101
|
Liufu T, Wang Z. Treatment for mitochondrial diseases. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0034/revneuro-2020-0034.xml. [PMID: 32903211 DOI: 10.1515/revneuro-2020-0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
Mitochondrial diseases are predominantly caused by mutations of mitochondrial or nuclear DNA, resulting in multisystem defects. Current treatments are largely supportive, and the disorders progress relentlessly. Nutritional supplements, pharmacological agents and physical therapies have been used in different clinical trials, but the efficacy of these interventions need to be further evaluated. Several recent reviews discussed some of the interventions but ignored bias in those trials. This review was conducted to discover new studies and grade the original studies for potential bias with revised Cochrane Collaboration guidelines. We focused on seven published studies and three unpublished studies; eight of these studies showed improvement in outcome measurements. In particular, two of the interventions have been tested in studies with strict design, which we believe deserve further clinical trials with a large sample. Additionally, allotopic expression of the ND4 subunit seemed to be an effective new treatment for patients with Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
102
|
Wang R, Sun C, Lin J, Chen N, Hu B, Liu X, Geng D, Yang L, Li Y. Altered Dynamic Functional Connectivity in Patients With Mitochondrial Encephalomyopathy With Lactic Acidosis and Stroke-Like Episodes (MELAS) at Acute and Chronic Stages: Shared and Specific Brain Connectivity Abnormalities. J Magn Reson Imaging 2020; 53:427-436. [PMID: 32869426 DOI: 10.1002/jmri.27353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a rare maternally inherited genetic disease; however, little is known about its underlying brain basis. Furthermore, the dynamic functional connectivity (dFC) of brain networks in MELAS has not been explored. PURPOSE To investigate the abnormalities of dFC in patients with MELAS at the acute and chronic stages, and to determine the possible relations between dynamic connectivity alterations and volumes of stroke-like lesions (SLLs). STUDY TYPE Prospective. SUBJECTS Twenty-two MELAS patients at the acute stage, 23 MELAS patients at the chronic stage, and 22 healthy controls. FIELD STRENGTH/SEQUENCE Single-shot gradient-recalled echo planar imaging (EPI) sequence at 3T. ASSESSMENT Dynamic FC states were estimated using the sliding window approach and k-means clustering analyses. Combined with graph theory, the topological properties of the dFC network were also accessed. STATISTICAL TESTS Permutation test, Pearson correlation coefficient, and false discovery rate correction. RESULTS We identified four dFC states and found that MELAS patients (especially at the acute stage) spent more time in a state with weaker connectivity (state 1) and less time in states with stronger connectivity. In addition, volumes of acute SLLs were positively correlated with mean dwell time in state 1 (r = 0.539, P < 0.05) and negatively correlated with the number of transitions (r = -0.520, P < 0.05). Furthermore, MELAS patients at the acute stage exhibited significantly increased global efficiency (P < 0.01) and decreased local efficiency (P < 0.001) compared to the controls and the patients at the chronic stage. Patients at the chronic stage only showed significantly (P < 0.001) decreased local efficiency compared to the controls. DATA CONCLUSION Our findings suggest similar and distinct dFC alterations in MELAS patents at the acute and chronic stages, providing novel insights for understanding the neuropathological mechanisms of MELAS. Level of Evidence 2 Technical Efficacy Stage Stage 2 J. MAGN. RESON. IMAGING 2021;53:427-436.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai, China.,Shanghai Institution of Medical Imaging, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ne Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Hu
- Shanghai Institution of Medical Imaging, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Xueling Liu
- Shanghai Institution of Medical Imaging, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai, China.,Shanghai Institution of Medical Imaging, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Liqin Yang
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| |
Collapse
|
103
|
Wang R, Li Y, Lin J, Sun C, Chen N, Xu W, Hu B, Liu X, Geng D, Yang L. Altered spontaneous brain activity at attack and remission stages in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS): Beyond stroke-like lesions. Mitochondrion 2020; 54:49-56. [DOI: 10.1016/j.mito.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/29/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
|
104
|
Pauls AD, Sandhu V, Young D, Nevay DL, Yeung DF, Sirrs S, Tsang MY, Tsang TSM, Lehman A, Mezei MM, Poburko D. High rate of hypertension in patients with m.3243A>G MELAS mutations and POLG variants. Mitochondrion 2020; 53:194-202. [PMID: 32502631 DOI: 10.1016/j.mito.2020.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Animal studies suggest that decreased vascular mitochondrial DNA copy number can promote hypertension. We conducted a chart review of blood pressure and hemodynamics in patients with either mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS, n = 36) or individuals with variants in the mitochondrial DNA polymerase gamma (POLG, n = 26). The latter included both pathogenic variants and variants of unknown significance (VUS). Hypertension rates (MELAS 50%, POLG 50%) were elevated relative to Canadian norms in 20-39 (MELAS) and 40-59 (MELAS and POLG) years of age groups. Peripheral resistance was high in the hypertensive versus normotensive patients, potentially indicative of microvascular disease. Despite antihypertensive treatment, systolic blood pressure remained elevated in the POLG versus MELAS group. The risk of hypertension was not associated with MELAS heteroplasmy. Hypertension rates were not different between individuals with known pathogenic POLG variants and those with VUS, including common variants. Hypertension (HT) also did not differ between patients with POLG variants with (n = 17) and without chronic progressive external opthalmoplegia (n = 9) (CPEO). HT was associated with variants in all three functional domains of POLG. These findings suggest that both pathogenic variants and several VUS in the POLG gene may promote human hypertension and extend our past reports that increased risk of HT is associated with MELAS.
Collapse
Affiliation(s)
- Andrew D Pauls
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Vikrant Sandhu
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Dana Young
- Adult Metabolic Diseases Unit, Vancouver General Hospital, Vancouver, BC, Canada
| | - Dayna-Lynn Nevay
- Adult Metabolic Diseases Unit, Vancouver General Hospital, Vancouver, BC, Canada
| | - Darwin F Yeung
- Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Sandra Sirrs
- Adult Metabolic Diseases Unit, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael Y Tsang
- Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Teresa S M Tsang
- Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michelle M Mezei
- Adult Metabolic Diseases Unit, Vancouver General Hospital, Vancouver, BC, Canada; Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Damon Poburko
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
105
|
Papadopoulos C, Wahbi K, Behin A, Bougouin W, Stojkovic T, Leonard-Louis S, Berber N, Lombès A, Duboc D, Jardel C, Eymard B, Laforêt P. Incidence and predictors of total mortality in 267 adults presenting with mitochondrial diseases. J Inherit Metab Dis 2020; 43:459-466. [PMID: 31652339 DOI: 10.1002/jimd.12185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 11/10/2022]
Abstract
Assessing long-term mortality and identifying predictors of death in adults with mitochondrial diseases. We retrospectively included adult patients with genetically proven mitochondrial diseases referred to our centre between January 2000 and June 2016, and collected information relative to their genetic testing, clinical assessments, and vital status. We performed single and multiple variable analyses in search of predictors of total mortality, and calculated hazard ratios (HR) and 95% confidence intervals (CI). We included 267 patients (women 59%; median age 43.3 [31.3-54.2] years), including 111 with mitochondrial DNA (mtDNA) single large-scale deletions, 65 with m.3243A>G, 24 with m.8344A>G, 32 with other mtDNA point mutations, and 36 patients with nuclear genes mutations. Over a median follow-up of 8.9 years (0.3 to 18.7), 61 patients (22.8%) died, at a median age of 50.7 (37.9-51.9) years. Primary cause of death was cardiovascular disease in 16 patients (26.2%), respiratory in 11 (18.0%), and gastrointestinal in 5 (8.1%). By multiple variable analysis, diabetes (HR 2.75; 95% CI 1.46-5.18), intraventricular cardiac conduction defects (HR 3.38; 95% CI 1.71-6.76) and focal brain involvement (HR 2.39; 95% CI 1.25-4.57) were independent predictors of death. Adult patients with mitochondrial diseases present high morbidity that can be independently predicted by the presence of diabetes, intraventricular cardiac conduction defects, and focal brain involvement.
Collapse
Affiliation(s)
- Constantinos Papadopoulos
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
- INSERM Unit 970, Paris Cardiovascular Research Centre (PARCC), Paris, France
| | - Anthony Behin
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Wulfran Bougouin
- INSERM Unit 970, Paris Cardiovascular Research Centre (PARCC), Paris, France
- Medical Intensive Care Unit, AP-HP, Cochin Hospital, Paris, France
| | - Tanya Stojkovic
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Sarah Leonard-Louis
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Nawal Berber
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Anne Lombès
- INSERM, UMRS 975, APHP, Cochin Hospital, Paris, France
| | - Denis Duboc
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
| | - Claude Jardel
- Biochemistry Department and Genetic Center, APHP, Pitié-Salpêtrière Hospital, Paris, France
- Inserm U 1016, CNRS UMR 8104, Institut Cochin, Paris, France
- GRC-UPMC Neuro-métabolisme, Université Pierre et Marie Curie, Paris, France
| | - Bruno Eymard
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Pascal Laforêt
- APHP, Raymond-Poincaré Teaching Hospital, Neurology department, Nord/Est/Ile de France Neuromuscular Reference Center, Garches, France
| |
Collapse
|
106
|
Falfoul Y, Hassairi A, Chebil A, Chaker N, Matri LE. Cas documenté de MELAS syndrome. J Fr Ophtalmol 2020; 43:e143-e146. [DOI: 10.1016/j.jfo.2019.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 11/24/2022]
|
107
|
Finsterer J. Muscle biopsy is not diagnostic for MELAS. J Neurol Sci 2020; 410:116670. [PMID: 31923614 DOI: 10.1016/j.jns.2020.116670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria.
