101
|
Exhaustive training increases uncoupling protein 2 expression and decreases Bcl-2/Bax ratio in rat skeletal muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:780719. [PMID: 23365696 PMCID: PMC3556863 DOI: 10.1155/2013/780719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/27/2012] [Accepted: 12/19/2012] [Indexed: 01/06/2023]
Abstract
This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2) and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON), the trained control group (TC), and the exhaustive trained group (ET). Malondialdehyde (MDA), superoxide dismutase (SOD), xanthine oxidase (XOD), ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio). An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.
Collapse
|
102
|
High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis. Mitochondrion 2012. [PMID: 23178790 DOI: 10.1016/j.mito.2012.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨ(m)). A mechanism is described which is suggested to keep ΔΨ(m) at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨ(m) and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨ(m) and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that 'oxidative stress' occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.
Collapse
|
103
|
Murad NAA, Cullen JK, McKenzie M, Ryan MT, Thorburn D, Gueven N, Kobayashi J, Birrell G, Yang J, Dörk T, Becherel O, Grattan-Smith P, Lavin MF. Mitochondrial dysfunction in a novel form of autosomal recessive ataxia. Mitochondrion 2012. [PMID: 23178371 DOI: 10.1016/j.mito.2012.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defects in the recognition and/or repair of damage to DNA are responsible for a sub-group of autosomal recessive ataxias. Included in this group is a novel form of ataxia with oculomotor apraxia characterised by sensitivity to DNA damaging agents, a defect in p53 stabilisation, oxidative stress and resistance to apoptosis. We provide evidence here that the defect in this patient's cells is at the level of the mitochondrion. Mitochondrial membrane potential was markedly reduced in cells from the patient and ROS levels were elevated. This was accompanied by lipid peroxidation of mitochondrial proteins involved in electron transport and RNA synthesis. However, no gross changes or alteration in composition or activity of mitochondrial electron transport complexes was evident. Sequencing of mitochondrial DNA revealed a mutation, I349T, in the mitochondrial cytochrome b gene. These results describe a patient with an apparently novel form of AOA characterised by a defect at the level of the mitochondrion.
Collapse
Affiliation(s)
- Nor Azian Abdul Murad
- Cancer and Cell Biology, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Liu W, Zheng X, Qu Z, Zhang M, Zhou C, Ma L, Zhang Y. Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation. ACTA ACUST UNITED AC 2012; 32:755-759. [DOI: 10.1007/s11596-012-1030-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Indexed: 01/05/2023]
|
105
|
Gad A, Hoelker M, Besenfelder U, Havlicek V, Cinar U, Rings F, Held E, Dufort I, Sirard MA, Schellander K, Tesfaye D. Molecular Mechanisms and Pathways Involved in Bovine Embryonic Genome Activation and Their Regulation by Alternative In Vivo and In Vitro Culture Conditions1. Biol Reprod 2012; 87:100. [DOI: 10.1095/biolreprod.112.099697] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
106
|
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2012; 47:9-23. [PMID: 23011809 DOI: 10.1007/s12035-012-8344-z] [Citation(s) in RCA: 496] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a "burst" of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
107
|
Arnold S. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:305-39. [PMID: 22729864 DOI: 10.1007/978-1-4614-3573-0_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus--encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and -survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute for Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany.
| |
Collapse
|
108
|
Akilov OE, Wu MX, Ustyugova IV, Falo LD, Geskin LJ. Resistance of Sézary cells to TNF-α-induced apoptosis is mediated in part by a loss of TNFR1 and a high level of the IER3 expression. Exp Dermatol 2012; 21:287-92. [PMID: 22417305 DOI: 10.1111/j.1600-0625.2012.01452.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Failure to execute an apoptotic programme is one of the critical steps and a common mechanism promoting tumorogenesis. Immediate early responsive gene 3 (IER3) has been shown to be upregulated in several cancers. IER3 is a stress-induced gene, which upregulation leads to reduction in production of reactive oxygen species (ROS) protecting malignant cells from apoptosis. We observed that malignant lymphocytes from patients with Sézary syndrome (SzS) were resistant to pro-apoptotic dose of tumour necrosis factor-α (TNF-α). The aim of this study was to investigate the role of IER3 in the mechanism of such resistance. CD4+ CD26- lymphocytes from the peripheral blood of patients with SzS and healthy controls were negatively selected using CD4 and CD26 magnetic beads and analysed for expression of TNFR1, TNFR2, IER3 expression, and ROS production in response to TNF-α at an apoptotic dose. Sézary cells with a higher level of IER3 expression retained their viability to TNF-α. IER3 upregulation correlated with a decrease level of intracellular ROS and low TNFR1 expression on malignant cells. Targeting IER3 could be of interest for the development of future therapeutic strategies for patients with SzS.
Collapse
Affiliation(s)
- Oleg E Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
109
|
Hsu WL, Tsai MH, Lin MW, Chiu YC, Lu JH, Chang CH, Yu HS, Yoshioka T. Differential effects of arsenic on calcium signaling in primary keratinocytes and malignant (HSC-1) cells. Cell Calcium 2012; 52:161-9. [PMID: 22695135 DOI: 10.1016/j.ceca.2012.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 01/04/2023]
Abstract
Arsenic is highly toxic to living cells, especially skin, and skin cancer is induced by drinking water containing arsenic. The molecular mechanisms of arsenic-induced cancer, however, are not well understood. To examine the initial processes in the development of arsenic-induced cancer, we analyzed calcium signaling at an early stage of arsenic treatment of human primary cells and compared the effects with those observed with arsenic treatment in carcinoma-derived cells. We found that arsenic inhibited inositol trisphosphate receptor (IP3R) function in the endoplasmic reticulum by inducing phosphorylation, which led to decreased intracellular calcium levels. Blockade of IP3R phosphorylation by the serine/threonine protein kinase Akt inhibitor wortmannin rescued calcium signaling. In contrast, arsenic treatment of cells derived from a carcinoma (human squamous carcinoma; HSC-1) for 1h had no obvious effect. Taken together, these results suggest that arsenic-induced reduction in calcium signaling is one of the initial mechanisms underlying the malignant transformation in the development of skin cancer.
