101
|
Neumeier M, Krautbauer S, Schmidhofer S, Hader Y, Eisinger K, Eggenhofer E, Froehner SC, Adams ME, Mages W, Buechler C. Adiponectin receptor 1 C-terminus interacts with PDZ-domain proteins such as syntrophins. Exp Mol Pathol 2013; 95:180-6. [PMID: 23860432 DOI: 10.1016/j.yexmp.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/22/2023]
Abstract
Adiponectin receptor 1 (AdipoR1) is one of the two signaling receptors of adiponectin with multiple beneficial effects in metabolic diseases. AdipoR1 C-terminal peptide is concordant with the consensus sequence of class I PSD-95, disc large, ZO-1 (PDZ) proteins, and screening of a liver yeast two hybrid library identified binding to β2-syntrophin (SNTB2). Hybridization of a PDZ-domain array with AdipoR1 C-terminal peptide shows association with PDZ-domains of further proteins including β1- and α-syntrophin (SNTA). Interaction of PDZ proteins and C-terminal peptides requires a free carboxy terminus next to the PDZ-binding region and is blocked by carboxy terminal added tags. N-terminal tagged AdipoR1 is more highly expressed than C-terminal tagged receptor suggesting that the free carboxy terminus may form a complex with PDZ proteins to regulate cellular AdipoR1 levels. The C- and N-terminal tagged AdipoR1 proteins are mainly localized in the cytoplasma. N-terminal but not C-terminal tagged AdipoR1 colocalizes with syntrophins in adiponectin incubated Huh7 cells. Adiponectin induced hepatic phosphorylation of AMPK and p38 MAPK which are targets of AdipoR1 is, however, not blocked in SNTA and SNTB2 deficient mice. Further, AdipoR1 protein is similarly abundant in the liver of knock-out and wild type mice when kept on a standard chow or a high fat diet. In summary these data suggest that AdipoR1 protein levels are regulated by so far uncharacterized class I PDZ proteins which are distinct from SNTA and SNTB2.
Collapse
Affiliation(s)
- Markus Neumeier
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Carter Ramirez DM, Kim YA, Bittman R, Johnston LJ. Lipid Phase Separation and Protein-Ganglioside Clustering in Supported Bilayers Are Induced by Photorelease of Ceramide. SOFT MATTER 2013; 9:4890-4899. [PMID: 23667384 PMCID: PMC3649770 DOI: 10.1039/c3sm50240f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photolysis of 6-bromo-7-hydroxycoumarinyl-caged ceramide was used to generate ceramide with spatial and temporal control in supported lipid bilayers prepared from mixtures of caged ceramide and phospholipids. The caged ceramide molecules are randomly distributed in fluid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, and upon photolysis with long wavelength UV light small ordered ceramide domains are formed that phase separate from the bulk fluid membrane. Irradiation of a spatially restricted area leads to the transient formation of ceramide-enriched gel phase domains that equilibrate via lipid diffusion with the surrounding unirradiated membrane. Photorelease of C16-ceramide in supported bilayers prepared from POPC, caged ceramide and the ganglioside GM1 (90:10:1 molar ratio) results in partitioning of a ganglioside-protein complex into the ceramide-enriched domains, modeling some aspects of ceramide's behavior in cells. The photo-uncaging strategy used here for delivery of ceramide in bilayers provides a novel and useful alternative to the enzymatic generation of ceramide in sphingomyelin-containing membranes. The ability to control membrane phase separation behavior and the clustering of membrane-anchored proteins illustrates the potential of photo-uncaging for studying the compartmentalization of ceramide in cellular membranes.
Collapse
Affiliation(s)
- Daniel M Carter Ramirez
- Measurement Science and Standards, National Research Council of Canada, Ottawa, ON K1A 0R6, CANADA ; Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, CANADA
| | | | | | | |
Collapse
|
103
|
Biological functions of sphingomyelins. Prog Lipid Res 2013; 52:424-37. [PMID: 23684760 DOI: 10.1016/j.plipres.2013.05.001] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 12/14/2022]
Abstract
Sphingomyelin (SM) is a dominant sphingolipid in membranes of mammalian cells and this lipid class is specifically enriched in the plasma membrane, the endocytic recycling compartment, and the trans Golgi network. The distribution of SM and cholesterol among cellular compartments correlate. Sphingolipids have extensive hydrogen-bonding capabilities which together with their saturated nature facilitate the formation of sphingolipid and SM-enriched lateral domains in membranes. Cholesterol prefers to interact with SMs and this interaction has many important functional consequences. In this review, the synthesis, regulation, and intracellular distribution of SMs are discussed. The many direct roles played by membrane SM in various cellular functions and processes will also be discussed. These include involvement in the regulation of endocytosis and receptor-mediated ligand uptake, in ion channel and G-protein coupled receptor function, in protein sorting, and functioning as receptor molecules for various bacterial toxins, and for non-bacterial pore-forming toxins. SM is also an important constituent of the eye lens membrane, and is believed to participate in the regulation of various nuclear functions. SM is an independent risk factor in the development of cardiovascular disease, and new studies have shed light on possible mechanism behind its role in atherogenesis.
Collapse
|
104
|
Russo SB, Tidhar R, Futerman AH, Cowart LA. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J Biol Chem 2013; 288:13397-409. [PMID: 23530041 DOI: 10.1074/jbc.m112.428185] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Myristate is a novel potential substrate for sphingoid base synthesis. RESULTS Myocardial sphingoid base synthesis utilizes myristate; these sphingolipids are functionally non-redundant with canonical sphingoid bases. CONCLUSION d16:0 and d16:1 sphingolipids constitute an appreciable proportion of cardiac dihydrosphingosine and dihydroceramide, with distinct biological roles. SIGNIFICANCE This pool of sphingolipids may play a heretofore unsuspected role in myocardial pathology or protection. The enzyme serine palmitoyltransferase (SPT) catalyzes the formation of the sphingoid base "backbone" from which all sphingolipids are derived. Previous studies have shown that inhibition of SPT ameliorates pathological cardiac outcomes in models of lipid overload, but the metabolites responsible for these phenotypes remain unidentified. Recent in vitro studies have shown that incorporation of the novel subunit SPTLC3 broadens the substrate specificity of SPT, allowing utilization of myristoyl-coenzyme A (CoA) in addition to its canonical substrate palmitoyl-CoA. However, the relevance of these findings in vivo has yet to be determined. The present study sought to determine whether myristate-derived d16 sphingolipids are represented among myocardial sphingolipids and, if so, whether their function and metabolic routes were distinct from those of palmitate-derived d18 sphingolipids. Data showed that d16:0 sphingoid bases occurred in more than one-third of total dihydrosphingosine and dihydroceramides in myocardium, and a diet high in saturated fat promoted their de novo production. Intriguingly, d16-ceramides demonstrated highly limited N-acyl chain diversity, and in vitro enzyme activity assays showed that these bases were utilized preferentially to canonical bases by CerS1. Functional differences between myristate- and palmitate-derived sphingolipids were observed in that, unlike d18 sphingolipids and SPTLC2, d16 sphingolipids and SPTLC3 did not appear to contribute to myristate-induced autophagy, whereas only d16 sphingolipids promoted cell death and cleavage of poly(ADP-ribose) polymerase in cardiomyocytes. Thus, these results reveal a previously unappreciated component of cardiac sphingolipids with functional differences from canonical sphingolipids.
