101
|
Bertrand D, Terry AV. The wonderland of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2017; 151:214-225. [PMID: 29248596 DOI: 10.1016/j.bcp.2017.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Nearly 30 years of experimental evidence supports the argument that ligands of nicotinic acetylcholine receptors (nAChRs) have potential as therapeutic agents. However, as in the famous Lewis Carroll novel "Alice in Wonderland", there have been many unexpected adventures along the pathway of development, and few nAChR ligands have been approved for any clinical condition to date with the exception of nicotine dependence. The recent failures of nAChR ligands in AD and schizophrenia clinical trials have reduced enthusiasm for this therapeutic strategy and many pharmaceutical companies have now abandoned this field of research. As with other clinical failures, multiple questions arise as to the basis for the failure. More generic questions focus on a potential translational gap between the animal models used and the human clinical condition they are meant to simulate, or the clinical trial mindset that large Ns have to be achieved for statistical power (often requiring multiple trial sites) as opposed to smaller patient cohorts at limited sites where conditions can be better controlled and replicated. More specific to the nAChR field are questions about subtype selectivity, dose selection, whether an agonist, antagonist, or allosteric modulator strategy is best, etc. The purpose of this review is to discuss each of these questions, but also to provide a brief overview of the remarkable progress that has been made over the last three decades in our understanding of this unique ligand-gated ion channel and how this new knowledge may help us improve drug development successes in the future.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland.
| | - A V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia
| |
Collapse
|
102
|
Delbart F, Brams M, Gruss F, Noppen S, Peigneur S, Boland S, Chaltin P, Brandao-Neto J, von Delft F, Touw WG, Joosten RP, Liekens S, Tytgat J, Ulens C. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. J Biol Chem 2017; 293:2534-2545. [PMID: 29237730 PMCID: PMC5818190 DOI: 10.1074/jbc.m117.815316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to the family of pentameric ligand-gated ion channels and mediate fast excitatory transmission in the central and peripheral nervous systems. Among the different existing receptor subtypes, the homomeric α7 nAChR has attracted considerable attention because of its possible implication in several neurological and psychiatric disorders, including cognitive decline associated with Alzheimer's disease or schizophrenia. Allosteric modulators of ligand-gated ion channels are of particular interest as therapeutic agents, as they modulate receptor activity without affecting normal fluctuations of synaptic neurotransmitter release. Here, we used X-ray crystallography and surface plasmon resonance spectroscopy of α7-acetylcholine-binding protein (AChBP), a humanized chimera of a snail AChBP, which has 71% sequence similarity with the extracellular ligand-binding domain of the human α7 nAChR, to investigate the structural determinants of allosteric modulation. We extended previous observations that an allosteric site located in the vestibule of the receptor offers an attractive target for receptor modulation. We introduced seven additional humanizing mutations in the vestibule-located binding site of AChBP to improve its suitability as a model for studying allosteric binding. Using a fragment-based screening approach, we uncovered an allosteric binding site located near the β8-β9 loop, which critically contributes to coupling ligand binding to channel opening in human α7 nAChR. This work expands our understanding of the topology of allosteric binding sites in AChBP and, by extrapolation, in the human α7 nAChR as determined by electrophysiology measurements. Our insights pave the way for drug design strategies targeting nAChRs involved in ion channel-mediated disorders.
Collapse
Affiliation(s)
- Florian Delbart
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marijke Brams
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Fabian Gruss
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sam Noppen
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sandro Boland
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium
| | - Patrick Chaltin
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium.,the Center for Innovation and Stimulation of Drug Discovery Leuven and Center for Drug Design and Discovery, KU Leuven, 3001 Heverlee, Belgium
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Wouter G Touw
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Robbie P Joosten
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sandra Liekens
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chris Ulens
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium,
| |
Collapse
|
103
|
Hernández-Abrego A, Vázquez-Gómez E, García-Colunga J. Effects of the antidepressant mirtazapine and zinc on nicotinic acetylcholine receptors. Neurosci Lett 2017; 665:246-251. [PMID: 29225093 DOI: 10.1016/j.neulet.2017.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) and zinc are associated with regulation of mood and related disorders. In addition, several antidepressants inhibit muscle and neuronal nAChRs and zinc potentiates inhibitory actions of them. Moreover, mirtazapine (a noradrenergic, serotonergic and histaminergic antidepressant) inhibits muscarinic AChRs and its effects on nAChRs are unknown. Therefore, we studied the modulation of muscle α1β1γd nAChRs expressed in oocytes and native α7-containing nAChRs in hippocampal interneurons by mirtazapine and/or zinc, using voltage-clamp techniques. The currents elicited by ACh in oocytes (at -60 mV) were similarly inhibited by mirtazapine in the absence and presence of 100 μM zinc (IC50 ∼15 μM); however, the ACh-induced currents were stronger inhibited with 20 and 50 μM mirtazapine in the presence of zinc. Furthermore, the potentiation of ACh-induced current by zinc in the presence of 5 μM mirtazapine was 1.48 ± 0.06, and with 50 μM mirtazapine zinc potentiation did not occur. Interestingly, in stratum radiatum interneurons (at -70 mV), 20 μM mirtazapine showed less inhibition of the current elicited by choline (Ch) than at 10 μM (0.81 ± 0.02 and 0.74 ± 0.02 of the Ch-induced current, respectively). Finally, the inhibitory effects of mirtazapine depended on membrane potential: 0.81 ± 0.02 and 0.56 ± 0.05 of the control Ch-induced current at -70 and -20 mV, respectively. These results indicate that mirtazapine interacts with muscle and neuronal nAChRs, possibly into the ion channel; that zinc may increase the sensitivity of nAChRs to mirtazapine; and that mirtazapine decreases the sensitivity of nAChRs to zinc.
Collapse
Affiliation(s)
- Andy Hernández-Abrego
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México
| | - Elizabeth Vázquez-Gómez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México.
