101
|
Izvolskaia M, Sharova V, Zakharova L. Perinatal Inflammation Reprograms Neuroendocrine, Immune, and Reproductive Functions: Profile of Cytokine Biomarkers. Inflammation 2021; 43:1175-1183. [PMID: 32279161 DOI: 10.1007/s10753-020-01220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viral and bacterial infections causing systemic inflammation are significant risk factors for developing body. Inflammatory processes can alter physiological levels of regulatory factors and interfere with developmental mechanisms. The brain is the main target for the negative impact of inflammatory products during critical ontogenetic periods. Subsequently, the risks of various neuropsychiatric diseases such as Alzheimer's and Parkinson's diseases, schizophrenia, and depression are increased in the offspring. Inflammation-induced physiological disturbances can cause immune and behavioral disorders, reproductive deficiencies, and infertility. The influence of maternal immune stress is mediated by the regulation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, monocyte chemotactic protein 1, leukemia-inhibiting factor, and tumor necrosis factor-alpha secretion in the maternal-fetal system. The increasing number of patients with neuronal and reproductive disorders substantiates the identification of biomarkers for these disorders targeted at their therapy.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Viktoriya Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Liudmila Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| |
Collapse
|
102
|
Increased Serum Concentrations of High Mobility Group Box 1 (HMGB1) Protein in Children with Autism Spectrum Disorder. CHILDREN-BASEL 2021; 8:children8060478. [PMID: 34198762 PMCID: PMC8228126 DOI: 10.3390/children8060478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
High mobility group box 1 protein (HMGB1) has been suggested to be involved in the immune dysfunction and inflammation reported in autism spectrum disorder (ASD). We aimed to assess HMGB1 serum concentrations (SCs) in high-functioning ASD children compared to typically developing (TD) controls and to explore their associations with the autism spectrum quotient (AQ), the empathy quotient (EQ), and the systemizing quotient (SQ). The study involved 42 ASD children and 38 TD children, all-male, aged between 6.1 and 13.3 years old. HMGB1 SCs were measured by enzyme-linked immunosorbent assay (ELISA). Groups were comparable regarding age, general IQ, birth weight, and maternal age at birth. ASD children showed significantly higher HMGB1 SCs compared to TD children (1.25 ± 0.84 ng/mL versus 1.13 ± 0.79 ng/mL, respectively, p = 0.039). The Spearman’s rho revealed that HMGB1 SCs were positively correlated with the AQ attention to detail subscale (rs = 0.46, p = 0.045) and with the SQ total score (rs = 0.42, p = 0.04) in the ASD group. These results show that HMGB1 serum concentrations are altered in ASD children, and suggest that inflammatory processes mediated by HMGB1 may be associated with specific cognitive features observed in ASD.
Collapse
|
103
|
Rescue of maternal immune activation-induced behavioral abnormalities in adult mouse offspring by pathogen-activated maternal T reg cells. Nat Neurosci 2021; 24:818-830. [PMID: 33859437 DOI: 10.1038/s41593-021-00837-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/10/2021] [Indexed: 02/01/2023]
Abstract
Maternal immune activation (MIA) induced by lipopolysaccharides or polyinosinic:polycytidylic acid injections can induce behavioral abnormalities in adult mouse offspring. Here, we used the soluble tachyzoite antigen from Toxoplasma gondii, a parasite that infects approximately two billion people, to induce MIA in mice. The adult male offspring showed autism-relevant behaviors and abnormal brain microstructure, along with a pro-inflammatory T-cell immune profile in the periphery and upregulation of interleukin-6 in brain astrocytes. We show that adoptive transfer of regulatory T (Treg) cells largely reversed these MIA-induced phenotypes. Notably, pathogen-activated maternal Treg cells showed greater rescue efficacy than those from control donors. Single-cell RNA sequencing identified and characterized a unique group of pathogen-activated Treg cells that constitute 32.6% of the pathogen-activated maternal Treg population. Our study establishes a new preclinical parasite-mimicking MIA model and suggests therapeutic potential of adoptive Treg cell transfer in neuropsychiatric disorders associated with immune alterations.
Collapse
|
104
|
Teskey G, Anagnostou E, Mankad D, Smile S, Roberts W, Brian J, Bowdish DME, Foster JA. Intestinal permeability correlates with behavioural severity in very young children with ASD: A preliminary study. J Neuroimmunol 2021; 357:577607. [PMID: 34044209 DOI: 10.1016/j.jneuroim.2021.577607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Systemic inflammation is known to alter behaviour, and since it has been reported that individuals with autism spectrum disorder (ASD) have higher levels of circulating cytokines, it has been hypothesized that systemic inflammation may exacerbate behaviours characteristic of ASD. The acute phase proteins α-2-macroglobulin, C-reactive protein, haptoglobin, serum amyloid P, serum amyloid A, ferritin and tissue plasminogen activator, as well as markers of intestinal permeability (intestinal fatty acid binding protein and lipopolysaccharide) were quantitated in the plasma of very young children with ASD. Behaviour severity was measured using the Autism Diagnostic Interview-Revised (ADI-R), the Autism Diagnostic Observation Schedule (ADOS) and the Vineland Adaptive Behaviour Scale (VABS). An increase in circulating I-FABP correlated with more severe deficits in communication, communication + social interaction as well as maladaptive behaviour. The acute phase protein haptoglobin was associated with more severe social interaction and communication + social interaction. In summary, I-FABP, a marker of intestinal epithelial damage, was associated with more severe behavioural phenotypes in very young children with ASD. In addition, the acute phase protein, haptoglobin, was associated with behaviour.
Collapse
Affiliation(s)
- Grace Teskey
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Deepali Mankad
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Canada
| | - Sharon Smile
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Canada
| | - Wendy Roberts
- Sick Kids, University of Toronto, Toronto, ON, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
105
|
Nezgovorova V, Ferretti CJ, Taylor BP, Shanahan E, Uzunova G, Hong K, Devinsky O, Hollander E. Potential of cannabinoids as treatments for autism spectrum disorders. J Psychiatr Res 2021; 137:194-201. [PMID: 33689997 DOI: 10.1016/j.jpsychires.2021.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Current treatments for autism spectrum disorders (ASD) are limited in efficacy and are often associated with substantial side effects. These medications typically ameliorate problem behaviors associated with ASD, but do not target core symptom domains. As a result, there is a significant amount of research underway for development of novel experimental therapeutics. Endocannabinoids are arachidonic acid-derived lipid neuromodulators, which, in combination with their receptors and associated metabolic enzymes, constitute the endocannabinoid (EC) system. Cannabinoid signaling may be involved in the social impairment and repetitive behaviors observed in those with ASD. In this review, we discuss a possible role of the EC system in excitatory-inhibitory (E-I) imbalance and immune dysregulation in ASD. Novel treatments for the core symptom domains of ASD are needed and phytocannabinoids could be useful experimental therapeutics for core symptoms and associated domains.
Collapse
Affiliation(s)
- V Nezgovorova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - C J Ferretti
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - B P Taylor
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Shanahan
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - G Uzunova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - K Hong
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - O Devinsky
- New York University Comprehensive Epilepsy Center, New York, NY, USA
| | - E Hollander
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
106
|
Mir IN, White SP, Steven Brown L, Heyne R, Rosenfeld CR, Chalak LF. Autism spectrum disorders in extremely preterm infants and placental pathology findings: a matched case-control study. Pediatr Res 2021; 89:1825-1831. [PMID: 32950030 DOI: 10.1038/s41390-020-01160-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The prevalence of autism spectrum disorders (ASD) is 5-fold higher in preterm (PT) infants born ≤28 weeks gestational age (GA) as compared to the general population. The relationship between placental pathologic lesions and ASD in PT infants has not been studied. OBJECTIVES The objective of this study was to determine the association of placental pathology with the occurrence of ASD in PT infants born ≤28 weeks GA. STUDY DESIGN A matched case-control study to identify confirmed ASD cases (n = 16) and matched controls (n = 48) born at Parkland Hospital between January 2012 and December 2015. Patients were matched using known variables associated with increased risk of ASD in PT infants. Placental histology from all births was reviewed. RESULTS Children with ASD had 2-fold greater incidence of multiple placental pathologic lesions vs. matched controls [11/16 (69%) vs.16/48 (33%), respectively; P = 0.01]. In contrast, single placental pathologic lesions were not associated with ASD [5/16 (31%) vs. 21/48 (43%), respectively; P = 0.1]. CONCLUSIONS In this study, we have demonstrated an association between the increasing complexity of histologic placental lesions and the later risk for ASD in infants born ≤28 weeks GA. Thus, placental pathology findings may be valuable in further understanding the prenatal pathologic processes underlying ASD in PT infants. IMPACT PT infants with ASD have a 2-fold greater incidence of multiple placental pathologies. This is the first study to report an association between the complexity of histologic placental lesions and later risk of ASD in infant born extremely PT (i.e., ≤28 weeks GA). This study reiterates the importance of examining placental pathologic lesions, since placental evidence of antenatal insults correlates with postnatal morbidities and mortality in PT infants.