Collapse
Affiliation(s)
- Sarah Brice Russo
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | |
Collapse
|
105
|
Ramirez DMC, Pitre SP, Kim YA, Bittman R, Johnston LJ. Photouncaging of ceramides promotes reorganization of liquid-ordered domains in supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3380-3387. [PMID: 23402522 PMCID: PMC3607952 DOI: 10.1021/la3039158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
6-Bromo-7-hydroxycoumarin (Bhc)-caged ceramide (Cer) analogs were incorporated into supported lipid bilayers containing a mixture of coexisting liquid-ordered (Lo) and liquid-disordered (Ld) phases. The release of N-palmitoyl and N-butanoyl-D-erythro-sphingosine (C16- and C4-Cer) by the photolysis of caged Cers using long-wavelength UV light was studied using a combination of atomic force microscopy and fluorescence microscopy. This approach demonstrated the ability to generate Cer with spatial and temporal control, providing an alternative method to the enzymatic generation of Cer. The generation of C16-Cer from Bhc-C16-Cer disrupted the Lo domains, with the incorporation of small fluid-phase regions and the disappearance of some smaller domains. Cer-rich gel-phase domains were not observed, in contrast to results reported by either direct Cer incorporation or enzymatic Cer generation. The photorelease of C4-Cer from Bhc-C4-Cer resulted in qualitatively similar changes in bilayer morphology, with the disappearance of some Lo domains and no evidence of Cer-rich gel domains but with a smaller height difference between the ordered and disordered phases.
Collapse
|
106
|
Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J Psychiatr Res 2013. [PMID: 23207112 DOI: 10.1016/j.jpsychires.2012.11.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The central nervous system has the second highest concentration of lipids after adipose tissue. Alterations in neural membrane phospho- and sphingolipid composition can influence crucial intra- and intercellular signalling and alter the membrane's properties. Recently, the polyunsaturated fatty acids (PUFA) hypothesis for depression suggests that phospho- and sphingolipid metabolism includes potential pathways for the disease. In 742 people from a Dutch family-based study, we assessed the relationships between 148 different plasma phospho- and sphingolipid species and depression/anxiety symptoms as measured by the Hospital Anxiety and Depression Scales (HADS-A and HADS-D) and the Centre for Epidemiological Studies Depression Scale (CES-D). We observed significant differences in plasma sphingomyelins (SPM), particularly the SPM 23:1/SPM 16:0 ratio, which was inversely correlated with depressive symptom scores. We observed a similar trend for plasma phosphatidylcholines (PC), particularly the molar proportion of PC O 36:4 and its ratio to ceramide CER 20:0. Absolute levels of PC O 36:4 were also associated with depression symptoms in an independent replication. To our knowledge this is the first study on depressive symptoms that focuses on specific phospho- and sphingolipid molecules in plasma rather than total PUFA concentrations. The findings of this lipidomic study suggests that plasma sphingomyelins and ether phospholipids should be further studied for their potential as biomarkers and for a better understanding of the underlying mechanisms of this systemic disease.
Collapse
|
107
|
Ahyayauch H, Arnulphi C, Sot J, Alonso A, Goñi FM. The onset of Triton X-100 solubilization of sphingomyelin/ceramide bilayers: effects of temperature and composition. Chem Phys Lipids 2013; 167-168:57-61. [PMID: 23453949 DOI: 10.1016/j.chemphyslip.2013.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/06/2013] [Indexed: 12/01/2022]
Abstract
The early stages of Triton X-100 solubilization of bilayers consisting of sphingomyelin/ceramide (SM/Cer) mixtures have been studied using a combination of calorimetric and spectroscopic techniques. Compositions based on sphingomyelin, containing up to 30 mol% Cer, at 4, 20 and 50°C have been examined. The presence of Cer does not modify the affinity (in terms of ΔG of binding per mol total lipid) of the SM-based bilayers for Triton X-100, although it does increase the amount of detergent required for the onset of solubilization. At 50°C more detergent was required to solubilize the SM/Cer bilayers than at 20°C. The data can be rationalized in terms of lipid and detergent geometries and interactions (Lichtenberg et al., 2013).
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Unidad de Biofísica (Centro Mixto CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | |
Collapse
|
108
|
Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR, Cowart LA. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest 2013; 122:3919-30. [PMID: 23023704 DOI: 10.1172/jci63888] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DbCM), which consists of cardiac hypertrophy and failure in the absence of traditional risk factors, is a major contributor to increased heart failure risk in type 2 diabetes patients. In rodent models of DbCM, cardiac hypertrophy and dysfunction have been shown to depend upon saturated fatty acid (SFA) oversupply and de novo sphingolipid synthesis. However, it is not known whether these effects are mediated by bulk SFAs and sphingolipids or by individual lipid species. In this report, we demonstrate that a diet high in SFA induced cardiac hypertrophy, left ventricular systolic and diastolic dysfunction, and autophagy in mice. Furthermore, treatment with the SFA myristate, but not palmitate, induced hypertrophy and autophagy in adult primary cardiomyocytes. De novo sphingolipid synthesis was required for induction of all pathological features observed both in vitro and in vivo, and autophagy was required for induction of hypertrophy in vitro. Finally, we implicated a specific ceramide N-acyl chain length in this process and demonstrated a requirement for (dihydro)ceramide synthase 5 in cardiomyocyte autophagy and myristate-mediated hypertrophy. Thus, this report reveals a requirement for a specific sphingolipid metabolic route and dietary SFAs in the molecular pathogenesis of lipotoxic cardiomyopathy and hypertrophy.
Collapse
Affiliation(s)
- Sarah Brice Russo
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
D'Auria L, Fenaux M, Aleksandrowicz P, Van Der Smissen P, Chantrain C, Vermylen C, Vikkula M, Courtoy PJ, Tyteca D. Micrometric segregation of fluorescent membrane lipids: relevance for endogenous lipids and biogenesis in erythrocytes. J Lipid Res 2013; 54:1066-76. [PMID: 23322884 DOI: 10.1194/jlr.m034314] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Micrometric membrane lipid segregation is controversial. We addressed this issue in attached erythrocytes and found that fluorescent boron dipyrromethene (BODIPY) analogs of glycosphingolipids (GSLs) [glucosylceramide (BODIPY-GlcCer) and monosialotetrahexosylganglioside (GM1BODIPY)], sphingomyelin (BODIPY-SM), and phosphatidylcholine (BODIPY-PC inserted into the plasma membrane spontaneously gathered into distinct submicrometric domains. GM1BODIPY domains colocalized with endogenous GM1 labeled by cholera toxin. All BODIPY-lipid domains disappeared upon erythrocyte stretching, indicating control by membrane tension. Minor cholesterol depletion suppressed BODIPY-SM and BODIPY-PC but preserved BODIPY-GlcCer domains. Each type of domain exchanged constituents but assumed fixed positions, suggesting self-clustering and anchorage to spectrin. Domains showed differential association with 4.1R versus ankyrin complexes upon antibody patching. BODIPY-lipid domains also responded differentially to uncoupling at 4.1R complexes [protein kinase C (PKC) activation] and ankyrin complexes (in spherocytosis, a membrane fragility disease). These data point to micrometric compartmentation of polar BODIPY-lipids modulated by membrane tension, cholesterol, and differential association to the two nonredundant membrane:spectrin anchorage complexes. Micrometric compartmentation might play a role in erythrocyte membrane deformability and fragility.