| |
Collapse
|
104
|
Bouzat C, Lasala M, Nielsen BE, Corradi J, Esandi MDC. Molecular function of α7 nicotinic receptors as drug targets. J Physiol 2017; 596:1847-1861. [PMID: 29131336 DOI: 10.1113/jp275101] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in many physiological and pathological processes. In vertebrates, there are seventeen different nAChR subunits that combine to yield a variety of receptors with different pharmacology, function, and localization. The homomeric α7 receptor is one of the most abundant nAChRs in the nervous system and it is also present in non-neuronal cells. It plays important roles in cognition, memory, pain, neuroprotection, and inflammation. Its diverse physiological actions and associated disorders have made of α7 an attractive novel target for drug modulation. Potentiation of the α7 receptor has emerged as a novel therapeutic strategy for several neurological diseases, such as Alzheimer's and Parkinson's diseases, and inflammatory disorders. In contrast, increased α7 activity has been associated with cancer cell proliferation. The presence of different drug target sites offers a great potential for α7 modulation in different pathological contexts. In particular, compounds that target allosteric sites offer significant advantages over orthosteric agonists due to higher selectivity and a broader spectrum of degrees and mechanisms of modulation. Heterologous expression of α7, together with chaperone proteins, combined with patch clamp recordings have provided important advances in our knowledge of the molecular basis of α7 responses and their potential modulation for pathological processes. This review gives a synthetic view of α7 and its molecular function, focusing on how its unique activation and desensitization features can be modified by pharmacological agents. This fundamental information offers insights into therapeutic strategies.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Matías Lasala
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| |
Collapse
|
105
|
Amino acid and peptide prodrugs of diphenylpropanones positive allosteric modulators of α7 nicotinic receptors with analgesic activity. Eur J Med Chem 2017; 143:157-165. [PMID: 29174812 DOI: 10.1016/j.ejmech.2017.10.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022]
Abstract
α7 Nicotinic acetylcholine receptors (nAChRs) are ion channels implicated in a number of CNS pathological processes, including pain and psychiatric, cognitive and inflammatory diseases. Comparing with orthosteric agonism, positive allosteric modulation of these channels constitutes an interesting approach to achieve selectivity versus other nicotinic receptors. We have recently described new chalcones and 1,3-diphenylpropanones as positive allosteric modulators (PAMs) of α7 nAChRs, which proved to have good analgesic activities but poor pharmacokinetic properties. Here we report the preparation of amino acid and peptide derivatives as prodrugs of these modulators with the aim of improving their in vivo biological activity. While the valine derivative showed very short half life in aqueous solutions to be considered a prodrug, Val-Val and Val-Pro-Val are suitable precursors of the parent 1,3-diphenylpropanones, via chemical and enzymatic transformation, respectively. Compounds 19 (Val-Val) and 21 (Val-Pro-Val), prodrugs of the 2',5',4-trihydroxy-1,3-diphenylpropan-1-one 3, showed significant antinociceptive activity in in vivo assays. The best compound, 21, displayed a better profile in the analgesia test than its parent compound 3, exhibiting about the same potency but long-lasting effects.
Collapse
|
106
|
Yu Z, Cohen JB. Enantiomeric barbiturates bind distinct inter- and intrasubunit binding sites in a nicotinic acetylcholine receptor (nAChR). J Biol Chem 2017; 292:17258-17271. [PMID: 28878016 DOI: 10.1074/jbc.m117.808592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/05/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) and γ-aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel superfamily. Drugs acting as positive allosteric modulators of muscle-type α2βγδ nAChRs, of use in treatment of neuromuscular disorders, have been hard to identify. However, identification of nAChR allosteric modulator binding sites has been facilitated by using drugs developed as photoreactive GABAAR modulators. Recently, R-1-methyl-5-allyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid (R-mTFD-MPAB), an anesthetic and GABAAR potentiator, has been shown to inhibit Torpedo α2βγδ nAChRs, binding in the ion channel and to a γ+-α- subunit interface site similar to its GABAAR intersubunit binding site. In contrast, S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid (S-mTFD-MPPB) acts as a convulsant and GABAAR inhibitor. Photolabeling studies established that S-mTFD-MPPB binds to the same GABAAR intersubunit binding site as R-mTFD-MPAB, but with negative rather than positive energetic coupling to GABA binding. We now show that S-mTFD-MPPB binds with the same state (agonist) dependence as R-mTFD-MPAB within the nAChR ion channel, but it does not bind to the intersubunit binding site. Rather, S-mTFD-MPPB binds to intrasubunit sites within the α and δ subunits, photolabeling αVal-218 (αM1), δPhe-232 (δM1), δThr-274 (δM2), and δIle-288 (δM3). Propofol, a general anesthetic that binds to GABAAR intersubunit sites, inhibited [3H]S-mTFD-MPPB photolabeling of these nAChR intrasubunit binding sites. These results demonstrate that in an nAChR, the subtle difference in structure between S-mTFD-MPPB and R-mTFD-MPAB (chirality; 5-propyl versus 5-allyl) determines selectivity for intra- versus intersubunit sites, in contrast to GABAARs, where this difference affects state dependence of binding to a common site.
Collapse
Affiliation(s)
- Zhiyi Yu
- From the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jonathan B Cohen
- From the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
107
|
Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther 2017; 179:1-16. [PMID: 28529069 DOI: 10.1016/j.pharmthera.2017.05.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nervous system and immune system have broad and overlapping distributions in the body, and interactions of these ubiquitous systems are central to the field of neuroimmunology. Over the past two decades, there has been explosive growth in our understanding of neuroanatomical, cellular, and molecular mechanisms that mediate central modulation of immune functions through the autonomic nervous system. A major catalyst for growth in this field was the discovery that vagal nerve stimulation (VNS) caused a prominent attenuation of the systemic inflammatory response evoked by endotoxin in experimental animals. This effect was mediated by acetylcholine (ACh) stimulation of nicotinic receptors on splenic macrophages. Hence, the circuit was dubbed the "cholinergic anti-inflammatory pathway". Subsequent work identified the α7 nicotinic ACh receptor (α7nAChR) as the crucial target for attenuation of pro-inflammatory cytokine release from macrophages and dendritic cells. Further investigation made the important discovery that cholinergic T cells within the spleen and not cholinergic nerve cells were the source of ACh that stimulated α7 receptors on splenic macrophages. Given the important role that inflammation plays in numerous disease processes, cholinergic anti-inflammatory mechanisms are under intensive investigation from a basic science perspective and in translational studies of animal models of diseases such as inflammatory bowel disease and rheumatoid arthritis. This basic work has already fostered several clinical trials examining the efficacy of VNS and cholinergic therapeutics in human inflammatory diseases. This review provides an overview of basic and translational aspects of the cholinergic anti-inflammatory response and relevant pharmacology of drugs acting at the α7nAChR.
Collapse
Affiliation(s)
- Donald B Hoover
- Department of Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
108
|
Wang ZJ, Deba F, Mohamed TS, Chiara DC, Ramos K, Hamouda AK. Unraveling amino acid residues critical for allosteric potentiation of (α4)3(β2)2-type nicotinic acetylcholine receptor responses. J Biol Chem 2017; 292:9988-10001. [PMID: 28446611 DOI: 10.1074/jbc.m116.771246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/20/2017] [Indexed: 01/29/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are promising drug targets to manage several neurological disorders and nicotine addiction. Growing evidence indicates that positive allosteric modulators of nAChRs improve pharmacological specificity by binding to unique sites present only in a subpopulation of nAChRs. Furthermore, nAChR positive allosteric modulators such as NS9283 and CMPI have been shown to potentiate responses of (α4)3(β2)2 but not (α4)2(β2)3 nAChR isoforms. This selective potentiation underlines that the α4:α4 interface, which is present only in the (α4)3(β2)2 nAChR, is an important and promising drug target. In this report we used site-directed mutagenesis to substitute specific amino acid residues and computational analyses to elucidate CMPI's binding mode at the α4:α4 subunit extracellular interface and identified a unique set of amino acid residues that determined its affinity. We found that amino acid residues α4Gly-41, α4Lys-64, and α4Thr-66 were critical for (α4)3(β2)2 nAChR potentiation by CMPI, but not by NS9283, whereas amino acid substitution at α4His-116, a known determinant of NS9283 and of agonist binding at the α4:α4 subunit interface, did not reduce CMPI potentiation. In contrast, substitutions at α4Gln-124 and α4Thr-126 reduced potentiation by CMPI and NS9283, indicating that their binding sites partially overlap. These results delineate the role of amino acid residues contributing to the α4:α4 subunit extracellular interface in nAChR potentiation. These findings also provide structural information that will facilitate the structure-based design of novel therapeutics that target selectively the (α4)3(β2)2 nAChR.