Collapse
Affiliation(s)
- Imran N Mir
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA.
| | - Stormi P White
- Department of Pediatrics, Division of Autism and Related Disorders, Emory University School of Medicine and Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | - Roy Heyne
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Charles R Rosenfeld
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Lina F Chalak
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
107
|
Steroids With Risperidone: Is it Really a New Frontier in the Treatment of Autism Spectrum Disorders Among Children and Adolescents? Clin Neuropharmacol 2021; 44:114-115. [PMID: 33811192 DOI: 10.1097/wnf.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
108
|
Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021; 9:667815. [PMID: 33937270 PMCID: PMC8083958 DOI: 10.3389/fcell.2021.667815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Rafael Franco, ;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Irene Reyes-Resina,
| |
Collapse
|
109
|
Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J Chem Neuroanat 2021; 114:101957. [PMID: 33836221 DOI: 10.1016/j.jchemneu.2021.101957] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease. Important species differences in monoamine oxidase function and development in the brain are highlighted. Sex-specific monoamine oxidase regulatory mechanisms and their implications for various neurological disorders are also discussed. While our understanding of these critical enzymes has expanded over the last century, gaps exist in our understanding of sex and species differences and the roles monoamine oxidases may play in conditions often comorbid with neurological disorders.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
110
|
Moradi K, Ashraf-Ganjouei A, Tavolinejad H, Bagheri S, Akhondzadeh S. The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110091. [PMID: 32891667 DOI: 10.1016/j.pnpbp.2020.110091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impairments in social and cognitive activities, stereotypical and repetitive behaviors and restricted areas of interest. A remarkable proportion of ASD patients represent immune dysregulation as well as gastrointestinal complications. Hence, a novel concept has recently emerged, addressing the possible intercommunication between the brain, the immune system, the gut and its commensals. Here, we provide an overview of how gut microbes and their metabolites are associated with neurobehavioral features of ASD through various immunologic mechanisms. Moreover, we discuss the potential therapeutic options that could modify these features.
Collapse
Affiliation(s)
- Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Tavolinejad
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
111
|
Maigoro AY, Lee S. Gut Microbiome-Based Analysis of Lipid A Biosynthesis in Individuals with Autism Spectrum Disorder: An In Silico Evaluation. Nutrients 2021; 13:nu13020688. [PMID: 33669978 PMCID: PMC7924848 DOI: 10.3390/nu13020688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
The link between autism spectrum disorder (ASD) and the gut microbiome has received much attention, with special focus on gut–brain-axis immunological imbalances. Gastrointestinal problems are one of the major symptoms of ASD and are thought to be related to immune dysregulation. Therefore, in silico analysis was performed on mined data from 36 individuals with ASD and 21 control subjects, with an emphasis on lipid A endotoxin-producing bacteria and their lipopolysaccharide (LPS) metabolic pathways. Analysis of enzyme distribution among the 15 most abundant genera in both groups revealed that almost all these genera utilized five early-stage enzymes responsible for catalyzing the nine conserved lipid A synthesis steps. However, Haemophilus and Escherichia, which were significantly more abundant in individuals with ASD than in the control subjects, possess a complete set of essential lipid A synthesis enzymes. Furthermore, the 10 genera with the greatest increase in individuals with ASD showed high potential for producing late-stage lipid A products. Collectively, these results suggested that the synthesis rate of immunogenic LPS end products is likely to increase in individuals with ASD, which may be related to their gastrointestinal symptoms and elevated inflammatory conditions.
Collapse
|
112
|
Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed Pharmacother 2021; 137:111322. [PMID: 33761592 DOI: 10.1016/j.biopha.2021.111322] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a sort of mental disorder marked by deficits in cognitive and communication abilities. To date no effective cure for this pernicious disease has been available. Valproic acid (VPA) is a broad-spectrum, antiepileptic drug, and it is also a potent teratogen. Epidemiological studies have shown that children exposed to VPA are at higher risk for ASD during the first trimester of their gestational development. Several animal and human studies have demonstrated important behavioral impairments and morphological changes in the brain following VPA treatment. However, the mechanism of VPA exposure-induced ASD remains unclear. Several factors are involved in the pathological phase of ASD, including aberrant excitation/inhibition of synaptic transmission, neuroinflammation, diminished neurogenesis, oxidative stress, etc. In this review, we aim to outline the current knowledge of the critical pathophysiological mechanisms underlying VPA exposure-induced ASD. This review will give insight toward understanding the complex nature of VPA-induced neuronal toxicity and exploring a new path toward the development of novel pharmacological treatment against ASD.
Collapse
|
113
|
Dysregulation of Ki-67 Expression in T Cells of Children with Autism Spectrum Disorder. CHILDREN-BASEL 2021; 8:children8020116. [PMID: 33562037 PMCID: PMC7915849 DOI: 10.3390/children8020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral abnormalities such as impairments in social function and deficits in communication. The etiology of autism is unknown in most cases, but many studies have pointed towards the immune system as a causative agent in autism. Specific studies implicated lymphocytes, natural killer (NK) cells, monocytes, cytokines, and specific transcription factors in the development of ASD. The protein Ki-67 is n expressed in the proliferating cells and is used as a tool in several disorders. Ki-67 plays a crucial role in many neurological diseases. However, Ki-67 role in ASD is not fully understood. In this study, we investigated the possible role of Ki-67 expression in autistic children. We compared Ki-67 production in CD3+, CD4+, CD8+, CXCR4+, CXCR7+, CD45R+, HLA-DR+, GATA3+, Helios+, and FOXP3+ peripheral blood mononuclear cells (PBMCs) in autistic children to typically developing (TD) controls using immunofluorescence staining. We also determined Ki-67 mRNA levels in PBMCs using RT–PCR. The results revealed that autistic children had significantly increased numbers of CD3+Ki-67+, CD4+Ki-67+, CD8+Ki-67+, CXCR4+Ki-67+, CXCR7+Ki-67+, CD45R+Ki-67+, HLA-DR+Ki-67+, CXCR4+GATA3+, GATA3+Ki-67+ cells and decreased Helios+Ki-67+ and FOXP3+Ki-67+ cells compared with TD controls. In addition, the autistic children showed upregulation of Ki-67 mRNA levels compared with TD controls. Further studies need to be carried out to assess the exact role of Ki-67 and its therapeutic potential in ASD.
Collapse
|
114
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
115
|
Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021; 11:70. [PMID: 33504019 PMCID: PMC7912683 DOI: 10.3390/jpm11020070] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is a challenge for the worldwide healthcare system. With the plethora of information from research, a common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiological and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as a whole. The embryo-fetal period and the first two years of life (the so-called 'First 1000 Days') are the crucial time window for neurodevelopment. In particular, the interplay and the vicious loop between immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress significantly affects neurodevelopment during pregnancy and undermines the health of ASD people throughout life. Consequently, the most effective intervention in ASD is expected by primary prevention aimed at pregnancy and at early control of the main effector molecular pathways. We will reason here on a comprehensive and exhaustive pathogenetic paradigm in ASD, viewed not just as a theoretical issue, but as a tool to provide suggestions for effective preventive strategies and personalized, dynamic (from womb to adulthood), systemic, and interdisciplinary healthcare approach.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | | | - Federico Balzola
- Division of Gastroenterology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20138 Milan, Italy;
| | - Alessandra Bolotta
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Marco Brunero
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Ernesto Burgio
- ECERI—European Cancer and Environment Research Institute, Square de Meeus 38-40, 1000 Bruxelles, Belgium;
| | - Alberto Chiara
- Dipartimento Materno Infantile ASST, 27100 Pavia, Italy;
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luigi Croce
- Centro Domino per l’Autismo, Universita’ Cattolica Brescia, 20139 Milan, Italy;
| | - Carla Ferreri
- National Research Council of Italy, Institute of Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy;
| | - Niccolò Giovannini
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Alessandro Ghezzo
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy;
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy;
| | - Andrea Manzotti
- RAISE Lab, Foundation COME Collaboration, 65121 Pescara, Italy;
| | - Marina Marini
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Lucia Migliore
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Lucio Moderato
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
| | - Davide Moscone
- Associazione Spazio Asperger ONLUS, Centro Clinico CuoreMenteLab, 00141 Rome, Italy;
| | - Michele Mussap
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, IRCCS ISNB, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Valentina Pasin
- Milan Institute for health Care and Advanced Learning, 20124 Milano, Italy;
| | | | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | - Andrea Stoccoro
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Tiziana Toso
- Unione Italiana Lotta alla Distrofia Muscolare UILDM, 35100 Padova, Italy;
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy, 70126 Bari, Italy;
| | - David Vagni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy;
| | | | - Laura Villa
- Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy;
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
116
|
Briuglia S, Calabrò M, Capra AP, Briguori S, La Rosa MA, Crisafulli C. Molecular Pathways within Autism Spectrum Disorder Endophenotypes. J Mol Neurosci 2021; 71:1357-1367. [PMID: 33492615 DOI: 10.1007/s12031-020-01782-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a condition that includes a number of neurodevelopmental mental disorders. Recent genetic/genomic investigations have reported an increased prevalence of copy number variations (CNVs) in individuals with autism. Despite the extensive evidence of a genetic component, the genes involved are not known and the background is heterogeneous among subjects. As such, it is highly likely that multiple events (molecular cascades) are implicated in the development of autism. The aim of this work was to shed some light on the biological background behind this condition. We hypothesized that the heterogeneous alterations found within different individuals may converge into one or more specific biological functions (pathways) linked to the heterogeneous phenotypes commonly observed in subjects with ASD. We analyzed a sample of 107 individuals for CNV alterations and checked the genes located within the altered loci (1366). Then, we characterized the subjects for distinct phenotypes. After creating subsamples based on symptoms, the CNVs related to each specific symptom were used to create distinct networks associated with each phenotype (18 in total in the sample under analysis). These networks were independently clustered and enriched to identify potential common pathways involved in autism and variably combined with the clinical phenotype. The first 10 pathways of the analysis are discussed.
