101
|
Huang D, Qiu H, Miao L, Guo L, Zhang X, Lin M, Li Z, Li F. Cdc42 promotes thyroid cancer cell proliferation and migration and tumor-associated macrophage polarization through the PTEN/AKT pathway. J Biochem Mol Toxicol 2022; 36:e23115. [PMID: 35822655 DOI: 10.1002/jbt.23115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to investigate the potential mechanism and function of Cdc42 in thyroid cancer. We found that knockdown of Cdc42 inhibited the migration and proliferation of WRO cells. This role of Cdc42 is achieved by interacting with PTEN and interfering with its PTEN nuclear translocation. The overexpression of Cdc42 enhances the production of lactic acid and promotes the polarization of M2 macrophages, and therefore M2 macrophages inhibit the function of T cells. Overall, Cdc42 can promote cell proliferation and migration through the PTEN/AKT pathway and promote tumor-related M2 macrophage polarization and inhibit T cell activity by enhancing aerobic glycolysis, animal experiments confirmed that tumor volume increased after Cdc42 overexpressed in TBP-3743 murine thyroid cancer cells. Increased infiltration of Treg and macrophages was also observed. taken together, our results indicate that Cdc42 can be used as a diagnostic and thyroid cancer Prognostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Deyi Huang
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Huali Qiu
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Lin Miao
- Thyroid Breast Surgery Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Lin Guo
- Inspection Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Xiaoting Zhang
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Mengmeng Lin
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Zhongyun Li
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Fang Li
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| |
Collapse
|
102
|
p-S6 as a Prognostic Biomarker in Canine Oral Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12070935. [PMID: 35883491 PMCID: PMC9313205 DOI: 10.3390/biom12070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Scarce information exists on the role of mTOR pathway proteins and their association to aggressiveness and prognosis of patients with canine oral cancers. We aimed to investigate the activated form of mTOR and its downstream S6 protein in canine oral squamous cell carcinoma (OSCC), and to evaluate potential associations between protein expression and clinic-pathologic variables and survival. For that we analysed p-mTOR and p-S6 protein expression by immunohistochemistry in 61 canine OSCCs. Multivariate analysis was conducted to examine their role in patients’ cancer-specific survival (CSS). p-mTOR and p-S6 expression were present in almost all cases. High-expression of p-mTOR was observed in 44 (72.1%) cases using extent score and 52 (85.2%) cases using intensity score. For p-S6, high expression was observed in 53 (86.9%) cases using extent score and in 54 (88.5%) cases using intensity score. An independent prognostic value for p-S6 extension (p = 0.027), tumour stage (p = 0.013) and treatment (p = 0.0009) was found in patients’ CSS analysis. Our data suggest that p-mTOR and p-S6 proteins are commonly expressed in canine OSCC and p-S6 expression is correlated with poor CSS in dogs with OSCC. More studies should be performed to identify possible therapeutic targets related with mTOR pathway for these patients.
Collapse
|
103
|
Cheng Y, Wang Q, Zhang Z, Zhao C, Zhou H, Xu J, Gu Q. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154133. [PMID: 35504052 DOI: 10.1016/j.phymed.2022.154133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is highly prevalent in southern China. The remote metastasis of advanced NPC requires chemotherapeutic treatments to reduce the mortality. Our previous work revealed that saucerneol (SN) showed cytotoxicity against several nasopharyngeal carcinoma (NPC) cells. This work aims to investigate the effect of SN in NPC growth and exploring the mechanism of action. STUDY DESIGN Applying in vivo study, in vitro study and in silico study to indicate the mechanism of SN in inhibiting NPC growth. METHODS Saucerneol (SN) toxicity was measured with MTT assay. NPC proliferation was measured with EdU and colony formation assays, cell cycle was detected with flow cytometry. NPC migration and invasion were measured with scratch assay and matrigel transwell method. Further, human NPC xenograft tumor models were established in nude mice to evaluate the therapeutic efficacy of SN in vivo. Toxicological analysis was performed on H&E staining and IHC. Quantitative real-time PCR and Western blot analyses were used to evaluate the expression levels of key molecules in PI3K/AKT/mTOR, MAPK, NF-κB, and HIF-1α signal pathways. Target predicting was conducted using computational method, and target identification was carried out by ATPase assay and TSA. RESULTS SN, a potent NPC inhibitor that was previously isolated from Saururus chinensis in our lab, is proven to inhibit the proliferation and metastasis of HONE1 cell lines and inhibit the growth of human NPC xenografts in nude mice. Moreover, we further articulate the molecular mechanism of action for SN and, reveal that SN promotes the expression of cell cycle-dependent kinase inhibitory protein p21 Waf1/Cip1 through targeting Grp94 and then inhibiting PI3K/AKT signaling pathway as well as up-regulating p53 to disrupt the progression of HONE1 cells. CONCLUSION SN significantly inhibits NPC cells proliferation and metastasis in vitro and in vivo via selectively inhibit Grp94 and then blocking PI3K/AKT/mTOR/HIF-1α signaling pathway. This study firstly provides a novel selective Grp94 inhibitor as a NPC candidate.