| |
Collapse
|
108
|
Mustafa MF, Fakurazi S, Abdullah MA, Maniam S. Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions. Genes (Basel) 2020; 11:genes11020192. [PMID: 32059522 PMCID: PMC7074468 DOI: 10.3390/genes11020192] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are best known for their role in energy production, and they are the only mammalian organelles that contain their own genomes. The mitochondrial genome mutation rate is reported to be 10–17 times higher compared to nuclear genomes as a result of oxidative damage caused by reactive oxygen species during oxidative phosphorylation. Pathogenic mitochondrial DNA mutations result in mitochondrial DNA disorders, which are among the most common inherited human diseases. Interventions of mitochondrial DNA disorders involve either the transfer of viable isolated mitochondria to recipient cells or genetically modifying the mitochondrial genome to improve therapeutic outcome. This review outlines the common mitochondrial DNA disorders and the key advances in the past decade necessary to improve the current knowledge on mitochondrial disease intervention. Although it is now 31 years since the first description of patients with pathogenic mitochondrial DNA was reported, the treatment for mitochondrial disease is often inadequate and mostly palliative. Advancements in diagnostic technology improved the molecular diagnosis of previously unresolved cases, and they provide new insight into the pathogenesis and genetic changes in mitochondrial DNA diseases.
Collapse
MESH Headings
- Acidosis, Lactic/congenital
- Acidosis, Lactic/genetics
- Acidosis, Lactic/metabolism
- DNA Mutational Analysis
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Epilepsies, Myoclonic/congenital
- Epilepsies, Myoclonic/genetics
- Epilepsies, Myoclonic/therapy
- Gene Editing/methods
- Genetic Therapy/methods
- Humans
- Leigh Disease/genetics
- Leigh Disease/metabolism
- Leigh Disease/therapy
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/therapy
- Mitochondrial Encephalomyopathies/congenital
- Mitochondrial Encephalomyopathies/genetics
- Mitochondrial Encephalomyopathies/metabolism
- Mutation
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/metabolism
Collapse
Affiliation(s)
- Mohd Fazirul Mustafa
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang Selangor Darul Ehsan, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
109
|
Finsterer J, Aliyev R. Metabolic stroke or stroke-like lesion: Peculiarities of a phenomenon. J Neurol Sci 2020; 412:116726. [PMID: 32088469 DOI: 10.1016/j.jns.2020.116726] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES One of the most frequent cerebral lesions in mitochondrial disorders(MIDs) on imaging is the stroke-like lesion(SLL) clinically manifesting as stroke-like episode (SLE, metabolic stroke). This review aims at discussing recent advances concerning the presentation, diagnosis, and treatment of SLLs. METHODS Systematic literature review using appropriate search terms. RESULTS SLLs are the hallmark of MELAS but occasionally occur in other MIDs. SLLs are best identified on multimodal, cerebral MRI. SLLs may present as uni-/multilocular, symmetric/asymmetric, cortical/subcortical, supra-/infratentorial condition, initially resembling a cytotoxic edema and later a vasogenic edema, or a variable mix between them. SLLs run through an acute and a chronic stage. The acute stage is characterised by a progressively expanding lesion over days, weeks, or months, showing up as increasing hyperintensity on T2/FLAIR, DWI, and PWI and by hyperperfusion, that does not conform to a vascular territory. ADC maps are initially hypointens to become hyperintens during the course. More rarely, a variable mixture of hyper- and hypointensities may be found. The chronic stage is characterised by hypoperfusion, gadolinium enhancement, and regression of hyperintensities to various endpoints. SLLs originate from an initial cortical lesion due to focal metabolic breakdown, which either remains stable or expands within the cortex or to subcortical areas. Some SLLs show spontaneous reversibility (fleeing cortical lesions) suggesting that neuronal/glial damage does not reach the threshold of irreversible cell death. CONCLUSIONS SLLs are a unique feature of various MIDs in particular MELAS. SLLs are dynamic and change their appearance over time. SLLs are accessible to treatment.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria.
| | - Rahim Aliyev
- Department of Neurology and Clinical Neurophysiology, Azerbaijan State Advanced Training Institute for Doctors named after A. Aliyev, Baku, Azerbaijan
| |
Collapse
|
110
|
Chen H, Hu Q, Raza HK, Chansysouphanthong T, Singh S, Rai P, Cui G, Zhang Z, Ye X, Xu C, Liu Y, Jiang H. An analysis of the clinical and imaging features of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Somatosens Mot Res 2020; 37:45-49. [PMID: 32000557 DOI: 10.1080/08990220.2020.1720636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: To investigate the clinical features and imaging characteristics of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS).Methods: Seventeen patients with MELAS diagnosed in the Affiliated Hospital of Xuzhou Medical University from July 2014 to August 2018 were enrolled in this study and their clinical manifestations, imaging and histopathological features were retrospectively analysed. We also discussed and summarised the related literature.Results: All of the 12 patients had seizures; stroke-like episodes in 12 cases; audio-visual impairment in 12 cases; headache in six cases; dysplasia in four cases; mental retardation in three cases; ataxia in two cases. On cranial magnetic resonance (MR) scans, the most common manifestations were in temporal-occipital-parietal lobe, cortical or subcortical areas as well as frontal lobe, thalamus, and basal ganglia showing long or equal T1 signals, long T2 signals, and hyperintense or iso-intense diffusion-weighted imaging (DWI) signals accompanied by ventricular enlargement and brain atrophy. MR spectroscopy showed that lactic acid peaks could be found in lesion sites, normal brain tissues, and cerebrospinal fluid. Muscle biopsy and genetic testing are the gold standard for diagnosing MELAS, muscle biopsy revealed COX-negative muscle fibres and SDH-stained red ragged fibres (RRF) under the sarcolemma. Mutations of mtDNA A3243G locus were common on gene testing. Improvement of mitochondrial function was observed after symptomatic and supportive treatment.Conclusion: MELAS should be considered for patients with epileptic seizures, headache, stroke-like episodes, extraocular palsy, cognitive decline and other clinical manifestations with the lesion located in the temporal-occipital-parietal lobe regardless of the distribution of blood vessels, and further examinations including muscle biopsy and gene testing should be performed to confirm the diagnosis.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Hu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hafiz Khuram Raza
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of International Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Sandeep Singh
- School of International Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pabitra Rai
- School of International Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yonghai Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyang Jiang
- People's Liberation Army Hospital No. 82, Huaian, Jiangsu, China
| |
Collapse
|
111
|
Patients with MELAS with negative myopathology for characteristic ragged-red fibers. J Neurol Sci 2020; 408:116499. [PMID: 31726383 DOI: 10.1016/j.jns.2019.116499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Muscle pathology usually contributes to mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode (MELAS), even in patients without prominent muscle symptoms. We report a series of patients with MELAS without significant myopathic changes. METHODS Twelve patients without ragged-red fibers (RRFs) on muscle pathology (RRF-negative group) and 99 patients with MELAS and RRFs and/or cytochrome c oxidase (COX)-deficient fibers (control RRF-positive group) were recruited. We analyzed clinical features, neuroimaging and pathological findings, gene mutation data, immunofluorescence assay of key respiratory chain subunits of complexes I and IV and mitochondrial DNA (mtDNA) mutation load in biopsied muscle samples. RESULTS None of the RRF-negative patients had RRF or COX-negative fibers, but four patients had strongly succinate dehydrogenase-stained vessels (SSVs). There was a lower proportion of m.3243A>G and higher proportion of mitochondria-encoded ND gene mutations in RRF-negative than RRF-positive patients. The proportion of aphasia was relatively higher, while complex I and IV subunit abundance in muscle and mutation load were lower in RRF-negative than in RRF-positive patients. CONCLUSION RRF-negative patients had a similar disease course, clinical symptoms, and neuroimaging results to RRF-positive patients with MELAS. SSV is a valuable diagnostic indicator for MELAS. For highly suspected MELAS yet without positive myopathological findings, combined immunofluorescence and genetic studies should be used to achieve final diagnosis.
Collapse
|
112
|
Sasaki R, Ohta Y, Hatanaka N, Tadokoro K, Nomura E, Shang J, Takemoto M, Hishikawa N, Yamashita T, Omote Y, Morimoto E, Teshigawara S, Wada J, Goto YI, Abe K. A novel homoplasmic mitochondrial DNA mutation (m.13376T>C, p.I347T) of MELAS presenting characteristic medial temporal lobe atrophy. J Neurol Sci 2020; 408:116460. [PMID: 31689606 DOI: 10.1016/j.jns.2019.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Noriko Hatanaka
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Eisaku Morimoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Sanae Teshigawara
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yu-Ichi Goto
- Medical Genome Center (MGC), Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience (NIN), National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
113
|
Riquin E, Duverger P, Cariou C, Barth M, Prouteau C, Van Bogaert P, Bonneau D, Roy A. Neuropsychological and Psychiatric Features of Children and Adolescents Affected With Mitochondrial Diseases: A Systematic Review. Front Psychiatry 2020; 11:747. [PMID: 32848925 PMCID: PMC7399331 DOI: 10.3389/fpsyt.2020.00747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Mitochondrial diseases (MDs) are a group of clinically heterogeneous genetic disorders that arise as the result of dysfunctional mitochondria. Only few medical articles deal with neuropsychological or psychiatric aspects of MDs. AIM The present article aims to provide a systematic review of neuropsychological and psychiatric aspects of MDs. METHODS In order to identify all studies dealing with psychiatric and neuropsychological aspects of MDs in children and adolescents, we performed a search in the medical literature between April 2009 and April 2019 using PubMed, Cochrane, and Web of Science and we defined inclusion and exclusion criteria. RESULTS We found only seven studies that satisfy the inclusion requirements and criteria. The main psychiatric aspects reported in MDs were depressive and behavioral disorders. With regard to the neuropsychological aspects of MDs, developmental analyses showed an overall deterioration and developmental delay. INTERPRETATION Children and adolescents with MDs may present psychiatric symptoms and neuropsychological impairment. A more systematic investigation of psychiatric and neuropsychological features of MDs is needed to foster a better understanding of the phenotype of these diseases and their links with the genotype, which may have significant implications for the developmental trajectories of patients.