Collapse
Affiliation(s)
- W L Hsu
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Bansal S, Srinivasan S, Anandasadagopan S, Chowdhury AR, Selvaraj V, Kalyanaraman B, Joseph J, Avadhani NG. Additive effects of mitochondrion-targeted cytochrome CYP2E1 and alcohol toxicity on cytochrome c oxidase function and stability of respirosome complexes. J Biol Chem 2012; 287:15284-97. [PMID: 22396533 DOI: 10.1074/jbc.m111.314062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alcohol treatment induces oxidative stress by a combination of increased production of partially reduced oxygen species and decreased cellular antioxidant pool, including GSH. Recently, we showed that mitochondrion-targeted CYP2E1 augments alcohol-mediated toxicity, causing an increase in reactive oxygen species production and oxidative stress. Here, we show that cytochrome c oxidase (CcO), the terminal oxidase of the mitochondrial respiratory chain, is a critical target of CYP2E1-mediated alcohol toxicity. COS-7 and Hep G2 cell lines expressing predominantly mitochondrion-targeted (Mt(++)) CYP2E1 and livers from alcohol-treated rats showed loss of CcO activity and increased protein carbonylation, which was accompanied by a decline in the steady state levels of subunits I, IVI1, and Vb of the CcO complex. This was also accompanied by reduced mitochondrial DNA content and reduced mitochondrial mRNA. These changes were more prominent in Mt(++) cells in comparison with wild type (WT) CYP2E1-expressing or ER(+) (mostly microsome-targeted) cells. In addition, mitochondrion-specific antioxidants, ubiquinol conjugated to triphenyl phosphonium, triphenylphosphonium conjugated carboxyl proxyl, and the CYP2E1 inhibitor diallyl sulfide prevented the loss of CcO activity and the CcO subunits, most likely through reduced oxidative damage to the enzyme complex. Our results suggest that damage to CcO and dissociation of respirosome complexes are critical factors in alcohol-induced toxicity, which is augmented by mitochondrion-targeted CYP2E1. We propose that CcO is one of the direct and immediate targets of alcohol-induced toxicity causing respiratory dysfunction.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:265-81. [PMID: 22729862 DOI: 10.1007/978-1-4614-3573-0_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During evolution from prokaryotes to eukaryotes, the main function of cytochrome c oxidase (COX), i.e., the coupling of oxygen reduction to proton translocation without the production of ROS (reactive oxygen species) remained unchanged demonstrating its robustness. A new regulation of respiration by the ATP/ADP ratio was introduced in eukaryotes based on nucleotide interaction with the added COX subunit IV. This allosteric ATP-inhibition was proposed to keep the mitochondrial membrane potential (ΔΨ(m)) at low healthy values and thus prevents the formation of ROS at complexes I and III. ROS have been implicated in various degenerative diseases. The allosteric ATP-inhibition of COX is reversibly switched on and off by phosphorylation of COX at a serine or threonine. In more than 100 individual preparations of rat heart and liver mitochondria, prepared under identical conditions, the extent of allosteric ATP-inhibition varied. This variability correlates with the variable inhibition of uncoupled respiration in intact isolated mitochondria by ATP. It is concluded that in higher organisms the allosteric ATP-inhibition is continually switched on and off by neuronal signalling in order to change oxidative phosphorylation from optimal efficiency with lower rate of ATP synthesis under resting conditions (low ΔΨ(m) and ROS production) to maximal rate of ATP synthesis under active (working, stress) conditions (elevated ΔΨ(m) and ROS production).
Collapse
|
112
|
Ferguson-Miller S, Hiser C, Liu J. Gating and regulation of the cytochrome c oxidase proton pump. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:489-94. [PMID: 22172738 DOI: 10.1016/j.bbabio.2011.11.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
As a consumer of 95% of the oxygen we breathe, cytochrome c oxidase plays a major role in the energy balance of the cell. Regulation of its oxygen reduction and proton pumping activity is therefore critical to physiological function in health and disease. The location and structure of pathways for protons that are required to support cytochrome c oxidase activity are still under debate, with respect to their requirements for key residues and fixed waters, and how they are gated to prevent (or allow) proton backflow. Recent high resolution structures of bacterial and mammalian forms reveal conserved lipid and steroid binding sites as well as redox-linked conformational changes that provide new insights into potential regulatory ligands and gating modes. Mechanistic interpretation of these findings and their significance for understanding energy regulation is discussed.
Collapse
|
113
|
Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion 2011; 11:700-6. [DOI: 10.1016/j.mito.2011.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/13/2011] [Accepted: 06/08/2011] [Indexed: 11/16/2022]
|
114
|
Woo S, Jeon HY, Kim SR, Yum S. Differentially displayed genes with oxygen depletion stress and transcriptional responses in the marine mussel, Mytilus galloprovincialis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:348-56. [PMID: 21849267 DOI: 10.1016/j.cbd.2011.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/09/2023]
Abstract
Hypoxic events affecting aquatic environments have been reported worldwide and the hypoxia caused by eutrophication is considered one of the serious threats to coastal marine ecosystems. To investigate the molecular-level responses of marine organisms exposed to oxygen depletion stress and to explore the differentially expressed genes induced or repressed by hypoxia, differential display polymerase chain reaction (DD-PCR) was used with mRNAs from the marine mussel, Mytilus galloprovincialis, under oxygen depletion and normal oxygen conditions. In total, 107 cDNA clones were differentially expressed under hypoxic conditions relative to the control mussel group. The differentially expressed genes were analyzed to determine the effects of hypoxia. They were classified into five functional categories: information storage and processing, cellular processes and signaling, metabolism, predicted general function only, and function unknown. The differentially expressed genes were predominantly associated with cellular processing and signaling, and they were particularly related to the signal transduction mechanism, posttranslational modification, and chaperone functions. The observed differences in the DD-PCR of 10 genes (encoding elongation factor 1 alpha, heat shock protein 90, calcium/calmodulin-dependent protein kinase II, GTPase-activating protein, 18S ribosomal RNA, cytochrome oxidase subunit 1, ATP synthase, chitinase, phosphoglycerate/bisphosphoglycerate mutase family protein, and the nicotinic acetylcholine receptor) were confirmed by quantitative RT-PCR and their transcriptional changes in the mussels exposed to hypoxic conditions for 24-72 h were investigated. These results identify biomarker genes for hypoxic stress and provide molecular-level information about the effects of oxygen depletion on marine bivalves.
Collapse
Affiliation(s)
- Seonock Woo
- South Sea Environment Research Department, Korea Ocean Research and Development Institute, Geoje 656-830, Republic of Korea
| | | | | | | |
Collapse
|
115
|
Gasperini L, Piubelli C, Carboni L. Proteomics of rat hypothalamus, hippocampus and pre-frontal/frontal cortex after central administration of the neuropeptide PACAP. Mol Biol Rep 2011; 39:2921-35. [PMID: 21687973 DOI: 10.1007/s11033-011-1054-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 06/08/2011] [Indexed: 11/25/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts pleiotropic functions, acting as a hypophysiotropic factor, a neurotrophic and a neuroprotective agent. The molecular pathways activated by PACAP to exert its physiological roles in brain are incompletely understood. In this study, adrenocorticotropic hormone (ACTH), prolactin, luteinising hormone (LH), follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), brain-derived neurotrophic factor and corticosterone blood levels were determined before and 20, 40, 60, and 120 min after PACAP intracerebroventricular administration. PACAP treatment increased ACTH, corticosterone, LH and FSH blood concentrations, while it decreased TSH levels. A proteomics investigation was carried out in hypothalamus, hippocampus and pre-frontal/frontal cortex (P/FC) using 2-dimensional gel electrophoresis at 120 min, the end-point suggested by studies on PACAP hypophysiotropic activities. Spots showing statistically significant alterations after PACAP treatment were identified by Matrix-assisted laser desorption/ionization-Time of flight mass spectrometry. Identified proteins were consistent with PACAP involvement in different molecular processes in brain. Altered expression levels were observed for proteins involved in cytoskeleton modulation and synaptic plasticity: actin in the hypothalamus; stathmin, dynamin, profilin and cofilin in hippocampus; synapsin in P/FC. Proteins involved in cellular differentiation were also modulated: glutathione-S-transferase α and peroxiredoxin in hippocampus; nucleoside diphosphate kinase in P/FC. Alterations were detected in proteins involved in neuroprotection, neurodegeneration and apoptosis: ubiquitin carboxyl-terminal hydrolase isozyme L1 and heat shock protein 90-β in hypothalamus; α-synuclein in hippocampus; glyceraldehyde-3-phosphate dehydrogenase and prohibitin in P/FC. This proteomics study identified new proteins involved in molecular mechanisms mediating PACAP functions in the central nervous system.
Collapse
Affiliation(s)
- Lisa Gasperini
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Via A Fleming 4, 37135 Verona, Italy
| | | | | |
Collapse
|
116
|
The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 2011; 12:46-56. [PMID: 21640202 DOI: 10.1016/j.mito.2011.05.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 04/04/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction is increasingly recognized as a major factor in the etiology and progression of numerous human diseases, such as (neuro-)degeneration, ischemia reperfusion injury, cancer, and diabetes. Cytochrome c oxidase (COX) represents the rate-limiting enzyme of the mitochondrial respiratory chain and is thus predestined for being a central site of regulation of oxidative phosphorylation, proton pumping efficiency, ATP and reactive oxygen species production, which in turn affect cell signaling and survival. A unique feature of COX is its regulation by various factors and mechanisms interacting with the nucleus-encoded subunits, whose actual functions we are only beginning to understand.