Collapse
Affiliation(s)
- Ludovic D'Auria
- CELL Unit, Division of Hematology-Oncology, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic proteins. In order to ensure cellular survival, lesions have to be identified, plugged and removed from the membrane. The Ca(2+)-driven fusion of lysosomes with the plasma membrane leads to hydrolysis of sphingomyelin by acid sphingomyelinase and a formation of ceramide platforms in the outer leaflet of the lipid bilayer. We propose that the negative curvature, promoted by tighter packing of lipids in the outer layer, leads to an inward vesiculation of the damaged area for its endocytotic uptake and internal degradation. In contrast, the activation of neutral sphingomyelinase triggers the production of ceramide within the inner leaflet of the lipid bilayer, thereby promoting an outward curvature, which enables the cell to shed the membrane-containing toxin pore into the extracellular space. In this process, ceramide is supported by members of the annexin protein family which act as Ca(2+) sensors and as membrane fusion agents.
Collapse
Affiliation(s)
- Annette Draeger
- Department of Cell Biology, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
111
|
Combemale S, Santos C, Rodriguez F, Garcia V, Galaup C, Frongia C, Lobjois V, Levade T, Baudoin-Dehoux C, Ballereau S, Génisson Y. A biologically relevant ceramide fluorescent probe to assess the binding of potential ligands to the CERT transfer protein. RSC Adv 2013. [DOI: 10.1039/c3ra42395f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
112
|
Bernardini C, Stoyanov SD, Arnaudov LN, Cohen Stuart MA. Colloids in Flatland: a perspective on 2D phase-separated systems, characterisation methods, and lineactant design. Chem Soc Rev 2013; 42:2100-29. [DOI: 10.1039/c2cs35269a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
113
|
Abstract
There is growing evidence that cell membranes can contain domains with different lipid and protein compositions and with different physical properties. Furthermore, it is increasingly appreciated that sphingolipids play a crucial role in the formation and properties of ordered lipid domains (rafts) in cell membranes. This review describes recent advances in our understanding of ordered membrane domains in both cells and model membranes. In addition, how the structure of sphingolipids influences their ability to participate in the formation of ordered domains, as well as how sphingolipid structure alters ordered domain properties, is described. The diversity of sphingolipid structure is likely to play an important role in modulating the biologically relevant properties of "rafts" in cell membranes.
Collapse
|
114
|
Boulgaropoulos B, Rappolt M, Sartori B, Amenitsch H, Pabst G. Lipid sorting by ceramide and the consequences for membrane proteins. Biophys J 2012; 102:2031-8. [PMID: 22824266 DOI: 10.1016/j.bpj.2012.03.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/08/2012] [Accepted: 03/23/2012] [Indexed: 01/09/2023] Open
Abstract
We mimicked the effect of sphingomyelinase activity on lipid mixtures of palmitoyl-oleoyl-phosphatidylcholine, sphingomyelin, ceramide, and 10 mol % cholesterol. Using x-ray diffraction experiments in combination with osmotic stress we found, in agreement with previous studies, that ceramide induces a coexistence of L(α) and L(β) domains. A detailed structural analysis of the coexisting domains demonstrated an increase of lipid packing density and membrane thickness in the L(α) domains upon increasing overall ceramide levels. This provides evidence for a ceramide-driven accumulation of cholesterol in the L(α) domains, in support of previous reports. We further determined the bending rigidities of the coexisting domains and found that the accumulation of cholesterol in the L(α) domains stabilizes their bending rigidity, which experiences a dramatic drop in the absence of cholesterol. Deriving experimental estimates for the spontaneous curvature and Gaussian modulus of curvature, we show, using a simple geometric model for ion channels, that in this way changes in the conformational equilibrium of membrane proteins can be kept small.
Collapse
Affiliation(s)
- Beate Boulgaropoulos
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | | | | | | | | |
Collapse
|
115
|
Insights into sphingolipid miscibility: separate observation of sphingomyelin and ceramide N-acyl chain melting. Biophys J 2012; 103:2465-74. [PMID: 23260048 DOI: 10.1016/j.bpj.2012.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 01/01/2023] Open
Abstract
Ceramide produced from sphingomyelin in the plasma membrane is purported to affect signaling through changes in the membrane's physical properties. Thermal behavior of N-palmitoyl sphingomyelin (PSM) and N-palmitoyl ceramide (PCer) mixtures in excess water has been monitored by ²H NMR spectroscopy and compared to differential scanning calorimetry (DSC) data. The alternate use of either perdeuterated or proton-based N-acyl chain PSM and PCer in our ²H NMR studies has allowed the separate observation of gel-fluid transitions in each lipid in the presence of the other one, and this in turn has provided direct information on the lipids' miscibility over a wide temperature range. The results provide further evidence of the stabilization of the PSM gel state by PCer. Moreover, overlapping NMR and DSC data reveal that the DSC-signals parallel the melting of the major component (PSM) except at intermediate (20 and 30 mol %) fractions of PCer. In such cases, the DSC endotherm reports on the presumably highly cooperative melting of PCer. Up to at least 50 mol % PCer, PSM and PCer mix ideally in the liquid crystalline phase; in the gel phase, PCer becomes incorporated into PSM:PCer membranes with no evidence of pure solid PCer.
Collapse
|
116
|
Ibarguren M, Sot J, Montes LR, Vasil AI, Vasil ML, Goñi FM, Alonso A. Recruitment of a phospholipase C/sphingomyelinase into non-lamellar lipid droplets during hydrolysis of lipid bilayers. Chem Phys Lipids 2012; 166:12-7. [PMID: 23253877 DOI: 10.1016/j.chemphyslip.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 01/05/2023]
Abstract
When giant unilamellar vesicles (GUVs) composed of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and cholesterol are treated with PlcHR(2), a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa, the initial stages of lipid hydrolysis do not cause large changes in vesicle morphology (Ibarguren et al., 2011). However, when hydrolysis progresses confocal fluorescence microscopy reveals the formation of lipid aggregates, whose morphology is not compatible with that of bilayers. Smaller vesicles or droplets can also be seen inside the GUV. Our studies indicate that these aggregates or droplets are enriched in the non-lamellar lipid ceramide, an end-product of PlcHR(2) reaction. Moreover, the aggregates/droplets appear enriched in the hydrolytic enzyme PlcHR(2). At a final stage GUVs containing the enzyme-enriched droplets disintegrate and vanish from the microscope field. The observed non-lamellar enzyme-rich structures may be related to intermediates in the process of aggregation and fusion although the experimental design prevents vesicle free diffusion in the aqueous medium, thus actual aggregation or fusion cannot be observed.