Collapse
Affiliation(s)
- Elise Riquin
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France.,Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France.,Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France
| | - Philippe Duverger
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France.,Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France
| | - Cindy Cariou
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
| | - Magalie Barth
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Clément Prouteau
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Patrick Van Bogaert
- Department of Pediatric Neurology, Angers University Hospital, Angers, France
| | - Dominique Bonneau
- Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France.,Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Arnaud Roy
- Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France.,Reference Center for Learning Disabilities, Nantes University Hospital, Nantes, France
| |
Collapse
|
114
|
Li M, Zhou S, Chen C, Ma L, Luo D, Tian X, Dong X, Zhou Y, Yang Y, Cui Y. Therapeutic potential of pyruvate therapy for patients with mitochondrial diseases: a systematic review. Ther Adv Endocrinol Metab 2020; 11:2042018820938240. [PMID: 32695307 PMCID: PMC7350055 DOI: 10.1177/2042018820938240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mitochondrial disease is a term used to describe a set of heterogeneous genetic diseases caused by impaired structure or function of mitochondria. Pyruvate therapy for mitochondrial disease is promising from a clinical point of view. METHODS According to PRISMA guidelines, the following databases were searched to identify studies regarding pyruvate therapy for mitochondrial disease: PubMed, EMBASE, Cochrane Library, and Clinicaltrials. The search was up to April 2019. The endpoints were specific biomarkers (plasma level of lactate, plasma level of pyruvate, L/P ratio) and clinical rating scales [Japanese mitochondrial disease-rating scale (JMDRS), Newcastle Mitochondrial Disease Adult Scale (NMDAS), and others]. Two researchers independently screened articles, extracted data, and assessed the quality of the studies. RESULTS A total of six studies were included. Considerable differences were noted between studies in terms of study design, patient information, and outcome measures. The collected evidence may indicate an effective potential of pyruvate therapy on the improvement of mitochondrial disease. The majority of the common adverse events of pyruvate therapy were diarrhea and short irritation of the stomach. CONCLUSION Pyruvate therapy with no serious adverse events may be a potential therapeutic candidate for patients with incurable mitochondrial diseases, such as Leigh syndrome. However, recent evidence taken from case series and case reports, and theoretical supports of basic research are not sufficient. The use of global registries to collect patient data and more adaptive trial designs with larger numbers of participants are necessary to clarify the efficacy of pyruvate therapy.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Chaoyang Chen
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Lingyun Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Daohuang Luo
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xin Tian
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xiu Dong
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | | | | |
Collapse
|
115
|
Deng J, Lu Y, Xie Z, Liu J, Yuan Y, Wang Z. RNA-seq profiling, and impaired autophagic process in skeletal muscle of MELAS. Biochem Biophys Res Commun 2019; 523:91-97. [PMID: 31836143 DOI: 10.1016/j.bbrc.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/01/2019] [Indexed: 01/22/2023]
Abstract
Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) is a common subtype of mitochondrial disease with high disability and mortality rate. The molecular mechanisms of MELAS are largely unknown and whether autophagy is activated in this disease remains controversial. In this work, we reported whole transcriptome profiling of skeletal muscle of MELAS patients and age-matched controls. Analyses revealed that MELAS patients had 224 differentially expressed genes (174 down-regulated, 50 up-regulated) compared to age-matched controls. Most of these genes relevant to MELAS are involved in signal transduction, metabolic process and immune system process. However, the RNA-seq data indicated that autophagy was not altered in MELAS. Functional assays showed that increased reactive oxygen species (ROS), decreased ATP production and decreased lysosome content in fibroblasts derived from MELAS patients, suggesting that mitochondrial dysfunction and degradation deficiency in MELAS. Furthermore, Western-blot analyses using skeletal muscle and fibroblasts derived from MELAS patients showed that autophagy was impaired in MEALS since two important autophagic genes: Beclin-1 and LC3-II, were significantly down-regulated. In conclusion, our study identified molecules and pathways involved in the mechanisms of MELAS, and the impairment of autophagy in this disease, which may serve as the potential therapeutic target for MELAS.
Collapse
Affiliation(s)
- Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yuanyuan Lu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China.
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
116
|
Bhatia KD, Krishnan P, Kortman H, Klostranec J, Krings T. Acute Cortical Lesions in MELAS Syndrome: Anatomic Distribution, Symmetry, and Evolution. AJNR Am J Neuroradiol 2019; 41:167-173. [PMID: 31806591 DOI: 10.3174/ajnr.a6325] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is a rare mitochondrial disorder affecting children and young adults. Stroke-like episodes are often associated with acute cortical lesions in the posterior cerebral cortex and are classically described as asymmetric and transient. In this study we assessed the anatomic distribution of acute cortical lesions, the incidence of symmetry, and the temporal evolution of lesions. MATERIALS AND METHODS This was a retrospective cohort study of patients who had a confirmed genetic diagnosis of a pathogenic variant associated with MELAS and MR imaging performed at our center (2006-2018). Each MR imaging study was assessed for new lesions using T1, T2, FLAIR, DWI, ADC, and SWI. The anatomic location, symmetry, and temporal evolution of lesions were analyzed. RESULTS Eight patients with the same pathogenic variant of MELAS (MT-TL1 m.3243A>G) with 31 MR imaging studies were included. Forty-one new lesions were identified in 17 of the studies (5 deep, 36 cortical). Cortical lesions most commonly affected the primary visual cortex, the middle-third of the primary somatosensory cortex, and the primary auditory cortex. Thirty of 36 cortical lesions had acute cortical diffusion restriction, of which 21 developed cortical laminar necrosis on subacute imaging. Six of 11 studies with multiple lesions showed symmetric cortical involvement. CONCLUSIONS Acute cortical lesions in MELAS most commonly affect the primary visual, somatosensory, and auditory cortices, all regions of high neuronal density and metabolic demand. The most common pattern of temporal evolution is acute cortical diffusion restriction with subacute cortical laminar necrosis and chronic volume loss. Symmetric involvement is more common than previously described.
Collapse
Affiliation(s)
- K D Bhatia
- From the Division of Neuroradiology (K.D.B., H.K., J.K., T.K.), Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
| | - P Krishnan
- Department of Diagnostic Imaging (P.K.), Hospital for Sick Children, Toronto, Ontario, Canada
| | - H Kortman
- From the Division of Neuroradiology (K.D.B., H.K., J.K., T.K.), Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
| | - J Klostranec
- From the Division of Neuroradiology (K.D.B., H.K., J.K., T.K.), Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
| | - T Krings
- From the Division of Neuroradiology (K.D.B., H.K., J.K., T.K.), Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
117
|
Mitochondrial disorders and the eye. Surv Ophthalmol 2019; 65:294-311. [PMID: 31783046 DOI: 10.1016/j.survophthal.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Mitochondria are cellular organelles that play a key role in energy metabolism and oxidative phosphorylation. Malfunctioning of mitochondria has been implicated as the cause of many disorders with variable inheritance, heterogeneity of systems involved, and varied phenotype. Metabolically active tissues are more likely to be affected, causing an anatomic and physiologic disconnect in the treating physicians' mind between presentation and underlying pathophysiology. We shall focus on disorders of mitochondrial metabolism relevant to an ophthalmologist. These disorders can affect all parts of the visual pathway (crystalline lens, extraocular muscles, retina, optic nerve, and retrochiasm). After the introduction reviewing mitochondrial structure and function, each disorder is reviewed in detail, including approaches to its diagnosis and most current management guidelines.
Collapse
|
118
|
Nukui T, Matsui A, Niimi H, Yamamoto M, Matsuda N, Piao JL, Noguchi K, Kitajima I, Nakatsuji Y. Cerebrospinal fluid ATP as a potential biomarker in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke like episodes (MELAS). Mitochondrion 2019; 50:145-148. [PMID: 31756516 DOI: 10.1016/j.mito.2019.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022]
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is caused by defective oxidative phosphorylation in the cerebral parenchyma, cerebral blood vessels, and leptomeningeal tissue. Although increased blood and cerebrospinal fluid (CSF) lactate level has been used as a diagnostic biomarker in patients with MELAS, no biomarkers reflecting disease activity exist. Since we have developed a highly sensitive ATP assay system using luciferase luminous reaction, we examined CSF ATP in patients with MELAS and found that it negatively correlates with disease activity and that it reflects the efficacy of the treatment. CSF ATP might be a novel disease monitoring marker for MELAS.