Collapse
Affiliation(s)
- Ze-Jun Wang
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Farah Deba
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Tasnim S Mohamed
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kara Ramos
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Ayman K Hamouda
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363, .,Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Sciences Center, Bryan, Texas 77807, and
| |
Collapse
|
109
|
Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol 2017; 175:1805-1821. [PMID: 28199738 DOI: 10.1111/bph.13745] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2)2 α5, (α4β2)2 β3 and (α6β2)2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Jingyi Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
110
|
In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence. Neuropharmacology 2017; 118:38-45. [PMID: 28279662 DOI: 10.1016/j.neuropharm.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
Abstract
Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence.
Collapse
|
111
|
Attenuation of nicotine taking and seeking in rats by the stoichiometry-selective alpha4beta2 nicotinic acetylcholine receptor positive allosteric modulator NS9283. Psychopharmacology (Berl) 2017; 234:475-484. [PMID: 27844094 DOI: 10.1007/s00213-016-4475-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
Abstract
RATIONALE The rewarding and reinforcing effects of nicotine are produced, in large part, by activation of neuronal α4β2* nicotinic acetylcholine receptors (nAChRs), pentameric protein complexes comprised of different stoichiometries of α4 and β2 subunits. However, little is known about the functional role of distinct subtypes of α4β2* nAChRs in nicotine addiction. OBJECTIVES NS9283 represents a new class of stoichiometry-selective positive allosteric modulators (PAMs) that selectively bind to α4β2 nAChRs containing three α4 and two β2 subunits (3(α4)2(β2) nAChRs). The present experiments were designed to determine the effects of NS9283 on nicotine self-administration and the reinstatement of nicotine-seeking behavior, an animal model of smoking relapse. Parallel studies of sucrose self-administration and reinstatement were conducted in separate cohorts of rats to determine if the effects of NS9283 generalized to other reinforced behaviors. RESULTS Acute and repeated administration of NS9283 dose-dependently reduced nicotine self-administration and reinstatement in male Sprague Dawley rats. These effects were reinforcer specific as no effects of NS9283 on sucrose self-administration and reinstatement were noted. NS9283 also failed to substitute for nicotine in supporting self-administration behavior suggesting that, at the doses tested, NS9283 alone is not reinforcing. CONCLUSION Taken together, these results provide compelling evidence that stoichiometry-selective PAMs of 3(α4)2(β2) nAChRs attenuate nicotine taking and seeking in rats and suggest that targeting 3(α4)2(β2) nAChRs may represent a promising therapeutic strategy for preventing smoking relapse.
Collapse
|
112
|
Kaminski T, Gunnarsson A, Geschwindner S. Harnessing the Versatility of Optical Biosensors for Target-Based Small-Molecule Drug Discovery. ACS Sens 2017; 2:10-15. [PMID: 28722441 DOI: 10.1021/acssensors.6b00735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Optical biosensors entered target-based small-molecule drug discovery more than two decades ago and have since transformed into a value-adding component in the decision-making process. Here, we briefly highlight the major application areas of optical biosensors and focus on desirable profiles of such platforms in order to ensure their effective use in small molecule drug discovery. Furthermore, we will emphasize current technology-based constraints and discuss experimental strategies to address these limitations as well as provide a view of necessary technology improvements for next generation platforms.
Collapse
Affiliation(s)
- Tim Kaminski
- Discovery Sciences, Innovative
Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, S-43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Innovative
Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, S-43183 Mölndal, Sweden
| | - Stefan Geschwindner
- Discovery Sciences, Innovative
Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, S-43183 Mölndal, Sweden
| |
Collapse
|
113
|
Post-Munson DJ, Pieschl RL, Molski TF, Graef JD, Hendricson AW, Knox RJ, McDonald IM, Olson RE, Macor JE, Weed MR, Bristow LJ, Kiss L, Ahlijanian MK, Herrington J. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Eur J Pharmacol 2017; 799:16-25. [PMID: 28132910 DOI: 10.1016/j.ejphar.2017.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [3H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation.
Collapse
Affiliation(s)
- Debra J Post-Munson
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Rick L Pieschl
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Thaddeus F Molski
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John D Graef
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Adam W Hendricson
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ronald J Knox
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ivar M McDonald
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Richard E Olson
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John E Macor
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael R Weed
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Linda J Bristow
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Laszlo Kiss
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael K Ahlijanian
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - James Herrington
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA.
| |
Collapse
|
114
|
Abbas M, Alzarea S, Papke RL, Rahman S. The α7 nicotinic acetylcholine receptor positive allosteric modulator attenuates lipopolysaccharide-induced activation of hippocampal IκB and CD11b gene expression in mice. Drug Discov Ther 2017. [DOI: https://doi.org/10.5582/ddt.2017.01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muzaffar Abbas
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University
| | - Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University
| |
Collapse
|
115
|
Foucault-Fruchard L, Antier D. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases. Neural Regen Res 2017; 12:1418-1421. [PMID: 29089979 PMCID: PMC5649454 DOI: 10.4103/1673-5374.215244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.
Collapse
Affiliation(s)
- Laura Foucault-Fruchard
- UMR INSERM U930, Université François Rabelais, Tours, France.,CHRU de Tours, Hôpital Bretonneau, Tours, France
| | - Daniel Antier
- UMR INSERM U930, Université François Rabelais, Tours, France.,CHRU de Tours, Hôpital Bretonneau, Tours, France
| |
Collapse
|
116
|
Jayakar SS, Ang G, Chiara DC, Hamouda AK. Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites. Methods Mol Biol 2017; 1598:157-197. [PMID: 28508361 DOI: 10.1007/978-1-4939-6952-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Photoaffinity labeling techniques have been used for decades to identify drug binding sites and to study the structural biology of allosteric transitions in transmembrane proteins including pentameric ligand-gated ion channels (pLGIC). In a typical photoaffinity labeling experiment, to identify drug binding sites, UV light is used to introduce a covalent bond between a photoreactive ligand (which upon irradiation at the appropriate wavelength converts to a reactive intermediate) and amino acid residues that lie within its binding site. Then protein chemistry and peptide microsequencing techniques are used to identify these amino acids within the protein primary sequence. These amino acid residues are located within homology models of the receptor to identify the binding site of the photoreactive probe. Molecular modeling techniques are then used to model the binding of the photoreactive probe within the binding site using docking protocols. Photoaffinity labeling directly identifies amino acids that contribute to drug binding sites regardless of their location within the protein structure and distinguishes them from amino acids that are only involved in the transduction of the conformational changes mediated by the drug, but may not be part of its binding site (such as those identified by mutational studies). Major limitations of photoaffinity labeling include the availability of photoreactive ligands that faithfully mimic the properties of the parent molecule and protein preparations that supply large enough quantities suitable for photoaffinity labeling experiments. When the ligand of interest is not intrinsically photoreactive, chemical modifications to add a photoreactive group to the parent drug, and pharmacological evaluation of these chemical modifications become necessary. With few exceptions, expression and affinity-purification of proteins are required prior to photolabeling. Methods to isolate milligram quantities of highly enriched pLGIC suitable for photoaffinity labeling experiments have been developed. In this chapter, we discuss practical aspects of experimental strategies to identify allosteric modulator binding sites in pLGIC using photoaffinity labeling.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Gordon Ang
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA. .,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA. .,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Kingsville, TX, USA.