Collapse
Affiliation(s)
- Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Anna Paola Capra
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Sara Briguori
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Maria Angela La Rosa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy.
| |
Collapse
|
117
|
Non-classical human leukocyte antigen class I in Tunisian children with autism. Cent Eur J Immunol 2021; 45:176-183. [PMID: 33456328 PMCID: PMC7792448 DOI: 10.5114/ceji.2020.97906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders (ASD) are one of the most common childhood morbidities characterized by deficits in communication and social skills. Increasing evidence has suggested associations between immune genes located in the human leukocyte antigen (HLA) complex and etiology of autism. In this study, we investigated whether the non-classical class I HLA-G, -E, and -F polymorphisms are associated with genetic predisposition to autism in Tunisia. We aimed to find a correlation between HLA-G genotypes and soluble HLA-G (sHLA-G) levels. We have analyzed the HLA-G, -E, and -F genotypes of 15 autistic children and their parents. DNA typing of HLA class I genes was performed using PCR-SSP and PCR-RFLP methods. Also, we evaluated the serum levels of HLA-G (1 and 5) by a validated ELISA technique in autistic probands and their parents. No association was found between any polymorphism and autism in the study subjects. Additionally, we found no correlation between sHLA-G1 and sHLA-G5 and autism. Also, no significant difference in sHLA-G testing in parents and offspring was found. However, parents carrying [GG] genotype presented a higher sHLA-G levels than those carrying ([CC]+[GC]) genotypes (p = 0.037). From this preliminary study, we conclude that the investigated polymorphisms of HLA-G, -E, and -F genes did not lead to autism susceptibility in Tunisian children. However, the CGTIGA haplotype was found to be associated with the disease.
Collapse
|
118
|
Jhun M, Panwar A, Cordner R, Irvin DK, Veiga L, Yeager N, Pechnick RN, Schubloom H, Black KL, Wheeler CJ. CD103 Deficiency Promotes Autism (ASD) and Attention-Deficit Hyperactivity Disorder (ADHD) Behavioral Spectra and Reduces Age-Related Cognitive Decline. Front Neurol 2021; 11:557269. [PMID: 33424735 PMCID: PMC7786306 DOI: 10.3389/fneur.2020.557269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The incidence of autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), which frequently co-occur, are both rising. The causes of ASD and ADHD remain elusive, even as both appear to involve perturbation of the gut-brain-immune axis. CD103 is an integrin and E-cadherin receptor most prominently expressed on CD8 T cells that reside in gut, brain, and other tissues. CD103 deficiency is well-known to impair gut immunity and resident T cell function, but it's impact on neurodevelopmental disorders has not been examined. We show here that CD8 T cells influence neural progenitor cell function, and that CD103 modulates this impact both directly and potentially by controlling CD8 levels in brain. CD103 knockout (CD103KO) mice exhibited a variety of behavioral abnormalities, including superior cognitive performance coupled with repetitive behavior, aversion to novelty and social impairment in females, with hyperactivity with delayed learning in males. Brain protein markers in female and male CD103KOs coincided with known aspects of ASD and ADHD in humans, respectively. Surprisingly, CD103 deficiency also decreased age-related cognitive decline in both sexes, albeit by distinct means. Together, our findings reveal a novel role for CD103 in brain developmental function, and identify it as a unique factor linking ASD and ADHD etiology. Our data also introduce a new animal model of combined ASD and ADHD with associated cognitive benefits, and reveal potential therapeutic targets for these disorders and age-related cognitive decline.
Collapse
Affiliation(s)
- Michelle Jhun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Akanksha Panwar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Ryan Cordner
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,Department Biomedical & Translational Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dwain K Irvin
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,StemVax Therapeutics, Chesterland, OH, United States
| | - Lucia Veiga
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Nicole Yeager
- Department Biomedical & Translational Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Robert N Pechnick
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Hanna Schubloom
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Christopher J Wheeler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,Society for Brain Mapping & Therapeutics, Brain Mapping Foundation, Santa Monica, CA, United States.,T-Neuro Pharma, Inc., Albuquerque, NM, United States
| |
Collapse
|
119
|
Abdel-Rahman EA, Zaky EA, Aboulsaoud M, Elhossiny RM, Youssef WY, Mahmoud AM, Ali SS. Autism spectrum disorder (ASD)-associated mitochondrial deficits are revealed in children's platelets but unimproved by hyperbaric oxygen therapy. Free Radic Res 2021; 55:26-40. [PMID: 33402007 DOI: 10.1080/10715762.2020.1856376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitochondrial and immune dysfunctions are often implicated in the aetiology of autism spectrum disorder (ASD). Here, we studied for the first time the relationship between ASD severity measures and mitochondrial respiratory rates in freshly isolated platelets as well as the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in isolated neutrophils. We also verified the impact of hyperbaric oxygen therapy (HBOT) on mitochondrial and immune functions as well as on ASD severity measures. Blood samples were collected from three age-matched male groups (Control (Norm-N), autistic (Aut-N), and autistic + HBOT (Aut-H); N = 10 per group). Using high resolution respirometry, we found that routine basal respiration, complex I- and complex I + II-dependent oxidative phosphorylation rate were significantly impaired in Aut-N platelets. Similarly, deficits in immune response of neutrophils were evidenced through lower rates of oxygen consumption and reactive oxygen species (ROS) production by phagocytic NOX. ASD-related behavioural outcomes were found to moderately correlate with platelets' mitochondrial bioenergetic parameters as well as with NOX-mediated activity in neutrophils. HBOT was not able to improve mitochondrial dysfunctions or to counteract ASD-related behavioral deficits. Although HBOT improved one measure of the immune response; namely, NOX-mediated superoxide burst, this was not associated with significant changes in trends of recurrent infections between groups. Taken together, our data suggest that ASD-associated mitochondria and immune deficits are detectable in platelets and neutrophils. We also found no evidence that HBOT confers any significant improvement of ASD-associated physiological or behavioural phenotypes.
Collapse
Affiliation(s)
- Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,Basic Research Department, Children's Cancer Hospital, Cairo, Egypt.,Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Eman A Zaky
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Aboulsaoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Reham M Elhossiny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walaa Y Youssef
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali M Mahmoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| |
Collapse
|
120
|
Su T, Yan Y, Li Q, Ye J, Pei L. Endocannabinoid System Unlocks the Puzzle of Autism Treatment via Microglia. Front Psychiatry 2021; 12:734837. [PMID: 34744824 PMCID: PMC8568770 DOI: 10.3389/fpsyt.2021.734837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder and characterized by early childhood-onset impairments in social interaction and communication, restricted and repetitive patterns of behavior or interests. So far there is no effective treatment for ASD, and the pathogenesis of ASD remains unclear. Genetic and epigenetic factors have been considered to be the main cause of ASD. It is known that endocannabinoid and its receptors are widely distributed in the central nervous system, and provide a positive and irreversible change toward a more physiological neurodevelopment. Recently, the endocannabinoid system (ECS) has been found to participate in the regulation of social reward behavior, which has attracted considerable attention from neuroscientists and neurologists. Both animal models and clinical studies have shown that the ECS is a potential target for the treatment of autism, but the mechanism is still unknown. In the brain, microglia express a complete ECS signaling system. Studies also have shown that modulating ECS signaling can regulate the functions of microglia. By comprehensively reviewing previous studies and combining with our recent work, this review addresses the effects of targeting ECS on microglia, and how this can contribute to maintain the positivity of the central nervous system, and thus improve the symptoms of autism. This will provide insights for revealing the mechanism and developing new treatment strategies for autism.