Collapse
Affiliation(s)
- Maitane Ibarguren
- Unidad de Biofísica (Centro Mixto CSIS-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Barrio Sarriena s/n, 48940 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
117
|
Ale EC, Maggio B, Fanani ML. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2767-76. [DOI: 10.1016/j.bbamem.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/01/2012] [Accepted: 06/25/2012] [Indexed: 01/02/2023]
|
118
|
van Echten-Deckert G, Walter J. Sphingolipids: Critical players in Alzheimer’s disease. Prog Lipid Res 2012; 51:378-93. [DOI: 10.1016/j.plipres.2012.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
|
119
|
Goñi FM, Montes LR, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Prog Lipid Res 2012; 51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
120
|
|
121
|
Oda M, Hashimoto M, Takahashi M, Ohmae Y, Seike S, Kato R, Fujita A, Tsuge H, Nagahama M, Ochi S, Sasahara T, Hayashi S, Hirai Y, Sakurai J. Role of sphingomyelinase in infectious diseases caused by Bacillus cereus. PLoS One 2012; 7:e38054. [PMID: 22701599 PMCID: PMC3368938 DOI: 10.1371/journal.pone.0038054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/02/2012] [Indexed: 12/01/2022] Open
Abstract
Bacillus cereus (B. cereus) is a pathogen in opportunistic infections. Here we show that Bacillus cereus sphingomyelinase (Bc-SMase) is a virulence factor for septicemia. Clinical isolates produced large amounts of Bc-SMase, grew in vivo, and caused death among mice, but ATCC strains isolated from soil did not. A transformant of the ATCC strain carrying a recombinant plasmid containing the Bc-SMase gene grew in vivo, but that with the gene for E53A, which has little enzymatic activity, did not. Administration of an anti-Bc-SMase antibody and immunization against Bc-SMase prevented death caused by the clinical isolates, showing that Bc-SMase plays an important role in the diseases caused by B. cereus. Treatment of mouse macrophages with Bc-SMase resulted in a reduction in the generation of H2O2 and phagocytosis of macrophages induced by peptidoglycan (PGN), but no effect on the release of TNF-α and little release of LDH under our experimental conditions. Confocal laser microscopy showed that the treatment of mouse macrophages with Bc-SMase resulted in the formation of ceramide-rich domains. A photobleaching analysis suggested that the cells treated with Bc-SMase exhibited a reduction in membrane fluidity. The results suggest that Bc-SMase is essential for the hydrolysis of SM in membranes, leading to a reduction in phagocytosis.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Manabu Hashimoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Masaya Takahashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Yuka Ohmae
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Ryoko Kato
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Aoi Fujita
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Hideaki Tsuge
- Institute for Health Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama Kita-ku, Kyoto, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Sadayuki Ochi
- School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Teppei Sasahara
- School of Medicine, Jichi Medical University, Shimono-city, Tochigi, Japan
| | - Shunji Hayashi
- School of Medicine, Jichi Medical University, Shimono-city, Tochigi, Japan
| | - Yoshikazu Hirai
- School of Medicine, Jichi Medical University, Shimono-city, Tochigi, Japan
| | - Jun Sakurai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail:
| |
Collapse
|
122
|
Scheffer L, Raghavendra PR, Ma J, Acharya JK. Ceramide transfer protein and cancer. Anticancer Agents Med Chem 2012; 11:904-10. [PMID: 21707482 DOI: 10.2174/187152011797655087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/13/2011] [Accepted: 05/26/2011] [Indexed: 12/31/2022]
Abstract
Sphingolipids are important structural components of membranes, and play an equally important role in basic cellular processes as second messengers. Recently, sphingolipids are receiving increasing attention in cancer research. Ceramide is the central molecule that regulates sphingolipid metabolism forming the basic structural backbone of sphingolipids and the precursor of all complex sphingolipids. It is been proposed to be an important regulator of tumor cell death following exposure to stress stimuli. The increase or decrease of ceramide levels leading to change in sensitivity of cancer cells to stress stimuli provides support for a central role of ceramide signaling in cell death. In this review, we have focused on ceramide transfer protein (CERT) as a major regulator of ceramide flux in the cell.
Collapse
Affiliation(s)
- Luana Scheffer
- Laboratory of Cell and Developmental Signaling, National Cancer Institute Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
123
|
In situ synthesis of fluorescent membrane lipids (ceramides) using click chemistry. J Chem Biol 2012; 5:119-23. [PMID: 23596500 DOI: 10.1007/s12154-012-0075-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/03/2012] [Indexed: 01/08/2023] Open
Abstract
Ceramide analogues containing azide groups either in the polar head or in the hydrocarbon chains are non-fluorescent. When incorporated into phospholipid bilayers, they can react in situ with a non-fluorescent 1,8-naphthalimide using click chemistry giving rise to fluorescent ceramide derivatives emitting at ≈440 nm. When incorporated into giant unilamellar vesicles, two-photon excitation at 760 nm allows visualization of the ceramide-containing bilayers. This kind of method may be of general applicability in the study of model and cell membranes.
Collapse
|
124
|
Nsimba Zakanda F, Lins L, Nott K, Paquot M, Mvumbi Lelo G, Deleu M. Interaction of hexadecylbetainate chloride with biological relevant lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3524-33. [PMID: 22263671 DOI: 10.1021/la2040328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The present work investigates the interaction of hexadecylbetainate chloride (C(16)BC), a glycine betaine-based ester with palmitoyl-oleoyl-phosphatidylcholine (POPC), sphingomyelin (SM), and cholesterol (CHOL), three biological relevant lipids present in the outer leaflet of the mammalian plasma membrane. The binding affinity and the mixing behavior between the lipids and C(16)BC are discussed based on experimental (isothermal titration calorimetry (ITC) and Langmuir film balance) and molecular modeling studies. The results show that the interaction between C(16)BC and each lipid is thermodynamically favorable and does not affect the integrity of the lipid vesicles. The primary adsorption of C(16)BC into the lipid film is mainly governed by a hydrophobic effect. Once C(16)BC is inserted in the lipid film, the polar component of the interaction energy between C(16)BC and the lipid becomes predominant. Presence of CHOL increases the affinity of C(16)BC for membrane. This result can be explained by the optimal matching between C(16)BC and CHOL within the film rather by a change of membrane fluidity due to the presence of CHOL. The interaction between C(16)BC and SM is also favorable and gives rise to highly stable monolayers probably due to hydrogen bonds between their hydrophilic groups. The interaction of C(16)BC with POPC is less favorable but does not destabilize the mixed monolayer from a thermodynamic point of view. Interestingly, for all the monolayers investigated, the exclusion surface pressures are above the presumed lateral pressure of the plasma membranes suggesting that C(16)BC would be able to penetrate into mammalian plasma membranes in vivo. These results may serve as a useful basis in understanding the interaction of C(16)BC with real membranes.