Collapse
Affiliation(s)
| | - Atsushi Matsui
- First Department of Internal Medicine, University of Toyama, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Japan
| | | | | | - Jin-Lan Piao
- Department of Neurology, University of Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Japan
| | | |
Collapse
|
119
|
|
120
|
Cosentino C, Contento M, Paganini M, Mannucci E, Cresci B. Therapeutic options in a patient with MELAS and diabetes mellitus: follow-up after 6 months of treatment. Acta Diabetol 2019; 56:1231-1233. [PMID: 30927106 DOI: 10.1007/s00592-019-01302-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Affiliation(s)
- C Cosentino
- Diabetology, Azienda Ospedaliero-Universitaria Careggi and University of Florence, Florence, Italy.
| | - M Contento
- Department of Neurosciences, Drug Research, and Child's Health, University of Florence, Florence, Italy
| | - M Paganini
- Division Neurology 2, Careggi University Hospital, University of Florence, Florence, Italy
| | - E Mannucci
- Diabetology, Azienda Ospedaliero-Universitaria Careggi and University of Florence, Florence, Italy
| | - B Cresci
- Diabetology, Azienda Ospedaliero-Universitaria Careggi and University of Florence, Florence, Italy
| |
Collapse
|
121
|
16-jähriges Mädchen mit wiederholter Hyperventilation im Schulsport. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-00799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
122
|
Fukuda M, Nagao Y. Dynamic derangement in amino acid profile during and after a stroke-like episode in adult-onset mitochondrial disease: a case report. J Med Case Rep 2019; 13:313. [PMID: 31630688 PMCID: PMC6802332 DOI: 10.1186/s13256-019-2255-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Background Maternally inherited diabetes and deafness, and mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes are examples of mitochondrial diseases that are relatively common in the adult population. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes are assumed to be associated with decreases in arginine and citrulline. Biomarkers, such as growth differentiation factor-15, were developed to assist in the diagnosis of mitochondrial diseases. Case presentation A 55-year-old Japanese man, an insulin user, presented after a loss of consciousness. A laboratory test showed diabetic ketoacidosis. He and his mother had severe hearing difficulty. Bilateral lesions on magnetic resonance imaging, the presence of seizure, and an elevated ratio of lactate to pyruvate, altogether suggested a diagnosis of mitochondrial disease. Mitochondrial DNA in our patient’s peripheral blood was positive with a 3243A>G mutation, which is the most frequent cause of maternally inherited diabetes and deafness, and mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. As a result, maternally inherited diabetes and deafness/mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes was diagnosed. We measured growth differentiation factor-15 and multiple amino acids in his blood, longitudinally during and after the stroke-like episode. Growth differentiation factor-15 was increased to an immeasurably high level on the day of the stroke-like episode. Although his diabetes improved with an increased dose of insulin, the growth differentiation factor-15 level gradually increased, suggesting that his mitochondrial insufficiency did not improve. Multiple amino acid species, including arginine, citrulline, and taurine, showed a decreased level on the day of the episode and a sharp increase the next day. In contrast, the level of aspartic acid increased to an extremely high level on the day of the episode, and decreased gradually thereafter. Conclusions Growth differentiation factor-15 can be used not only for the diagnosis of mitochondrial disease, but as an indicator of its acute exacerbation. A stroke-like episode of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes reflects a drastic derangement of multiple amino acids. The involvement of aspartic acid in the episodes should be explored in future studies.
Collapse
Affiliation(s)
- Mai Fukuda
- Hidaka Tokushukai Hospital, 1-10-27 Shizunai Kose-cho, Shin-Hidaka-cho, Hokkaido, 056-0005, Japan
| | - Yoshiro Nagao
- Hidaka Tokushukai Hospital, 1-10-27 Shizunai Kose-cho, Shin-Hidaka-cho, Hokkaido, 056-0005, Japan. .,Present Address: Fukuoka Tokushukai Hospital, 4-5 Sugukita, Kasuga city, Fukuoka, 816-0864, Japan.
| |
Collapse
|
123
|
Levetiracetam administration is correlated with lower mortality in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes: a retrospective study. Chin Med J (Engl) 2019; 132:269-274. [PMID: 30681492 PMCID: PMC6595817 DOI: 10.1097/cm9.0000000000000061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Studies on the relationship between antiepileptic drug (AED) administration and clinical outcomes in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) remain scarce. Levetiracetam (LEV) is an AED that is neuroprotective in various neurologic disorders. This study aimed to determine the impact of LEV on the outcome of MELAS. Methods: A retrospective, single-center study was performed based on a large cohort of patients with MELAS with a history of seizures (n = 102). Decisions on antiepileptic therapies were made empirically. Patients were followed up for 1 to 8 years (median, 4 years) and divided into 2 groups based on whether LEV was administered (LEV or non-LEV). The modified Rankin scale (mRS) scores and mortality risks were analyzed in all patients. Results: LEV, carbamazepine, benzodiazepines, topiramate, oxcarbazepine, valproate, and lamotrigine were administered in 48, 37, 18, 13, 11, 9, and 9 patients, singly or in combination, respectively. The mean mRS score of the LEV group (n = 48) was lower than that of the non-LEV group (n = 54; mean ± standard deviation, 2.79 ± 1.47 vs. 3.83 ± 1.93, P = 0.006) up to the end of the study. Nevertheless, there was no difference in the proportion of subjects without disability (mRS ranging 0–1) between the groups (P = 0.37). The multivariate regressions revealed that LEV treatment was associated with lower mRS scores (odds ratio 0.32, 95% confidence interval [CI] 0.15–0.68, P = 0.003) and mortality rates (hazard ratio 0.24, 95% CI 0.08–0.74, P = 0.013). There was a significant difference in the Kaplan-Meier survival curves between the groups (χ2 = 4.29, P = 0.04). Conclusions: The LEV administration is associated with lower mortality in patients with MELAS in this retrospective study. Further laboratory research and prospective cohort studies are needed to confirm whether LEV has neuroprotective effects on patients with mitochondrial diseases.
Collapse
|
124
|
Fakruddin M, Wei FY, Suzuki T, Asano K, Kaieda T, Omori A, Izumi R, Fujimura A, Kaitsuka T, Miyata K, Araki K, Oike Y, Scorrano L, Suzuki T, Tomizawa K. Defective Mitochondrial tRNA Taurine Modification Activates Global Proteostress and Leads to Mitochondrial Disease. Cell Rep 2019; 22:482-496. [PMID: 29320742 DOI: 10.1016/j.celrep.2017.12.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/30/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
A subset of mitochondrial tRNAs (mt-tRNAs) contains taurine-derived modifications at 34U of the anticodon. Loss of taurine modification has been linked to the development of mitochondrial diseases, but the molecular mechanism is still unclear. Here, we showed that taurine modification is catalyzed by mitochondrial optimization 1 (Mto1) in mammals. Mto1 deficiency severely impaired mitochondrial translation and respiratory activity. Moreover, Mto1-deficient cells exhibited abnormal mitochondrial morphology owing to aberrant trafficking of nuclear DNA-encoded mitochondrial proteins, including Opa1. The mistargeted proteins were aggregated and misfolded in the cytoplasm, which induced cytotoxic unfolded protein response. Importantly, application of chemical chaperones successfully suppressed cytotoxicity by reducing protein misfolding and increasing functional mitochondrial proteins in Mto1-deficient cells and mice. Thus, our results demonstrate the essential role of taurine modification in mitochondrial translation and reveal an intrinsic protein homeostasis network between the mitochondria and cytosol, which has therapeutic potential for mitochondrial diseases.
Collapse
Affiliation(s)
- Md Fakruddin
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Takashi Kaieda
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiko Omori
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Ryoma Izumi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Atsushi Fujimura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
125
|
Affiliation(s)
- Daiki Muramatsu
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Hiroki Yamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Kazuo Iwasa
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Japan
| |
Collapse
|
126
|
Boal RL, Ng YS, Pickett SJ, Schaefer AM, Feeney C, Bright A, Taylor RW, Turnbull DM, Gorman GS, Cheetham T, McFarland R. Height as a Clinical Biomarker of Disease Burden in Adult Mitochondrial Disease. J Clin Endocrinol Metab 2019; 104:2057-2066. [PMID: 30423112 PMCID: PMC6469958 DOI: 10.1210/jc.2018-00957] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT Abnormal growth and short stature are observed in patients with mitochondrial disease, but it is unclear whether there is a relationship between final adult height and disease severity. OBJECTIVE To determine whether patients with genetically confirmed mitochondrial disease are shorter than their peers and whether stature is related to disease severity. DESIGN Analysis of final adult height in relation to disease severity as determined by the Newcastle Mitochondrial Disease Adult Scale (NMDAS). SETTING UK Mitochondrial Disease Patient Cohort (Mito Cohort). PATIENTS 575 patients were identified with recorded height, weight, and molecular genetic diagnosis of mitochondrial disease within the Mito Cohort. MAIN OUTCOME MEASURES Adult height, body mass index (BMI), and their association with genetic subgroup and disease severity. RESULTS Adults with mitochondrial disease were short, with a mean height of -0.49 SD (95% CI, -0.58 to -0.39; n = 575) compared with UK reference data. Patients were overweight, with a BMI SD of 0.52 (95% CI, 0.37 to 0.67; n = 472). The most common genetic subgroup (m.3243A>G mutation) had a height SD of -0.70 (95% CI, -0.85 to -0.54; n = 234) and a BMI SD of 0.12 (95% CI, -0.10 to 0.34; n = 212). NMDAS scores were negatively correlated with height SD (r = -0.25; 95% CI, -0.33 to -0.17; P < 0.001, n = 533). Rate of disease progression also correlated negatively with adult height (P < 0.001). CONCLUSION Final height in mitochondrial disease reflects disease severity and rate of disease progression. Mitochondrial dysfunction and associated subclinical comorbidities affect growth plate physiology.
