibroblast growth factor 19 was measured by enzyme-linked immunosorbent assay. RESULTS Plasma BA concentrations did not correlate with any hepatic lesions, whereas, as previously reported, primary BA strongly correlated with IR. Transcriptomic analyses showed unaltered hepatic BA metabolism in NASH patients. In line, plasma 7α-hydroxy-4-cholesten-3-one was unchanged in NASH. Moreover, no sign of hepatic BA accumulation or activation of BA receptors-farnesoid X, pregnane X, and vitamin D receptors-was found. Finally, plasma fibroblast growth factor 19, secondary-to-primary BA, and free-to-conjugated BA ratios were similar, suggesting unaltered intestinal BA metabolism and signaling. CONCLUSIONS In obese patients, BA alterations are related to the metabolic phenotype associated with NASH, especially IR, but not liver necroinflammation.
Collapse
Affiliation(s)
- Vanessa Legry
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
| | - Joel T Haas
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - An Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Sandrine Caron
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Oscar Chávez-Talavera
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Emmanuelle Vallez
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Ann Verhaegen
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Mostafa Kouach
- Plateau de Spectrométrie de Masse-Groupe de Recherche sur les formes Injectables et les Technologies Associées, (PSM-GRITA), Faculté de Pharmacie, F-59000 Lille, France
| | - Sophie Lestavel
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Philippe Lefebvre
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Anne Tailleux
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Réjane Paumelle
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Bart Staels
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| |
Collapse
|
134
|
Voiosu A, Wiese S, Voiosu T, Bendtsen F, Møller S. Bile acids and cardiovascular function in cirrhosis. Liver Int 2017; 37:1420-1430. [PMID: 28222247 DOI: 10.1111/liv.13394] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 02/13/2023]
Abstract
Cirrhotic cardiomyopathy and the hyperdynamic syndrome are clinically important complications of cirrhosis, but their exact pathogenesis is still partly unknown. Experimental models have proven the cardiotoxic effects of bile acids and recent studies of their varied receptor-mediated functions offer new insight into their involvement in cardiovascular dysfunction in cirrhosis. Bile acid receptors such as farnesoid X-activated receptor and TGR5 are currently under investigation as potential therapeutic targets in a variety of pathological conditions. These receptors have also recently been identified in cardiomyocytes, vascular endothelial cells and smooth muscle cells where they seem to play an important role in cellular metabolism. Chronic cholestasis leading to abnormal levels of circulating bile acids alters the normal signalling pathways and contributes to the development of profound cardiovascular disturbances. This review summarizes the evidence regarding the role of bile acids and their receptors in the generation of cardiovascular dysfunction in cirrhosis.
Collapse
Affiliation(s)
- Andrei Voiosu
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Signe Wiese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theodor Voiosu
- Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Flemming Bendtsen
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Gastro Unit, Medical Division, Hvidovre Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
135
|
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of worldwide cancer mortality. HCC almost exclusively develops in patients with chronic liver disease, driven by a vicious cycle of liver injury, inflammation and regeneration that typically spans decades. Increasing evidence points towards a key role of the bacterial microbiome in promoting the progression of liver disease and the development of HCC. Here, we will review mechanisms by which the gut microbiota promotes hepatocarcinogenesis, focusing on the leaky gut, bacterial dysbiosis, microbe-associated molecular patterns and bacterial metabolites as key pathways that drive cancer-promoting liver inflammation, fibrosis and genotoxicity. On the basis of accumulating evidence from preclinical studies, we propose the intestinal-microbiota-liver axis as a promising target for the simultaneous prevention of chronic liver disease progression and HCC development in patients with advanced liver disease. We will review in detail therapeutic modalities and discuss clinical settings in which targeting the gut-microbiota-liver axis for the prevention of disease progression and HCC development seems promising.