Collapse
|
117
|
Pang L, Qiu T, Cao X, Wan M. Apoptotic role of TGF-β mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction. Exp Cell Res 2011; 317:1608-20. [PMID: 21324314 DOI: 10.1016/j.yexcr.2011.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/29/2022]
Abstract
Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII.
Collapse
Affiliation(s)
- Lijuan Pang
- The Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
118
|
The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011; 11:369-81. [PMID: 21296189 DOI: 10.1016/j.mito.2011.01.010] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
Abstract
Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66(Shc), and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66(Shc) pathway, and oxidation of cardiolipin by Cytc followed by its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis.
Collapse
|
119
|
Post-treatment of Bax-inhibiting peptide reduces neuronal death and behavioral deficits following global cerebral ischemia. Neurochem Int 2011; 58:224-33. [DOI: 10.1016/j.neuint.2010.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 11/15/2010] [Accepted: 12/01/2010] [Indexed: 01/27/2023]
|
120
|
Xu YN, Cui XS, Sun SC, Lee SE, Li YH, Kwon JS, Lee SH, Hwang KC, Kim NH. Mitochondrial dysfunction influences apoptosis and autophagy in porcine parthenotes developing in vitro. J Reprod Dev 2010; 57:143-50. [PMID: 21071887 DOI: 10.1262/jrd.10-110h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria are important regulators of both apoptosis and autophagy. One of the triggers for mitochondrial-mediated apoptosis is the production of reactive oxygen species (ROS), which include hydrogen peroxide, superoxide, hydroxyl radical, nitric oxide and peroxynitrite. Recently, several studies have indicated that ROS may also be involved in the induction of autophagy. In the present study, we used H(2)O(2) to induce mitochondrial stress, examined apoptotic- and autophagic-related gene expression and observed LC3 protein (autophagosome presence marker) expression in porcine parthenotes developing in vitro. In porcine four-cell parthenotes cultured for 5 days in NCSU37 medium containing 0.4% BSA, the developmental rate and mitochondrial distribution did not differ from that of the group supplemented with 100 µM H(2)O(2) but was significantly decreased in the group supplemented with 500 µM H(2)O(2) (P<0.05). Transmission electron microscopy (TEM) indicated that whereas normal shaped mitochondria were observed in blastocysts from the control group, abnormal mitochondria (mitophagy) and autophagic vacuoles were observed in blastocysts from the group that received 500 µM H(2)O(2). Furthermore, addition of H(2)O(2) (100 µM and 500 µM) decreased cell numbers (P<0.05) and increased both apoptosis (P<0.05) and LC3 protein expression in the blastocysts. Real-time RT-PCR showed that H(2)O(2) significantly decreased mRNA expression of anti-apoptotic gene Bcl-xL but increased pro-apoptotic genes, Caspase 3 (Casp3) and Bak, and autophagy-related genes, microtubule-associated protein 1 light chain 3 (Map1lc3b) and lysosomal-associated membrane protein 2 (Lamp2). However, the addition of H(2)O(2) had no effect on mRNA expression levels in nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b and Cox6b1, in blastocysts. These results suggest that H(2)O(2) leads to mitochondrial dysfunction that results in apoptosis and autophagy, which is possibly related to porcine early embryo development.
Collapse
Affiliation(s)
- Yong-Nan Xu
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Inducers of Chemical Hypoxia Act in a Gender- and Brain Region-Specific Manner on Primary Astrocyte Viability and Cytochrome c Oxidase. Neurotox Res 2010; 20:1-14. [DOI: 10.1007/s12640-010-9213-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/11/2010] [Accepted: 08/02/2010] [Indexed: 12/19/2022]
|
122
|
Li B, Wang C, Yu A, Chen Y, Zuo Z. Identification of differentially expressed genes in the brain of Sebastiscus marmoratus in response to tributyltin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:248-255. [PMID: 20617544 DOI: 10.1016/j.aquatox.2010.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Tributyltin (TBT), a ubiquitous marine environmental contaminant, has been reported to affect functioning of the central nervous system. However, the mechanism of its neurotoxicity remains unknown. In this study, an Anneal Control Primer-differential display Reverse Transcription-PCR method was employed to investigate differentially expressed genes in the brain of Sebastiscus marmoratus in response to acute TBT exposure. A total of 18 gene sequences were identified as having the potential for being differentially expressed, of which 9 could be identified with homologous database sequences. The expression profiles of 4 genes, namely cytochrome c oxidase subunit II, GRB2-associated binding protein 2, adaptor-related protein complex 2, and guanine nucleotide exchange factor p532, were analyzed in the brain using real time fluorescence quantitative PCR after treatment with 10, 100 and 1000 ng/L of TBT for 50 days. The results showed that chronic exposure to TBT induced down-regulation of these genes in a dose dependent manner. The present study provided a basis for studying the response of fish to TBT exposure and allowed the characterization of new potential neurotoxic biomarkers of TBT contamination in seawater.
Collapse
Affiliation(s)
- Bowen Li
- Key Laboratory of the Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | |
Collapse
|
123
|
Misiak M, Singh S, Drewlo S, Beyer C, Arnold S. Brain region-specific vulnerability of astrocytes in response to 3-nitropropionic acid is mediated by cytochrome c oxidase isoform expression. Cell Tissue Res 2010; 341:83-93. [PMID: 20602186 DOI: 10.1007/s00441-010-0995-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/18/2010] [Indexed: 12/11/2022]
Abstract
Brain region specificity is a feature characteristic of neurodegenerative disorders, such as Huntington's disease (HD). We have studied the brain region-specific vulnerability of striatal compared with cortical and mesencephalic astrocytes treated with 3-nitropropionic acid (NPA), an in vitro model of HD. Mitochondrial dysfunction is involved in neurodegenerative processes. We have previously demonstrated a causal relationship between NPA-induced transcription of the cytochrome c oxidase (COX) subunit IV isoform (cox4i2) and increased oxidative stress leading to higher rates of necrotic cell death in striatal astrocytes by the application of a small interfering RNA knockdown system. Here, we have investigated the correlation of COX IV-2 protein expression with intracellular ATP content, mitochondrial peroxide production, and viability of astrocytes from three different brain regions. In cortical and mesencephalic astrocytes, NPA caused an elevation of cox4i2 transcription as in striatal astroglia. However, increased COX IV-2 and decreased COX IV-1 protein expression levels have been observed only in striatal astrocytes. In agreement with our hypothesis, Striatal astrocytes showed the highest levels of peroxide production and necrotic cell death rates compared with cortical and mesencephalic astroglia. Thus, we suggest that the higher vulnerability of astrocytes from the striatum in our in vitro model of HD is, at least in part, based on brain region-specific differences of the COX IV-2/COX IV-1 protein ratios and accompanied elevated oxidative stress.
Collapse
Affiliation(s)
- Magdalena Misiak
- Institute for Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | | | | |
Collapse
|
124
|
Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1672-80. [PMID: 20599681 DOI: 10.1016/j.bbabio.2010.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
Abstract
This paper describes the problems of measuring the allosteric ATP-inhibition of cytochrome c oxidase (CcO) in isolated mitochondria. Only by using the ATP-regenerating system phosphoenolpyruvate and pyruvate kinase full ATP-inhibition of CcO could be demonstrated by kinetic measurements. The mechanism was proposed to keep the mitochondrial membrane potential (DeltaPsi(m)) in living cells and tissues at low values (100-140 mV), when the matrix ATP/ADP ratios are high. In contrast, high DeltaPsi(m) values (180-220 mV) are generally measured in isolated mitochondria. By using a tetraphenyl phosphonium electrode we observed in isolated rat liver mitochondria with glutamate plus malate as substrates a reversible decrease of DeltaPsi(m) from 233 to 123 mV after addition of phosphoenolpyruvate and pyruvate kinase. The decrease of DeltaPsi(m) is explained by reversal of the gluconeogenetic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase yielding ATP and GTP, thus increasing the matrix ATP/ADP ratio. With rat heart mitochondria, which lack these enzymes, no decrease of DeltaPsi(m) was found. From the data we conclude that high matrix ATP/ADP ratios keep DeltaPsi(m) at low values by the allosteric ATP-inhibition of CcO, thus preventing the generation of reactive oxygen species which could generate degenerative diseases. It is proposed that respiration in living eukaryotic organisms is normally controlled by the DeltaPsi(m)-independent "allosteric ATP-inhibition of CcO." Only when the allosteric ATP-inhibition is switched off under stress, respiration is regulated by "respiratory control," based on DeltaPsi(m) according to the Mitchell Theory.