Collapse
Affiliation(s)
- Rachel L Boal
- Department of Pediatric Endocrinology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andrew M Schaefer
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catherine Feeney
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Alexandra Bright
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Grainne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Tim Cheetham
- Department of Pediatric Endocrinology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
- Institute of Genetic Medicine, Newcastle University, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
- Correspondence and Reprint Requests: Tim Cheetham, MD, Institute of Genetic Medicine, Newcastle University, c/o Office Block 1, Floor 3, Royal Victoria Infirmary, Newcastle-Upon-Tyne NE1 4LP, United Kingdom. E-mail:
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
127
|
Cardiovascular Manifestations of Mitochondrial Disease. BIOLOGY 2019; 8:biology8020034. [PMID: 31083569 PMCID: PMC6628328 DOI: 10.3390/biology8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic mitochondrial cardiomyopathies are uncommon causes of heart failure that may not be seen by most physicians. However, the prevalence of mitochondrial DNA mutations and somatic mutations affecting mitochondrial function are more common than previously thought. In this review, the pathogenesis of genetic mitochondrial disorders causing cardiovascular disease is reviewed. Treatment options are presently limited to mostly symptomatic support, but preclinical research is starting to reveal novel approaches that may lead to better and more targeted therapies in the future. With better understanding and clinician education, we hope to improve clinician recognition and diagnosis of these rare disorders in order to improve ongoing care of patients with these diseases and advance research towards discovering new therapeutic strategies to help treat these diseases.
Collapse
|
128
|
Sinnecker T, Andelova M, Mayr M, Rüegg S, Sinnreich M, Hench J, Frank S, Schaller A, Stippich C, Wuerfel J, Bonati LH. Diagnosis of adult-onset MELAS syndrome in a 63-year-old patient with suspected recurrent strokes - a case report. BMC Neurol 2019; 19:91. [PMID: 31068171 PMCID: PMC6505262 DOI: 10.1186/s12883-019-1306-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is a mitochondrial cytopathy caused by mutations in mitochondrial DNA. Clinical manifestation is typically before the age of 40. CASE PRESENTATION We present the case of a 63-year-old female in whom the symptoms of MELAS were initially misdiagnosed as episodes of recurrent ischemic strokes. Brain imaging including MRI, clinical and laboratory findings that lent cues to the diagnosis of MELAS are discussed. In addition, MRI findings in MELAS in comparison to imaging mimics of MELAS are presented. CONCLUSIONS This case underscores the importance of considering MELAS as a potential cause of recurrent stroke-like events if imaging findings are untypical for cerebral infarction, even among middle-aged patients with vascular risk factors.
Collapse
Affiliation(s)
- Tim Sinnecker
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Petersgraben 4, CH-4031, Basel, Switzerland.,Medical Imaging Analysis Center AG, Basel, Switzerland
| | - Michaela Andelova
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Michael Mayr
- Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Michael Sinnreich
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Juergen Hench
- Division of Neuropathology, Institute of Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - André Schaller
- Division of Human Genetics, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Stippich
- Department of Radiology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Imaging Analysis Center AG, Basel, Switzerland
| | - Leo H Bonati
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Petersgraben 4, CH-4031, Basel, Switzerland.
| |
Collapse
|
129
|
Fu XL, Zhou XX, Shi Z, Zheng WC. Adult-onset mitochondrial encephalopathy in association with the MT-ND3 T10158C mutation exhibits unique characteristics: A case report. World J Clin Cases 2019; 7:1066-1072. [PMID: 31123680 PMCID: PMC6511931 DOI: 10.12998/wjcc.v7.i9.1066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/21/2019] [Accepted: 03/26/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mitochondrial diseases are a heterogenous group of multisystemic disorders caused by genetic mutations affecting mitochondrial oxidation function. Brain involvement is commonly found in most cases but rarely as the unique clinical manifestation. Since the knowledge of its clinical manifestation combined with genetic testing is important for preventing misdiagnosis and delay in treatment, we report here how we diagnosed and managed a very unusual case of mitochondrial encephalopathy.
CASE SUMMARY We report a 52-year-old woman with recurrent stroke-like episodes carrying the m.10158T>C mutation in the MT-ND3 gene, which is also responsible for fatal infant-onset Leigh syndrome. Despite the common mutation, the present case featured a distinct clinical and neuroimaging manifestation from Leigh syndrome. This patient presented with sudden onset of right-sided hemiparesis and hemilateral sensory disturbance accompanied by a left temporal cluster-like headache and later developed epilepsy during hospitalization, with no other signs suggestive of myopathy, lactate acidosis, or other systemic symptoms. Brain magnetic resonance imaging revealed variable lesions involving multiple cortical and subcortical regions. Furthermore, a negative genetic test obtained from peripheral blood delayed the diagnosis of mitochondrial disease, which was eventually established through second-generation DNA sequencing using biopsied muscle.
CONCLUSION Based on this report, we suggest that clinicians pursue proper genetic testing for patients when the clinical phenotype is suggestive of mitochondrial diseases.
Collapse
Affiliation(s)
- Xiao-Li Fu
- Department of Neurology, Dongguan Peoples’ Hospital, Dongguan 523059, Guangdong Province, China
| | - Xiang-Xue Zhou
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Zhu Shi
- Department of Neurology, Dongguan Peoples’ Hospital, Dongguan 523059, Guangdong Province, China
| | - Wei-Cheng Zheng
- Department of Neurology, Dongguan Peoples’ Hospital, Dongguan 523059, Guangdong Province, China
| |
Collapse
|
130
|
Ohsawa Y, Hagiwara H, Nishimatsu SI, Hirakawa A, Kamimura N, Ohtsubo H, Fukai Y, Murakami T, Koga Y, Goto YI, Ohta S, Sunada Y. Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial. J Neurol Neurosurg Psychiatry 2019; 90:529-536. [PMID: 29666206 PMCID: PMC6581075 DOI: 10.1136/jnnp-2018-317964] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the efficacy and safety of high-dose taurine supplementation for prevention of stroke-like episodes of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), a rare genetic disorder caused by point mutations in the mitochondrial DNA that lead to a taurine modification defect at the first anticodon nucleotide of mitochondrial tRNALeu(UUR), resulting in failure to decode codons accurately. METHODS After the nationwide survey of MELAS, we conducted a multicentre, open-label, phase III trial in which 10 patients with recurrent stroke-like episodes received high-dose taurine (9 g or 12 g per day) for 52 weeks. The primary endpoint was the complete prevention of stroke-like episodes during the evaluation period. The taurine modification rate of mitochondrial tRNALeu(UUR) was measured before and after the trial. RESULTS The proportion of patients who reached the primary endpoint (100% responder rate) was 60% (95% CI 26.2% to 87.8%). The 50% responder rate, that is, the number of patients achieving a 50% or greater reduction in frequency of stroke-like episodes, was 80% (95% CI 44.4% to 97.5%). Taurine reduced the annual relapse rate of stroke-like episodes from 2.22 to 0.72 (P=0.001). Five patients showed a significant increase in the taurine modification of mitochondrial tRNALeu(UUR) from peripheral blood leukocytes (P<0.05). No severe adverse events were associated with taurine. CONCLUSIONS The current study demonstrates that oral taurine supplementation can effectively reduce the recurrence of stroke-like episodes and increase taurine modification in mitochondrial tRNALeu(UUR) in MELAS. TRIAL REGISTRATION NUMBER UMIN000011908.
Collapse
Affiliation(s)
- Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroki Hagiwara
- Department of Medical Science, Teikyo University of Science, Adachi-ku, Japan
| | | | - Akihiro Hirakawa
- Center for Advanced Medicine and Clinical Research, Statistical Analysis Section, Nagoya University Hospital, Nagoya, Japan.,Graduate School of Medicine, Department of Biostatistics and Bioinformatics, The University of Tokyo, Tokyo, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hideaki Ohtsubo
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuta Fukai
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | | | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan
| | - Yu-Ichi Goto
- The Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | | |
Collapse
|
131
|
Lee JH, Kim MJ, Park SH, Chae JH, Shin K. Case study of an inborn error manifested in the elderly: A woman with adult-onset mitochondrial disease mimicking systemic vasculitis. Int J Rheum Dis 2019; 22:1152-1156. [PMID: 30968563 DOI: 10.1111/1756-185x.13575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/28/2019] [Accepted: 03/17/2019] [Indexed: 12/23/2022]
Abstract
Mitochondrial diseases are a group of disorders presenting mainly during infancy due to pathological dysfunction of the mitochondrial respiratory chain. We report a case of mitochondrial disease in an elderly woman complaining of generalized myalgia. A 69-year-old woman was admitted due to fatigue, general weakness, and a drowsy mental status. A brain magnetic resonance imaging (MRI) demonstrated multifocal lesions of increased T2 signal intensity, and laboratory findings were consistent with Fanconi syndrome. During her hospital course, she developed seizures, stress-induced cardiomyopathy, and respiratory failure. A muscle biopsy demonstrated ragged-red fibers in the muscle tissues seen in mitochondrial myopathy. We confirmed an 8 kb deletion in her mitochondrial DNA. Following treatment with l-carnitine, coenzyme Q10, and supportive measures, brain lesions on MRI scans disappeared, and the general symptoms gradually improved.