Collapse
Affiliation(s)
- Le-Xing Yu
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
- Institute of Human Nutrition, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| |
Collapse
|
136
|
Arab JP, Martin-Mateos RM, Shah VH. Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int 2017; 12:24-33. [PMID: 28550391 DOI: 10.1007/s12072-017-9798-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
The term gut-liver axis is used to highlight the close anatomical and functional relationship between the intestine and the liver. The intestine has a highly specialized epithelial membrane which regulates transport across the mucosa. Due to dysbiosis, impairment of the intestinal barrier and altered immunity status, bacterial products can reach the liver through the portal vein, where they are recognized by specific receptors, activate the immune system and lead to a proinflammatory response. Gut microbiota and bacterial translocation play an important role in the pathogenesis of chronic liver diseases, including alcoholic and non-alcoholic fatty liver disease, cirrhosis, and its complications, such as portal hypertension, spontaneous bacterial peritonitis and hepatic encephalopaty. The gut microbiota also plays a critical role as a modulator of bile acid metabolism which can also influence intestinal permeability and portal hypertension through the farnesoid-X receptor. On the other hand, cirrhosis and portal hypertension affect the microbiota and increase translocation, leading to a "chicken and egg" situation, where translocation increases portal pressure, and vice versa. A myriad of therapies targeting gut microbiota have been evaluated specifically in patients with chronic liver disease. Further studies targeting intestinal microbiota and its possible hemodynamic and metabolic effects are needed. This review summarizes the current knowledge about the role of gut microbiota in the pathogenesis of chronic liver diseases and portal hypertension.
Collapse
Affiliation(s)
- Juan P Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA.,Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rosa M Martin-Mateos
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA.
| |
Collapse
|
137
|
Schwabl P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf) 2017; 5:90-103. [PMID: 28533907 PMCID: PMC5421460 DOI: 10.1093/gastro/gox011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective β-blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this context and address potentially interesting therapeutic options for the future.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
138
|
Gu Y, Song Y, Yin H, Lin S, Zhang X, Che L, Lin Y, Xu S, Feng B, Wu D, Fang Z. Dietary supplementation with tributyrin prevented weaned pigs from growth retardation and lethal infection via modulation of inflammatory cytokines production, ileal expression, and intestinal acetate fermentation. J Anim Sci 2017; 95:226-238. [PMID: 28177354 DOI: 10.2527/jas.2016.0911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Weanling pigs, with an underdeveloped intestine and immature immune system, are usually subjected to depressed feed intake, growth retardation, and postweaning diarrhea. The aim of this study was to determine 1) the growth response of weaned pigs to supplemental tributyrin (TB) and 2) the potential effects and mechanisms of TB in modulating immune responses of lipopolysaccharide (LPS)-challenged piglets. A total of 240 piglets (Duroc × Large White × Landrace) were weaned at 21 d of age to a control (basal diet), supplemented with antibiotics (AB; +AB), supplemented with TB (+TB), or with supplemental AB and TB (+AB+TB) diets, with 10 replicate pens (6 piglets/pen) per diet. At 49 d of age, male pigs from the control and +TB groups were intraperitoneally injected with LPS (25 μg/kg BW) or saline ( = 6) and sacrificed at 4 h after injection to collect blood, intestine, and digesta samples for biochemical analysis. There were higher ( < 0.05) feed intake and lower ( < 0.05) percentage of negative growth piglets in the +TB groups than in the control group during the first week after weaning. For piglets without LPS challenge, there were higher ( < 0.05) ileal fibroblast growth factor 19 () mRNA abundance and total bile acid concentrations in the +TB groups than in the control group, whereas downregulated ( < 0.05) expression was observed in the +TB groups after LPS challenge. Lipopolysaccharide challenge in the control group increased ( < 0.05) plasma tumor necrosis factor α and IL-6 concentrations and colonic amount and decreased ( < 0.05) colonic goblet cells and colonic and cecal acetate concentrations, with no differences ( > 0.05) observed between +TB groups following LPS challenge. Taken together, dietary supplementation with TB prevented growth retardation through stimulating the appetite of weaned pigs and protected piglets against lethal infection via modulation of inflammatory cytokines production, ileal expression, and intestinal acetate fermentation.
Collapse
|
139
|
Verbeke L, Nevens F, Laleman W. Steroidal or non-steroidal FXR agonists - Is that the question? J Hepatol 2017; 66:680-681. [PMID: 28131795 DOI: 10.1016/j.jhep.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Len Verbeke
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Belgium.