Collapse
Affiliation(s)
- Yanfang Cheng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qian Wang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhikang Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chao Zhao
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
104
|
Li H, Gao J, Liu L, Zhang S. LINC00958: A promising long non-coding RNA related to cancer. Biomed Pharmacother 2022; 151:113087. [PMID: 35569349 DOI: 10.1016/j.biopha.2022.113087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a class of RNA transcripts longer than 200 nucleotides, do not encode proteins; however, they encode small peptides and micropeptides that act as bioactive peptides with notable effects in regulating the progression of malignant tumors, such as lung and colorectal cancers, and affecting patient prognosis. lncRNAs are important intracellular regulators, particularly in tumorigenesis and tumor progression. Long intergenic non-protein coding RNA958 (LINC00958), which has received increasing attention in recent years, is highly expressed in various malignancies, including head and neck squamous cell carcinoma (HNSC), non-small-cell lung cancer (NSCLC), gastric cancer, hepatocellular carcinoma (HCC), colorectal cancer, bladder cancer, and breast cancer. Here, we reviewed the recent studies on LINC00958 as well as its closely related clinical features and functional regulation in cancers. We systematically expounded the molecular mechanisms underlying the biological functions of LINC00958 in inhibiting cell apoptosis and enhancing the chemoradiotherapy resistance of tumor cells. The upregulation of LINC00958 enhances the resistance of tumor cells to radiotherapy and chemotherapy and induces lymphangiogenesis. Moreover, it is involved in tumor glycolytic metabolism, which plays a crucial role in facilitating the proliferation, invasion, and migration of tumor cells. Additionally, analysis of various studies revealed that LINC00958 acts as an endogenous competitive RNA (ceRNA) and regulates the malignant behavior of tumor cells through the miRNA-mRNA axis. Collectively, the use of LINC00958 as a novel biomarker and therapeutic target for the clinical diagnosis and treatment of different cancers has bright prospects in the future.
Collapse
Affiliation(s)
- Hongxu Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
105
|
Hou Y, Zhou M, Li Y, Tian T, Sun X, Chen M, Xu W, Lu M. Risk SNP-mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol Carcinog 2022; 61:797-811. [PMID: 35687049 DOI: 10.1002/mc.23422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
As potential biomarkers and therapeutic targets, long noncoding RNAs (lncRNAs) are involved in the tumorigenesis of various tumors. Genetic variation in long noncoding regions can lead to lncRNA dysfunction and even cancer. Nevertheless, studies on the association between lncRNA-associated single-nucleotide polymorphisms (SNPs) and the risk of head and neck squamous cell carcinoma (HNSCC) remain inadequate. Here, we aimed to explore the association between SNPs in LINC01614 and HNSCC risk, and the potential role of LINC01614 in tumorigenesis. In this study, we found that rs16854802 A > G (odds ratio [OR] = 1.42, 95% confidence interval [CI]: 1.22-1.77, p < 0.001) and rs3113503 G > C (OR = 1.38, 95% CI: 1.15-1.64, p < 0.001) in LINC01614 increased the risk of HNSCC in the Chinese population. Functional bioinformatic analysis and luciferase reporter assay revealed that rs3113503 G > C variant disrupted the binding of miRNA-616-3p to LINC01614, which resulted in the increased expression of LINC01614. Further analysis of the TCGA database demonstrated that the upregulated LINC01614 in HNSCC cancer tissues was associated with poor prognostic in HNSCC patients. In vitro experiments showed that knockdown of LINC01614 inhibited the proliferation, invasion, and migration ability of HNSCC cells. Mechanistically, allele C of rs3113503 in LINC01614 was more effective than allele G in activating the PI3K/AKT signaling pathway. Moreover, the reduced expression of LINC01614 also inhibited the activation of the PI3K/AKT signaling pathway. In summary, our findings revealed that the risk SNP rs3113503 G > C in LINC01614 altered the binding to miR-616-3p, which led to increased LINC01614 expression and promoted HNSCC progression by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yaxuan Hou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tian
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xun Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Guidance Center for Social Psychological Service, Wuhan Mental Health Center, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmao Xu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Public Health, Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
106
|
Hu C, Fan J, He G, Dong C, Zhou S, Zheng Y. Signal peptidase complex catalytic subunit SEC11A upregulation is a biomarker of poor prognosis in patients with head and neck squamous cell carcinoma. PLoS One 2022; 17:e0269166. [PMID: 35653344 PMCID: PMC9162331 DOI: 10.1371/journal.pone.0269166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/15/2022] [Indexed: 11/25/2022] Open