Collapse
Affiliation(s)
- F Nsimba Zakanda
- Unité de Chimie Biologique Industrielle, Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
Cytosolic proteins can be selectively delivered to lysosomes for degradation through a type of autophagy known as chaperone-mediated autophagy (CMA). CMA contributes to intracellular quality control and to the cellular response to stress. Compromised CMA has been described in aging and in different age-related disorders. CMA substrates cross the lysosomal membrane through a translocation complex; consequently, changes in the properties of the lysosomal membrane should have a marked impact on CMA activity. In this work, we have analyzed the impact that dietary intake of lipids has on CMA activity. We have found that chronic exposure to a high-fat diet or acute exposure to a cholesterol-enriched diet both have an inhibitory effect on CMA. Lysosomes from livers of lipid-challenged mice had a marked decrease in the levels of the CMA receptor, the lysosome-associated membrane protein type 2A, because of loss of its stability at the lysosomal membrane. This accelerated degradation of lysosome-associated membrane protein type 2A, also described as the mechanism that determines the decline in CMA activity with age, results from its increased mobilization to specific lipid regions at the lysosomal membrane. Comparative lipidomic analyses revealed qualitative and quantitative changes in the lipid composition of the lysosomal membrane of the lipid-challenged animals that resemble those observed with age. Our findings identify a previously unknown negative impact of high dietary lipid intake on CMA and underscore the importance of diet composition on CMA malfunction in aging.
Collapse
|
126
|
Silva LC, Ben David O, Pewzner-Jung Y, Laviad EL, Stiban J, Bandyopadhyay S, Merrill AH, Prieto M, Futerman AH. Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 2012; 53:430-436. [PMID: 22231783 DOI: 10.1194/jlr.m022715] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.
Collapse
Affiliation(s)
- Liana C Silva
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; CQFM & IN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | - Oshrit Ben David
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Pewzner-Jung
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad L Laviad
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johnny Stiban
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sibali Bandyopadhyay
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Manuel Prieto
- CQFM & IN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
127
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
128
|
Liebisch G, Scherer M. Quantification of bioactive sphingo- and glycerophospholipid species by electrospray ionization tandem mass spectrometry in blood. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 883-884:141-6. [PMID: 22100558 DOI: 10.1016/j.jchromb.2011.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022]
Abstract
Bioactive glycerophospho- and sphingolipids species are involved in the regulation of numerous biological processes and implicated in the pathophysiology of various diseases. Here we review electrospray ionization tandem mass spectrometric (ESI-MS/MS) methods for the analysis of these bioactive lipid species in blood including lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), bis(monoacylglycero)phosphate (BMP), ceramide (Cer), sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC). Beside direct tandem mass spectrometric and liquid chromatography coupled approaches, we present an overview of concentrations of these bioactive lipids in plasma. The analytical strategies are discussed together with aspects of sample preparation, quantification and sample stability.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
129
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
130
|
Souza SL, Valério J, Funari SS, Melo E. The thermotropism and prototropism of ternary mixtures of ceramide C16, cholesterol and palmitic acid. An exploratory study. Chem Phys Lipids 2011; 164:643-53. [DOI: 10.1016/j.chemphyslip.2011.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/01/2011] [Accepted: 06/15/2011] [Indexed: 12/21/2022]
|
131
|
Babiychuk EB, Atanassoff AP, Monastyrskaya K, Brandenberger C, Studer D, Allemann C, Draeger A. The targeting of plasmalemmal ceramide to mitochondria during apoptosis. PLoS One 2011; 6:e23706. [PMID: 21886813 PMCID: PMC3158777 DOI: 10.1371/journal.pone.0023706] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/22/2011] [Indexed: 12/11/2022] Open
Abstract
Ceramide is a key lipid mediator of cellular processes such as differentiation, proliferation, growth arrest and apoptosis. During apoptosis, ceramide is produced within the plasma membrane. Although recent data suggest that the generation of intracellular ceramide increases mitochondrial permeability, the source of mitochondrial ceramide remains unknown. Here, we determine whether a stress-mediated plasmalemmal pool of ceramide might become available to the mitochondria of apoptotic cells. We have previously established annexin A1—a member of a family of Ca2+ and membrane-binding proteins—to be a marker of ceramide platforms. Using fluorescently tagged annexin A1, we show that, upon its generation within the plasma membrane, ceramide self-associates into platforms that subsequently invaginate and fuse with mitochondria. An accumulation of ceramide within the mitochondria of apoptotic cells was also confirmed using a ceramide-specific antibody. Electron microscopic tomography confirmed that upon the formation of ceramide platforms, the invaginated regions of the plasma membrane extend deep into the cytoplasm forming direct physical contacts with mitochondrial outer membranes. Ceramide might thus be directly transferred from the plasma membrane to the mitochondrial outer membrane. It is conceivable that this “kiss-of-death” increases the permeability of the mitochondrial outer membrane thereby triggering apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Studer
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Annette Draeger
- Institute of Anatomy, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
132
|
Boulgaropoulos B, Arsov Z, Laggner P, Pabst G. Stable and unstable lipid domains in ceramide-containing membranes. Biophys J 2011; 100:2160-8. [PMID: 21539783 DOI: 10.1016/j.bpj.2011.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 01/07/2023] Open
Abstract
We applied x-ray diffraction, calorimetry, and infrared spectroscopy to lipid mixtures of palmitoyl-oleoyl phosphatidylcholine, sphingomyelin, and ceramide. This combination of experimental techniques allowed us to probe the stability and structural properties of coexisting lipid domains without resorting to any molecular probes. In particular, we found unstable microscopic domains (compositional/phase fluctuations) in the absence of ceramide, and macroscopically separated fluid and gel phases upon addition of ceramide. We also observed phase fluctuations in the presence of ceramide within the broad phase transition regions. We compare our results with fluorescence spectroscopy data and complement the previously reported phase diagram. We also obtained electron paramagnetic resonance data to assess the possible limitations of techniques employing a single label. Our study demonstrates the necessity of applying a combination of experimental techniques to probe local/global structural and fast/slow motional properties in complex lipid mixtures.
Collapse
Affiliation(s)
- Beate Boulgaropoulos
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | | | | | | |
Collapse
|
133
|
Filosto S, Khan EM, Tognon E, Becker C, Ashfaq M, Ravid T, Goldkorn T. EGF receptor exposed to oxidative stress acquires abnormal phosphorylation and aberrant activated conformation that impairs canonical dimerization. PLoS One 2011; 6:e23240. [PMID: 21853092 PMCID: PMC3154401 DOI: 10.1371/journal.pone.0023240] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/08/2011] [Indexed: 02/06/2023] Open
Abstract
Crystallographic studies have offered understanding of how receptor tyrosine kinases from the ErbB family are regulated by their growth factor ligands. A conformational change of the EGFR (ErbB1) was shown to occur upon ligand binding, where a solely ligand-mediated mode of dimerization/activation was documented. However, this dogma of dimerization/activation was revolutionized by the discovery of constitutively active ligand-independent EGFR mutants. In addition, other ligand-independent activation mechanisms may occur. We have shown that oxidative stress (ox-stress), induced by hydrogen peroxide or cigarette smoke, activates EGFR differently than its ligand, EGF, thereby inducing aberrant phosphorylation and impaired trafficking and degradation of EGFR. Here we demonstrate that ox-stress activation of EGFR is ligand-independent, does not induce "classical" receptor dimerization and is not inhibited by the tyrosine kinase inhibitor AG1478. Thus, an unprecedented, apparently activated, state is found for EGFR under ox-stress. Furthermore, this activation mechanism is temperature-dependent, suggesting the simultaneous involvement of membrane structure. We propose that ceramide increase under ox-stress disrupts cholesterol-enriched rafts leading to EGFR re-localization into the rigid, ceramide-enriched rafts. This increase in ceramide also supports EGFR aberrant trafficking to a peri-nuclear region. Therefore, the EGFR unprecedented and activated conformation could be sustained by simultaneous alterations in membrane structure under ox-stress.