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Belgium
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Belgium
| |
Collapse
|
140
|
Schwabl P, Hambruch E, Seeland BA, Hayden H, Wagner M, Garnys L, Strobel B, Schubert TL, Riedl F, Mitteregger D, Burnet M, Starlinger P, Oberhuber G, Deuschle U, Rohr-Udilova N, Podesser BK, Peck-Radosavljevic M, Reiberger T, Kremoser C, Trauner M. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol 2017; 66:724-733. [PMID: 27993716 DOI: 10.1016/j.jhep.2016.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Steroidal farnesoid X receptor (FXR) agonists demonstrated potent anti-fibrotic activities and lowered portal hypertension in experimental models. The impact of the novel non-steroidal and selective FXR agonist PX20606 on portal hypertension and fibrosis was explored in this study. METHODS In experimental models of non-cirrhotic (partial portal vein ligation, PPVL, 7days) and cirrhotic (carbon tetrachloride, CCl4, 14weeks) portal hypertension, PX20606 (PX,10mg/kg) or the steroidal FXR agonist obeticholic acid (OCA,10mg/kg) were gavaged. We then measured portal pressure, intrahepatic vascular resistance, liver fibrosis and bacterial translocation. RESULTS PX decreased portal pressure in non-cirrhotic PPVL (12.6±1.7 vs. 10.4±1.1mmHg; p=0.020) and cirrhotic CCl4 (15.2±0.5 vs. 11.8±0.4mmHg; p=0.001) rats. In PPVL animals, we observed less bacterial translocation (-36%; p=0.041), a decrease in lipopolysaccharide binding protein (-30%; p=0.024) and splanchnic tumour necrosis factor α levels (-39%; p=0.044) after PX treatment. In CCl4 rats, PX decreased fibrotic Sirius Red area (-43%; p=0.005), hepatic hydroxyproline (-66%; p<0.001), and expression of profibrogenic proteins (Col1a1, α smooth muscle actin, transforming growth factor β). CCl4-PX rats had significantly lower transaminase levels and reduced hepatic macrophage infiltration. Moreover, PX induced sinusoidal vasodilation (upregulation of cystathionase, dimethylaminohydrolase (DDAH)1, endothelial nitric oxide synthase (eNOS), GTP-cyclohydrolase1) and reduced intrahepatic vasoconstriction (downregulation of endothelin-1, p-Moesin). In cirrhosis, PX improved endothelial dysfunction (decreased von-Willebrand factor) and normalized overexpression of vascular endothelial growth factor, platelet-derived growth factor and angiopoietins. While short-term 3-day PX treatment reduced portal pressure (-14%; p=0.041) by restoring endothelial function, 14week PX therapy additionally inhibited sinusoidal remodelling and decreased portal pressure to a greater extent (-22%; p=0.001). In human liver sinusoidal endothelial cells, PX increased eNOS and DDAH expression. CONCLUSIONS The non-steroidal FXR agonist PX20606 ameliorates portal hypertension by reducing liver fibrosis, vascular remodelling and sinusoidal dysfunction. LAY SUMMARY The novel drug PX20606 activates the bile acid receptor FXR and shows beneficial effects in experimental liver cirrhosis: In the liver, it reduces scarring and inflammation, and also widens blood vessels. Thus, PX20606 leads to an improved blood flow through the liver and decreases hypertension of the portal vein. Additionally, PX20606 improves the altered intestinal barrier and decreases bacterial migration from the gut.