Collapse
Affiliation(s)
- Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yan
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, China
| | - Qiang Li
- Exchange, Development and Service Center for Science and Technology Talents, The Ministry of Science and Technology, Beijing, China
| | - Jiacai Ye
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lei Pei
- Collaborative Innovation Center for Brain Science, The Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
121
|
Brito AR, Vairo GDPT, Dias APBH, Olej B, Nascimento OJM, Vasconcelos MM. Effect of prednisolone on language function in children with autistic spectrum disorder: a randomized clinical trial. J Pediatr (Rio J) 2021; 97:22-29. [PMID: 32330433 PMCID: PMC9432069 DOI: 10.1016/j.jped.2019.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To describe the effect of prednisolone on language in children with autism spectrum disorder. This study is based upon two hypotheses: autism etiology may be closely related to neuroinflammation; and, an effective treatment should restore the individual's language skills. METHOD This is a prospective, double-blinded, randomized, placebo-controlled clinical trial, carried out in a federal university hospital. The initial patient sample consisted of 40 subjects, which were randomized into two parallel groups. Inclusion criteria were: male gender, 3-7 years of age, and meeting the Diagnostic and Statistical Manual of Mental Disorders - 4th edition (DSM-IV) diagnostic criteria. The final sample consisted of 38 patients, of whom 20 were randomized to the placebo group and 18 to the active group. The latter received prednisolone for 24 weeks, at an initial dose of 1mg/kg/day and a tapering dose from the ninth week onward. Language was measured on four occasions over a 12-month period by applying two Brazilian tools: the Language Development Assessment (ADL) and the Child Language Test in Phonology, Vocabulary, Fluency, and Pragmatics (ABFW). RESULTS The side effects were mild: two patients had hypertension, five had hyperglycemia, and two had varicella. Prednisolone increased the global ADL score in children younger than 5 years of age who had developmental regression (p=0.0057). The ABFW's total of communicative acts also responded favorably in those participants with regression (p=0.054). The ABFW's total of vocal acts showed the most significant results, especially in children younger than 5 years (p=0.004, power=0.913). CONCLUSIONS The benefit of prednisolone for language scores was more evident in participants who were younger than five years, with a history of developmental regression, but the trial's low dose may have limited this benefit. The observed side effects do not contraindicate corticosteroid use in autism.
Collapse
Affiliation(s)
- Adriana Rocha Brito
- Universidade Federal Fluminense (UFF), Departamento Materno-Infantil, Niterói, RJ, Brazil
| | | | | | - Beni Olej
- Universidade Federal Fluminense (UFF), Departamento de Medicina Clínica, Niterói, RJ, Brazil
| | | | | |
Collapse
|
122
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
123
|
A Bibliometric Insight of Genetic Factors in ASD: Emerging Trends and New Developments. Brain Sci 2020; 11:brainsci11010033. [PMID: 33396229 PMCID: PMC7824688 DOI: 10.3390/brainsci11010033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) cases have increased rapidly in recent decades, which is associated with various genetic abnormalities. To provide a better understanding of the genetic factors in ASD, we assessed the global scientific output of the related studies. A total of 2944 studies published between 1997 and 2018 were included by systematic retrieval from the Web of Science (WoS) database, whose scientific landscapes were drawn and the tendencies and research frontiers were explored through bibliometric methods. The United States has been acting as a leading explorer of the field worldwide in recent years. The rapid development of high-throughput technologies and bioinformatics transferred the research method from the traditional classic method to a big data-based pipeline. As a consequence, the focused research area and tendency were also changed, as the contribution of de novo mutations in ASD has been a research hotspot in the past several years and probably will remain one into the near future, which is consistent with the current opinions of the major etiology of ASD. Therefore, more attention and financial support should be paid to the deciphering of the de novo mutations in ASD. Meanwhile, the effective cooperation of multi-research centers and scientists in different fields should be advocated in the next step of scientific research undertaken.
Collapse
|
124
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
125
|
Reilly J, Gallagher L, Leader G, Shen S. Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation. PLoS One 2020; 15:e0242773. [PMID: 33338084 PMCID: PMC7748153 DOI: 10.1371/journal.pone.0242773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied with many co-morbidities. Recent genetic studies have identified various pathways from hundreds of candidate risk genes with varying levels of association to ASD. However, it is unknown which pathways are specific to the core symptoms or which are shared by the co-morbidities. We hypothesised that critical ASD candidates should appear widely across different scoring systems, and that comorbidity pathways should be constituted by genes expressed in the relevant tissues. We analysed the Simons Foundation for Autism Research Initiative (SFARI) database and four independently published scoring systems and identified 292 overlapping genes. We examined their mRNA expression using the Genotype-Tissue Expression (GTEx) database and validated protein expression levels using the human protein atlas (HPA) dataset. This led to clustering of the overlapping ASD genes into 2 groups; one with 91 genes primarily expressed in the central nervous system (CNS geneset) and another with 201 genes expressed in both CNS and peripheral tissues (CNS+PT geneset). Bioinformatic analyses showed a high enrichment of CNS development and synaptic transmission in the CNS geneset, and an enrichment of synapse, chromatin remodelling, gene regulation and endocrine signalling in the CNS+PT geneset. Calcium signalling and the glutamatergic synapse were found to be highly interconnected among pathways in the combined geneset. Our analyses demonstrate that 2/3 of ASD genes are expressed beyond the brain, which may impact peripheral function and involve in ASD co-morbidities, and relevant pathways may be explored for the treatment of ASD co-morbidities.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- * E-mail: (JR); (SS)
| | - Louise Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences—Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- * E-mail: (JR); (SS)
| |
Collapse
|
126
|
Casanova EL, Baeza-Velasco C, Buchanan CB, Casanova MF. The Relationship between Autism and Ehlers-Danlos Syndromes/Hypermobility Spectrum Disorders. J Pers Med 2020; 10:E260. [PMID: 33271870 PMCID: PMC7711487 DOI: 10.3390/jpm10040260] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable interest has arisen concerning the relationship between hereditary connective tissue disorders such as the Ehlers-Danlos syndromes (EDS)/hypermobility spectrum disorders (HSD) and autism, both in terms of their comorbidity as well as co-occurrence within the same families. This paper reviews our current state of knowledge, as well as highlighting unanswered questions concerning this remarkable patient group, which we hope will attract further scientific interest in coming years. In particular, patients themselves are demanding more research into this growing area of interest, although science has been slow to answer that call. Here, we address the overlap between these two spectrum conditions, including neurobehavioral, psychiatric, and neurological commonalities, shared peripheral neuropathies and neuropathologies, and similar autonomic and immune dysregulation. Together, these data highlight the potential relatedness of these two conditions and suggest that EDS/HSD may represent a subtype of autism.
Collapse
Affiliation(s)
- Emily L. Casanova
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29615, USA;
| | - Carolina Baeza-Velasco
- Laboratory of Psychopathology and Health Processes, University of Paris, 92100 Boulogne Billancourt, France;
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, 34000 Montpellier, France
| | | | - Manuel F. Casanova
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29615, USA;
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
127
|
Abd-Allah NA, Ibrahim OM, Elmalt HA, Shehata MA, Hamed RA, Elsaadouni NM, Hawary B. Thioredoxin level and inflammatory markers in children with autism spectrum disorders. MIDDLE EAST CURRENT PSYCHIATRY 2020. [DOI: 10.1186/s43045-020-00021-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disabilities with unknown etiology. Recent studies suggest the contribution of immune dysfunction and oxidative stress in its pathophysiology. The present study aimed to investigate the serum level of thioredoxin (Trx), as a marker of oxidative stress and some inflammatory cytokines, and to evaluate their role in children with ASD.
Results
Concentrations of Trx, IL-1β, IL-8, and TNF-α were significantly higher in children with ASD compared with matched controls. There were no association between cytokine levels and the severity of clinical manifestations, according to CARS classification of severity.
Conclusion
The present study provides support for the idea that physiological abnormalities, such as oxidative stress and immune dysfunction, may contribute in the pathophysiology of ASD.
Collapse
|
128
|
Cyclooxygenase Inhibition Safety and Efficacy in Inflammation-Based Psychiatric Disorders. Molecules 2020; 25:molecules25225388. [PMID: 33217958 PMCID: PMC7698629 DOI: 10.3390/molecules25225388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
According to the World Health Organization, the major psychiatric and neurodevelopmental disorders include major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. The potential role of inflammation in the onset and progression of these disorders is increasingly being studied. The use of non-steroidal anti-inflammatory drugs (NSAIDs), well-known cyclooxygenase (COX) inhibitors, combined with first-choice specific drugs have been long investigated. The adjunctive administration of COX inhibitors to classic clinical treatments seems to improve the prognosis of people who suffer from psychiatric disorders. In this review, a broad overview of the use of COX inhibitors in the treatment of inflammation-based psychiatric disorders is provided. For this purpose, a critical analysis of the use of COX inhibitors in the last ten years of clinical trials of the major psychiatric disorders was carried out.