| |
Collapse
|
117
|
Bortz D, Upton B, Mikkelsen J, Bruno J. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats. Neuropharmacology 2016; 111:78-91. [DOI: 10.1016/j.neuropharm.2016.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/23/2022]
|
118
|
Arnsten AFT, Wang M. Targeting Prefrontal Cortical Systems for Drug Development: Potential Therapies for Cognitive Disorders. Annu Rev Pharmacol Toxicol 2016; 56:339-60. [PMID: 26738476 DOI: 10.1146/annurev-pharmtox-010715-103617] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medications to treat cognitive disorders are increasingly needed, yet researchers have had few successes in this challenging arena. Cognitive abilities in primates arise from highly evolved N-methyl-d-aspartate (NMDA) receptor circuits in layer III of the dorsolateral prefrontal cortex. These circuits have unique modulatory needs that can differ from the layer V neurons that predominate in rodents, but they offer multiple therapeutic targets. Cognitive improvement often requires low doses that enhance the pattern of information held in working memory, whereas higher doses can produce nonspecific changes that obscure information. Identifying appropriate doses for clinical trials may be helped by assessments in monkeys and by flexible, individualized dose designs. The use of guanfacine (Intuniv) for prefrontal cortical disorders was based on research in monkeys, supporting this approach. Coupling our knowledge of higher primate circuits with the powerful methods now available in drug design will help create effective treatments for cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; ,
| | - Min Wang
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; ,
| |
Collapse
|
119
|
Echeverria V, Yarkov A, Aliev G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer's disease. Prog Neurobiol 2016; 144:142-57. [DOI: 10.1016/j.pneurobio.2016.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/07/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
|
120
|
Corradi J, Bouzat C. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol 2016; 90:288-99. [PMID: 27190210 DOI: 10.1124/mol.116.104240] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| |
Collapse
|
121
|
Marcus MM, Björkholm C, Malmerfelt A, Möller A, Påhlsson N, Konradsson-Geuken Å, Feltmann K, Jardemark K, Schilström B, Svensson TH. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study. Eur Neuropsychopharmacol 2016; 26:1401-1411. [PMID: 27474687 DOI: 10.1016/j.euroneuro.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.
Collapse
Affiliation(s)
- Monica M Marcus
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Carl Björkholm
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Anna Malmerfelt
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Annie Möller
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ninni Påhlsson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Åsa Konradsson-Geuken
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kristin Feltmann
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Björn Schilström
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Torgny H Svensson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
122
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
123
|
Indurthi DC, Lewis TM, Ahring PK, Balle T, Chebib M, Absalom NL. Ligand Binding at the 4-4 Agonist-Binding Site of the 42 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State. PLoS One 2016; 11:e0161154. [PMID: 27552221 PMCID: PMC4995024 DOI: 10.1371/journal.pone.0161154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022] Open
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors.
Collapse
Affiliation(s)
| | - Trevor M. Lewis
- School of Medical Sciences, University of NSW, Kensington, NSW, 2052, Australia
| | | | - Thomas Balle
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
- * E-mail: (NLA); (MC)
| | - Nathan L. Absalom
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
- * E-mail: (NLA); (MC)
| |
Collapse
|
124
|
Abongwa M, Buxton SK, Courtot E, Charvet CL, Neveu C, McCoy CJ, Verma S, Robertson AP, Martin RJ. Pharmacological profile of Ascaris suum ACR-16, a new homomeric nicotinic acetylcholine receptor widely distributed in Ascaris tissues. Br J Pharmacol 2016; 173:2463-77. [PMID: 27238203 PMCID: PMC4959957 DOI: 10.1111/bph.13524] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
Background and Purpose Control of nematode parasite infections relies largely on anthelmintic drugs, several of which act on nicotinic ACh receptors (nAChRs), and there are concerns about the development of resistance. There is an urgent need for development of new compounds to overcome resistance and novel anthelmintic drug targets. We describe the functional expression and pharmacological characterization of a homomeric nAChR, ACR‐16, from a nematode parasite. Experimental Approach Using RT‐PCR, molecular cloning and two‐electrode voltage clamp electrophysiology, we localized acr‐16 mRNA in Ascaris suum (Asu) and then cloned and expressed acr‐16 cRNA in Xenopus oocytes. Sensitivity of these receptors to cholinergic anthelmintics and a range of nicotinic agonists was tested. Key Results Amino acid sequence comparison with vertebrate nAChR subunits revealed ACR‐16 to be most closely related to α7 receptors, but with some striking distinctions. acr‐16 mRNA was recovered from Asu somatic muscle, pharynx, ovijector, head and intestine. In electrophysiological experiments, the existing cholinergic anthelmintic agonists (morantel, levamisole, methyridine, thenium, bephenium, tribendimidine and pyrantel) did not activate Asu‐ACR‐16 (except for a small response to oxantel). Other nAChR agonists: nicotine, ACh, cytisine, 3‐bromocytisine and epibatidine, produced robust current responses which desensitized at a rate varying with the agonists. Unlike α7, Asu‐ACR‐16 was insensitive to α‐bungarotoxin and did not respond to genistein or other α7 positive allosteric modulators. Asu‐ACR‐16 had lower calcium permeability than α7 receptors. Conclusions and Implications We suggest that ACR‐16 has diverse tissue‐dependent functions in nematode parasites and is a suitable drug target for development of novel anthelmintic compounds.