Abstract
In the current study, we aimed to investigate the expression of the five microsomal signal peptidase complex (SPC) subunit genes (SEC11A, SEC11C, SPCS1, SPCS2, and SPCS3) in head and neck squamous cell carcinoma (HNSC) and to explore their prognostic value. Data from the HNSC subset of The Cancer Genome Atlas (TCGA) and one previous single-cell RNA-seq dataset was used. Subgroup analysis was conducted in tumors from different anatomic sites. Gene set enrichment analysis (GSEA), and immune cell infiltration analysis were performed to check the influence of SEC11A on the tumor microenvironment. Among the genes significantly upregulated in the tumor group, only SEC11A expression (as a continuous variable) is independently associated with poorer progression-free survival (PFS) (HR: 2.075, 95%CI: 1.447–2.977, p<0.001) and disease-specific survival (DSS) (HR: 2.023, 95%CI: 1.284–3.187, p = 0.002). Subgroup analysis confirmed the prognostic value in tumors from three anatomic origins, including laryngeal squamous cell carcinoma, oral cavity-related squamous cell carcinoma, and oropharynx-related squamous cell carcinoma. SEC11A is expressed in all subtypes of cells in the tumor microenvironment. Its expression showed a moderate positive correlation with its gene-level copy number (Pearson’s r = 0.53, p<0.001). SEC11A expression was negatively correlated with CD8+ T cells and B cells, but was positively correlated with cancer-associated fibroblast and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. In summary, SEC11A upregulation is a result of gene amplification in head and neck squamous cell carcinoma. Its upregulation might serve as an independent prognostic biomarker and a predictor of the infiltration of certain types of immune cells.
Collapse
Affiliation(s)
- Chunmei Hu
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Gang He
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuan Dong
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- * E-mail: (SZ); (YZ)
| | - Yun Zheng
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (SZ); (YZ)
| |
Collapse
|
107
|
Chen Q, Liu Z, Tan Y, Pan S, An W, Xu H. Characterization of RNA modifications in gastric cancer to identify prognosis-relevant gene signatures. Cancer Med 2022; 12:879-897. [PMID: 35635121 PMCID: PMC9844604 DOI: 10.1002/cam4.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Most human genes have diverse transcript isoforms, which mainly arise from alternative cleavage and polyadenylation (APA) at 3' ends. N7-methylguanosine (m7 G) is also an essential epigenetic modification at the 5' end. However, the contribution of these two RNA modifications to the development, prognosis, regulation mechanisms, and drug sensitivity of gastric cancer (GC) is unclear. METHODS The expression data of 2412 patients were extracted from 12 cohorts and the RNA modification patterns of 20 marker genes were systematically identified into phenotypic clusters using the unsupervised clustering approach. Following that, we developed an RNA modification model (RMscore) to quantify each GC patient's RNA modification index. Finally, we examined the correlation between RMscore and clinical features such as survival outcomes, molecular subtypes identified by the Asian Cancer Research Group (ACRG), posttranscriptional regulation, and chemotherapeutic sensitivity in GC. RESULTS The samples were categorized into two groups on the basis of their RMscore: high and low. The group with a low RMscore had a bad prognosis. Moreover, the low RMscore was associated with KRAS, Hedgehog, EMT, and TGF-β signaling, whereas a high RMscore was related to abnormal cell cycle signaling pathway activation. The findings also revealed that the RMscore contributes to the regulation of the miRNA-mRNA network. Drug sensitivity analysis revealed that RMscore is associated with the response to some anticancer drugs. CONCLUSIONS The RMscore model has the potential to be a useful tool for prognosis prediction in patients with GC. A comprehensive investigation of APA-RNA and m7 G-RNA modifications may reveal novel insights into the epigenetics of GC and aid in the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Qingchuan Chen
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Zhouyang Liu
- Department of NeurologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuen Tan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Siwei Pan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Wen An
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Huimian Xu
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
108
|