Collapse
Affiliation(s)
- Jae Hyun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Min Jung Kim
- Division of Rheumatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kichul Shin
- Division of Rheumatology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| |
Collapse
|
132
|
Lee YM. The Author Reply: Genetic Data Are a Prerequisite for Interpreting Clinical and Muscle Biopsy Findings in MELAS. Yonsei Med J 2019; 60:401. [PMID: 30900429 PMCID: PMC6433570 DOI: 10.3349/ymj.2019.60.4.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Indexed: 11/27/2022] Open
Affiliation(s)
- Young Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
133
|
Endres D, Süß P, Maier SJ, Friedel E, Nickel K, Ziegler C, Fiebich BL, Glocker FX, Stock F, Egger K, Lange T, Dacko M, Venhoff N, Erny D, Doostkam S, Komlosi K, Domschke K, Tebartz van Elst L. New Variant of MELAS Syndrome With Executive Dysfunction, Heteroplasmic Point Mutation in the MT-ND4 Gene (m.12015T>C; p.Leu419Pro) and Comorbid Polyglandular Autoimmune Syndrome Type 2. Front Immunol 2019; 10:412. [PMID: 30949164 PMCID: PMC6437310 DOI: 10.3389/fimmu.2019.00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Mitochondrial diseases are caused by dysfunctions in mitochondrial metabolic pathways. MELAS syndrome is one of the most frequent mitochondrial disorders; it is characterized by encephalopathy, myopathy, lactic acidosis, and stroke-like episodes. Typically, it is associated with a point mutation with an adenine-to-guanine transition at position 3243 of the mitochondrial DNA (mtDNA; m.3243A>G) in the mitochondrially encoded tRNA leucine 1 (MT-TL1) gene. Other point mutations are possible and the association with polyglandular autoimmune syndrome type 2 has not yet been described. Case presentation: We present the case of a 25-year-old female patient with dysexecutive syndrome, muscular fatigue, and continuous headache. Half a year ago, she fought an infection-triggered Addison crisis. As the disease progressed, she had two epileptic seizures and stroke-like episodes with hemiparesis on the right side. Cerebral magnetic resonance imaging showed a substance defect of the parieto-occipital left side exceeding the vascular territories with a lactate peak. The lactate ischemia test was clearly positive, and a muscle biopsy showed single cytochrome c oxidase-negative muscle fibers. Genetic testing of blood mtDNA revealed a heteroplasmic base exchange mutation in the mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4) gene (m.12015T>C; p.Leu419Pro; heteroplasmy level in blood 12%, in muscle tissue: 15%). The patient suffered from comorbid autoimmune polyglandular syndrome type 2 with Hashimoto's thyroiditis, Addison's disease, and autoimmune gastritis. In addition, we found increased anti-glutamic acid decarboxylase 65, anti-partial cell, anti-intrinsic factor, and anti-nuclear antibodies. Conclusion: We present an atypical case of MELAS syndrome with predominant symptoms of a dysexecutive syndrome, two stroke-like episodes, and fast-onset fatigue. The symptoms were associated with a not yet described base and aminoacid exchange mutation in the MT-ND4 gene (m.12015T>C to p.Leu419Pro). The resulting changed protein complex in our patient is part of the respiratory chain multicomplex I and might be the reason for the mitochondriopathy. However, different simulations for pathogenetic relevance are contradictory and rather speak for a benign variant. To our knowledge this case report is the first reporting MELAS syndrome with comorbid polyglandular autoimmune syndrome type 2. Screening for autoimmune alterations in those patients is important to prevent damage to end organs.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Süß
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon J Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evelyn Friedel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franz X Glocker
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedrich Stock
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Dacko
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soroush Doostkam
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katalin Komlosi
- Institute of Human Genetics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
134
|
Lahiri D, Sawale VM, Banerjee S, Dubey S, Roy BK, Das SK. Chorea-ballism as a dominant clinical manifestation in heteroplasmic mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome with A3251G mutation in mitochondrial genome: a case report. J Med Case Rep 2019; 13:63. [PMID: 30837005 PMCID: PMC6402098 DOI: 10.1186/s13256-018-1936-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes, the most common maternally inherited mitochondrial disease, can present with a wide range of neurological manifestations including both central and peripheral nervous system involvement. The most frequent genetic mutation reported in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome is A3243G in MT-TL1 gene. Stroke-like episodes, dementia, epilepsy, lactic acidemia, myopathy, recurrent headaches, hearing impairment, diabetes, and short stature constitute the known presentations in this syndrome. Among the abnormal involuntary movements in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome, myoclonus is the commonest. Other movement disorders, including chorea, are rarely reported in this disorder. CASE PRESENTATION A 14-year-old South Asian boy from rural Bengal (India), born of a second degree consanguineous marriage, with normal birth and development history, presented with abnormal brief jerky movements involving his trunk and limbs, with recurrent falls for 10 months. We present here a case of heteroplasmic mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome with A3251G mutation, in which the clinical picture was dominated by a host of involuntary abnormal movements including chorea-ballism, myoclonus, and oromandibular dystonia in a backdrop of cognitive decline, seizure, and stroke-like episode. A final diagnosis was established by muscle biopsy and genetic study. Haloperidol was administered to control the involuntary movements along with introduction of co-enzyme Q, besides symptomatic management for his focal seizures. Six months into follow-up his seizures and abnormal movements were controlled significantly with slight improvement of cognitive abilities. CONCLUSION The dominance of hyperkinetic movements in the clinical scenario and the finding of a point mutation A3251G in MT-TL1 gene make this a rare presentation.
Collapse
Affiliation(s)
- Durjoy Lahiri
- Department of Neurology, Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, 700025, India.
| | - Vishal Madhukar Sawale
- Department of Neurology, Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, 700025, India
| | - Subhadeep Banerjee
- Department of Neurology, Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, 700025, India
| | - Souvik Dubey
- Department of Neurology, Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, 700025, India
| | - Biman Kanti Roy
- Department of Neurology, Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, 700025, India
| | - Shyamal Kumar Das
- Department of Neurology, Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, 700025, India
| |
Collapse
|
135
|
Koga Y, Povalko N, Inoue E, Nashiki K, Tanaka M. Biomarkers and clinical rating scales for sodium pyruvate therapy in patients with mitochondrial disease. Mitochondrion 2019; 48:11-15. [PMID: 30738201 DOI: 10.1016/j.mito.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Biomarkers and two clinical rating scales-the Japanese mitochondrial disease-rating scale (JMDRS) and Newcastle mitochondrial disease adult scale (NMDAS)-are clinically used when treating patients with mitochondrial disease. We explored the biomarker(s) and clinical rating scale(s) that are appropriate in preparing the protocol for a future clinical trial of sodium pyruvate (SP) therapy. A 48-week, prospective, single-centre, exploratory, clinical study enrolled 11 Japanese adult patients with genetically, biochemically, and clinically confirmed mitochondrial disease; they had intractable lactic acidosis and received SP (0.5 g/kg t.i.d. PO). Plasma concentrations of lactate and pyruvate, lateral ventricular levels of lactate, and serum concentrations of growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 were measured at baseline and at weeks 12 and 48 of SP therapy. At week 48, plasma lactate (P = .004), the lactate/pyruvate ratio (P = .012), serum GDF15 (P = .020), and lateral ventricular lactate (P = .038) decreased significantly from the baseline values; the JMDRS and NMDAS scores did not decrease significantly, although the NMDAS overall score showed a strong tendency (P = .059). Two patients with end-stage MELAS at baseline died during SP therapy. The present study showed significant decreases in plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15. Therefore, the protocol for a future clinical study of SP therapy in this patient population needs to include plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15 as diagnostic indicators, and exclude patients with end-stage mitochondrial disease.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan.