Collapse
Affiliation(s)
- Rabia Ramzan
- Biomedical Research Center, Cardiovascular Laboratory, Philipps-University, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
125
|
Hwang IK, Yoo KY, Kim DW, Lee CH, Choi JH, Kwon YG, Kim YM, Choi SY, Won MH. Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damage. Free Radic Biol Med 2010; 48:1242-51. [PMID: 20156553 DOI: 10.1016/j.freeradbiomed.2010.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/25/2010] [Accepted: 02/07/2010] [Indexed: 11/19/2022]
Abstract
We observed chronological changes in the mitochondrial-specific antioxidant enzymes peroxiredoxin 3 (Prx3) and thioredoxin 2 (Trx2) and their neuroprotective effects in the hippocampal CA1 region after 5 min of transient cerebral ischemia in gerbils. In the sham-operated group, weak Prx3 and Trx2 immunoreactivity was detected in the stratum pyramidale. Prx3 immunoreactivity was increased in pyramidal neurons and expressed in microglia 1 and 3 days, respectively, after ischemia/reperfusion (I/R). Trx2 immunoreactivity in pyramidal neurons increased 30 min and 1 day after I/R and decreased 6 h after I/R. Trx2 immunoreaction was expressed in astrocytes at 3 days postischemia. The intraventricular administration of Prx3 or Prx3/Trx2 (16 microg/20 microl, icv) using an osmotic pump significantly reduced ischemia-induced hyperactivity in a spontaneous motor test and protected CA1 pyramidal neurons from the ischemic damage. In addition, the activation of astrocytes and microglia was decreased in the ischemic CA1 region after Prx3/Trx2 treatment. In addition, treatment with Prx3 or Prx3/Trx2 significantly reduced lipid peroxidation and the release of cytochrome c from mitochondria and cytoplasm in the ischemic CA1 region. These results suggest that changes in the expression of Prx3 and Trx2 in the hippocampal CA1 region after I/R may be associated with the delayed neuronal death of CA1 pyramidal cells induced by transient cerebral ischemia, and that treatment with Prx3 or Prx3/Trx2 in ischemic brains shows a potent neuroprotective effect against ischemic damage by reducing lipid peroxidation and mitochondrial-mediated apoptosis by I/R.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Tripathy MK, Mitra D. Differential modulation of mitochondrial OXPHOS system during HIV-1 induced T-cell apoptosis: up regulation of Complex-IV subunit COX-II and its possible implications. Apoptosis 2010; 15:28-40. [PMID: 19771519 DOI: 10.1007/s10495-009-0408-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human Immunodeficiency Virus-1 (HIV-1) infection leads to CD4+ T cell depletion primarily by apoptosis employing both intrinsic and extrinsic pathways. Although extensive literature exists about the role of mitochondrial proteins in HIV induced T cell apoptosis, there is little understanding about the role of different components of mitochondrial oxidative phosphorylation (OXPHOS) system in apoptosis. The OXPHOS system comprises of five enzyme complexes (Complex I, II, III, IV, V), subunits of which have been implicated in various functions in addition to their primary role in energy generating process. Here using differential gene expression analysis, we report that Cytochrome Oxidase-II (COX-II), a subunit of Complex-IV is induced in HIV infected apoptotic T-cells. We also observe a temporal up regulation of this subunit across different T-cell lines and in human PBMCs. Further analysis indicates increase in expression of majority of Complex-IV subunits with concomitant increase in Complex-IV activity in HIV infected T cells. Silencing of COX-II expression leads to reduced apoptosis in infected T-cells, indicating its importance in apoptosis. Furthermore, our results also show that the activities of enzyme complexes I, II and III are decreased while those of Complex IV and V are increased at the time of acute infection and apoptosis. This differential regulation in activities of OXPHOS system complexes indicate a complex modulation of host cell energy generating system during HIV infection that ultimately leads to T cell apoptosis.
Collapse
|
127
|
Juzyszyn Z, Czerny B, Myśliwiec Z, Pawlik A, Droździk M. The effect of artichoke (Cynara scolymus L.) extract on respiratory chain system activity in rat liver mitochondria. Phytother Res 2010; 24 Suppl 2:S123-8. [PMID: 20091747 DOI: 10.1002/ptr.2995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of artichoke extract on mitochondrial respiratory chain (MRC) activity in isolated rat liver mitochondria (including reaction kinetics) was studied. The effect of the extract on the activity of isolated cytochrome oxidase was also studied. Extract in the range of 0.68-2.72 microg/ml demonstrated potent and concentration-dependent inhibitory activity. Concentrations > or =5.4 microg/ml entirely inhibited MRC activity. The succinate oxidase system (MRC complexes II-IV) was the most potently inhibited, its activity at an extract concentration of 1.36 microg/ml being reduced by 63.3% compared with the control (p < 0.05). The results suggest a complex inhibitory mechanism of the extract. Inhibition of the succinate oxidase system was competitive (K(i) = 0.23 microg/ml), whereas isolated cytochrome oxidase was inhibited noncompetitively (K(i) = 126 microg/ml). The results of this study suggest that the salubrious effects of artichoke extracts may rely in part on the effects of their active compounds on the activity of the mitochondrial respiratory chain system.
Collapse
Affiliation(s)
- Z Juzyszyn
- Department of Medical Chemistry, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | |
Collapse
|
128
|
Acsadi G, Lee I, Li X, Khaidakov M, Pecinova A, Parker GC, Hüttemann M. Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy. J Neurosci Res 2010; 87:2748-56. [PMID: 19437551 DOI: 10.1002/jnr.22106] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations of the survival motor neuron (SMN) gene in spinal muscular atrophy (SMA) lead to anterior horn cell death. The cause is unknown, but motor neurons depend substantially on mitochondrial oxidative phosphorylation (OxPhos) for normal function. Therefore, mitochondrial parameters were analyzed in an SMA cell culture model using small interfering RNA (siRNA) transfection that decreased Smn expression in NSC-34 cells to disease levels. Smn siRNA knock-down resulted in 35% and 66% reduced Smn protein levels 48 and 72 hr posttransfection, respectively. ATP levels were reduced by 14% and 26% at 48 and 72 hr posttransfection, respectively, suggesting decreased ATP production or increased energy demand in neural cells. Smn knock-down resulted in increased mitochondrial membrane potential and increased free radical production. Changes in activity of cytochrome c oxidase (CcO), a key OxPhos component, were observed at 72 hr with a 26% increase in oxygen consumption. This suggests a compensatory activation of the aerobic pathway, resulting in increased mitochondrial membrane potentials, a condition known to lead to the observed increase in free radical production. Further testing suggested that changes in ATP at 24 hr precede observable indices of cell injury at 48 hr. We propose that energy paucity and increased mitochondrial free radical production lead to accumulated cell damage and eventual cell death in Smn-depleted neural cells. Mitochondrial dysfunction may therefore be important in SMA pathology and may represent a new therapeutic target.