Collapse
|
129
|
Li B, Peng X, Li H, Chen F, Chen Y, Zhang Y, Le K. The performance of the alarmin HMGB1 in pediatric diseases: From lab to clinic. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:8-30. [PMID: 33140586 PMCID: PMC7860603 DOI: 10.1002/iid3.370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The ubiquitously expressed nonhistone nuclear protein high-mobility group box protein 1 (HMGB1) has different functions related to posttranslational modifications and cellular localization. In the nucleus, HMGB1 modulates gene transcription, replication and DNA repair as well as determines chromosomal architecture. When the post-transcriptional modified HMGB1 is released into the extracellular space, it triggers several physiological and pathological responses and initiates innate immunity through interacting with its reciprocal receptors (i.e., TLR4/2 and RAGE). The effect of HMGB1-mediated inflammatory activation on different systems has received increasing attention. HMGB1 is now considered to be an alarmin and participates in multiple inflammation-related diseases. In addition, HMGB1 also affects the occurrence and progression of tumors. However, most studies involving HMGB1 have been focused on adults or mature animals. Due to differences in disease characteristics between children and adults, it is necessary to clarify the role of HMGB1 in pediatric diseases. METHODS AND RESULTS Through systematic database retrieval, this review aimed to first elaborate the characteristics of HMGB1 under physiological and pathological conditions and then discuss the clinical significance of HMGB1 in the pediatric diseases according to different systems. CONCLUSIONS HMGB1 plays an important role in a variety of pediatric diseases and may be used as a diagnostic biomarker and therapeutic target for new strategies for the prevention and treatment of pediatric diseases.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin Peng
- Department of Otolaryngology, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - He Li
- Department of Urology Surgery, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Chen
- Department of Child Health Care, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Rehabilitation Centre, Children's Hospital, Chongqing Medical University, Chongqing, Yuzhong, China
| | - Yingqian Zhang
- Department of Cardiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
130
|
Effects of gut microbial-based treatments on gut microbiota, behavioral symptoms, and gastrointestinal symptoms in children with autism spectrum disorder: A systematic review. Psychiatry Res 2020; 293:113471. [PMID: 33198044 DOI: 10.1016/j.psychres.2020.113471] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
Many studies have identified some abnormalities in gastrointestinal (GI) physiology (e.g., increased intestinal permeability, overall microbiota alterations, and gut infection) in children with autism spectrum disorder (ASD). Furthermore, changes in the intestinal flora may be related to GI and ASD symptom severity. Thus, we decided to systematically review the effects of gut microbial-based interventions on gut microbiota, behavioral symptoms, and GI symptoms in children with ASD. We reviewed current evidence from the Cochrane Library, EBSCO PsycARTICLES, PubMed, Web of Science, and Scope databases up to July 12, 2020. Experimental studies that used gut microbial-based treatments among children with ASD were included. Independent data extraction and quality assessment of studies were conducted according to the PRISMA statement. Finally, we identified 16 articles and found that some interventions (i.e., prebiotic, probiotic, vitamin A supplementation, antibiotics, and fecal microbiota transplantation) could alter the gut microbiota and improve behavioral symptoms and GI symptoms among ASD patients. Our findings highlight that the gut microbiota could be a novel target for ASD patients in the future. However, we only provided suggestive but not conclusive evidence regarding the efficacy of interventions on GI and behavioral symptoms among ASD patients. Additional rigorous trials are needed to evaluate the effects of gut microbial-based treatments and explore potential mechanisms.
Collapse
|
131
|
Upregulation of interleukin (IL)-31, a cytokine producing CXCR1 peripheral immune cells, contributes to the immune abnormalities of autism spectrum disorder. J Neuroimmunol 2020; 349:577430. [PMID: 33130460 DOI: 10.1016/j.jneuroim.2020.577430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by communication deficits, impaired social interactions, and restricted stereotypical behaviors. Several immune cells are associated with immune dysfunction in ASD; however, IL-31 has not been explored in ASD. This study aims to investigate the role of inflammatory cytokines and transcription factors of the CXCR1 cells in children with ASD. In the current study, we investigated the cytokines and transcription factors produced by CXCR1+ cells (IL-31, IL-9, IL-21R, IL-21, NF-κB p65, RORγT, STAT1, and FoxP3) in peripheral blood mononuclear cells (PBMCs), from children with ASD and typically developing (TD) control children, using flow cytometric analysis. In addition, we measured mRNA and protein expression levels of IL-31 using quantitative real-time PCR and western blot analyses in PBMCs. In our study, children with ASD had increased CXCR1+IL-31+, CXCR1+IL-9+, CXCR1+IL-21R+, CXCR1+IL-21+, CXCR1+NF-κB+ p65, CXCR1+RORγT+, and CXCR1+STAT1+, and decreased CXCR1+FoxP3+ cells as compared with cells from the TD control samples. Similarly, children with ASD showed increased IL-31 mRNA and protein expression levels as compared to those of TD control samples. Our results suggest that upregulated production of inflammatory cytokines and transcription factors in CXCR1+ cells cause immunological imbalance in children with ASD. Therefore, attenuation of inflammatory cytokines/mediators and transcription factors could have a therapeutic potential in the treatment of ASD.
Collapse
|
132
|
Canto AM, Matos AHB, Godoi AB, Vieira AS, Aoyama BB, Rocha CS, Henning B, Carvalho BS, Pascoal VDB, Veiga DFT, Gilioli R, Cendes F, Lopes-Cendes I. Multi-omics analysis suggests enhanced epileptogenesis in the Cornu Ammonis 3 of the pilocarpine model of mesial temporal lobe epilepsy. Hippocampus 2020; 31:122-139. [PMID: 33037862 DOI: 10.1002/hipo.23268] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022]
Abstract
Mesial temporal lobe epilepsy (MTLE) is a chronic neurological disorder characterized by the occurrence of seizures, and histopathological abnormalities in the mesial temporal lobe structures, mainly hippocampal sclerosis (HS). We used a multi-omics approach to determine the profile of transcript and protein expression in the dorsal and ventral hippocampal dentate gyrus (DG) and Cornu Ammonis 3 (CA3) in an animal model of MTLE induced by pilocarpine. We performed label-free proteomics and RNAseq from laser-microdissected tissue isolated from pilocarpine-induced Wistar rats. We divided the DG and CA3 into dorsal and ventral areas and analyzed them separately. We performed a data integration analysis and evaluated enriched signaling pathways, as well as the integrated networks generated based on the gene ontology processes. Our results indicate differences in the transcriptomic and proteomic profiles among the DG and the CA3 subfields of the hippocampus. Moreover, our data suggest that epileptogenesis is enhanced in the CA3 region when compared to the DG, with most abnormalities in transcript and protein levels occurring in the CA3. Furthermore, our results show that the epileptogenesis in the pilocarpine model involves predominantly abnormal regulation of excitatory neuronal mechanisms mediated by N-methyl D-aspartate (NMDA) receptors, changes in the serotonin signaling, and neuronal activity controlled by calcium/calmodulin-dependent protein kinase (CaMK) regulation and leucine-rich repeat kinase 2 (LRRK2)/WNT signaling pathways.
Collapse
Affiliation(s)
- Amanda M Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Alexandre H B Matos
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Alexandre B Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - André S Vieira
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Beatriz B Aoyama
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cristiane S Rocha
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Barbara Henning
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Benilton S Carvalho
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vinicius D B Pascoal
- Department of Basic Sciences, Fluminense Federal University (UFF), Nova Friburgo, Rio de Janeiroz, Brazil
| | - Diogo F T Veiga
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Rovilson Gilioli
- Laboratory of Animal Quality Control, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
133
|
Garcia-Gutierrez E, Narbad A, Rodríguez JM. Autism Spectrum Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Front Neurosci 2020; 14:578666. [PMID: 33117122 PMCID: PMC7578228 DOI: 10.3389/fnins.2020.578666] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence suggesting a link between the autism spectrum disorder (ASD) and the gastrointestinal (GI) microbiome. Experimental and clinical studies have shown that patients diagnosed with ASD display alterations of the gut microbiota. These alterations do not only extend to the gut microbiota composition but also to the metabolites they produce, as a result of its connections with diet and the bidirectional interaction with the host. Thus, production of metabolites and neurotransmitters stimulate the immune system and influence the central nervous system (CNS) by stimulation of the vagal nerve, as an example of the gut-brain axis pathway. In this review we compose an overview of the interconnectivity of the different GI-related elements that have been associated with the development and severity of the ASD in patients and animal models. We review potential biomarkers to be used in future studies to unlock further connections and interventions in the treatment of ASD.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
134
|
Sohn JK, Barnes BH, Al-Hazaymeh A, Sauer BG, McGowan EC. High prevalence of developmental disorders in pediatric eosinophilic esophagitis (EoE): A single-center observational study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:1032-1034.e1. [PMID: 33010523 DOI: 10.1016/j.jaip.2020.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Julia K Sohn
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Va
| | - Barrett H Barnes
- Division of Pediatric Gastroenterology/Nutrition, University of Virginia School of Medicine, Charlottesville, Va
| | - Amani Al-Hazaymeh
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Va
| | - Bryan G Sauer
- Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, Va
| | - Emily C McGowan
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Va; Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
135
|
Sarkar A, Harty S, Johnson KVA, Moeller AH, Carmody RN, Lehto SM, Erdman SE, Dunbar RIM, Burnet PWJ. The role of the microbiome in the neurobiology of social behaviour. Biol Rev Camb Philos Soc 2020; 95:1131-1166. [PMID: 32383208 PMCID: PMC10040264 DOI: 10.1111/brv.12603] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the 'social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of 'social' signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome-associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe-depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome-sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.