Collapse
Affiliation(s)
- Melanie Abongwa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Samuel K Buxton
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Elise Courtot
- INRA, UMR Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, UMR Infectiologie et Santé Publique, Tours, France
| | - Claude L Charvet
- INRA, UMR Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, UMR Infectiologie et Santé Publique, Tours, France
| | - Cédric Neveu
- INRA, UMR Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, UMR Infectiologie et Santé Publique, Tours, France
| | - Ciaran J McCoy
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Saurabh Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
125
|
Bagdas D, Wilkerson JL, Kulkarni A, Toma W, AlSharari S, Gul Z, Lichtman AH, Papke RL, Thakur GA, Damaj MI. The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain. Br J Pharmacol 2016; 173:2506-20. [PMID: 27243753 DOI: 10.1111/bph.13528] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/05/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Orthosteric agonists and positive allosteric modulators (PAMs) of the α7 nicotinic ACh receptor (nAChR) represent novel therapeutic approaches for pain modulation. Moreover, compounds with dual function as allosteric agonists and PAMs, known as ago-PAMs, add further regulation of receptor function. EXPERIMENTAL APPROACH Initial studies examined the α7 ago-PAM, GAT107, in the formalin, complete Freund's adjuvant (CFA), LPS inflammatory pain models, the chronic constriction injury neuropathic pain model and the tail flick and hot plate acute thermal nociceptive assays. Additional studies examined the locus of action of GAT107 and immunohistochemical markers in the dorsal horn of the spinal cord in the CFA model. KEY RESULTS Complementary pharmacological and genetic approaches confirmed that the dose-dependent antinociceptive effects of GAT107 were mediated through α7 nAChR. However, GAT107 was inactive in the tail flick and hot plate assays. In addition, GAT107 blocked conditioned place aversion elicited by acetic acid injection. Furthermore, intrathecal, but not intraplantar, injections of GAT107 reversed nociception in the CFA model, suggesting a spinal component of action. Immunohistochemical evaluation revealed an increase in the expression of astrocyte-specific glial fibrillary acidic protein and phosphorylated p38MAPK within the spinal cords of mice treated with CFA, which was attenuated by intrathecal GAT107 treatment. Importantly, GAT107 did not elicit motor impairment and continued to produce antinociceptive effects after subchronic administration in both phases of the formalin test. CONCLUSIONS AND IMPLICATIONS Collectively, these results provide the first proof of principle that α7 ago-PAMs represent an effective pharmacological strategy for treating inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.,Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Shakir AlSharari
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Zulfiye Gul
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
126
|
Abbas M, Rahman S. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice. Eur J Pharmacol 2016. [DOI: https://doi.org/10.1016/j.ejphar.2016.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
127
|
Zanetti SR, Ziblat A, Torres NI, Zwirner NW, Bouzat C. Expression and Functional Role of α7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem 2016; 291:16541-52. [PMID: 27284006 DOI: 10.1074/jbc.m115.710574] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
The homomeric α7 nicotinic receptor (nAChR) is one of the most abundant nAChRs in the central nervous system where it contributes to cognition, attention, and working memory. α7 nAChR is also present in lymphocytes, dendritic cells (DCs), and macrophages and it is emerging as an important drug target for intervention in inflammation and sepsis. Natural killer (NK) cells display cytotoxic activity against susceptible target cells and modulate innate and adaptive immune responses through their interaction with DCs. We here show that human NK cells also express α7 nAChR. α7 nAChR mRNA is detected by RT-PCR and cell surface expression of α7 nAChR is detected by confocal microscopy and flow cytometry using α-bungarotoxin, a specific antagonist. Both mRNA and protein levels increase during NK stimulation with cytokines (IL-12, IL-18, and IL-15). Exposure of cytokine-stimulated NK cells to PNU-282987, a specific α7 nAChR agonist, increases intracellular calcium concentration ([Ca(2+)]i) mainly released from intracellular stores, indicating that α7 nAChR is functional. Moreover, its activation by PNU-282987 plus a specific positive allosteric modulator greatly enhances the Ca(2+) responses in NK cells. Stimulation of NK cells with cytokines and PNU-282987 decreases NF-κB levels and nuclear mobilization, down-regulates NKG2D receptors, and decreases NKG2D-dependent cell-mediated cytotoxicity and IFN-γ production. Also, such NK cells are less efficient to trigger DC maturation. Thus, our results demonstrate the anti-inflammatory role of α7 nAChR in NK cells and suggest that modulation of its activity in these cells may constitute a novel target for regulation of the immune response.
Collapse
Affiliation(s)
- Samanta R Zanetti
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca
| | - Andrea Ziblat
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Nicolás I Torres
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Norberto W Zwirner
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and the Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428ADN-Ciudad de Buenos Aires, Argentina
| | - Cecilia Bouzat
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca,
| |
Collapse
|
128
|
Morissette M, Morin N, Grégoire L, Rajput A, Rajput AH, Di Paolo T. Brain α7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and parkinsonian patients. Biochem Pharmacol 2016; 109:62-69. [DOI: 10.1016/j.bcp.2016.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
129
|
Moerke MJ, de Moura FB, Koek W, McMahon LR. Effects of nicotine in combination with drugs described as positive allosteric nicotinic acetylcholine receptor modulators in vitro: discriminative stimulus and hypothermic effects in mice. Eur J Pharmacol 2016; 786:169-178. [PMID: 27238974 DOI: 10.1016/j.ejphar.2016.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/25/2023]
Abstract
Some drugs that are positive allosteric nAChR modulators in vitro, desformylflustrabromine (dFBr), PNU-120596 and LY 2087101, have not been fully characterized in vivo. These drugs were examined for their capacity to share or modify the hypothermic and discriminative stimulus effects of nicotine (1mg/kg s.c.) in male C57Bl/6J mice. Nicotine, dFBr, and PNU-120596 produced significant hypothermia, whereas LY 2087101 (up to 100mg/kg) did not. Nicotine dose-dependently increased nicotine-appropriate responding and decreased response rate; the respective ED50 values were 0.56mg/kg and 0.91mg/kg. The modulators produced no more than 38% nicotine-appropriate responding up to doses that disrupted operant responding. Rank order potency was the same for hypothermia and rate-decreasing effects: nicotine>dFBr>PNU-120596=LY 2087101. Mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine, but not the α7 antagonist methyllycaconitine, antagonized the hypothermic effects of nicotine. In contrast, mecamylamine did not antagonize the hypothermic effects of the modulators. The combined discriminative stimulus effects of DFBr and nicotine were synergistic, whereas the combined hypothermic effects of nicotine with either dFBr or PNU-120596 were infra-additive. PNU-120596 did not modify the nicotine discriminative stimulus, and LY 2087101 did not significantly modify either effect of nicotine. Positive modulation of nicotine at nAChRs by PNU-120596 and LY 2087101 in vitro does not appear to confer enhancement of the nAChR-mediated hypothermic or discriminative stimulus effects of nicotine. However, dFBr appears to be a positive allosteric modulator of some behavioral effects of nicotine at doses of dFBr smaller than the doses producing unwanted effects (e.g. hypothermia) through non-nAChR mechanisms.
Collapse
Affiliation(s)
- Megan J Moerke
- (a)Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA
| | - Fernando B de Moura
- (a)Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA
| | - Wouter Koek
- (a)Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA; Department of Psychiatry, The University of Texas Health Science Center at San Antonio, USA
| | - Lance R McMahon
- (a)Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
130
|
1,3-diphenylpropan-1-ones as allosteric modulators of α7 nACh receptors with analgesic and antioxidant properties. Future Med Chem 2016; 8:731-49. [PMID: 27161515 DOI: 10.4155/fmc-2015-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Nicotine acethylcholine receptors (nAChRs) play critical roles in cognitive processes, neuroprotection and inflammation. RESULTS According to their substituents, 1,3-diphenylpropan-1-one derivatives act as α7 nAChRs negative allosteric modulators (NAM, OMe) or Type I positive allosteric modulators (PAMs, OH). Compounds 7 and 31 were the most effective (989 and 666% enhancement of ACh-induced currents) and potent (EC50: 12.9 and 6.85 μM) PAMs. They exhibited strong radical scavenging values. Compound 31, selective over other neuronal nAChR subtypes and with acceptable pharmacokinetic profile, showed antinociceptive effects in a model of inflammatory pain. CONCLUSION Compound 31 is a novel, potent and selective α7 nAChR PAM, displaying antioxidant and analgesic activities. The 1,3-diphenylpropan-1-one scaffold could be the base toward more advanced type I PAMs for the treatment of nAChR-mediated diseases.
Collapse
|
131
|
Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice. Eur J Pharmacol 2016; 783:85-91. [PMID: 27154173 DOI: 10.1016/j.ejphar.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain.