Collapse
Affiliation(s)
- Gyula Acsadi
- Children's Hospital of Michigan, Carman and Ann Adams Department of Pediatrics, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Langley RJ, Mishra NC, Peña-Philippides JC, Hutt JA, Sopori ML. Granuloma formation induced by low-dose chronic silica inhalation is associated with an anti-apoptotic response in Lewis rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:669-83. [PMID: 20391111 PMCID: PMC2856123 DOI: 10.1080/15287390903578521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chronic human silicosis results primarily from continued occupational exposure to silica and exhibits a long asymptomatic latency. Similarly, continued exposure of Lewis rats to low doses of silica is known to cause delayed granuloma formation with limited lung inflammation and injury. On the other hand, intratracheal exposure to large doses of silica induces acute silicosis characterized by granuloma-like formations in the lung associated with apoptosis, severe alveolitis, and alveolar lipoproteinosis. To ascertain similarities/differences between acute and chronic silicosis, in this communication, we compared cellular and molecular changes in established rat models of acute and chronic silicosis. In Lewis rats, acute silicosis was induced by intratracheal instillation of 35 mg silica, and chronic silicosis through inhalation of aerosolized silica (6.2 mg/m(3), 5 d/wk for 6 wk). Animals exposed to acute high-dose silica were sacrificed at 14 d after silica instillation while chronically silica-treated animals were sacrificed between 4 d and 28 wk after silica exposure. The lung granulomas formation in acute silicosis was associated with strong inflammation, presence of TUNEL-positive cells, and increases in caspase-3 activity and other molecular markers of apoptosis. On the other hand, lungs from chronically silica-exposed animals exhibited limited inflammation and increased expression of anti-apoptotic markers, including dramatic increases in Bcl-2 and procaspase-3, and lower caspase-3 activity. Moreover, chronic silicotic lungs were TUNEL-negative and overexpressed Bcl-3 and NF-kappaB-p50 but not NF-kappaB-p65 subunits. These results suggest that, unlike acute silicosis, chronic exposures to occupationally relevant doses of silica cause significantly lower lung inflammation and elevated expression of anti-apoptotic rather than proapoptotic markers in the lung that might result from interaction between NF-kappaB-p50 and Bcl-3.
Collapse
Affiliation(s)
| | | | | | | | - Mohan L. Sopori
- Address correspondence and reprint requests to: Mohan Sopori, Ph.D., Immunology Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., SE, Albuquerque, NM 87108, Tel.: (505) 348-9440; Fax: (505) 348-4986;
| |
Collapse
|
130
|
Singh S, Misiak M, Beyer C, Arnold S. Cytochrome c oxidase isoform IV-2 is involved in 3-nitropropionic acid-induced toxicity in striatal astrocytes. Glia 2009; 57:1480-91. [PMID: 19306371 DOI: 10.1002/glia.20864] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Astrocyte mitochondria play an important role for energy supply and neuronal survival in the brain. Toxic and degenerative processes are largely associated with mitochondrial dysfunction. We, therefore, investigated the effect of 3-nitropropionic acid (NPA), a mitochondrial toxin and in vitro model of Huntington's disease (HD), on mitochondrial function and viability of primary striatal astrocytes. Although NPA is known as an irreversible inhibitor of succinate dehydrogenase, we observed an increase of astrocyte ATP levels after NPA treatment. This effect could be explained by NPA-mediated alterations of cytochrome c oxidase subunit IV isoform (COX IV) expression. The up-regulation of COX isoform IV-2 caused an increased enzyme activity at the expense of elevated mitochondrial peroxide production causing increased cell death. The application of a small interfering RNA against COX IV-2 revealed the causal implication of COX isoform IV-2 in NPA-mediated elevation of oxidative stress and necrotic cell death. Thus, we propose a novel, additional mechanism of NPA-induced cell stress and death which is based on structural and functional changes of astrocyte COX and which could indirectly impair neuronal survival.
Collapse
Affiliation(s)
- Shilpee Singh
- Institute for Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
131
|
Roy J, Pallepati P, Bettaieb A, Tanel A, Averill-Bates DA. Acrolein induces a cellular stress response and triggers mitochondrial apoptosis in A549 cells. Chem Biol Interact 2009; 181:154-67. [DOI: 10.1016/j.cbi.2009.07.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/16/2009] [Accepted: 07/01/2009] [Indexed: 02/03/2023]
|
132
|
Abstract
INTRODUCTION Apoptosis is a highly regulated mechanism of cell death that differs from necrosis and plays an important role in normal tissue development, homeostasis and immune regulation. DISEASES AND APOPTOSIS Apoptosis is involved in many diseases. Defective apoptosis can cause systemic autoimmunity by allowing the survival of autoreactive lymphocytes. It may also be involved in the pathogenesis of organ-specific autoimmune diseases such as Hashimoto's thyroiditis and in the pathogenesis of tumors. MECHANISM PROGRAMMED DEATH CELL Apoptosis is regulated at multiple levels, including death receptor and ligand expression, adapter protein, cascades of caspases, mitochondria and the expression of anti apoptotic and pro apoptotic proteins. Apoptotic cell death can occur by two different pathways. Type I is initiated by the activation of death receptors (Fas, TNF-receptor-family) on the plasma membrane followed by activation of caspase 8. Type II involves changes in mitochondrial integrity initiated by various effectors, leading to the release of cytochrome c and activation of caspase 9. MECHANISM OF APOPTOSIS IN HASHIMOTO THYROIDITIS The thyroid cell destruction characteristic of autoimmune thyroiditis can be seen as the consequence of inappropriate expression of Fas or TRAIL death pathway molecules and down-regulation of the apoptosis controlling protein Bcl-2, which may be induced by cytokines released locally by infiltrating lymphocytes. Thyroid cell destruction in autoimmune hypothyroidism is dependent on T cell-mediated cytotoxicity with the likely additional effect of death receptor-mediated apoptosis. Modulation of apoptosis-related proteins by T helper 1 and T helper 2 cytokines controls thyrocyte survival in thyroid autoimmunity.
Collapse
|
133
|
Lee I, Salomon AR, Yu K, Samavati L, Pecina P, Pecinova A, Hüttemann M. Isolation of regulatory-competent, phosphorylated cytochrome C oxidase. Methods Enzymol 2009; 457:193-210. [PMID: 19426869 DOI: 10.1016/s0076-6879(09)05011-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of posttranslational modifications, specifically reversible phosphorylation as a regulatory mechanism operating in the mitochondria, is a novel research direction. The mitochondrial oxidative phosphorylation system is a particularly interesting unit because it is responsible for the production of the vast majority of cellular energy in addition to free radicals, two factors that are aberrant in numerous human diseases and that may be influenced by reversible phosphorylation of the oxidative phosphorylation complexes. We here describe a detailed protocol for the isolation of mammalian liver and heart mitochondria and subsequently cytochrome c oxidase (CcO) under conditions maintaining the physiological phosphorylation state. The protocol employs the use of activated vanadate, an unspecific tyrosine phosphatase inhibitor, fluoride, an unspecific serine/threonine phosphatase inhibitor, and EGTA, a calcium chelator to prevent the activation of calcium-dependent protein phosphatases. CcO purified without manipulation of signaling pathways shows strong tyrosine phosphorylation on subunits II and IV, whereas tyrosine phosphorylation of subunit I can be induced by the cAMP- and TNFalpha-dependent pathways in liver. Using our protocol on cow liver tissue we further show the identification of a new phosphorylation site on CcO subunit IV tyrosine 11 of the mature protein (corresponding to tyrosine 33 of the precursor peptide) via immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS). This phosphorylation site is located close to the ATP and ADP binding site, which adjusts CcO activity to cellular energy demand, and we propose that phosphorylation of tyrosine 11 enables allosteric regulation.