Collapse
Affiliation(s)
- Simone Filosto
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California, United States of America
| | - Elaine M. Khan
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California, United States of America
| | - Emiliana Tognon
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California, United States of America
| | - Cathleen Becker
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California, United States of America
| | - Majid Ashfaq
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California, United States of America
| | - Tommer Ravid
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California, United States of America
| | - Tzipora Goldkorn
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California, United States of America
| |
Collapse
|
134
|
Pinto SN, Silva LC, Futerman AH, Prieto M. Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2753-60. [PMID: 21835161 DOI: 10.1016/j.bbamem.2011.07.023] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 12/30/2022]
Abstract
Ceramide is an important bioactive sphingolipid involved in a variety of biological processes. The mechanisms by which ceramide regulates biological events are not fully understood, but may involve alterations in the biophysical properties of membranes. We now examine the properties of ceramide with different acyl chains including long chain (C16- and C18-), very long chain (C24-) and unsaturated (C18:1- and C24:1-) ceramides, in phosphatidylcholine model membranes. Our results show that i) saturated ceramides have a stronger impact on the fluid membrane, increasing its order and promoting gel/fluid phase separation, while their unsaturated counterparts have a lower (C24:1-) or no (C18:1-) ability to form gel domains at 37°C; ii) differences between saturated species are smaller and are mainly related to the morphology and size of the gel domains, and iii) very long chain ceramides form tubular structures likely due to their ability to form interdigitated phases. These results suggest that generation of different ceramide species in cell membranes has a distinct biophysical impact with acyl chain saturation dictating membrane lateral organization, and chain asymmetry governing interdigitation and membrane morphology.
Collapse
Affiliation(s)
- Sandra N Pinto
- Institute of Nanoscience and Nanotechnology, Lisboa, Portugal
| | | | | | | |
Collapse
|
135
|
Buschiazzo J, Alonso TS, Biscoglio M, Antollini SS, Bonini IC. Nongenomic steroid- and ceramide-induced maturation in amphibian oocytes involves functional caveolae-like microdomains associated with a cytoskeletal environment. Biol Reprod 2011; 85:808-22. [PMID: 21653896 DOI: 10.1095/biolreprod.110.090365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Stimulation of full-grown amphibian oocytes with progesterone initiates a nontranscriptional signaling pathway that converges in the activation of Cdc2/cyclin B and reentry into meiosis. We observed that cholesterol depletion mediated by methyl-beta-cyclodextrin (MbetaCD) inhibited meiotic maturation, suggesting involvement of membrane rafts. In the present study, we further characterized caveolae-like membranes from Rhinella arenarum oocytes biochemically and functionally. The identification by mass spectrometry of a nonmuscle myosin heavy-chain associated with caveolar membranes showed evidence of direct involvement of the underlying cytoskeletal environment in the structure of oocyte rafts. Biophysical analysis using the fluorescent probe Laurdan revealed that MbetaCD-mediated cholesterol depletion affected membrane lipid order. In line with this finding, cholesterol removal also affected the localization of the raft marker lipid GM1. Results demonstrated that ceramide is an effective inducer of maturation that alters the distribution of the raft markers caveolin-1, SRC, and GM1, while progesterone seems not to affect membrane microdomain integrity. Cholesterol depletion had a greater effect on ceramide-induced maturation, thus suggesting that ceramide is an inducer more vulnerable to changes in the plasma membrane. MbetaCD treatment delayed tyrosine phosphorylation and MAPK activation in progesterone-induced maturation. Functional studies regarding tyrosine phosphorylation raise the possibility that the hormone receptor is located in the nonraft membrane in the absence of ligand and that it translocates to the caveola when it binds to progesterone. The presence of raft markers and the finding of signaling molecules from MAPK cascade functionally associated to oocyte light membranes suggest that this caveolae-rich fraction efficiently recreates, in part, maturation signaling.
Collapse
Affiliation(s)
- Jorgelina Buschiazzo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
136
|
Salma Y, Ballereau S, Ladeira S, Lepetit C, Chauvin R, Andrieu-Abadie N, Génisson Y. Single- and double-chained truncated jaspine B analogues: asymmetric synthesis, biological evaluation and theoretical study of an unexpected 5-endo-dig process. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
137
|
Eibisch M, Schiller J. Sphingomyelin is more sensitively detectable as a negative ion than phosphatidylcholine: a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric study using 9-aminoacridine (9-AA) as matrix. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1100-1106. [PMID: 21452388 DOI: 10.1002/rcm.4968] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
Phospholipids (PLs) are increasingly analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and imaging MS. Different classes of PLs are preferentially detectable either as positive or negative ions depending on the charges of their headgroups. Sphingomyelin (SM) and phosphatidylcholine (PC) occur in virtually all biological samples and both are assumed to be detectable with the same sensitivity (in the positive ion mode) because their headgroups are identical. We will show here that the detectabilities of PC and SM depend on the matrix used. In the presence of 2,5-dihydroxybenzoic acid (DHB) SM is more sensitively detectable in positive ion mode than PC while the use of 9-aminoacridine (9-AA) as matrix inverts the detectabilities. Our explanation is that the preferred generation of negative ions from SM if 9-AA is used as matrix results in a reduced yield of positive ions. It will also be shown that this is not only valid if a simplified model system is investigated, but also if, for instance, extracts from human erythrocytes are investigated. It will also be outlined that this finding is particularly important in the context of imaging studies where no previous separation of the lipids of interest can be performed.
Collapse
Affiliation(s)
- Mandy Eibisch
- University of Leipzig, Faculty of Medicine, Institute of Medical Physics and Biophysics, Härtelstrasse 16-18, D-04107, Leipzig, Germany
| | | |
Collapse
|
138
|
Lariccia V, Fine M, Magi S, Lin MJ, Yaradanakul A, Llaguno MC, Hilgemann DW. Massive calcium-activated endocytosis without involvement of classical endocytic proteins. ACTA ACUST UNITED AC 2011; 137:111-32. [PMID: 21187336 PMCID: PMC3010057 DOI: 10.1085/jgp.201010468] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe rapid massive endocytosis (MEND) of >50% of the plasmalemma in baby hamster kidney (BHK) and HEK293 cells in response to large Ca transients. Constitutively expressed Na/Ca exchangers (NCX1) are used to generate Ca transients, whereas capacitance recording and a membrane tracer dye, FM 4–64, are used to monitor endocytosis. With high cytoplasmic adenosine triphosphate (ATP; >5 mM), Ca influx causes exocytosis followed by MEND. Without ATP, Ca transients cause only exocytosis. MEND can then be initiated by pipette perfusion of ATP, and multiple results indicate that ATP acts via phosphatidylinositol-bis 4,5-phosphate (PIP2) synthesis: PIP2 substitutes for ATP to induce MEND. ATP-activated MEND is blocked by an inositol 5-phosphatase and by guanosine 5′-[γ-thio]triphosphate (GTPγS). Block by GTPγS is overcome by the phospholipase C inhibitor, U73122, and PIP2 induces MEND in the presence of GTPγS. MEND can occur in the absence of ATP and PIP2 when cytoplasmic free Ca is clamped to 10 µM or more by Ca-buffered solutions. ATP-independent MEND occurs within seconds during Ca transients when cytoplasmic solutions contain polyamines (e.g., spermidine) or the membrane is enriched in cholesterol. Although PIP2 and cholesterol can induce MEND minutes after Ca transients have subsided, polyamines must be present during Ca transients. MEND can reverse over minutes in an ATP-dependent fashion. It is blocked by brief β-methylcyclodextrin treatments, and tests for involvement of clathrin, dynamins, calcineurin, and actin cytoskeleton were negative. Therefore, we turned to the roles of lipids. Bacterial sphingomyelinases (SMases) cause similar MEND responses within seconds, suggesting that ceramide may be important. However, Ca-activated MEND is not blocked by reagents that inhibit SMases. MEND is abolished by the alkylating phospholipase A2 inhibitor, bromoenol lactone, whereas exocytosis remains robust, and Ca influx causes MEND in cardiac myocytes without preceding exocytosis. Thus, exocytosis is not prerequisite for MEND. From these results and two companion studies, we suggest that Ca promotes the formation of membrane domains that spontaneously vesiculate to the cytoplasmic side.