Collapse
|
132
|
Hamouda AK, Deba F, Wang ZJ, Cohen JB. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator. Mol Pharmacol 2016; 89:575-84. [PMID: 26976945 PMCID: PMC4851301 DOI: 10.1124/mol.116.103341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/09/2016] [Indexed: 01/25/2023] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Farah Deba
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Ze-Jun Wang
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Jonathan B Cohen
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| |
Collapse
|
133
|
Niessen K, Muschik S, Langguth F, Rappenglück S, Seeger T, Thiermann H, Worek F. Functional analysis of Torpedo californica nicotinic acetylcholine receptors in multiple activation states by SSM-based electrophysiology. Toxicol Lett 2016; 247:1-10. [DOI: 10.1016/j.toxlet.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/21/2023]
|
134
|
Danker T, Braun F, Silbernagl N, Guenther E. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application. Assay Drug Dev Technol 2016; 14:144-55. [PMID: 26991363 DOI: 10.1089/adt.2015.696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.
Collapse
|
135
|
Mandl P, Hayer S, Karonitsch T, Scholze P, Győri D, Sykoutri D, Blüml S, Mócsai A, Poór G, Huck S, Smolen JS, Redlich K. Nicotinic acetylcholine receptors modulate osteoclastogenesis. Arthritis Res Ther 2016; 18:63. [PMID: 26970742 PMCID: PMC4789270 DOI: 10.1186/s13075-016-0961-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 02/23/2016] [Indexed: 12/27/2022] Open
Abstract
Background Our aim was to investigate the role of nicotinic acetylcholine receptors (nAChRs) in in-vitro osteoclastogenesis and in in-vivo bone homeostasis. Methods The presence of nAChR subunits as well as the in-vitro effects of nAChR agonists were investigated by ex vivo osteoclastogenesis assays, real-time polymerase chain reaction, Western blot and flow cytometry in murine bone marrow-derived macrophages differentiated in the presence of recombinant receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The bone phenotype of mice lacking various nAChR subunits was investigated by peripheral quantitative computed tomography and histomorphometric analysis. Oscillations in the intracellular calcium concentration were detected by measuring the Fura-2 fluorescence intensity. Results We could demonstrate the presence of several nAChR subunits in bone marrow-derived macrophages stimulated with RANKL and M-CSF, and showed that they are capable of producing acetylcholine. nAChR ligands reduced the number of osteoclasts as well as the number of tartrate-resistant acidic phosphatase-positive mononuclear cells in a dose-dependent manner. In vitro RANKL-mediated osteoclastogenesis was reduced in mice lacking α7 homomeric nAChR or β2-containing heteromeric nAChRs, while bone histomorphometry revealed increased bone volume as well as impaired osteoclastogenesis in male mice lacking the α7 nAChR. nAChR ligands inhibited RANKL-induced calcium oscillation, a well-established phenomenon of osteoclastogenesis. This inhibitory effect on Ca2+ oscillation subsequently led to the inhibition of RANKL-induced NFATc1 and c-fos expression after long-term treatment with nicotine. Conclusions We have shown that the activity of nAChRs conveys a marked effect on osteoclastogenesis in mice. Agonists of these receptors inhibited calcium oscillations in osteoclasts and blocked the RANKL-induced activation of c-fos and NFATc1. RANKL-mediated in-vitro osteoclastogenesis was reduced in α7 knockout mice, which was paralleled by increased tibial bone volume in male mice in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0961-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Mandl
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Silvia Hayer
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Karonitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - David Győri
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Despoina Sykoutri
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gyula Poór
- National Institute of Rheumatology and Physiotherapy, Budapest, Hungary
| | - Sigismund Huck
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Kurt Redlich
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
136
|
Manetti D, Bellucci C, Dei S, Teodori E, Varani K, Spirova E, Kudryavtsev D, Shelukhina I, Tsetlin V, Romanelli MN. New quinoline derivatives as nicotinic receptor modulators. Eur J Med Chem 2016; 110:246-58. [DOI: 10.1016/j.ejmech.2016.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
|
137
|
Andersen ND, Nielsen BE, Corradi J, Tolosa MF, Feuerbach D, Arias HR, Bouzat C. Exploring the positive allosteric modulation of human α7 nicotinic receptors from a single-channel perspective. Neuropharmacology 2016; 107:189-200. [PMID: 26926428 DOI: 10.1016/j.neuropharm.2016.02.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 02/24/2016] [Indexed: 12/30/2022]
Abstract
Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators (PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been classified only on the basis of their macroscopic effects as type I, which only enhance agonist-induced currents, and type II, which also decrease desensitization and reactivate desensitized nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the effects on single-α7 channel currents of representative members of each type and of less characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and produce episodes of successive openings, thus indicating that both types affect α7 kinetics. Different PAM types show different sensitivity to temperature, suggesting different mechanisms of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all type I PAMs share the structural determinants of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to the ongoing development of therapeutic compounds.
Collapse
Affiliation(s)
- Natalia D Andersen
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Beatriz E Nielsen
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Jeremías Corradi
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - María F Tolosa
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Dominik Feuerbach
- Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hugo R Arias
- Department of Medical Education, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | - Cecilia Bouzat
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina.
| |
Collapse
|
138
|
Bagdas D, Targowska-Duda KM, López JJ, Perez EG, Arias HR, Damaj MI. The Antinociceptive and Antiinflammatory Properties of 3-furan-2-yl-N-p-tolyl-acrylamide, a Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptors in Mice. Anesth Analg 2016; 121:1369-77. [PMID: 26280585 DOI: 10.1213/ane.0000000000000902] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. METHODS We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant-induced inflammatory pain, and the chronic constriction injury-induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid-induced aversion by using the conditioned place aversion test. RESULTS We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed antiinflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and antiinflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid-induced aversion in the conditioned place aversion assay. CONCLUSIONS These findings suggest that the administration of PAM-2, a new α7-selective type II PAM, reduces the neuropathic and inflammatory pain sensory and affective behaviors in the mouse. Thus, this drug may have therapeutic applications in the treatment and management of chronic pain.
Collapse
Affiliation(s)
- Deniz Bagdas
- From the *Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia; †Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey; ‡Department of Biopharmacy, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, Lublin, Poland; §Faculty of Chemistry, Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile; and ‖Department of Medical Education, California Northstate University College of Medicine, Elk Grove, California
| | | | | | | | | | | |
Collapse
|
139
|
Nikiforuk A, Kos T, Hołuj M, Potasiewicz A, Popik P. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats. Neuropharmacology 2016; 101:389-400. [DOI: 10.1016/j.neuropharm.2015.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
|
140
|
Horenstein NA, Papke RL, Kulkarni AR, Chaturbhuj GU, Stokes C, Manther K, Thakur GA. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation: SEPARATION OF DIRECT ALLOSTERIC ACTIVATION AND POSITIVE ALLOSTERIC MODULATION. J Biol Chem 2016; 291:5049-67. [PMID: 26742843 DOI: 10.1074/jbc.m115.692392] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with "orthosteric" agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function. We show that the other site, required for direct activation, is likely to be solvent-accessible at the extracellular domain vestibule. We identify key attributes of molecules in this family that are able to act at the DAA site through variation at the aryl ring substituent of the tetrahydroquinoline ring system and with two different classes of competitive antagonists of DAA. Analyses of molecular features of effective allosteric agonists allow us to propose a binding model for the DAA site, featuring a largely non-polar pocket accessed from the extracellular vestibule with an important role for Asp-101. This hypothesis is supported with data from site-directed mutants. Future refinement of the model and the characterization of specific GAT107 analogs will allow us to define critical structural elements that can be mapped onto the receptor surface for an improved understanding of this novel way to target α7 nAChR therapeutically.