Zheng Z, Zhang X, Bai J, Long L, Liu D, Zhou Y. PGM1 suppresses colorectal cancer cell migration and invasion by regulating the PI3K/AKT pathway. Cancer Cell Int 2022; 22:201. [PMID: 35614441 PMCID: PMC9134613 DOI: 10.1186/s12935-022-02545-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphoglucomutase 1 (PGM1) is known for its involvement in cancer pathogenesis. However, its biological role in colorectal cancer (CRC) has remained unknown. Here, we studied the functions and mechanisms of PGM1 in CRC. METHODS We verified PGM-1 as a differentially expressed gene (DEG) by employing a comprehensive strategy of TCGA-COAD dataset mining and computational biology. Relative levels of PGM-1 in CRC tumors and adjoining peritumoral tissues were determined by qRT-PCR, western blotting (WB), and immunohistochemical (IHC) staining in a tissue microarray. PGM1 functions were analyzed by CCK8, EdU, colony formation, cell cycle, apoptosis, and Transwell migration and invasion assays. The influence of PGM1 was further investigated by studying tumor formation in vivo. RESULTS The levels of PGM1 mRNA and protein were both reduced in CRC tissues, and the reductions were related to CRC pathology and overall survival. PGM1 knockdown stimulated both cell proliferation and colony formation, and inhibited cell cycle arrest and apoptosis, while overexpression of PGM1 produced the opposite effects in CRC cells both in vivo and in vitro. Furthermore, the effects of PGM1 were related to the PI3K/ AKT pathway. CONCLUSION We verified that PGM1 suppresses CRC progression via the PI3K/AKT pathway. These results suggest the potential for targeting PGM1 in treatment of CRC.
Collapse
Affiliation(s)
- Zhewen Zheng
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Xue Zhang
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jian Bai
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Long Long
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Di Liu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Yunfeng Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
109
|
FAM126A interacted with ENO1 mediates proliferation and metastasis in pancreatic cancer via PI3K/AKT signaling pathway. Cell Death Dis 2022; 8:248. [PMID: 35513377 PMCID: PMC9072533 DOI: 10.1038/s41420-022-01047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022]
Abstract
Pancreatic cancer (PC) is a common digestive system carcinoma with high mortality rate mostly due to aberrant growth and distant metastasis. Current researches demonstrated that Family Sequence Similarities (FAMs) have been involving in tumor development, and which subfamily has the function of promoting or inhibiting tumors and its in-depth molecular mechanism remains unclear. Based on the Gene Expression Omnibus (GEO), the Gene Expression Profiling Interactive Analysis (GEPIA2), we observed that FAM126A is in high expressed level among PC tissues and contributes to worse progression of PC, which was validated by PC tissue microarray. Function assay indicated that overexpression of FAM126A accelerates PC cell proliferation, invasion and migration in vitro, as well as liver cancer metastasis in vivo. Further, we found that FAM126A induces epithelial-mesenchymal transition (EMT), including the downregulation of E-cadherin epithelial marker expression, and the upregulation of N-cadherin, Vimentin, and Snail, mesenchymal marker expression. By co-localization and co-immunoprecipitation assays, we confirmed that FAM126A directly interacts with ENO1, which was a key activator of the PI3K/AKT signaling pathway. Furthermore, ENO1 knockdown reversed cell proliferation, migration, and invasion of PC cells promoted by FAM126A overexpression in vitro and in vivo. In general, these results verified FAM126A is an oncogene interacting with ENO1 in PC by activating PI3K/AKT signaling pathway.
Collapse
|
110
|
Song L, Liu S, Zhao S. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway. Bioengineered 2022; 13:11240-11257. [PMID: 35485300 PMCID: PMC9208494 DOI: 10.1080/21655979.2022.2064205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the 4th most prevalent malignancy in females. This study explored the mechanism of everolimus (RAD001) combined with programmed death-1 (PD-1) blockade on radiosensitivity by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and autophagy in CC cells. Low-radiosensitive CaSki cells were selected as study objects. After RAD001 treatment, PI3K/AKT/mTOR pathway activation, autophagy, migration and invasion abilities, autophagy-related proteins (LC3-I, LC3-II, and p62), and PD-L1 expression in CC cells were detected. After triple treatment of radiotherapy (RT), RAD001, and PD-1 blockade to the CC mouse models, tumor weight and volume were recorded. Ki67 expression, the number of CD8 + T cells, and the ability to produce IFN-γ and TNF-α in tumor tissues were determined. RAD001 promoted autophagy by repressing PI3K/AKT/mTOR pathway, augmented RT-induced apoptosis, and weakened migration and invasion, thereby increasing CC cell radiosensitivity. RAD001 elevated RT-induced PD-L1 level. RT combined with RAD001 and PD-1 blockade intensified the inhibitory effect of RT on tumor growth, reduced the amount of Ki67-positive cells, enhanced radiosensitivity of CC mice, and increased the quantity and killing ability of CD8 + T cells. Briefly, RAD001 combined with PD-1 blockade increases radiosensitivity of CC by impeding the PI3K/AKT/mTOR pathway and potentiating cell autophagy.