Collapse
Affiliation(s)
- Amar Sarkar
- Trinity College, Trinity Street, University of Cambridge, Cambridge, CB2 1TQ, U.K.,Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, U.K
| | - Siobhán Harty
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland.,School of Psychology, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Katerina V-A Johnson
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K.,Pembroke College, University of Oxford, Oxford, OX1 1DW, U.K.,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Corson Hall, Tower Road, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, 11 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Soili M Lehto
- Psychiatry, University of Helsinki and Helsinki University Hospital, PL 590, FI-00029, Helsinki, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O. Box 6, FI-00014, Helsinki, Finland.,Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, MA, 02139, U.S.A
| | - Robin I M Dunbar
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| |
Collapse
|
136
|
Carpita B, Marazziti D, Palego L, Giannaccini G, Betti L, Dell'Osso L. Microbiota, Immune System and Autism Spectrum Disorders: An Integrative Model towards Novel Treatment Options. Curr Med Chem 2020; 27:5119-5136. [PMID: 31448708 DOI: 10.2174/0929867326666190328151539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a condition strongly associated with genetic predisposition and familial aggregation. Among ASD patients, different levels of symptoms severity are detectable, while the presence of intermediate autism phenotypes in close relatives of ASD probands is also known in literature. Recently, increasing attention has been paid to environmental factors that might play a role in modulating the relationship between genomic risk and development and severity of ASD. Within this framework, an increasing body of evidence has stressed a possible role of both gut microbiota and inflammation in the pathophysiology of neurodevelopment. The aim of this paper is to review findings about the link between microbiota dysbiosis, inflammation and ASD. METHODS Articles ranging from 1990 to 2018 were identified on PUBMED and Google Scholar databases, with keyword combinations as: microbiota, immune system, inflammation, ASD, autism, broad autism phenotype, adult. RESULTS Recent evidence suggests that microbiota alterations, immune system and neurodevelopment may be deeply intertwined, shaping each other during early life. However, results from both animal models and human samples are still heterogeneous, while few studies focused on adult patients and ASD intermediate phenotypes. CONCLUSION A better understanding of these pathways, within an integrative framework between central and peripheral systems, might not only shed more light on neural basis of ASD symptoms, clarifying brain pathophysiology, but it may also allow to develop new therapeutic strategies for these disorders, still poorly responsive to available treatments.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Gino Giannaccini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Laura Betti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| |
Collapse
|
137
|
Matta SM, Moore Z, Walker FR, Hill-Yardin EL, Crack PJ. An altered glial phenotype in the NL3 R451C mouse model of autism. Sci Rep 2020; 10:14492. [PMID: 32879325 PMCID: PMC7468159 DOI: 10.1038/s41598-020-71171-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD; autism) is a neurodevelopmental disorder characterised by deficits in social communication, and restricted and/or repetitive behaviours. While the precise pathophysiologies are unclear, increasing evidence supports a role for dysregulated neuroinflammation in the brain with potential effects on synapse function. Here, we studied characteristics of microglia and astrocytes in the Neuroligin-3 (NL3R451C) mouse model of autism since these cell types are involved in regulating both immune and synapse function. We observed increased microglial density in the dentate gyrus (DG) of NL3R451C mice without morphological differences. In contrast, WT and NL3R451C mice had similar astrocyte density but astrocyte branch length, the number of branch points, as well as cell radius and area were reduced in the DG of NL3R451C mice. Because retraction of astrocytic processes has been linked to altered synaptic transmission and dendrite formation, we assessed for regional changes in pre- and postsynaptic protein expression in the cortex, striatum and cerebellum in NL3R451C mice. NL3R451C mice showed increased striatal postsynaptic density 95 (PSD-95) protein levels and decreased cortical expression of synaptosomal-associated protein 25 (SNAP-25). These changes could contribute to dysregulated neurotransmission and cognition deficits previously reported in these mice.
Collapse
Affiliation(s)
- Samantha M Matta
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia.,School of Health & Biomedical Sciences, RMIT University, 225-245 Clements Drive, Bundoora, VIC, Australia
| | - Zachery Moore
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia
| | - Frederick Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Locked Bag 1000, New Lambton, NSW, Australia
| | - Elisa L Hill-Yardin
- School of Health & Biomedical Sciences, RMIT University, 225-245 Clements Drive, Bundoora, VIC, Australia.,Department of Physiology, The University of Melbourne, Grattan St, Parkville, VIC, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia.
| |
Collapse
|
138
|
Al-Harbi NO, Nadeem A, Ahmad SF, AL-Ayadhi LY, Al-Harbi MM, As Sobeai HM, Ibrahim KE, Bakheet SA. Elevated expression of toll-like receptor 4 is associated with NADPH oxidase-induced oxidative stress in B cells of children with autism. Int Immunopharmacol 2020; 84:106555. [DOI: 10.1016/j.intimp.2020.106555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022]
|
139
|
Oh D, Cheon KA. Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview. Soa Chongsonyon Chongsin Uihak 2020; 31:131-145. [PMID: 32665757 PMCID: PMC7350540 DOI: 10.5765/jkacap.190039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The microbiota-gut-brain axis, which refers to the bidirectional communication pathway between gut bacteria and the central nervous system, has a profound effect on important brain processes, from the synthesis of neurotransmitters to the modulation of complex behaviors such as sociability and anxiety. Previous studies have revealed that the gut microbiota is potentially related to not only gastrointestinal disturbances, but also social impairment and repetitive behavior-core symptoms of autism spectrum disorder (ASD). Although studies have been conducted to characterize the microbial composition in patients with ASD, the results are heterogeneous. Nevertheless, it is clear that there is a difference in the composition of the gut microbiota between ASD and typically developed individuals, and animal studies have repeatedly suggested that the gut microbiota plays an important role in ASD pathophysiology. This possibility is supported by abnormalities in metabolites produced by the gut microbiota and the association between altered immune responses and the gut microbiota observed in ASD patients. Based on these findings, various attempts have been made to use the microbiota in ASD treatment. The results reported to date suggest that microbiota-based therapies may be effective for ASD, but largescale, well-designed studies are needed to confirm this.
Collapse
Affiliation(s)
- Donghun Oh
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.,Division of Child and Adolescent Psychiatry, Severance Children's Hospital, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.,Division of Child and Adolescent Psychiatry, Severance Children's Hospital, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
140
|
Huang Y, Iosif AM, Hansen RL, Schmidt RJ. Maternal polyunsaturated fatty acids and risk for autism spectrum disorder in the MARBLES high-risk study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 24:1191-1200. [PMID: 31958995 PMCID: PMC9897595 DOI: 10.1177/1362361319877792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
LAY ABSTRACT Prior studies suggest that maternal polyunsaturated fatty acids intake during pregnancy may have protective effects on autism spectrum disorder in their children. However, they did not examine detailed timing of maternal polyunsaturated fatty acid intake during pregnancy, nor did they evaluate plasma concentrations. This study investigates whether maternal polyunsaturated fatty acids in defined time windows of pregnancy, assessed by both questionnaires and biomarkers, are associated with risk of autism spectrum disorder and other non-typical development in the children. Food frequency questionnaires were used to estimate maternal polyunsaturated fatty acid intake during the first and second half of pregnancy. Gas chromatography measured maternal plasma polyunsaturated fatty acid concentrations in the third trimester. In all, 258 mother-child pairs from a prospective cohort were included. All mothers already had a child with autism spectrum disorder and were planning a pregnancy or pregnant with another child. Children were clinically assessed longitudinally and diagnosed at 36 months. For polyunsaturated fatty acid intake from questionnaires, we only found mothers consuming more omega-3 in the second half of pregnancy were 40% less likely to have children with autism spectrum disorder. For polyunsaturated fatty acid concentrations in the third-trimester plasma, we did not observe any statistical significance in relation to the risk of autism spectrum disorder. However, our study confirmed associations from previous studies between higher maternal docosahexaenoic acid and eicosapentaenoic acid plasma concentrations in the late pregnancy and reduced risk for non-typical development. This study markedly advanced understandings of whether and when maternal polyunsaturated fatty acid intake influences risk for autism spectrum disorder and sets the stage for prevention at the behavioral and educational level.
Collapse
Affiliation(s)
- Yunru Huang
- Department of Public Health Sciences, School of Medicine,
University of California, Davis
| | - Ana-Maria Iosif
- Department of Public Health Sciences, School of Medicine,
University of California, Davis
| | - Robin L. Hansen
- Department of Pediatrics, School of Medicine, University of
California, Davis
- Medical Investigation of Neurodevelopmental Disorder (MIND)
Institute, University of California, Davis
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine,
University of California, Davis
- Medical Investigation of Neurodevelopmental Disorder (MIND)
Institute, University of California, Davis
| |
Collapse
|
141
|
Kim M, Chung SK, Yang JC, Park JI, Nam SH, Park TW. Development of the Korean Form of the Premonitory Urge for Tics Scale: A Reliability and Validity Study. Soa Chongsonyon Chongsin Uihak 2020; 31:146-153. [PMID: 32665758 PMCID: PMC7350545 DOI: 10.5765/jkacap.200013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Objectives This study aimed to evaluate the reliability and validity of the Korean Form of the Premonitory Urge for Tics Scale (K-PUTS). Methods Thirty-eight patients with Tourette's disorder who visited Jeonbuk National University Hospital were assessed with the K-PUTS. Together with the PUTS, the Yale Global Tic Severity Scale (YGTSS), the Children's Yale-Brown Obsessive Compulsive Scale (CY-BOCS), the attention-deficit/hyperactivity disorder (ADHD) rating scale (ARS), and the Adult ADHD Self-Report Scale (ASRS) were implemented to evaluate concurrent and discriminant validity. Results The internal consistency of items on the PUTS was high, with a Cronbach's α of 0.79. The test-retest reliability of the PUTS, which was administered at 2 weeks to 2 months intervals, showed high reliability with a Pearson correlation coefficient of 0.60. There was a significant positive correlation between the overall PUTS score and the YGTSS score, showing concurrent validity. There was no correlation between the PUTS, CY-BOCS, and ASRS scores, demonstrating the discriminant validity of the PUTS. Factor analysis for construct validity revealed three factors: "presumed functional relationship between the tic and the urge to tic," "the quality of the premonitory urge," and "just right phenomena." Conclusion The results of this study indicate that the K-PUTS is a reliable and valid scale for rating premonitory urge of tics.