Collapse
Affiliation(s)
- Nicole A Horenstein
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Roger L Papke
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Abhijit R Kulkarni
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Ganesh U Chaturbhuj
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Clare Stokes
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Khan Manther
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Ganesh A Thakur
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
141
|
Otvos RA, Mladic M, Arias-Alpizar G, Niessen WMA, Somsen GW, Smit AB, Kool J. At-Line Cellular Screening Methodology for Bioactives in Mixtures Targeting the α7-Nicotinic Acetylcholine Receptor. ACTA ACUST UNITED AC 2016; 21:459-67. [DOI: 10.1177/1087057115625307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023]
Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel expressed in different regions of the central nervous system (CNS). The α7-nAChR has been associated with Alzheimer’s disease, epilepsy, and schizophrenia, and therefore is extensively studied as a drug target for the treatment of these diseases. Important sources for new compounds in drug discovery are natural extracts. Since natural extracts are complex mixtures, identification of the bioactives demands the use of analytical techniques to separate a bioactive from inactive compounds. This study describes screening methodology for identifying bioactive compounds in mixtures acting on the α7-nAChR. The methodology developed combines liquid chromatography (LC) coupled via a split with both an at-line calcium (Ca2+)-flux assay and high-resolution mass spectrometry (MS). This allows evaluation of α7-nAChR responses after LC separation, while parallel MS enables compound identification. The methodology was optimized for analysis of agonists and positive allosteric modulators, and was successfully applied to screening of the hallucinogen mushroom Psilocybe Mckennaii. The crude mushroom extract was analyzed using both reversed-phase and hydrophilic interaction liquid chromatography. Matching retention times and peak shapes of bioactives found with data from the parallel MS measurements allowed rapid pinpointing of accurate masses corresponding to the bioactives.
Collapse
Affiliation(s)
- Reka A. Otvos
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marija Mladic
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gabriela Arias-Alpizar
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- hyphen MassSpec, Warmond, the Netherlands
| | - Govert W. Somsen
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
142
|
Mohamed TS, Jayakar SS, Hamouda AK. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation. Front Mol Neurosci 2015; 8:71. [PMID: 26635524 PMCID: PMC4658446 DOI: 10.3389/fnmol.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide per year, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.
Collapse
Affiliation(s)
- Tasnim S Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center Kingsville, TX, USA
| | - Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center Kingsville, TX, USA ; Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Sciences Center Bryan, TX, USA
| |
Collapse
|
143
|
Grazioso G, Sgrignani J, Capelli R, Matera C, Dallanoce C, De Amici M, Cavalli A. Allosteric Modulation of Alpha7 Nicotinic Receptors: Mechanistic Insight through Metadynamics and Essential Dynamics. J Chem Inf Model 2015; 55:2528-39. [PMID: 26569022 DOI: 10.1021/acs.jcim.5b00459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing attention has recently been devoted to allosteric modulators, as they can provide inherent advantages over classic receptor agonists. In the field of nicotinic receptors (nAChRs), the main advantage is that allosteric modulators can trigger pharmacological responses, limiting receptor desensitization. Most of the known allosteric ligands are "positive allosteric modulators" (PAMs), which increase both sensitivity to receptor agonists and current amplitude. Intriguingly, some allosteric modulators are also able to activate the α7 receptor (α7-nAChR) even in the absence of orthosteric agonists. These compounds have been named "ago-allosteric modulators" and GAT107 has been studied in depth because of its unique mechanism of action. We here investigate by molecular dynamics simulations, metadynamics, and essential dynamics the activation mechanism of α7-nAChR, in the presence of different nicotinic modulators. We determine the free energy profiles associated with the closed-to-open motion of the loop C, and we highlight mechanistic differences observed in the presence of different modulators. In particular, we demonstrate that GAT107 triggers conformational motions and cross-talk similar to those observed when the α7-nACh receptor is in complex with both an agonist and an allosteric modulator.
Collapse
Affiliation(s)
- Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Jacopo Sgrignani
- Institute of Research in Biomedicine (IRB) , Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Romina Capelli
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Carlo Matera
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Andrea Cavalli
- Drug Discovery and Development-Computation, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy.,Department of Pharmacy and Biotecnology, University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
144
|
Potasiewicz A, Kos T, Ravazzini F, Puia G, Arias HR, Popik P, Nikiforuk A. Pro-cognitive activity in rats of 3-furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Br J Pharmacol 2015; 172:5123-35. [PMID: 26276349 DOI: 10.1111/bph.13277] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE α7 nicotinic acetylcholine receptors (α7 nAChRs) may represent useful targets for cognitive improvement. The aim of this study is to compare the pro-cognitive activity of selective α7-nAChR ligands, including the partial agonists, DMXBA and A-582941, as well as the positive allosteric modulator, 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2). EXPERIMENTAL APPROACH The attentional set-shifting task (ASST) and the novel object recognition task (NORT) in rats, were used to evaluate the pro-cognitive activity of each ligand [i.e., PAM-2 (0.5, 1.0, and 2.0 mg·kg(-1) ), DMXBA and A-582941 (0.3 and 1.0 mg·kg(-1) )], in the absence and presence of methyllycaconitine (MLA), a selective competitive antagonist. To determine potential drug interactions, an inactive dose of PAM-2 (0.5 mg·kg(-1) ) was co-injected with inactive doses of either agonist - DMXBA: 0.1 (NORT); 0.3 mg·kg(-1) (ASST) or A-582941: 0.1 mg·kg(-1) . KEY RESULTS PAM-2, DMXBA, and A-582941 improved cognition in a MLA-dependent manner, indicating that the observed activities are mediated by α7 nAChRs. Interestingly, the co-injection of inactive doses of PAM-2 and DMXBA or A-582941 also improved cognition, suggesting drug interactions. Moreover, PAM-2 reversed the scopolamine-induced NORT deficit. The electrophysiological results also support the view that PAM-2 potentiates the α7 nAChR currents elicited by a fixed concentration (3 μM) of DMXBA with apparent EC50 = 34 ± 3 μM and Emax = 225 ± 5 %. CONCLUSIONS AND IMPLICATIONS Our results support the view that α7 nAChRs are involved in cognition processes and that PAM-2 is a novel promising candidate for the treatment of cognitive disorders.
Collapse
Affiliation(s)
- A Potasiewicz
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| | - T Kos
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| | - F Ravazzini
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - G Puia
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - H R Arias
- Department of Medical Education, California Northstate University College of Medicine, CA, 95757, USA
| | - P Popik
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| | - A Nikiforuk
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| |
Collapse
|
145
|
Wang J, Kuryatov A, Jin Z, Norleans J, Kamenecka TM, Kenny PJ, Lindstrom J. A Novel α2/α4 Subtype-selective Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors Acting from the C-tail of an α Subunit. J Biol Chem 2015; 290:28834-46. [PMID: 26432642 DOI: 10.1074/jbc.m115.676551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs.