Collapse
Affiliation(s)
- Philipp Schwabl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Eva Hambruch
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Berit A Seeland
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hubert Hayden
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Wagner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Garnys
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bastian Strobel
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Tim-Lukas Schubert
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian Riedl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dieter Mitteregger
- Vienna Medical Innovation Center (VMIC), Group Practice LABORS.at, Vienna, Austria
| | - Michael Burnet
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | | | - Georg Oberhuber
- Dept. of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Deuschle
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Nataliya Rohr-Udilova
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Dept. of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Markus Peck-Radosavljevic
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claus Kremoser
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Michael Trauner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
141
|
Pereira-Fantini PM, Lapthorne S, Gahan CG, Joyce SA, Charles J, Fuller PJ, Bines JE. Farnesoid X Receptor Agonist Treatment Alters Bile Acid Metabolism but Exacerbates Liver Damage in a Piglet Model of Short-Bowel Syndrome. Cell Mol Gastroenterol Hepatol 2017; 4:65-74. [PMID: 28560290 PMCID: PMC5439235 DOI: 10.1016/j.jcmgh.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Options for the prevention of short-bowel syndrome-associated liver disease (SBS-ALDs) are limited and often ineffective. The farnesoid X receptor (FXR) is a newly emerging pharmaceutical target and FXR agonists have been shown to ameliorate cholestasis and metabolic disorders. The aim of this study was to assess the efficacy of obeticholic acid (OCA) treatment in preventing SBS-ALDs. METHODS Piglets underwent 75% small-bowel resection (SBS) or sham surgery (sham) and were assigned to either a daily dose of OCA (2.4 mg/kg/day) or were untreated. Clinical measures included weight gain and stool studies. Histologic features were assessed. Ultraperformance liquid chromatography tandem mass spectrometry was used to determine bile acid composition in end point bile and portal serum samples. Gene expression of key FXR targets was assessed in intestinal and hepatic tissues via quantitative polymerase chain reaction. RESULTS OCA-treated SBS piglets showed decreased stool fat and altered liver histology when compared with nontreated SBS piglets. OCA prevented SBS-associated taurine depletion, however, further analysis of bile and portal serum samples indicated that OCA did not prevent SBS-associated alterations in bile acid composition. The expression of FXR target genes involved in bile acid transport and synthesis increased within the liver of SBS piglets after OCA administration whereas, paradoxically, intestinal expression of FXR target genes were decreased by OCA administration. CONCLUSIONS Administration of OCA in SBS reduced fat malabsorption and altered bile acid composition, but did not prevent the development of SBS-ALDs. We postulate that extensive small resection impacts the ability of the remnant intestine to respond to FXR activation.
Collapse
Key Words
- Bile Acids
- CDCA, chenodeoxycholic acid
- DCA, deoxycholic acid
- FGF19, fibroblast growth factor-19
- FXR, farnesoid X receptor
- Farnesoid X Receptor
- HCA, hyocholic acid
- HDCA, hyodeoxycholic acid
- Intestinal Failure–Associated Liver Disease
- LCA, lithocholic acid
- Liver Disease
- OCA, obeticholic acid
- Obeticholic Acid
- SBS, short-bowel syndrome
- SBS-ALD, short-bowel syndrome–associated liver disease
- Short-Bowel Syndrome
- UDCA, ursodeoxycholic acid
- UPLC, ultraperformance liquid chromatography
Collapse
Affiliation(s)
- Prue M. Pereira-Fantini
- Intestinal Failure and Clinical Nutrition Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Susan Lapthorne
- Intestinal Failure and Clinical Nutrition Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Cormac G.M. Gahan
- APC Microbiome Institute, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - Susan A. Joyce
- APC Microbiome Institute, University College Cork, Cork, Ireland,School of Biochemistry, University College Cork, Cork, Ireland
| | - Jenny Charles
- Department of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | - Peter J. Fuller
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Julie E. Bines
- Intestinal Failure and Clinical Nutrition Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia,Department of Paediatrics, University of Melbourne, Parkville, Australia,Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Parkville, Victoria, Australia,Correspondence Address correspondence to: Julie E. Bines, MD, FRACP, Department of Paediatrics, The University of Melbourne, Royal Children’s Hospital, Level 2, 50 Flemington Road, Parkville, Victoria 3052, Australia. fax: (613) 9345-6667.Department of PaediatricsThe University of MelbourneRoyal Children’s HospitalLevel 2, 50 Flemington RoadParkvilleVictoria 3052Australia
| |
Collapse
|
142
|
Fuchs CD, Halilbasic E, Trauner M. Novel treatments targeting metabolic and signaling mechanisms in primary biliary cholangitis. Clin Liver Dis (Hoboken) 2017; 9:43-47. [PMID: 30992955 PMCID: PMC6467135 DOI: 10.1002/cld.613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Claudia D. Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
143
|
Ceulemans LJ, Verbeke L, Decuypere JP, Farré R, De Hertogh G, Lenaerts K, Jochmans I, Monbaliu D, Nevens F, Tack J, Laleman W, Pirenne J. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats. PLoS One 2017; 12:e0169331. [PMID: 28060943 PMCID: PMC5218501 DOI: 10.1371/journal.pone.0169331] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The farnesoid X receptor (FXR) is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI) is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA) could attenuate intestinal ischemia reperfusion injury. MATERIAL AND METHODS In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping), 3 conditions were tested (n = 16/group): laparotomy only (sham group); ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group); ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group). Vehicle or OCA (INT-747, 2*30mg/kg) was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP); histology (morphologic injury to villi/crypts and villus length); intestinal permeability (Ussing chamber); endotoxin translocation (Lipopolysaccharide assay); cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13); apoptosis (cleaved caspase-3); and autophagy (LC3, p62). RESULTS It was found that intestinal IRI was associated with high mortality (90%); loss of intestinal integrity (structurally and functionally); increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition. CONCLUSION Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier function and suppresses inflammation. These results turn FXR into a promising target for various conditions associated with intestinal ischemia.