Collapse
Affiliation(s)
- Mira Kim
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Sang-Keun Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Il Park
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Seok Hyun Nam
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Tae Won Park
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
142
|
Ashitha SNM, Ramachandra NB. Integrated Functional Analysis Implicates Syndromic and Rare Copy Number Variation Genes as Prominent Molecular Players in Pathogenesis of Autism Spectrum Disorders. Neuroscience 2020; 438:25-40. [DOI: 10.1016/j.neuroscience.2020.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023]
|
143
|
Sala R, Amet L, Blagojevic-Stokic N, Shattock P, Whiteley P. Bridging the Gap Between Physical Health and Autism Spectrum Disorder. Neuropsychiatr Dis Treat 2020; 16:1605-1618. [PMID: 32636630 PMCID: PMC7335278 DOI: 10.2147/ndt.s251394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly complex and heterogeneous developmental disorder that affects how individuals communicate with other people and relate to the world around them. Research and clinical focus on the behavioural and cognitive manifestations of ASD, whilst important, have obscured the recognition that ASD is also commonly associated with a range of physical and mental health conditions. Many physical conditions appear with greater frequency in individuals with ASD compared to non-ASD populations. These can contribute to a worsening of social communication and behaviour, lower quality of life, higher morbidity and premature mortality. We highlight some of the key physical comorbidities affecting the immune and the gastrointestinal systems, metabolism and brain function in ASD. We discuss how healthcare professionals working with individuals with ASD and parents/carers have a duty to recognise their needs in order to improve their overall health and wellbeing, deliver equality in their healthcare experiences and reduce the likelihood of morbidity and early mortality associated with the condition.
Collapse
Affiliation(s)
- Regina Sala
- Centre for Psychiatry, Wolfson Institute, Barts & The London School of Medicine & Dentistry Queen Mary University of London, London, UK
| | | | | | - Paul Shattock
- Education & Services for People with Autism, Sunderland, UK
| | - Paul Whiteley
- Education & Services for People with Autism Research, Sunderland, UK
| |
Collapse
|
144
|
Runge K, Tebartz van Elst L, Maier S, Nickel K, Denzel D, Matysik M, Kuzior H, Robinson T, Blank T, Dersch R, Domschke K, Endres D. Cerebrospinal Fluid Findings of 36 Adult Patients with Autism Spectrum Disorder. Brain Sci 2020; 10:E355. [PMID: 32521749 PMCID: PMC7349103 DOI: 10.3390/brainsci10060355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by difficulties with social interaction, repetitive behavior, and additional features, such as special interests. Its precise etiology is unclear. Recently, immunological mechanisms, such as maternal autoantibodies/infections, have increasingly been the subject of discussion. Cerebrospinal fluid (CSF) investigations play a decisive role in the detection of immunological processes in the brain. This study therefore retrospectively analyzed the CSF findings of adult patients with ASD. CSF basic measures (white blood cell count, total protein, albumin quotient, immunoglobulin G (IgG) index, and oligoclonal bands) and various antineuronal antibody findings of 36 adult patients with ASD, who had received lumbar puncture, were compared with an earlier described mentally healthy control group of 39 patients with idiopathic intracranial hypertension. CSF protein concentrations and albumin quotients of patients with ASD were significantly higher as compared to controls (age corrected: p = 0.003 and p = 0.004, respectively); 17% of the patients with ASD showed increased albumin quotients. After correction for age and gender, the group effect for total protein remained significant (p = 0.041) and showed a tendency for albumin quotient (p = 0.079). In the CSF of two ASD patients, an intrathecal synthesis of anti-glutamate decarboxylase 65 (GAD65) antibodies was found. In total, more of the ASD patients (44%) presented abnormal findings in CSF basic diagnostics compared to controls (18%; p = 0.013). A subgroup of the patients with adult ASD showed indication of a blood-brain barrier dysfunction, and two patients displayed an intrathecal synthesis of anti-GAD65 antibodies; thus, the role of these antibodies in patients with ASD should be further investigated. The results of the study are limited by its retrospective and open design. The group differences in blood-brain barrier markers could be influenced by a different gender distribution between ASD patients and controls.
Collapse
Affiliation(s)
- Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Dominik Denzel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Miriam Matysik
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Hanna Kuzior
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Tilman Robinson
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (T.R.); (R.D.)
| | - Thomas Blank
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Rick Dersch
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (T.R.); (R.D.)
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| |
Collapse
|
145
|
Garcia-Valtanen P, van Diermen BA, Lakhan N, Lousberg EL, Robertson SA, Hayball JD, Diener KR. Maternal host responses to poly(I:C) during pregnancy leads to both dysfunctional immune profiles and altered behaviour in the offspring. Am J Reprod Immunol 2020; 84:e13260. [PMID: 32365239 DOI: 10.1111/aji.13260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023] Open
Abstract
PROBLEM Autism spectrum disorder (ASD)-like phenotypes in murine models are linked to elevated pro-inflammatory cytokine profiles caused by maternal immune activation (MIA), but whether MIA alters the immune response in the offspring remains unclear. METHOD OF STUDY Polyinosinic:polycytidylic acid (poly:[IC]) was used to induce MIA in immunocompetent and control TLR3-deficient pregnant mice, and cytokine levels were measured in maternal and foetal organs. Furthermore, cytokines and behaviour responses were tested after challenge with lipopolysaccharide in 7-day-old and adult mice. RESULTS MIA induced on E12 resulted in changes in the cytokine expression profile in maternal and foetal organs and correlated with TNFα and IL-18 dysregulation in immune organs and brains from neonatal mice born to MIA-induced dams. Such changes further correlated with altered behavioural responses in adulthood. CONCLUSION MIA induced by pathogens during pregnancy can interfere with the development of the foetal immune and nervous systems leading to dysfunctional immune responses and behaviour in offspring.
Collapse
Affiliation(s)
- Pablo Garcia-Valtanen
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Bianca A van Diermen
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Nerissa Lakhan
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Erin L Lousberg
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
146
|
De Simone R, Butera A, Armida M, Pezzola A, Boirivant M, Potenza RL, Ricceri L. Beneficial Effects of Fingolimod on Social Interaction, CNS and Peripheral Immune Response in the BTBR Mouse Model of Autism. Neuroscience 2020; 435:22-32. [PMID: 32229233 DOI: 10.1016/j.neuroscience.2020.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders characterized by social communication deficits and repetitive/stereotyped behaviours. We evaluated the effects of a chronic treatment with the immunomodulator drug Fingolimod (FTY720 - a non-selective Sphingosine 1-Phosphate Receptor ligand) in an ASD model, the BTBR T+tf/J (BTBR) mouse strain. In adult BTBR males, chronic FTY720 treatment (4 weeks) increased social and vocal response during a male-female interaction and hippocampal expression of BDNF and Neuregulin 1, two trophic factors reduced in BTBR when compared to control C57 mice. FTY720 also re-established the expression of IL-1β and MnSOD in the hippocampus, whereas it did not modify IL-6 mRNA content. In addition to its central effect, FTY720 modulated the activation state of peripheral macrophages in the BTBR model, both in basal conditions and after stimulation with an immune challenge. Furthermore, IL-6 mRNA colonic content of BTBR mice, reduced when compared with C57 mice, was normalized by chronic treatment with FTY720. Our study, while indicating FTY720 as a tool to attenuate relevant alterations of the BTBR neurobehavioural phenotype, emphasizes the importance of gut mucosal immune evaluation as an additional target that deserve to be investigated in preclinical studies of anti-inflammatory therapeutic approaches in ASD.