Collapse
Affiliation(s)
- Lili Song
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sufen Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
111
|
Wang W, Zhang J, Fan Y, Zhang L. MiR-1306-5p predicts favorable prognosis and inhibits proliferation, migration, and invasion of colorectal cancer cells via PI3K/AKT/mTOR pathway. Cell Cycle 2022; 21:1491-1501. [PMID: 35416128 PMCID: PMC9278426 DOI: 10.1080/15384101.2022.2054245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the occurrence and progression of colorectal cancer. Our study aims to explore the role of miR-1306-5p in cell malignant phenotypes of colorectal cancer cells. RT-qPCR was performed to assess the expression of miR-1306-5p in colorectal cancer samples and cell lines. The effects of miR-1306-5p on cell proliferation, migration, and invasion were evaluated through the CCK-8 assay, wound healing assay, and transwell invasion assay, respectively. Apoptosis was detected by flow cytometry. Luciferase reporter assay was used to predict the target gene of miR-1306-5p. Western blot was used to detect the expression levels of signal pathway molecules and target proteins. We found that miR-1306-5p was low-expressed in colorectal cancer tissues and cell lines, and its expression was also associated with colorectal cancer development and prognosis. MiR-1306-5p overexpression led to a decrease in colorectal cancer cell proliferation, migration, and invasion, while promoting apoptosis. Moreover, it was discovered that SLCO2A1 was a target of miR-1306-5p. By targeting SLCO2A1, overexpression of miR-1306-5p could inhibit the PI3K/AKT/mTOR signaling pathway. Overexpression of miR-1306-5p inhibited the colorectal cancer cell malignant phenotypes via regulating PI3K/AKT/mTOR signaling pathway regulation by targeting SLCO2A1. Therefore, miR-1306-5p can be a prospective therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - Jun Zhang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - YunXiu Fan
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - Li Zhang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| |
Collapse
|
112
|
Application of mTORC1 Inhibitors for Tissue-Agnostic Management of Standard-Therapy-Refractory Solid Tumors. Cancers (Basel) 2022; 14:cancers14081936. [PMID: 35454843 PMCID: PMC9032789 DOI: 10.3390/cancers14081936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
In this analysis, we examined the efficacy, feasibility, and limitations of the application of mTOR inhibitors based on the individual molecular profiles of pretreated cancer patients after the failure of all standard treatments in the palliative setting. In this single-center, real-world analysis of our platform for precision medicine, we analyzed the molecular characteristics of 71 cancer patients. The tumor samples of the patients were analyzed using next-generation sequencing panels of mutation hotspots, microsatellite stability testing, and immunohistochemistry. All profiles were reviewed by a multidisciplinary team to provide a targeted treatment recommendation after a consensus discussion. Seventy-one cancer patients with activation of the mTOR pathway were offered an mTORC1-inhibitor-based targeted therapy, and twenty-three (32.4%) of them eventually received the targeted therapy. Only three patients (4.2%) achieved stable disease, of whom one experienced progressive disease again after 9.1 months. The median time to treatment failure was 2.8 months. In total, 110 mutations were detected in 60 patients (84.5%). The three most frequent mutations were found in TP53, PTEN, and KRAS, which accounted for over 50% (56.4%) of all mutations. In sum, in selected patients with heavily pretreated solid tumors with activation of the mTOR pathway, the antitumoral activity of mTORC1 inhibition was weak.
Collapse
|
113
|
Xian Q, Zhu D. The Involvement of WDHD1 in the Occurrence of Esophageal Cancer as a Downstream Target of PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2022; 2022:5871188. [PMID: 35422862 PMCID: PMC9005294 DOI: 10.1155/2022/5871188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Esophageal cancer is one of the most common malignant tumors in the world, which is characterized by high incidence, strong invasiveness, high mortality, and poor prognosis. At present, the therapies include surgery, endoscopic resection, radiotherapy and chemotherapy, targeted therapy, and immunotherapy. The five-year survival rate of esophageal cancer has not been significantly improved, although the medical level has been continuously improved and the management and application of different therapies have been improved day by day. At present, an abnormal gene expression is still regarded as an important factor in the occurrence and development of esophageal cancer. WD repeat and HMG-box DNA binding protein 1(WDHD1), as a key gene, plays an important role in the occurrence of esophageal cancer. It is known that the protein encoded by WDHD1 is the downstream target of the PI3K/AKT pathway. When PI3Ks is activated by extracellular signals, PI(4,5)P2 on the inner side of the plasma membrane will be converted into PI(3,4,5)P3. Then, PI(3,4,5)P3 can be converted into PI(3,4)P2,PI(4)P and PI(3)P by dephosphorylation of some regulatory factors. PI(3,4,5)P3 recruited AKT to the plasma membrane and combined with its pH domain, resulting in conformational change of AKT. Subsequently, AKT was completely activated by PDK1 and PDK2 and begins to move to the cytoplasm and nucleus. In this process, AKT continuously phosphorylates downstream substrates. WDHD1, as a downstream target of AKT, is also phosphorylated and induces DNA replication. Besides the abnormal regulation of cells by other downstream targets of AKT, it also becomes a potential pathway that may eventually lead to the occurrence of esophageal cancer.