Collapse
Affiliation(s)
- Laurens J Ceulemans
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Len Verbeke
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jean-Paul Decuypere
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Ricard Farré
- Gastro-enterology, University Hospitals Leuven, & Translational Research in Gastro-Intestinal Disorders (TARGID), KU Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell and Tissue Research, University Hospitals Leuven, & Department of Imaging and Pathology, KU Leuven, Belgium
| | - Kaatje Lenaerts
- Department of Surgery, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, the Netherlands
| | - Ina Jochmans
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Diethard Monbaliu
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Frederik Nevens
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jan Tack
- Gastro-enterology, University Hospitals Leuven, & Translational Research in Gastro-Intestinal Disorders (TARGID), KU Leuven, Belgium
| | - Wim Laleman
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jacques Pirenne
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| |
Collapse
|
144
|
Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation. Toxicol Appl Pharmacol 2017; 314:39-47. [DOI: 10.1016/j.taap.2016.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
145
|
Betrapally NS, Gillevet PM, Bajaj JS. Gut microbiome and liver disease. Transl Res 2017; 179:49-59. [PMID: 27477080 PMCID: PMC5164947 DOI: 10.1016/j.trsl.2016.07.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
Gut microbiota changes are important in determining the occurrence and progression of chronic liver disease related to alcohol, nonalcoholic fatty liver disease, and cirrhosis. Specifically, the systemic inflammation, endotoxemia, and the vasodilation that leads to complications such as spontaneous bacterial peritonitis and hepatic encephalopathy could be related to the gut milieu. Given the poor prognosis of these events, their prevention and early management are essential. Microbiota may be an essential component of the gut milieu that can impact these clinical events, and the study of their composition and function in a culture-independent manner could help understand the prognosis. Recent human and animal studies have shown that the relative abundance and the functional changes of microbiota in the stool, colonic mucosa, and saliva have varying consequences on the presence and prognosis of chronic liver disease and cirrhosis. The impact of therapies on the microbiota is slowly being understood and will likely lead to a more targeted approach to gut microbiota modification in chronic liver disease and cirrhosis.
Collapse
Affiliation(s)
| | | | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Va.
| |
Collapse
|
146
|
Aguirre Valadez JM, Rivera-Espinosa L, Méndez-Guerrero O, Chávez-Pacheco JL, García Juárez I, Torre A. Intestinal permeability in a patient with liver cirrhosis. Ther Clin Risk Manag 2016; 12:1729-1748. [PMID: 27920543 PMCID: PMC5125722 DOI: 10.2147/tcrm.s115902] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a worldwide public health problem, and patients with this disease are at high risk of developing complications, bacterial translocation from the intestinal lumen to the mesenteric nodes, and systemic circulation, resulting in the development of severe complications related to high mortality rate. The intestinal barrier is a structure with a physical and biochemical activity to maintain balance between the external environment, including bacteria and their products, and the internal environment. Patients with liver cirrhosis develop a series of alterations in different components of the intestinal barrier directly associated with the severity of liver disease that finally increased intestinal permeability. A "leaky gut" is an effect produced by damaged intestinal barrier; alterations in the function of tight junction proteins are related to bacterial translocation and their products. Instead, increasing serum proinflammatory cytokines and hemodynamics modification, which results in the appearance of complications of liver cirrhosis such as hepatic encephalopathy, variceal hemorrhage, bacterial spontaneous peritonitis, and hepatorenal syndrome. The intestinal microbiota plays a fundamental role in maintaining the proper function of the intestinal barrier; bacterial overgrowth and dysbiosis are two phenomena often present in people with liver cirrhosis favoring bacterial translocation. Increased intestinal permeability has an important role in the genesis of these complications, and treating it could be the base for prevention and partial treatment of these complications.