| | - Nataliya Povalko
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan; Institute of Fundamental Medicine and Biology, OpenLab Gene and Cell Technology, Kazan Federal University, Kazan Respublika Tatarstan, Russia
| | - Eisuke Inoue
- Division of Medical Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazutaka Nashiki
- Center for Diagnostic Imaging, Kurume University Hospital, Kurume, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| |
Collapse
|
136
|
Finsterer J, Zarrouk-Mahjoub S. MELAS reflects a clinical concept with heterogeneous genetic background. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:142-143. [PMID: 30810602 DOI: 10.1590/0004-282x20190003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Vienna, Austria
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
137
|
Gagliardi D, Mauri E, Magri F, Velardo D, Meneri M, Abati E, Brusa R, Faravelli I, Piga D, Ronchi D, Triulzi F, Peverelli L, Sciacco M, Bresolin N, Comi GP, Corti S, Govoni A. Can Intestinal Pseudo-Obstruction Drive Recurrent Stroke-Like Episodes in Late-Onset MELAS Syndrome? A Case Report and Review of the Literature. Front Neurol 2019; 10:38. [PMID: 30766507 PMCID: PMC6365425 DOI: 10.3389/fneur.2019.00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a maternally inherited mitochondrial disorder that is most commonly caused by the m. 3243A>G mutation in the MT-TL1 mitochondrial DNA gene, resulting in impairment of mitochondrial energy metabolism. Although childhood is the typical age of onset, a small fraction (1–6%) of individuals manifest the disease after 40 years of age and usually have a less aggressive disease course. The clinical manifestations are variable and mainly depend on the degree of heteroplasmy in the patient's tissues and organs. They include muscle weakness, diabetes, lactic acidemia, gastrointestinal disturbances, and stroke-like episodes, which are the most commonly observed symptom. We describe the case of a 50-year-old male patient who presented with relapsing intestinal pseudo-obstruction (IPO) episodes, which led to a late diagnosis of MELAS. After diagnosis, he presented several stroke-like episodes in a short time period and developed a rapidly progressive cognitive decline, which unfortunately resulted in his death. We describe the variable clinical manifestations of MELAS syndrome in this atypical and relatively old patient, with a focus on paralytic ileus and stroke-like episodes; the first symptom may have driven the others, leading to a relentless decline. Moreover, we provide a brief revision of previous reports of IPO occurrence in MELAS patients with the m.3243A>G mutation, and we investigate its relationship with stroke-like episodes. Our findings underscore the importance of recognizing gastrointestinal disturbance to prevent neurological comorbidities.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Eleonora Mauri
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Francesca Magri
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Daniele Velardo
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Roberta Brusa
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Irene Faravelli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Daniela Piga
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Ronchi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Peverelli
- Neuromuscular and Rare Disease Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare Disease Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.,Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.,Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.,Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
138
|
Baek MS, Kim SH, Lee YM. The Usefulness of Muscle Biopsy in Initial Diagnostic Evaluation of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes. Yonsei Med J 2019; 60:98-105. [PMID: 30554496 PMCID: PMC6298893 DOI: 10.3349/ymj.2019.60.1.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The disease entity mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is characterized by an early onset of stroke-like episodes. MELAS is the most dominant subtype of mitochondrial disease. Molecular genetic testing is important in the diagnosis of MELAS. The mitochondrial DNA (mtDNA) 3243A>G mutation is found in 80% of MELAS patients. Nevertheless, molecular analysis alone may be insufficient to diagnose MELAS because of mtDNA heteroplasmy. This study aimed to evaluate whether muscle biopsy is useful in MELAS patients as an initial diagnostic evaluation method. MATERIALS AND METHODS The medical records of patients who were diagnosed with MELAS at the Department of Pediatrics of Gangnam Severance Hospital between January 2006 and January 2017 were reviewed. The study population included 12 patients. They were divided into two subgroups according to whether the results of muscle pathology were in accordance with mitochondrial diseases. Clinical variables, diagnostic evaluations, and clinical outcomes were compared between the two groups. RESULTS Of the 12 patients, seven were muscle pathology-positive for mitochondrial disease. No statistically significant difference in clinical data was observed between the groups that were muscle pathology-positive and muscle pathology-negative for mtDNA 3243A>G mutation. Additionally, the patients with weakness as the initial symptom were all muscle pathology-positive. CONCLUSION The usefulness of muscle biopsy appears to be limited to an initial confirmative diagnostic evaluation of MELAS. Muscle biopsy can provide some information in MELAS patients with weakness not confirmed by genetic testing.
Collapse
Affiliation(s)
- Min Seong Baek
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Mock Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
139
|
Fang GL, Zheng Y, Zhang YX. Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes in an older adult mimicking cerebral infarction: a Chinese case report. Clin Interv Aging 2018; 13:2421-2424. [PMID: 30568433 PMCID: PMC6267726 DOI: 10.2147/cia.s186636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Few cases of mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) with an onset older than 60 years have been reported. Herein, we report a 63-year-old Chinese female initially suspected of ischemic infarction but was ultimately diagnosed with MELAS. Therefore, even in the elderly, a diagnosis of MELAS should be considered when encountering patients with recurrent stroke-like episodes, cognitive dysfunction, and psychotic symptoms. In order to achieve the correct diagnosis and launch the appropriate management in time, a detailed medical history together with appropriate diagnostic laboratory investigations should therefore be collected.
Collapse
Affiliation(s)
- Gao-Li Fang
- Department of Neurology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Yang Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| |
Collapse
|
140
|
Abstract
RATIONALE Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) are thought to be rarely accompanied by macroangiopathy. We reported a case of MELAS that presented right distal internal carotid arterial (ICA) stenosis and reviewed 12 similar previously reported cases involving intracranial large blood vessels. PATIENT CONCERNS A 38-year-old man suffered from recurrent stroke-like episodes (SE) such as alternating hemiparesis (right lesion 3 years ago and current left lesion), cortical blindness and seizure for 3 years, and was previously misdiagnosed as cerebral infarction. Magnetic Resonance Angiography (MRA) and Digital Subtraction Angiography (DSA) revealed right distal ICA stenosis and sparse cortex blood vessels, which were related to the previous SE. DIAGNOSES He was diagnosed by genetic screening (a mitochondrial DNA A3243G point mutation) and presence of high lactic acidosis (4.03 mmol/L), which rose to 7.8 mmol/L after exercise. INTERVENTION The patient received Coenzyme Q10, vitamin C, L-arginine for 2 weeks and valproic acid sodium (400 mg bid) to prevent seizures till now. OUTCOMES He is currently less active and intelligent than his peers, with occasional seizures, and needs family care. LESSONS Till date, there are 12 reported cases of MELAS combined with major cerebral arteries abnormalities including stenosis, dissection, occlusion, reversible vasoconstriction, aneurysms, and atherosclerosis. Hence, macroangiopathy in MELAS is not very rare. There is correlation between the affected vessels and the lesions in some cases, but not in others, which may increase the misdiagnosis rate. Hence, mitochondrial diseases cannot be excluded due to concurrent macroangiopathic lesions.
Collapse
|
141
|
Lee SJ, Na JH, Han J, Lee YM. Ophthalmoplegia in Mitochondrial Disease. Yonsei Med J 2018; 59:1190-1196. [PMID: 30450853 PMCID: PMC6240566 DOI: 10.3349/ymj.2018.59.10.1190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To evaluate the classification, diagnosis, and natural course of ophthalmoplegia associated with mitochondrial disease. MATERIALS AND METHODS Among 372 patients with mitochondrial disease who visited our hospital between January 2006 and January 2016, 21 patients with ophthalmoplegia were retrospectively identified. Inclusion criteria included onset before 20 years of age, pigmentary retinopathy, and cardiac involvement. The 16 patients who were finally included in the study were divided into three groups according to disease type: Kearns-Sayre syndrome (KSS), KSS-like, and chronic progressive external ophthalmoplegia (CPEO). RESULTS The prevalences of clinical findings were as follows: ptosis and retinopathy, both over 80%; myopathy, including extraocular muscles, 75%; lactic acidosis, 71%; and elevated levels of serum creatine kinase, 47%. Half of the patients had normal magnetic resonance imaging findings. A biochemical enzyme assay revealed mitochondrial respiratory chain complex I defect as the most common (50%). The prevalence of abnormal muscle findings in light or electron microscopic examinations was 50% each, while that of large-scale mitochondrial DNA (mtDNA) deletions in a gene study was 25%. We compared the KSS and KSS-like groups with the CPEO patient group, which showed pigmentary retinopathy (p<0.001), cardiac conduction disease (p=0.013), and large-scale mtDNA deletions (p=0.038). KSS and KSS-like groups also had gastrointestinal tract disorders such as abnormal gastrointestinal motility (p=0.013) unlike the CPEO group. CONCLUSION Patients with KSS had gastrointestinal symptoms, which may indicate another aspect of systemic involvement. The presence of large-scale mtDNA deletions was an objective diagnostic factor for KSS and a gene study may be helpful for evaluating patients with KSS.
Collapse
Affiliation(s)
- Sang Jun Lee
- Department of Pediatrics, Gangnam Severance Hospital, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoon Na
- Department of Pediatrics, Gangnam Severance Hospital, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
142
|
Koga Y, Povalko N, Inoue E, Nakamura H, Ishii A, Suzuki Y, Yoneda M, Kanda F, Kubota M, Okada H, Fujii K. Therapeutic regimen of L-arginine for MELAS: 9-year, prospective, multicenter, clinical research. J Neurol 2018; 265:2861-2874. [PMID: 30269300 PMCID: PMC6244654 DOI: 10.1007/s00415-018-9057-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/26/2022]
Abstract
Objective To examine the efficacy and safety of the therapeutic regimen using oral and intravenous l-arginine for pediatric and adult patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Methods In the presence and absence of an ictus of stroke-like episodes within 6 h prior to efficacy assessment, we correspondingly conducted the systematic administration of oral and intravenous l-arginine to 15 and 10 patients with MELAS in two, 2-year, prospective, multicenter clinical trials at 10 medical institutions in Japan. Subsequently, patients were followed up for 7 years. The primary endpoint in the clinical trial of oral l-arginine was the MELAS scale, while that for intravenous l-arginine was the improvement rates of headache and nausea/vomiting at 2 h after completion of the initial intravenous administration. The relationships between the ictuses of stroke-like episodes and plasma arginine concentrations were examined. Results Oral l-arginine extended the interictal phase (p = 0.0625) and decreased the incidence and severity of ictuses. Intravenous l-arginine improved the rates of four major symptoms—headache, nausea/vomiting, impaired consciousness, and visual disturbance. The maximal plasma arginine concentration was 167 μmol/L when an ictus developed. Neither death nor bedriddenness occurred during the 2-year clinical trials, and the latter did not develop during the 7-year follow-up despite the progressively neurodegenerative and eventually life-threatening nature of MELAS. No treatment-related adverse events occurred, and the formulations of l-arginine were well tolerated. Conclusions The systematic administration of oral and intravenous l-arginine may be therapeutically beneficial and clinically useful for patients with MELAS.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0001, Japan.
| | - Nataliya Povalko
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0001, Japan.,Institute of Fundamental Medicine and Biology, Open Lab Gene and Cell Technology, Kazan Federal University, Kazan, Russia
| | - Eisuke Inoue
- Division of Medical Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hidefumi Nakamura
- Center for Clinical Research and Development, National Center for Child Health and Development, Setagaya, Japan
| | - Akiko Ishii
- Department of Neurology, Tsukuba University School of Medicine, Tsukuba, Japan
| | - Yasuhiro Suzuki
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Makoto Yoneda
- Department of Neurology, Faculty of Nursing and Social Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Fumio Kanda
- Department of Neurology, Kobe University Hospital, Kobe, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Setagaya, Japan
| | - Hisashi Okada
- Department of Neurology, Nagoya Medical Center, Nagoya, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
143
|
Alves CAPF, Gonçalves FG, Grieb D, Lucato LT, Goldstein AC, Zuccoli G. Neuroimaging of Mitochondrial Cytopathies. Top Magn Reson Imaging 2018; 27:219-240. [PMID: 30086109 DOI: 10.1097/rmr.0000000000000173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mitochondrial diseases are a complex and heterogeneous group of genetic disorders that occur as a result of either nuclear DNA or mitochondrial DNA pathogenic variants, leading to a decrease in oxidative phosphorylation and cellular energy (ATP) production. Increasing knowledge about molecular, biochemical, and genetic abnormalities related to mitochondrial dysfunction has expanded the neuroimaging phenotypes of mitochondrial disorders. As a consequence of this growing field, the imaging recognition patterns of mitochondrial cytopathies are continually evolving. In this review, we describe the main neuroimaging characteristics of pediatric mitochondrial diseases, ranging from classical to more recent and challenging features. Due to the increased knowledge about the imaging findings of mitochondrial cytopathies, the pediatric neuroradiologist plays a crucial role in the diagnosis and evaluation of these patients.