Collapse
Affiliation(s)
- Qingying Xian
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
114
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol 2022; 18:101364. [PMID: 35168143 PMCID: PMC8850794 DOI: 10.1016/j.tranon.2022.101364] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the most common and deadliest human malignancies. The alterations of PI3K/Akt/mTOR pathway are related to lung cancer progression. PI3K axis regulates proliferation, apoptosis, metastasis, and EMT of lung cancer. Agents inhibiting components of PI3K axis diminish lung tumor growth and invasion. Low efficacy and off-target toxicity could be improved by nanoparticle application.
Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.
Collapse
|
115
|
Marques AEM, Borges GA, Viesi do Nascimento Filho CH, Vianna LMDS, Ramos DDAR, Castilho RM, Squarize CH, Guerra ENS. Expression profile of the PI3K-AKT-mTOR pathway in head and neck squamous cell carcinoma: Data from Brazilian population. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:453-461. [PMID: 35153184 DOI: 10.1016/j.oooo.2021.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K-AKT-mTOR) signaling pathway is an important regulator of cell proliferation, survival, and motility. The gain or loss of function of proteins related to this pathway results in the neoplastic transformation in several types of cancers. This study aimed to evaluate the expression profile of the PI3K-AKT-mTOR pathway in patients with head and neck squamous cell carcinoma (HNSCC) and HNSCC cell lines. STUDY DESIGN The study involved 26 formalin-fixed paraffin-embedded tissue samples from patients with HNSCC. The analysis of immunohistochemical expression of PI3K, AKT, p-mTOR, and phosphatase and tensin homolog (PTEN) proteins was performed by a quantitative assessment. The in vitro gene and protein expression evaluation was performed by real-time polymerase chain reaction and Western blot assay, respectively, in the human cell lines SCC-9 and FaDu. RESULTS High levels of PI3K, AKT, and p-mTOR were found in most HNSCC tumors. Following this result, we observed low amounts or absence of PTEN in most samples. Additionally, the FaDu cells (pharynx) showed higher AKT expression but lower expression of p-mTOR compared with SCC-9 cells (oral cavity), which hints at a loco-anatomical relevance. CONCLUSION Overall, this study found increased expression of the PI3K-AKT-mTOR pathway along with evident PTEN reduction in head and neck cancer.
Collapse
Affiliation(s)
- Ana Elizia Mascarenhas Marques
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil; Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| | - Gabriel Alvares Borges
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil; Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Carlos Henrique Viesi do Nascimento Filho
- Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | | | - Rogerio Moraes Castilho
- Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Cristiane Helena Squarize
- Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil; Epithelial Biology Laboratory, Department of Periodontics and Oral Medicine, Division of Oral Pathology, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
116
|
PTPN18 Stimulates the Development of Ovarian Cancer by Activating the PI3K/AKT Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1091042. [PMID: 35310041 PMCID: PMC8933110 DOI: 10.1155/2022/1091042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Objective To illustrate the functions of protein tyrosine phosphatase nonreceptor type 18 (PTPN18) in the progression of ovarian cancer and the potential molecular mechanism. Methods Differential PTPN18 expression in ovarian cancer samples was determined. Following PTPN18 knockdown, changes in proliferation and migration in ovarian cancer cells were detected. Nude mice with ovarian cancer were used to uncover the effects of PTPN18 on ovarian cancer growth in vivo. Results PTPN18 was significantly upregulated in ovarian cancer samples and linked to pathological staging and metastasis rate. PTPN18 displayed prognostic and diagnostic potentials in ovarian cancer. Knockdown of PTPN18 and treatment of the PI3K inhibitor could inhibit proliferative and migratory abilities in ovarian cancer cells. Moreover, PTPN18 was capable of inactivating PI3K/AKT signaling. In vivo knockdown of PTPN18 suppressed ovarian cancer growth in nude mice. Conclusions PTPN18 is upregulated in ovarian cancer, which stimulates the malignant development by activating PI3K/AKT signaling. The PTPN18 level is also associated with pathological staging and metastasis in ovarian cancer patients, which may be utilized as a hallmark predicting the malignant level.