Collapse
Affiliation(s)
- Vincenzo Lariccia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Dupuy F, Fanani ML, Maggio B. Ceramide N-acyl chain length: a determinant of bidimensional transitions, condensed domain morphology, and interfacial thickness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3783-3791. [PMID: 21355583 DOI: 10.1021/la105011x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several lipids of biological interest are able to form monomolecular surfaces with a rich variety of thickness and lateral topography that can be precisely controlled by defined variations of the film composition. Ceramide is one of the simplest sphingolipids, consisting of a sphingosine base N-linked to a fatty acid, and is a membrane mediator for cell-signaling events. In this work, films of ceramides N-acylated with the saturated fatty acids C10, C12, C14, and C16 were studied at the air-aqueous interface. The dipole moment contribution (from surface potential measurements) and the surface topography and thickness (as revealed by Brewster angle microscopy) were measured simultaneously with the surface pressure at different molecular areas. Several surface features were observed depending on the asymmetry between the sphingosine and the N-linked acyl chains. At 21 °C, the C16:0 and C14:0 ceramides showed condensed isotherms and the film topography revealed solid film patches (17.3-15.7 Å thick) that coalesced into a homogeneous surface by further compression. On the other hand, in the more asymmetric C12:0 and C10:0 ceramides, liquid expanded states and liquid expanded-condensed transitions occurred. In the phase coexistence region, the condensed state of these compounds formed flowerlike domains (11.1-13.3 Å thick). C12:0 ceramide domains were larger and more densely branched than those of C10:0 ceramide. Both the film thickness and the surface dipole moment of the condensed state increased with ceramide N-acyl chain length. Bending of the sphingosine chain over the N-linked acyl chain in the more asymmetric ceramides can account for the variation of the surface electrostatics, topography, and thickness of the films with the acyl chain mismatch.
Collapse
Affiliation(s)
- Fernando Dupuy
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, República Argentina
| | | | | |
Collapse
|
140
|
Carter Ramirez DM, Ding J, Guan J, Vobornik D, Carnini A, Ogilvie WW, Jakubek ZJ, Johnston LJ. A Förster resonance energy transfer (FRET) approach for enhancing fluorescence contrast in phase-separated membranes. CAN J CHEM 2011. [DOI: 10.1139/v10-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The partitioning of the dye-labeled lipid probe, NBD-DHPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt)), was examined by fluorescence microscopy in phase-separated lipid bilayers with mixtures of coexisting liquid-ordered and fluid phases. This probe shows slightly higher fluorescence intensity in the ordered domains but undergoes a contrast reversal to give a more strongly fluorescent fluid phase in the presence of >0.2% Texas red-DHPE (TR-DHPE). The change in contrast is shown to result from Förster resonance energy transfer between the NBD donor and TR acceptor in the fluid phase, which has a TR concentration that is approximately 3 times higher than in the domains. An alternate approach using a nitroxide-substituted lipid that partitions into the fluid phase as a quencher, was also examined as a means to enhance the contrast; however, the quencher modified the behaviour of the bilayer. The energy transfer method for enhancing the contrast between ordered and fluid phases was used to examine the morphology of enzyme-treated bilayers.
Collapse
Affiliation(s)
- Daniel M. Carter Ramirez
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, K1A 0R6 ON, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jason Ding
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, K1A 0R6 ON, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jack Guan
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, K1A 0R6 ON, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dusan Vobornik
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, K1A 0R6 ON, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anna Carnini
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, K1A 0R6 ON, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William W. Ogilvie
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, K1A 0R6 ON, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Zygmunt J. Jakubek
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, K1A 0R6 ON, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Linda J. Johnston
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, K1A 0R6 ON, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
141
|
Ibarguren M, López DJ, Montes LR, Sot J, Vasil AI, Vasil ML, Goñi FM, Alonso A. Imaging the early stages of phospholipase C/sphingomyelinase activity on vesicles containing coexisting ordered-disordered and gel-fluid domains. J Lipid Res 2011; 52:635-45. [PMID: 21252263 DOI: 10.1194/jlr.m012591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding and early stages of activity of a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa on giant unilamellar vesicles (GUV) have been monitored using fluorescence confocal microscopy. Both the lipids and the enzyme were labeled with specific fluorescent markers. GUV consisted of a mixture of phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, and cholesterol in equimolar ratios, to which 5-10 mol% of the enzyme end-product ceramide and/or diacylglycerol were occasionally added. Morphological examination of the GUV in the presence of enzyme reveals that, although the enzyme diffuses rapidly throughout the observation chamber, detectable enzyme binding appears to be a slow, random process, with new bound-enzyme-containing vesicles appearing for several minutes. Enzyme binding to the vesicles appears to be a cooperative process. After the initial cluster of bound enzyme is detected, further binding and catalytic activity follow rapidly. After the activity has started, the enzyme is not released by repeated washing, suggesting a "scooting" mechanism for the hydrolytic activity. The enzyme preferentially binds the more disordered domains, and, in most cases, the catalytic activity causes the disordering of the other domains. Simultaneously, peanut- or figure-eight-shaped vesicles containing two separate lipid domains become spherical. At a further stage of lipid hydrolysis, lipid aggregates are formed and vesicles disintegrate.
Collapse
Affiliation(s)
- Maitane Ibarguren
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
The last 10 years have seen a rebirth of interest in lipid biology in the fields of Drosophila development and neurobiology, and sphingolipids have emerged as controlling many processes that have not previously been studied from the viewpoint of lipid biochemistry. Mutations in sphingolipid regulatory enzymes have been pinpointed as affecting cell survival and growth in tissues ranging from muscle to retina. Specification of cell types are also influenced by sphingolipid regulatory pathways, as genetic interactions of glycosphingolipid biosynthetic enzymes with many well-known signaling receptors such as Notch and epidermal growth factor receptor reveal. Furthermore, studies in flies are now uncovering unexpected roles of sphingolipids in controlling lipid storage and response to nutrient availability. The sophisticated genetics of Drosophila is particularly well suited to uncover the roles of sphingolipid regulatory enzymes in development and metabolism, especially in light of conserved pathways that are present in both flies and mammals. The challenges that remain in the field of sphingolipid biology in Drosophila are to combine traditional developmental genetics with more analytical biochemical and biophysical methods, to quantify and localize the responses of these lipids to genetic and metabolic perturbations.