Collapse
Affiliation(s)
| | | | - Dominik Grieb
- Department of Radiology and Neuroradiology, Sana Kliniken Duisburg, Germany
| | - Leandro Tavares Lucato
- Neuroradiology Section, Hospital das Clínicas- HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Amy C Goldstein
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Giulio Zuccoli
- Department of Radiology, University of Pittsburgh School of Medicine, Director of Pediatric Neuroradiology, Children Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
144
|
Lee HN, Yoon CS, Lee YM. Correlation of Serum Biomarkers and Magnetic Resonance Spectroscopy in Monitoring Disease Progression in Patients With Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes Due to mtDNA A3243G Mutation. Front Neurol 2018; 9:621. [PMID: 30140253 PMCID: PMC6094978 DOI: 10.3389/fneur.2018.00621] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Analysis of serum biomarkers and magnetic resonance spectroscopy (MRS) are useful for monitoring disease progression in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). We evaluated the correlation of serum biomarkers and MRS parameters during changes associated with stroke-like episodes. Methods: In 13 symptomatic MELAS patients carrying the A3243G mutation, we retrospectively obtained 207 voxels from 41 MRS studies, which were divided into three groups according to the temporal association with stroke-like episodes. The MRS NAA/Cr, Cho/Cr, NAA/Cho ratios, the presence of a lactate peak, serum biomarkers, serum lactate level and the pyruvate (Lac/Pyr) ratio were determined. Results: In regions with acute infarcts, the severity of serum Lac/Pyr and that of the MRS lactate peak (P = 0.0007) correlated; serum lactate (P = 0.02), severity of elevated serum lactate (P = 0.04), and serum Lac/Pyr (P = 0.02) correlated weakly. In previously infarcted regions, the severity of the MRS lactate peak and serum Lac/Pyr (P = 0.03), as well as the severity of serum Lac/Pyr (P = 0.02) were weakly correlated. In structurally normal regions, we found a weak to moderate negative correlation between serum lactate and MRS NAA/Cr (P = 0.008), and between the severity of elevated serum lactate and MRS NAA/Cr (P = 0.002) as well as MRS NAA/Cho (P = 0.02). Conclusions: MRS parameters correlate with specific serum biomarkers, and are useful for monitoring changes in brain metabolites, particularly as related to stroke-like episodes.
Collapse
Affiliation(s)
- Ha Neul Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Choon-Sik Yoon
- Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Mock Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
145
|
Goel H, Szczepanczyk K, Mirza FS. Late-Onset Melas with Midd: An Uncommon Age of Presentation. AACE Clin Case Rep 2018. [DOI: 10.4158/ep171955.cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
146
|
Kondo H, Fujita Y, Mizuno Y, Kihara M, Murayama K. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes with severe systemic symptoms: Pathology and biochemistry. Pediatr Int 2018; 60:300-302. [PMID: 29480536 DOI: 10.1111/ped.13472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/21/2017] [Accepted: 12/01/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Hidehito Kondo
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuko Fujita
- Department of Pathology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Minako Kihara
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| |
Collapse
|
147
|
Reversible Dilation of Cerebral Macrovascular Changes in MELAS Episodes. Clin Neuroradiol 2018; 29:321-329. [DOI: 10.1007/s00062-018-0662-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/02/2018] [Indexed: 01/12/2023]
|
148
|
Zhang Z, Zhao D, Zhang X, Xiong H, Bao X, Yuan Y, Wang Z. Survival analysis of a cohort of Chinese patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) based on clinical features. J Neurol Sci 2018; 385:151-155. [DOI: 10.1016/j.jns.2017.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/22/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
|
149
|
Ferrari C, Nacmias B, Sorbi S. The diagnosis of dementias: a practical tool not to miss rare causes. Neurol Sci 2017; 39:615-627. [PMID: 29198043 DOI: 10.1007/s10072-017-3206-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023]
Abstract
Dementia represents one of the most diffuse disorders of our Era. Alzheimer's disease is the principle cause of dementia worldwide. Metabolic, infectious, autoimmune, inflammatory, and genetic dementias represent a not negligible number of disorders, with increasing numbers in younger subjects. Due to the heterogeneity of patients and disorders, the diagnosis of dementia is challenging. In the present article, we propose a practical diagnostic approach following the two-step investigation procedure. The first step includes basic blood tests and brain neuroimaging, performed on all patients. After this first-line investigation, it is then possible to rule out metabolic causes of dementia and to identify three main subgroups in dementia: predominant gray matter atrophy, white matter disease, basal ganglia pathologies. The predominant gray matter atrophy subgroup includes neurodegenerative causes of dementia and some lysosomal storage disorders. The white matter subgroup indicates a comprehensive list of vascular dementia causes, mitochondrial diseases, and leukodystrophies. Whereas, the basal ganglia alterations are due to metal accumulation pathologies, such as iron, copper, or calcium. Each category has specific clinical hallmarks, accurately reported in the article, and requires specific second-line investigation. Thus, we indicate the distinct second diagnostic step of each disease. The proposed diagnostic flow-chart follows the clinical reasoning and helps clinicians through the differential diagnosis of dementia.
Collapse
Affiliation(s)
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Sandro Sorbi
- IRCCS Don Gnocchi, Via di Scandicci, Florence, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| |
Collapse
|
150
|
Kraya T, Deschauer M, Joshi PR, Zierz S, Gaul C. Prevalence of Headache in Patients With Mitochondrial Disease: A Cross-Sectional Study. Headache 2017; 58:45-52. [PMID: 29139113 DOI: 10.1111/head.13219] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mitochondrial diseases are a heterogeneous group of diseases with different phenotypes and genotypes. Headache and, particularly migraine, seems to occur often in patients with MELAS and in patients with CPEO phenotypes. The International Classification of Headache Disorders (ICHD-3 beta) has classified headache as a secondary entity only in MELAS patients. Other headache phenotypes in mitochondrial diseases are not considered in ICHD-3beta. In this study, we analyzed headache phenomenology in a large group of patients with mitochondrial disorders. METHODS A cross-sectional questionnaire-based study on 85 patients with mitochondrial disease with different genotypes and phenotypes was conducted between 2010 and 2011. A structured headache questionnaire according to ICHD-2 was used followed by a telephone interview by a headache expert. Prevalence and characteristics of headache could be analyzed in 42 patients. Headache diagnosis was correlated with genotypes and phenotypes. In addition, the mtDNA haplotype H was analyzed. RESULTS Headache was reported in 29/42 (70%; 95% CI, from 55.1 to 83.0%) of the patients. Tension-type headache (TTH) showed the highest prevalence in 16/42 (38%; 95% CI, from 23.4 to 52.8%) patients, followed by migraine and probable migraine in 12/42 (29%; 95% CI, from 14.9 to 42.2%) patients. Nine of the 42 (21%; 95% CI, from 9 to 33.8%) patients reported two different headache types. Patients with the mtDNA mutation m.3243A > G (n = 8) and MELAS (n = 7) showed the highest prevalence of headaches (88% and 85%, respectively). In patients with the CPEO phenotype (n = 32), headache occurred in 14/18 (78%; 95% CI, from 58.6 to 97%) of patients with single deletions, and in 7/13 (54%; 95% CI, from 26.7 to 80.9%) patients with multiple mtDNA deletions. There were no association between the mtDNA haplotype Hand the headache-diagnosis. CONCLUSIONS The prevalence of headache was higher in patients with mitochondrial diseases than reported in the general population. In all phenotype and genotype groups, TTH was more frequent than migraine. The data also show that the current ICHD-3 beta exclusively focused on MELAS syndrome as vasculopathy does not consider the broader spectrum of headache phenotypes in mitochondrial disorders.
Collapse
Affiliation(s)
- Torsten Kraya
- Department of Neurology, University Hospital Halle-Saale, Halle, Saale, Germany
| | | | - Pushpa Raj Joshi
- Department of Neurology, University Hospital Halle-Saale, Halle, Saale, Germany
| | - Stephan Zierz
- Department of Neurology, University Hospital Halle-Saale, Halle, Saale, Germany
| | - Charly Gaul
- Headache and Migraine Clinic, Königstein, Germany
| |
Collapse
|