Collapse
Affiliation(s)
- Jingyi Wang
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexander Kuryatov
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhuang Jin
- Department of Molecular Therapeutics, Scripps Research Institute, Scripps, Florida 33458, and
| | - Jack Norleans
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, Scripps Research Institute, Scripps, Florida 33458, and
| | - Paul J Kenny
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jon Lindstrom
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
146
|
Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Pharmacol Res 2015; 101:9-17. [PMID: 26318763 DOI: 10.1016/j.phrs.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.
Collapse
|
147
|
Wu ZS, Cheng H, Jiang Y, Melcher K, Xu HE. Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery. Acta Pharmacol Sin 2015; 36:895-907. [PMID: 26238288 PMCID: PMC4564887 DOI: 10.1038/aps.2015.66] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) and the 5-HT3 receptors (5-HT3Rs) are cation-selective members of the pentameric ligand-gated ion channels (pLGICs), which are oligomeric protein assemblies that convert a chemical signal into an ion flux through postsynaptic membrane. They are critical components for synaptic transmission in the nervous system, and their dysfunction contributes to many neurological disorders. The diverse subunit compositions of pLGICs give rise to complex mechanisms of ligand recognition, channel gating, and ion-selective permeability, which have been demonstrated in numerous electrophysiological and molecular biological studies, and unraveled by progress in studying the structural biology of this protein family. In this review, we discuss recent insights into the structural and functional basis of two cation-selective pLGICs, the nAChR and the 5-HT3R, including their subunit compositions, ligand binding, and channel gating mechanisms. We also discuss their relevant pharmacology and drug discovery for treating various neurological disorders. Finally, we review a model of two alternative ion conducting pathways based on the latest 5-HT3A crystal structure.
Collapse
|
148
|
Ton HT, Smart AE, Aguilar BL, Olson TT, Kellar KJ, Ahern GP. Menthol Enhances the Desensitization of Human α3β4 Nicotinic Acetylcholine Receptors. Mol Pharmacol 2015; 88:256-64. [PMID: 25964258 PMCID: PMC4518085 DOI: 10.1124/mol.115.098285] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
The α3β4 nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the peripheral and central nervous systems, including in airway sensory nerves. The nAChR subtype transduces the irritant effects of nicotine in tobacco smoke and, in certain brain areas, may be involved in nicotine addiction and/or withdrawal. Menthol, a widely used additive in cigarettes, is a potential analgesic and/or counterirritant at sensory nerves and may also influence nicotine's actions in the brain. We examined menthol's effects on recombinant human α3β4 nAChRs and native nAChRs in mouse sensory neurons. Menthol markedly decreased nAChR activity as assessed by Ca(2+) imaging, (86)Rb(+) efflux, and voltage-clamp measurements. Coapplication of menthol with acetylcholine or nicotine increased desensitization, demonstrated by an increase in the rate and magnitude of the current decay and a reduction of the current integral. These effects increased with agonist concentration. Pretreatment with menthol followed by its washout did not affect agonist-induced desensitization, suggesting that menthol must be present during the application of agonist to augment desensitization. Notably, menthol acted in a voltage-independent manner and reduced the mean open time of single channels without affecting their conductance, arguing against a simple channel-blocking effect. Further, menthol slowed or prevented the recovery of nAChRs from desensitization, indicating that it probably stabilizes a desensitized state. Moreover, menthol at concentrations up to 1 mM did not compete for the orthosteric nAChR binding site labeled by [(3)H]epibatidine. Taken together, these data indicate that menthol promotes desensitization of α3β4 nAChRs by an allosteric action.
Collapse
Affiliation(s)
- Hoai T Ton
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Amanda E Smart
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Brittany L Aguilar
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Kenneth J Kellar
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Gerard P Ahern
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| |
Collapse
|
149
|
Nikiforuk A, Kos T, Potasiewicz A, Popik P. Positive allosteric modulation of alpha 7 nicotinic acetylcholine receptors enhances recognition memory and cognitive flexibility in rats. Eur Neuropsychopharmacol 2015; 25:1300-13. [PMID: 26003081 DOI: 10.1016/j.euroneuro.2015.04.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 11/15/2022]
Abstract
A wide body of preclinical and clinical data suggests that alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) may represent useful targets for cognitive improvement in schizophrenia and Alzheimer׳s disease. A promising recent approach is based on the use of positive allosteric modulators (PAMs) of α7-nAChRs due to their several advantages over the direct agonists. Nevertheless, the behavioural effects of this class of compounds, particularly with regard to higher-order cognitive functions, have not been broadly characterised. The aim of the present study was to evaluate the procognitive efficacies of type I and type II α7-nAChRs PAMs, N-(4-chlorophenyl)-[[(4-chlorophenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide (CCMI) and N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)urea (PNU-120596) in the novel object recognition task (NORT), attentional set-shifting task (ASST) and five-choice serial reaction time task (5-CSRTT) in rats. Additionally, the effects of galantamine, an acetylcholinesterase inhibitor that also allosterically modulates nAChRs, were assessed. We report that CCMI (0.3-3mg/kg), PNU-120596 (0.3-3mg/kg) and galantamine (1-3mg/kg) attenuated the delay-induced impairment in NORT performance and facilitated cognitive flexibility in the ASST. Methyllycaconitine (3mg/kg) blocked the actions of CCMI, PNU-120596 and galantamine in the NORT and ASST, suggesting that the procognitive effects of these compounds are α7-nAChRs-dependent. However, none of the compounds tested affected the rats' attentional performance in the 5-CSRTT. The present findings confirm and extend the observations indicating that the positive allosteric modulation of α7-nAChRs enhances recognition memory and cognitive flexibility in preclinical tasks. Therefore, the present study supports the utility of α7-nAChRs PAMs as a potential cognitive enhancing therapy.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tomasz Kos
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Potasiewicz
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
150
|
Nicotinic ligands as multifunctional agents for the treatment of neuropsychiatric disorders. Biochem Pharmacol 2015; 97:388-398. [PMID: 26231940 DOI: 10.1016/j.bcp.2015.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 02/08/2023]
Abstract
The challenges associated with developing more effective treatments for neurologic and psychiatric illness such as Alzheimer's disease and schizophrenia are considerable. Both the symptoms and the pathophysiology of these conditions are complex and poorly understood and the clinical presentations across different patients can be very heterogeneous. Moreover, it has become apparent that the reductionist approach to drug discovery for these illnesses that has dominated the field for decades (i.e., the development of highly selective compounds or other treatment modalities focused on a very specific pathophysiologic target) has not been widely successful. Accordingly, a variety of new strategies have emerged including the development of "multitarget-directed ligands" (MTDLs), the development and/or identification of compounds that exhibit "multifunctional" activity (e.g., pro-cognitive plus neuroprotective, pro-cognitive plus antipsychotic activity), "repurposing" strategies for existing compounds that have other clinical indications, and novel "adjunctive" treatment strategies that might enhance the efficacy of the currently available treatments. Interestingly, a variety of ligands at nicotinic acetylcholine receptors (nAChRs) appear to have the potential to fulfill one or more of these desirable properties (i.e., multifunctional, repurposing, or adjunctive treatment potential). The purpose of this review (while not all-inclusive) is to provide an overview of a variety of nAChR ligands that demonstrate potential in these categories, particularly, "multifunctional" properties. Due to their densities in the mammalian brain and the amount of literature available, the review will focus on ligands of the high affinity α4β2 nAChR and the low affinity α7 nAChR.
Collapse
|