Collapse
Affiliation(s)
- Icksoo Lee
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Hsiao YP, Huang HL, Lai WW, Chung JG, Yang JH. Antiproliferative effects of lactic acid via the induction of apoptosis and cell cycle arrest in a human keratinocyte cell line (HaCaT). J Dermatol Sci 2009; 54:175-84. [DOI: 10.1016/j.jdermsci.2009.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 11/29/2022]
|
135
|
Rose MJ, Mascharak PK. Photosensitization of Ruthenium Nitrosyls to Red Light with an Isoelectronic Series of Heavy-Atom Chromophores: Experimental and Density Functional Theory Studies on the Effects of O-, S- and Se-Substituted Coordinated Dyes. Inorg Chem 2009; 48:6904-17. [DOI: 10.1021/ic900899j] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Michael J. Rose
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
136
|
Kadenbach B, Ramzan R, Vogt S. Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends Mol Med 2009; 15:139-47. [PMID: 19303362 DOI: 10.1016/j.molmed.2009.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 12/30/2022]
Abstract
Aging and degenerative diseases are associated with increased levels of reactive oxygen species (ROS). ROS are mostly produced in mitochondria, and their levels increase with higher mitochondrial membrane potential. Cellular respiratory control is based on inhibition of respiration by high membrane potentials. However, we have described a second mechanism of respiratory control based on allosteric inhibition of cytochrome c oxidase (CcO), the terminal enzyme of the respiratory chain, at high ATP:ADP ratios. The mechanism is independent of membrane potential. We have proposed that feedback inhibition of CcO by ATP keeps the membrane potential and ROS production at low levels. Various forms of stress switch off allosteric ATP-inhibition via reversible dephosphorylation of CcO, resulting in increased membrane potential and cellular ROS levels. This mechanism is proposed to represent a missing molecular link between stress and degenerative diseases.
Collapse
|
137
|
Menzies KJ, Robinson BH, Hood DA. Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol 2008; 296:C355-62. [PMID: 19036942 DOI: 10.1152/ajpcell.00415.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial (mt)DNA mutations contribute to various disease states characterized by low ATP production. In contrast, thyroid hormone [3,3',5-triiodothyronine (T(3))] induces mitochondrial biogenesis and enhances ATP generation within cells. To evaluate the role of T(3)-mediated mitochondrial biogenesis in patients with mtDNA mutations, three fibroblast cell lines with mtDNA mutations were evaluated, including two patients with Leigh's syndrome and one with hypertrophic cardiomyopathy. Compared with control cells, patient fibroblasts displayed similar levels of mitochondrial mass, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), mitochondrial transcription factor A (Tfam), and uncoupling protein 2 (UCP2) protein expression. However, patient cells exhibited a 1.6-fold elevation in ROS production, a 1.7-fold elevation in cytoplasmic Ca2+ levels, a 1.2-fold elevation in mitochondrial membrane potential, and 30% less complex V activity compared with control cells. Patient cells also displayed 20-25% reductions in both cytochrome c oxidase (COX) activity and MnSOD protein levels compared with control cells. After T(3) treatment of patient cells, ROS production was decreased by 40%, cytoplasmic Ca2+ was reduced by 20%, COX activity was increased by 1.3-fold, and ATP levels were elevated by 1.6-fold, despite the absence of a change in mitochondrial mass. There were no significant alterations in the protein expression of PGC-1alpha, Tfam, or UCP2 in either T(3)-treated patient or control cells. However, T(3) restored the mitochondrial membrane potential, complex V activity, and levels of MnSOD to normal values in patient cells and elevated MnSOD levels by 21% in control cells. These results suggest that T(3) acts to reduce cellular oxidative stress, which may help attenuate ROS-mediated damage, along with improving mitochondrial function and energy status in cells with mtDNA defects.
Collapse
Affiliation(s)
- Keir J Menzies
- School of Kinesiology and Health Science, Farqhuarson Life Science Bldg., Rm. 302, York Univ., Toronto, ON M3JIP3, Canada
| | | | | |
Collapse
|
138
|
Rodríguez-Roldán V, García-Heredia JM, Navarro JA, Rosa MADL, Hervás M. Effect of Nitration on the Physicochemical and Kinetic Features of Wild-Type and Monotyrosine Mutants of Human Respiratory Cytochrome c. Biochemistry 2008. [DOI: 10.1021/bi801329s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vicente Rodríguez-Roldán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José Manuel García-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José A. Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Miguel A. De la Rosa
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
139
|
Iijima T, Tanaka K, Matsubara S, Kawakami H, Mishima T, Suga K, Akagawa K, Iwao Y. Calcium loading capacity and morphological changes in mitochondria in an ischemic preconditioned model. Neurosci Lett 2008; 448:268-72. [PMID: 18955111 DOI: 10.1016/j.neulet.2008.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 01/25/2023]
Abstract
The concept of the mitochondrial permeability transition (mPT) has been used to explain cell death induced by calcium deregulation, which is in turn induced by a disruption in the mitochondrial loading capacity of cytosolic calcium (CLC). Whether mitochondria have specific morphologies representing the CLC and the mPT remains controversial. We examined ultrastructural changes in the mitochondria of cultured hippocampal neurons preconditioned with oxygen-glucose deprivation (OGD) for 30 min (30OGD) or 120 min (120OGD). The CLC was then evaluated using simultaneous imaging of the mitochondrial and plasma Ca++ concentrations after the induction of Ca++ influx by the application of glutamate. In the 30OGD group, the CLC increased as the mitochondria rapidly reacted to the increase in plasma Ca++, which was soon cleared. In the 120OGD group, however, the CLC was disturbed because the mitochondrial uptake of Ca was blunted, and the plasma Ca++ was not cleared after glutamate application. We classified the specific morphological changes in the mitochondria according to a previously reported classification. Rounded mitochondria with scarce interior content were observed in the 120OGD group, a model of prolonged lethal OGD, and disruptions in the mitochondrial outer membrane were frequently confirmed, suggesting mPT. The 30OGD group, a model of enhanced CLC in preconditioned neurons, was characterized by round mitochondria with condensed matrices. After glutamate application, the mitochondria became even more rounded with expanded matrices, and outer membrane disruptions were occasionally seen. Our observations suggest that subpopulations of mitochondria with specific morphologies are linked to the CLC and mPT.
Collapse
Affiliation(s)
- Takehiko Iijima
- Department of Anesthesiology, Kyorin University, School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 2008; 40:445-56. [PMID: 18843528 DOI: 10.1007/s10863-008-9169-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/01/2008] [Indexed: 01/09/2023]
Abstract
Thirty years after Peter Mitchell was awarded the Nobel Prize for the chemiosmotic hypothesis, which links the mitochondrial membrane potential generated by the proton pumps of the electron transport chain to ATP production by ATP synthase, the molecular players involved once again attract attention. This is so because medical research increasingly recognizes mitochondrial dysfunction as a major factor in the pathology of numerous human diseases, including diabetes, cancer, neurodegenerative diseases, and ischemia reperfusion injury. We propose a model linking mitochondrial oxidative phosphorylation (OxPhos) to human disease, through a lack of energy, excessive free radical production, or a combination of both. We discuss the regulation of OxPhos by cell signaling pathways as a main regulatory mechanism in higher organisms, which in turn determines the magnitude of the mitochondrial membrane potential: if too low, ATP production cannot meet demand, and if too high, free radicals are produced. This model is presented in light of the recently emerging understanding of mechanisms that regulate mammalian cytochrome c oxidase and its substrate cytochrome c as representative enzymes for the entire OxPhos system.