Collapse
|
117
|
Chai AWY, Yee PS, Cheong SC. Rational Combinations of Targeted Therapy and Immune Checkpoint Inhibitors in Head and Neck Cancers. Front Oncol 2022; 12:837835. [PMID: 35372020 PMCID: PMC8968950 DOI: 10.3389/fonc.2022.837835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy, especially the immune checkpoint inhibitors (ICIs) such as the pembrolizumab and nivolumab have contributed to significant improvements in treatment outcomes and survival of head and neck cancer (HNC) patients. Still, only a subset of patients benefits from ICIs and hence the race is on to identify combination therapies that could improve response rates. Increasingly, genetic alterations that occur within cancer cells have been shown to modulate the tumor microenvironment resulting in immune evasion, and these have led to the emergence of trials that rationalize a combination of targeted therapy with immunotherapy. In this review, we aim to provide an overview of the biological rationale and current strategies of combining targeted therapy with the approved ICIs in HNC. We summarize the ongoing combinatorial clinical trials and discuss emerging immunomodulatory targets. We also discuss the challenges and gaps that have yet to be addressed, as well as future perspectives in combining these different drug classes.
Collapse
Affiliation(s)
- Annie Wai Yeeng Chai
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Pei San Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Sok Ching Cheong
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
118
|
Chen J, Li K, Chen J, Wang X, Ling R, Cheng M, Chen Z, Chen F, He Q, Li S, Zhang C, Jiang Y, Chen Q, Wang A, Chen D. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun (Lond) 2022; 42:223-244. [PMID: 35179319 PMCID: PMC8923133 DOI: 10.1002/cac2.12273] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 02/06/2022] [Indexed: 12/16/2022] Open
Abstract
Background Cancer cells selectively promote the translation of oncogenic transcripts to stimulate cancer progression. Although growing evidence has revealed that tRNA modifications and related genes participate in this process, their roles in head and neck squamous cell carcinoma (HNSCC) remain largely uncharacterized. Here, we sought to investigate the function and mechanisms of the transfer RNA (tRNA) N7‐methylguanosine (m7G) modification in regulating the occurrence and development of HNSCC. Methods Cell lost‐of‐function and gain‐of‐function assays, xenograft models, conditional knockout and knockin mouse models were used to study the physiological functions of tRNA m7G modification in HNSCC tumorigenesis. tRNA modification and expression profiling, mRNA translation profiling and rescue assays were performed to uncover the underlying molecular mechanisms. Single‐cell RNA sequencing (scRNA‐seq) was conducted to explore the tumor microenvironment changes. Results The tRNA m7G methyltransferase complex components Methyltransferase‐like 1 (METTL1)/WD repeat domain 4 (WDR4) were upregulated in HNSCC and associated with a poor prognosis. Functionally, METTL1/WDR4 promoted HNSCC progression and metastasis in cell‐based and transgenic mouse models. Mechanistically, ablation of METTL1 reduced the m7G levels of 16 tRNAs, inhibiting the translation of a subset of oncogenic transcripts, including genes related to the phosphatidylinositol‐3‐kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. In addition, chemical modulators of the PI3K/Akt/mTOR signaling pathway reversed the effects of Mettl1 in mouse HNSCC. Furthermore, scRNA‐seq results revealed that Mettl1 knockout in mouse tumor cells altered the immune landscape and cell‐cell interaction between the tumor and stromal compartment. Conclusions The tRNA m7G methyltransferase METTL1 was found to promote the development and malignancy of HNSCC through regulating global mRNA translation, including the PI3K/AKT/mTOR signaling pathway, and found to alter immune landscape. METTL1 could be a promising treatment target for HNSCC patients.