Collapse
Affiliation(s)
| | | | - Osvely Méndez-Guerrero
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| | | | - Ignacio García Juárez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| | - Aldo Torre
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| |
Collapse
|
147
|
Chen YH, Hu XG, Zhou Y, Yu Z, Fu L, Zhang GB, Bo QL, Wang H, Zhang C, Xu DX. Obeticholic Acid Protects against Lipopolysaccharide-Induced Fetal Death and Intrauterine Growth Restriction through Its Anti-Inflammatory Activity. THE JOURNAL OF IMMUNOLOGY 2016; 197:4762-4770. [PMID: 27821667 DOI: 10.4049/jimmunol.1601331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
Farnesoid X receptor (FXR) is expressed in human and rodent placentas. Nevertheless, its function remains obscure. This study investigated the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, on LPS-induced fetal death and intrauterine growth restriction. All pregnant mice except controls were i.p. injected with LPS (100 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were orally administered with OCA (5 mg/kg) daily from GD13 to GD17. As expected, placental FXR signaling was activated by OCA. OCA pretreatment protected against LPS-induced fetal death. In addition, OCA pretreatment alleviated LPS-induced reduction of fetal weight and crown-rump length. Additional experiments showed that OCA inhibited LPS-evoked TNF-α in maternal serum and amniotic fluid. Moreover, OCA significantly attenuated LPS-induced upregulation of placental proinflammatory genes including Tnf-α, Il-1β, IL-6, Il-12, Mip-2, Kc, and Mcp-1 By contrast, OCA elevated anti-inflammatory cytokine IL-10 in maternal serum, amniotic fluid, and placenta. Further analysis showed that OCA blocked nuclear translocation of NF-κB p65 and p50 subunits in trophoblast giant cells of the labyrinth zone. These results provide a mechanistic explanation for placental FXR-mediated anti-inflammatory activity. Overall, this study provides evidence for roles of FXR as an important regulator of placental inflammation.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and.,Department of Histology and Embryology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Guang Hu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Yan Zhou
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Zhen Yu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Gui-Bin Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Qing-Li Bo
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; .,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| |
Collapse
|
148
|
Laleman W, Trebicka J, Verbeke L. Evolving insights in the pathophysiology of complications of cirrhosis: The farnesoid X receptor (FXR) to the rescue? Hepatology 2016; 64:1792-1794. [PMID: 27531824 DOI: 10.1002/hep.28771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Wim Laleman
- Department of Gastroenterology & Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,Department of Hepatology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Len Verbeke
- Department of Gastroenterology & Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
149
|
FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep 2016; 6:33453. [PMID: 27634375 PMCID: PMC5025787 DOI: 10.1038/srep33453] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis.
Collapse
|
150
|
Yang F, Tang X, Ding L, zhou Y, Yang Q, Gong J, Wang G, Wang Z, Yang L. Curcumin protects ANIT-induced cholestasis through signaling pathway of FXR-regulated bile acid and inflammation. Sci Rep 2016; 6:33052. [PMID: 27624003 PMCID: PMC5021964 DOI: 10.1038/srep33052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Cholestasis is a clinically significant symptom and widely associated with liver diseases, however, there are very few effective therapies for cholestasis. Danning tablet (DNT, a Chinese patent medicine preparation) has been clinically used to treat human liver and gallbladder diseases for more than 20 years in China. However, which ingredients of DNT contributed to this beneficial effect and their mechanistic underpinnings have been largely unknown. In the present study, we discovered that DNT not only demonstrated greater benefits for cholecystitis patients after cholecystectomy surgery in clinic but also showed protective effect against alpha-naphthylisothiocyanate (ANIT)-induced cholestasis model in rodent. Curcumin, one major compound derived from DNT, exerted the protective effect against cholestasis through farnesoid X receptor (FXR), which has been focused as potential therapeutic targets for treating cholestasis. The underlying mechanism of curcumin against cholestasis was restoring bile acid homeostasis and antagonizing inflammatory responses in a FXR-dependent manner and in turn contributed to overall cholestasis attenuation. Collectively, curcumin can be served as a potential treatment option for liver injury with cholestasis.
Collapse
Affiliation(s)
- Fan Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaowen Tang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ding
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiaoling Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junting Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guangyun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|