Collapse
Affiliation(s)
- Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Butera
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Armida
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Pezzola
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Boirivant
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Luisa Potenza
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
147
|
Sjaarda CP, Kaiser B, McNaughton AJM, Hudson ML, Harris-Lowe L, Lou K, Guerin A, Ayub M, Liu X. De novo duplication on Chromosome 19 observed in nuclear family displaying neurodevelopmental disorders. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004721. [PMID: 32321736 PMCID: PMC7304355 DOI: 10.1101/mcs.a004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
Pleiotropy and variable expressivity have been cited to explain the seemingly distinct neurodevelopmental disorders due to a common genetic etiology within the same family. Here we present a family with a de novo 1-Mb duplication involving 18 genes on Chromosome 19. Within the family there are multiple cases of neurodevelopmental disorders including autism spectrum disorder, attention deficit/hyperactivity disorder, intellectual disability, and psychiatric disease in individuals carrying this copy-number variant (CNV). Quantitative polymerase chain reaction (PCR) confirmed the CNV was de novo in the mother and inherited by both sons. Whole-exome sequencing did not uncover further genetic risk factors segregating within the family. Transcriptome analysis of peripheral blood demonstrated a ∼1.5-fold increase in RNA transcript abundance in 12 of the 15 detected genes within the CNV region for individuals carrying the CNV compared with their noncarrier relatives. Examination of transcript abundance across the rest of the transcriptome identified 407 differentially expressed genes (P-value < 0.05; adjusted P-value < 0.1) mapping to immune response, response to endoplasmic reticulum stress, and regulation of epithelial cell proliferation pathways. 16S microbiome profiling demonstrated compositional difference in the gut bacteria between the half-brothers. These results raise the possibility that the observed CNV may contribute to the varied phenotypic characteristics in family members through alterations in gene expression and/or dysbiosis of the gut microbiome. More broadly, there is growing evidence that different neurodevelopmental and psychiatric disorders can share the same genetic variant, which lays a framework for later neurodevelopmental and psychiatric manifestations.
Collapse
Affiliation(s)
- Calvin P Sjaarda
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Beatrice Kaiser
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Amy J M McNaughton
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Melissa L Hudson
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Liam Harris-Lowe
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,School of Applied Science and Computing, St. Lawrence College, Kingston, Ontario K7L 5A6, Canada
| | - Kyle Lou
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Xudong Liu
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
148
|
Rubin LH, Xu Y, Norris PJ, Wang X, Dastgheyb R, Fitzgerald KC, Keating SM, Kaplan RC, Maki PM, Anastos K, Springer G, Benning L, Kassaye S, Gustafson DR, Valcour VG, Williams DW. Early Inflammatory Signatures Predict Subsequent Cognition in Long-Term Virally Suppressed Women With HIV. Front Integr Neurosci 2020; 14:20. [PMID: 32390808 PMCID: PMC7193823 DOI: 10.3389/fnint.2020.00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Immunologic function is an important determinant of cognition. Here we examined the contribution of early immune signatures to cognitive performance among HIV-infected, virally suppressed women (HIV+VS) and in HIV-uninfected (HIV-) women. Specifically, we measured serum inflammatory markers, developed combinatory immune signatures, and evaluated their associations with cognition. Forty-nine HIV+VS women in the Women’s Interagency HIV Study (WIHS) who achieved viral suppression shortly after effective antiretroviral therapy (ART) initiation, and 56 matched HIV− women were selected. Forty-two serum inflammatory markers were measured within 2 years of effective ART initiation for HIV+VS women, and at an initial timepoint for HIV− women. The same inflammatory markers were also measured approximately 1, 7, and 12 years later for all women. Of the 105 women with complete immune data, 83 (34 HIV+VS, 49 HIV−) also had cognitive data available 12 years later at ≥1 time points (median = 3.1). We searched for combinatory immune signatures by adapting a dynamic matrix factorization analytic method that builds upon Tucker decomposition followed by Ingenuity® Pathway Analysis to facilitate data interpretation. Seven combinatory immune signatures emerged based on the Frobenius residual. Three signatures were common between HIV+VS and HIV− women, while four signatures were unique. These inflammatory signatures predicted subsequent cognitive performance in both groups using mixed-effects modeling, but more domain-specific associations were significant in HIV+VS than HIV− women. Leukocyte influx into brain was a major contributor to cognitive function in HIV+VS women, while T cell exhaustion, inflammatory response indicative of depressive/psychiatric disorders, microglial activity, and cytokine signaling predicted both global and domain-specific performance for HIV− women. Our findings suggest that immune signatures may be useful diagnostic, prognostic, and immunotherapeutic targets predictive of subsequent cognitive performance. Importantly, they also provide insight into common and distinct inflammatory mechanisms underlying cognition in HIV− and HIV+VS women.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States.,Department of Psychiatry, Johns Hopkins University, Baltimore, MD, United States.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States.,Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Philip J Norris
- Department of Laboratory Medicine, Vitalant Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Xuzhi Wang
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | | | - Sheila M Keating
- Department of Laboratory Medicine, Vitalant Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of General Internal Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gayle Springer
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lorie Benning
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Deborah R Gustafson
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Victor G Valcour
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, United States.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
149
|
Uddin MN, Yao Y, Mondal T, Matala R, Manley K, Lin Q, Lawrence DA. Immunity and autoantibodies of a mouse strain with autistic-like behavior. Brain Behav Immun Health 2020; 4:100069. [PMID: 34589851 PMCID: PMC8474232 DOI: 10.1016/j.bbih.2020.100069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Female and male mice of the BTBR T + Itpr3 tf /J (BTBR) strain have behaviors that resemble autism spectrum disorder. In comparison to C57BL/6 (B6) mice, BTBR mice have elevated humoral immunity, in that they have naturally high serum IgG levels and generate high levels of IgG antibodies, including autoantibodies to brain antigens. This study focused on the specificities of autoantibodies and the immune cells and their transcription factors that might be responsible for the autoantibodies. BTBR IgG autoantibodies bind to neurons better than microglia and with highest titer to nuclear antigens. Two of the antigens identified were alpha-enolase (ENO1) and dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial (DLST). Surprisingly based on IgG levels, the blood and spleens of BTBR mice have more CD4+ and CD8+ T cells, but fewer B cells than B6 mice. The high levels of autoantibodies in BTBR relates to their splenic T follicular helper (Tfh) cell levels, which likely are responsible for the higher number of plasma cells in BTBR mice than B6 mice. BTBR mice have increased gene expression of interleukin-21 receptor (I l -21 r) and Paired Box 5 (Pax5), which are known to aid B cell differentiation to plasma cells, and an increased Lysine Demethylase 6B (Kdm6b)/DNA Methyltransferase 1 (Dnmt1) ratio, which increases gene expression. Identification of gene expression and immune activities of BTBR mice may aid understanding of mechanisms associated with autism since neuroimmune network interactions have been posited and induction of autoantibodies may drive the neuroinflammation associated with autism.
Collapse
Key Words
- ASD, autism spectrum disorder
- Ab, antibody
- Ag, antigen
- Alpha-enolase
- Autism
- Autoantibody
- BM, bone marrow
- BTBR
- Dlst, dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial
- Dnmt1
- Dnmt1, DNA Methyltransferase 1
- Eno1, alpha-enolase
- IL-21r
- IL21R, interleukin-21 receptor
- Kdm6b
- Kdm6b, Lysine Demethylase 6B
- Pax5
- Pax5, Paired Box 5
- Plasma cell
- T follicular helper cell
- Tfh, T follicular helper cell
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Yunyi Yao
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Tapan Mondal
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Rosemary Matala
- University at Albany School of Public Health, Rensselaer, NY, USA
| | - Kevin Manley
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - David A Lawrence
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA.,University at Albany School of Public Health, Rensselaer, NY, USA
| |
Collapse
|
150
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Al-Ayadhi LY, Alasmari AF, Alanazi MM, Al-Mazroua HA, Attia SM. Involvement of CD45 cells in the development of autism spectrum disorder through dysregulation of granulocyte-macrophage colony-stimulating factor, key inflammatory cytokines, and transcription factors. Int Immunopharmacol 2020; 83:106466. [PMID: 32259699 DOI: 10.1016/j.intimp.2020.106466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
Autismspectrum disorder (ASD) is a complex and multifactorial heterogeneous disorder. Previous investigations have revealed the association between the immune system and ASD, which is characterized by impaired communication skills. Inflammatory response through CD45 cells plays a key role in the pathogenesis of several autoimmune disorders; however, the molecular mechanism of CD45 cells in ASD is not clearly defined.In this study, we investigated the role of CD45 signaling in children with ASD. In this study, we aimed to investigate the possible involvement of CD45 cells expressing granulocyte-macrophage colony-stimulating factor and inflammatory transcription factors in ASD. Flow cytometric analysis, using peripheral blood mononuclear cells (PBMC), revealed the numbers of GM-CSF-, IFN-γ-, IL-6-, IL-9-, IL-22-, T-bet-, pStat3-, Helios-, and Stat6-producing CD45+ cells in children with ASD and children in the control group. We further evaluated the mRNA and protein expression levels of GM-CSF in PBMC by RT-PCR and western blotting analysis. Our results revealed that the children with ASD exhibited significantly higher numbers of CD45+GM-CSF+, CD45+IFN-γ+, CD45+IL-6+, CD45+IL-9+, CD45+IL-22+, CD45+T-bet+, and CD45+pStat3+ cells compared with the control group. We also found that the children with ASD showed a lower number of CD45+Helios+ and CD45+Stat6+ cells compared with the control group. Furthermore, the children with ASD showed higher GM-CSF mRNA and protein expression levels compared with the control group. These results indicated that CD45 could play an essential role in the immune abnormalities of ASD. Further investigation of the role of CD45 in neurodevelopment in ASD is warranted.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|