Collapse
Affiliation(s)
- Rachel Kraut
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
143
|
Benesch MG, Mannock DA, McElhaney RN. Sterol chemical configuration influences the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayers containing 5α-cholestan-3β- and 3α-ol. Chem Phys Lipids 2011; 164:62-9. [DOI: 10.1016/j.chemphyslip.2010.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
144
|
Sterol chemical configuration and conformation influence the thermotropic phase behaviour of dipalmitoylphosphatidylcholine mixtures containing 5β-cholestan-3β- and -3α-ol. Chem Phys Lipids 2011; 164:70-7. [DOI: 10.1016/j.chemphyslip.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 01/27/2023]
|
145
|
Janůšová B, Zbytovská J, Lorenc P, Vavrysová H, Palát K, Hrabálek A, Vávrová K. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:129-37. [PMID: 21167310 DOI: 10.1016/j.bbalip.2010.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 11/16/2022]
Abstract
Stratum corneum ceramides play an essential role in the barrier properties of skin. However, their structure-activity relationships are poorly understood. We investigated the effects of acyl chain length in the non-hydroxy acyl sphingosine type (NS) ceramides on the skin permeability and their thermotropic phase behavior. Neither the long- to medium-chain ceramides (8-24 C) nor free sphingosine produced any changes of the skin barrier function. In contrast, the short-chain ceramides decreased skin electrical impedance and increased skin permeability for two marker drugs, theophylline and indomethacin, with maxima in the 4-6C acyl ceramides. The thermotropic phase behavior of pure ceramides and model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesterol sulfate was studied by differential scanning calorimetry and infrared spectroscopy. Differences in thermotropic phase behavior of these lipids were found: those ceramides that had the greatest impact on the skin barrier properties displayed the lowest phase transitions and formed the least dense model stratum corneum lipid membranes at 32°C. In conclusion, the long hydrophobic chains in the NS-type ceramides are essential for maintaining the skin barrier function. However, this ability is not shared by their short-chain counterparts despite their having the same polar head structure and hydrogen bonding ability.
Collapse
Affiliation(s)
- Barbora Janůšová
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Hradec Králové, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
146
|
|
147
|
Zheng T, Li W, Altura BT, Shah NC, Altura BM. Sphingolipids regulate [Mg2+]o uptake and [Mg2+]i content in vascular smooth muscle cells: potential mechanisms and importance to membrane transport of Mg2+. Am J Physiol Heart Circ Physiol 2010; 300:H486-92. [PMID: 21112948 DOI: 10.1152/ajpheart.00976.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sphingolipids have a variety of important signaling roles in mammalian cells. We tested the hypothesis that certain sphingolipids and neutral sphingomyelinase (N-SMase) can regulate intracellular free magnesium ions ([Mg2+]i) in vascular smooth muscle (VSM) cells. Herein, we show that several sphingolipids, including C2-ceramide, C8-ceramide, C16-ceramide, and sphingosine, as well as N-SMase, have potent and direct effects on content and mobilization of [Mg2+]i in primary cultured rat aortic smooth muscle cells. All of these sphingolipid molecules increase, rapidly, [Mg2+]i in these vascular cells in a concentration-dependent manner. The increments of [Mg2+]i, induced by these agents, are derived from influx of extracellular Mg2+ and are extracellular Ca2+ concentration-dependent. Phospholipase C and Ca2+/calmodulin/Ca2+-ATPase activity appear to be important in the sphingolipid-induced rises of [Mg2+]i. Activation of certain PKC isozymes may also be required for sphingolipid-induced rises in [Mg2+]i. These novel results suggest that sphingolipids may be homeostatic regulators of extracellular Mg2+ concentration influx (and transport) and [Mg2+]i content in vascular muscle cells.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Physiology and Pharmacology, Center For Cardiovascular and Muscle Research, The School of Graduate Studies Program in Molecular and Cellular Science, State University of New York, Box 31, SUNY Health Science Center at Brooklyn, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
148
|
Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase. Biophys J 2010; 99:499-506. [PMID: 20643068 DOI: 10.1016/j.bpj.2010.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 12/11/2022] Open
Abstract
Sphingolipid signaling plays an important, yet not fully understood, role in diverse aspects of cellular life. Sphingomyelinase is a major enzyme in these signaling pathways, catalyzing hydrolysis of sphingomyelin to ceramide and phosphocholine. To address the related membrane dynamical structural changes and their feedback to enzyme activity, we have studied the effect of enzymatically generated ceramide in situ on the properties of a well-defined lipid model system. We found a gel-phase formation that was about four times faster than ceramide generation due to ceramide-sphingomyelin pairing. The gel-phase formation slowed down when the ceramide molar ratios exceeded those of sphingomyelin and stopped just at the solubility limit of ceramide, due to unfavorable pairwise interactions of ceramide with itself and with monounsaturated phosphatidylcholine. A remarkable correlation to in vitro experiments suggests a regulation of sphingomyelinase activity based on the sphingomyelin/ceramide molar ratio.
Collapse
|
149
|
Strandvik B. Fatty acid metabolism in cystic fibrosis. Prostaglandins Leukot Essent Fatty Acids 2010; 83:121-9. [PMID: 20673710 DOI: 10.1016/j.plefa.2010.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/07/2010] [Indexed: 12/23/2022]
Abstract
Despite identification twenty years ago of the gene responsible for cystic fibrosis transmembrane conductance regulator (CFTR), the protein defective in cystic fibrosis (CF), research of this monogenetic disease has not provided an explanation for the divergent symptoms, and a treatment breakthrough is still awaited. This review discusses different aspects of disturbances in lipid metabolism seen in CF. These include increased release of arachidonic acid (AA) from cell membrane phospholipids and a low status of linoleic and docosahexaenoic acids. Recent research has explored more complicated lipid associations. Disturbances in annexins and ceramides might act in concert to explain the impact on inflammation and AA release. The connections to CFTR and between the disturbances in essential fatty acid metabolism are reviewed. The metabolic interactions, some of which might be compensating, possibly explain the difficulties in understanding the fatty acid disturbances in relation to different symptoms and their relation to the defective CFTR.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Unit of Public Health Nutrition, NOVUM, Karolinska Institutet, Hälsovägen 7, 14157 Huddinge, Stockholm, Sweden.
| |
Collapse
|
150
|
Chen Y, Liu Y, Sullards MC, Merrill AH. An introduction to sphingolipid metabolism and analysis by new technologies. Neuromolecular Med 2010; 12:306-19. [PMID: 20680704 PMCID: PMC2982954 DOI: 10.1007/s12017-010-8132-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 07/20/2010] [Indexed: 01/20/2023]
Abstract
Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine.
Collapse
Affiliation(s)
- Yanfeng Chen
- School of Chemistry and Biochemistry, The Wallace H. Coulter Department of Biomedical Engineering and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|