Collapse
Affiliation(s)
- Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
141
|
Rose MJ, Fry NL, Marlow R, Hinck L, Mascharak PK. Sensitization of ruthenium nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for light-triggered NO delivery to cellular targets. J Am Chem Soc 2008; 130:8834-46. [PMID: 18597437 DOI: 10.1021/ja801823f] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three nitrosyl-dye conjugates, namely, [(Me 2bpb)Ru(NO)(Resf)] ( 1-Resf), [(Me 2bQb)Ru(NO)(Resf)] ( 2-Resf), and [((OMe) 2bQb)Ru(NO)(Resf)] ( 3-Resf) have been synthesized via direct replacement of the chloride ligand of the parent {Ru-NO} (6) nitrosyls of the type [(R 2byb)Ru(NO)(L)] with the anionic tricyclic dye resorufin (Resf). The structures of 1-Resf- 3-Resf have been determined by X-ray crystallography. The dye is coordinated to the ruthenium centers of these conjugates via the phenolato-O atom and is trans to NO. Systematic red shift of the d pi(Ru) --> pi*(NO) transition of the parent nitrosyls [(R 2byb)Ru(NO)(L)] due to changes in R and y in the equatorial tetradentate ligand R 2byb (2-) results in its eventual merge with the intense absorption band of the dye around 500 nm in 3-Resf. Unlike the UV-sensitive parent [(R 2byb)Ru(NO)(L)] nitrosyls, these dye-sensitized nitrosyls rapidly release NO when exposed to visible light (lambda >/= 465 nm). Comparison of the photochemical parameters reveals that direct coordination of the light-harvesting chromophore to the ruthenium center in the present nitrosyls results in a significantly greater extent of sensitization to visible light compared to nitrosyls with appended chromophore (linked via alkyl chains). 1-Resf has been employed as a "trackable" NO donor to promote NO-induced apoptosis in MDA-MB-231 human breast cancer cells under the control of light. The results of this work demonstrate that (a) the d pi(Ru) --> pi*(NO) transition (photoband) of {Ru-NO} (6) nitrosyls can be tuned into visible range via careful alteration of the ligand frame(s) and (b) such nitrosyls can be significantly sensitized to visible light by directly ligating a light-harvesting chromophore to the ruthenium center. The potential of these photosensitive nitrosyl-dye conjugates as (i) biological tools to study the effects of NO in cellular environments and (ii) "trackable" NO donors in photodynamic therapy of malignancies (such as skin cancer) has been discussed.
Collapse
Affiliation(s)
- Michael J Rose
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.
| | | | | | | | | |
Collapse
|
142
|
Eun SY, Woo IS, Jang HS, Jin H, Kim MY, Kim HJ, Lee JH, Chang KC, Kim JH, Seo HG. Identification of cytochrome c oxidase subunit 6A1 as a suppressor of Bax-induced cell death by yeast-based functional screening. Biochem Biophys Res Commun 2008; 373:58-63. [DOI: 10.1016/j.bbrc.2008.05.178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
|
143
|
Cytolethal distending toxin induces caspase-dependent and -independent cell death in MOLT-4 cells. Infect Immun 2008; 76:4783-91. [PMID: 18644882 DOI: 10.1128/iai.01612-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytolethal distending toxin (CDT) induces apoptosis using the caspase-dependent classical pathway in the majority of human leukemic T cells (MOLT-4). However, we found the process to cell death is only partially inhibited by pretreatment of the cells with a general caspase inhibitor, z-VAD-fmk. Flow cytometric analysis using annexin V and propidium iodide showed that a 48-h CDT treatment decreased the living cell population by 35% even in the presence of z-VAD-fmk. z-VAD-fmk completely inhibited caspase activity in 24 h CDT-intoxicated cells. Further, CDT with z-VAD-fmk treatment clearly increased the cell population that had a low level of intracellular reactive oxygen. This is a characteristic opposite to that of caspase-dependent apoptosis. Overexpression of bcl2 almost completely inhibited cell death using CDT treatment in the presence of z-VAD-fmk. The data suggest there are at least two different pathways used in CDT-induced cell death: conventional caspase-dependent (early) apoptotic cell death and caspase-independent (late) death. Both occur via the mitochondrial membrane disruption pathway.
Collapse
|
144
|
Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, Ahlquist P, Kawaoka Y. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 2008; 454:890-3. [PMID: 18615016 PMCID: PMC2574945 DOI: 10.1038/nature07151] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 06/05/2008] [Indexed: 11/09/2022]
Abstract
All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and mammalian cell cultures. Here we describe a novel genome-wide RNA interference (RNAi) screen in Drosophila that can be used to identify host genes important for influenza virus replication. After modifying influenza virus to allow infection of Drosophila cells and detection of influenza virus gene expression, we tested an RNAi library against 13,071 genes (90% of the Drosophila genome), identifying over 100 for which suppression in Drosophila cells significantly inhibited or stimulated reporter gene (Renilla luciferase) expression from an influenza-virus-derived vector. The relevance of these findings to influenza virus infection of mammalian cells is illustrated for a subset of the Drosophila genes identified; that is, for three implicated Drosophila genes, the corresponding human homologues ATP6V0D1, COX6A1 and NXF1 are shown to have key functions in the replication of H5N1 and H1N1 influenza A viruses, but not vesicular stomatitis virus or vaccinia virus, in human HEK 293 cells. Thus, we have demonstrated the feasibility of using genome-wide RNAi screens in Drosophila to identify previously unrecognized host proteins that are required for influenza virus replication. This could accelerate the development of new classes of antiviral drugs for chemoprophylaxis and treatment, which are urgently needed given the obstacles to rapid development of an effective vaccine against pandemic influenza and the probable emergence of strains resistant to available drugs.
Collapse
|
145
|
Araújo GW, Beyer C, Arnold S. Oestrogen influences on mitochondrial gene expression and respiratory chain activity in cortical and mesencephalic astrocytes. J Neuroendocrinol 2008; 20:930-41. [PMID: 18445124 DOI: 10.1111/j.1365-2826.2008.01747.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regulation of mitochondrial energy metabolism plays an essential role in the central nervous system (CNS). Abnormalities of the mitochondrial respiratory chain often accompany neurodegenerative diseases. This makes mitochondria a perfect target for strategies of cellular protection against toxic compounds and pathological conditions. Steroid hormones, such as oestrogen, are well-known to fulfil a protective role in the brain during ischaemic and degenerative processes. Because astrocytes function as the major energy supplier in the CNS, we have analysed oestrogen effects on the mitochondrial respiratory chain of this cell type. In our studies, we applied semi- and quantitative polymerase chain reaction analysis of gene expression and polarographic measurements of the respiratory chain activity of mitochondria. We observed that structural and functional properties were regulated dependent on the oestrogen exposure time and the brain region, but independent of the nuclear oestrogen receptors. We could demonstrate that long-term oestrogen exposure increases the subunit gene expression of respiratory chain complexes and the mitochondrial DNA content, thereby indicating an up-regulation of the amount of mitochondria per cell together with an increase of mitochondrial energy production. This could represent an important indirect mechanism by which long-term oestrogen exposure protects neurones from cell death under neurotoxic conditions. On the other hand, we observed short-term effects of oestrogen on the activity of mitochondrial, proton-pumping respiratory chain complexes. In astrocytes from the cortex, respiratory chain activity was decreased, whereas it was increased in astrocytes from the mesencephalon. An increased production of reactive oxygen species would be the consequence of an increased respiratory chain activity in mesencephalic astrocytes. This could explain the different efficiencies of oestrogen-mediated short-term protection in distinct brain regions, but also indicates the limitations for a therapeutic short-term application of oestrogen.
Collapse
Affiliation(s)
- G W Araújo
- Institute for Neuroanatomy, Faculty of Medicine, RWTH, Aachen, Germany
| | | | | |
Collapse
|
146
|
Helling S, Vogt S, Rhiel A, Ramzan R, Wen L, Marcus K, Kadenbach B. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol Cell Proteomics 2008; 7:1714-24. [PMID: 18541608 DOI: 10.1074/mcp.m800137-mcp200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of protein phosphorylation on the kinetics of cytochrome c oxidase was investigated by applying Western blotting, mass spectrometry, and kinetic measurements with an oxygen electrode. The isolated enzyme from bovine heart exhibited serine, threonine, and/or tyrosine phosphorylation in various subunits, except subunit I, by using phosphoamino acid-specific antibodies. The kinetics revealed slight inhibition of oxygen uptake in the presence of ATP, as compared with the presence of ADP. Mass spectrometry identified the phosphorylation of Ser-34 at subunit IV and Ser-4 and Thr-35 at subunit Va. Incubation of the isolated enzyme with protein kinase A, cAMP, and ATP resulted in serine and threonine phosphorylation of subunit I, which was correlated with sigmoidal inhibition kinetics in the presence of ATP. This allosteric ATP-inhibition of cytochrome c oxidase was also found in rat heart mitochondria, which had been rapidly prepared in the presence of protein phosphatase inhibitors. The isolated rat heart enzyme, prepared from the mitochondria by blue native gel electrophoresis, showed serine, threonine, and tyrosine phosphorylation of subunit I. It is concluded that the allosteric ATP-inhibition of cytochrome c oxidase, previously suggested to keep the mitochondrial membrane potential and thus the reactive oxygen species production in cells at low levels, occurs in living cells and is based on phosphorylation of cytochrome c oxidase subunit I.
Collapse
Affiliation(s)
- Stefan Helling
- Medizinisches Proteom-Center, Funktionelle Proteomik, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
147
|
Ca2+ Buffering Capacity of Mitochondria After Oxygen-Glucose Deprivation in Hippocampal Neurons. Neurochem Res 2008; 34:221-6. [DOI: 10.1007/s11064-008-9753-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
|
148
|
Lee KB, Lee JS, Park JW, Huh TL, Lee YM. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Exp Mol Med 2008; 40:118-29. [PMID: 18305405 DOI: 10.3858/emm.2008.40.1.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proton beam is useful to target tumor tissue sparing normal cells by allowing precise dose only into tumor cells. However, the cellular and molecular mechanisms by which proton beam induces tumor cell death are still undefined. We irradiated three different tumor cells (LLC, HepG2, and Molt-4) with low energy proton beam (35 MeV) with spread out Bragg peak (SOBP) in vitro, and investigated cell death by MTT or CCK-8 assay at 24 h after irradiation. LLC and HepG2 cells were sensitive to proton beam at over 10 Gy to induce apoptosis whereas Molt-4 showed rather low sensitivity. Relative biological effectiveness (RBE) values for the death rate relative to gamma-ray were ranged from 1.1 to 2.3 in LLC and HepG2 but from 0.3 to 0.7 in Molt-4 at 11 d after irradiation by colony formation assay. The typical apoptotic nuclear DNA morphological pattern was observed by staining with 4'-6-diamidino-2-phenylindole (DAPI). Tiny fragmented DNA was observed in HepG2 but not in Molt-4 by the treatment of proton in apoptotic DNA fragment assay. By FACS analysis after stained with FITC-Annexin-V, early as well as median apoptotic fractions were clearly increased by proton treatment. Proton beam-irradiated tumor cells induced a cleavage of poly (ADP-ribose) polymerase-1 (PARP-1) and procaspases-3 and -9. Activity of caspases was highly enhanced after proton beam irradiation. Reactive oxygen species (ROS) were significantly increased and N-acetyl cysteine pretreatment restored the apoptotic cell death induced by proton beam. Furthermore, p38 and JNK but not ERK were activated by proton and dominant negative mutants of p38 and JNK revived proton-induced apoptosis, suggesting that p38 and JNK pathway may be activated through ROS to activate apoptosis. In conclusion, our data clearly showed that single treatment of low energy proton beam with SOBP increased ROS and induced cell death of solid tumor cells (LLC and HepG2) in an apoptotic cell death program by the induction of caspases activities.
Collapse
Affiliation(s)
- Kheun Byeol Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | |
Collapse
|
149
|
Sato KI. Signal transduction of fertilization in frog eggs and anti-apoptotic mechanism in human cancer cells: common and specific functions of membrane microdomains. Open Biochem J 2008; 2:49-59. [PMID: 18949075 PMCID: PMC2570554 DOI: 10.2174/1874091x00802010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 02/07/2023] Open
Abstract
Membrane microdomains or lipid/membrane rafts are distinct areas on the plasma membranes, where a specific subset of lipids (e.g. cholesterol, sphingolipids) and proteins (e.g. glycosylphosphatidylinositol-anchored proteins, growth factor receptor/kinases) are getting together and functioning for several aspects of cellular functions. Our recent investigation has revealed that fertilization of African clawed frog, Xenopus laevis, requires cholesterol-dependent nature of egg membrane microdomains. Moreover, fertilization of Xenopus eggs involves proteolytic cleavage of the extracellular part and subsequent phosphorylation of a cytoplasmic tyrosine residue of uroplakin III, an egg membrane microdomain-associated protein. Protease activity toward uroplakin III seems to be derived from fertilizing sperm, while phosphorylation of uroplakin III seems to be catalyzed by the egg tyrosine kinase Src, whose activation is required for cytoplasmic rearrangement of fertilized eggs; so-called 'egg activation'. Therefore, it is assumed that uroplakin III serves an integral part of signal transduction in fertilization of Xenopus. Our more recent study on human cancer cells has revealed that a similar but distinct scheme of signal transduction operates in anti-apoptotic growth of cells. Namely, in human bladder carcinoma cells, cooperation of uroplakin III and Src, both of which localize to the membrane microdomains, allows cells to escape from apoptotic cell death and proliferate under culture conditions deprived of serum. In this review, I briefly introduce about biology of fertilization and cancer, and then present and discuss our experimental data on general importance and specific features of membrane microdomains in Xenopus fertilization and anti-apoptosis in human bladder carcinoma cells.
Collapse
Affiliation(s)
- Ken-Ichi Sato
- Laboratory of Cell and Developmental Biology, Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan.
| |
Collapse
|
150
|
Yu Q, Nguyen T, Ogbi M, Caldwell RW, Johnson JA. Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: exacerbation of COI subunit loss by PKC-epsilon inhibition. Am J Physiol Heart Circ Physiol 2008; 294:H2637-45. [PMID: 18408135 DOI: 10.1152/ajpheart.91476.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously described a PKC-epsilon interaction with cytochrome oxidase subunit IV (COIV) that correlates with enhanced CO activity and cardiac ischemic preconditioning (PC). We therefore investigated the effects of PC and ischemia-reperfusion (I/R) injury on CO subunit levels in an anesthetized rat coronary ligation model. Homogenates prepared from the left ventricular regions at risk (RAR) and not at risk (RNAR) for I/R injury were fractionated into cell-soluble (S), 600 g low-speed centrifugation (L), gradient-purified mitochondrial (M), and 100,000 g particulate (P) fractions. In RAR tissue, PC (2 cycles of 5-min ischemia and 5-min reperfusion) decreased the COI in the P fraction ( approximately 29% of total cellular COI), suggesting changes in interfibrillar mitochondria. After 30 min of ischemia and 120 min of reperfusion, total COI levels decreased in the RAR by 72%. Subunit Va was also downregulated by 42% following prolonged I/R in the RAR. PC administered before I/R reduced the loss of COI in the M and P fractions approximately 30% and prevented COVa losses completely. We observed no losses in subunits Vb and VIIa following I/R alone; however, significant losses occurred when PC was administered before prolonged I/R. Delivery of a cell-permeable PKC-epsilon translocation inhibitor (epsilonV1-2) to isolated rat hearts before prolonged I/R dramatically increased COI loss, suggesting that PKC-epsilon protects COI levels. We propose that additional measures to protect CO subunits when coadministered with PC may improve its cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Qilin Yu
- Department of Pharmacology and Toxicology, School of Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|