Collapse
Affiliation(s)
- Jie Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Kang Li
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Jianwen Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Xiaochen Wang
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Maosheng Cheng
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Zhi Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Fangfang Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Shuai Li
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Caihua Zhang
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Qianming Chen
- School of Stomatology, Cancer Center, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center of Oral Diseases of Zhejiang Province, Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, P. R. China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Demeng Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| |
Collapse
|
119
|
Zhu W, Shi L, Gong Y, Zhuo L, Wang S, Chen S, Zhang B, Ke B. Upregulation of ADAMDEC1 correlates with tumor progression and predicts poor prognosis in non-small cell lung cancer (NSCLC) via the PI3K/AKT pathway. Thorac Cancer 2022; 13:1027-1039. [PMID: 35178875 PMCID: PMC8977174 DOI: 10.1111/1759-7714.14354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
Background ADAM‐like decysin‐1 (ADAMDEC1) has been reported to play an important role in the pathogenesis of multiple diseases, including cancers. However, its biological role in non‐small cell lung cancer (NSCLC) remains largely unknown. Here, we aimed to investigate the biological functions and potential mechanism of ADAMDEC1 in NSCLC. Methods We verified ADAMDEC1 as a DEG by a comprehensive strategy of TCGA and GEO datasets miming and computational biology. Relative levels of ADAMDEC1 in NSCLC tissues and the adjacent peritumoral tissues were identified by qRT‐PCR, WB and IHC staining. The biological function of ADAMDEC1 was determined by CCK8, EdU, colony formation assay, apoptosis, wound healing migration and transwell invasion assays. Then, an in vivo tumor formation assay was conducted to explore the effects of ADAMDEC1 on tumor growth. Results The mRNA and protein expression levels of ADAMDEC1 were upregulated in NSCLC tissues and cell lines. ADAMDEC1 expression was associated with clinicopathological characteristics and overall survival of patients with NSCLC. Knockdown of ADAMDEC1 could decrease proliferation and colony forming ability of NSCLC cells, and promoted cell apoptosis, whereas ADAMDEC11 overexpression has opposite effects in NSCLC cells both in vivo and in vitro. Furthermore, we identified ADAMDEC1 accelerates NSCLC progression via activation of the PI3K/ AKT pathway. Conclusion We verified that ADAMDEC1 promotes the progression of NSCLC via the PI3K/AKT pathway. These findings showed the potential of ADAMDEC1 to be used for therapeutic approaches in NSCLC.
Collapse
Affiliation(s)
- Weiliang Zhu
- Department of Cancer Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Gong
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Zhuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Siyun Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Shaobing Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Bei Zhang
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Bin Ke
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
120
|
Wang Y, Chen P, Chen X, Gong D, Wu Y, Huang L, Chen Y. ROS-Induced DCTPP1 Upregulation Contributes to Cisplatin Resistance in Ovarian Cancer. Front Mol Biosci 2022; 9:838006. [PMID: 35223993 PMCID: PMC8865183 DOI: 10.3389/fmolb.2022.838006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin resistance hinders the improvement of the prognosis of patients with ovarian cancer. Cisplatin induces cancer cell apoptosis by inducing reactive oxygen species (ROS). dCTP pyrophosphatase 1 (DCTPP1) is a newly discovered dNTP pyrophosphatase. This study aimed to identify the role of DCTPP1 in oxidative stress and cisplatin response of ovarian cancer. Our results indicates cisplatin-induced ROS generation was responsible for the upregulation of DCTPP1 in ovarian cancer cells, whereas DCTPP1 knockdown significantly enhanced the sensitivity of ovarian cancer cells to cisplatin, reflect in reactive oxygen species (ROS) generation, double-strand DNA breaks, and cell apoptosis. The expression of redox-related genes and the activation of the PI3/Akt signaling pathway were also inhibited by DCTPP1 knockdown. Our data proposes that the development of therapeutic approaches targeting DCTPP1 may be useful in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Wang
- Obstetrics and Gynecology Center, Nanfang Hospital, Guangzhou, China
| | - Peishi Chen
- School of Medical Laboratory and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xueping Chen
- Obstetrics and Gynecology Center, Nanfang Hospital, Guangzhou, China
| | - Daoyuan Gong
- Guangzhou Customs District technology center, Foshan, China
| | - Yingsong Wu
- School of Medical Laboratory and Biotechnology, Southern Medical University, Guangzhou, China
| | - Liping Huang
- Obstetrics and Gynecology Center, Nanfang Hospital, Guangzhou, China
- *Correspondence: Liping Huang, ; Yao Chen,
| | - Yao Chen
- School of Medical Laboratory and Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Liping Huang, ; Yao Chen,
| |
Collapse
|
121
|
Bradley ST, Lee YS, Gurel Z, Kimple RJ. Autophagy awakens-the myriad roles of autophagy in head and neck cancer development and therapeutic response. Mol Carcinog 2022; 61:243-253. [PMID: 34780672 PMCID: PMC8799495 DOI: 10.1002/mc.23372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Autophagy is an evolutionarily conserved cell survival mechanism that degrades damaged proteins and organelles to generate cellular energy during times of stress. Recycling of these cellular components occurs in a series of sequential steps with multiple regulatory points. Mechanistic dysfunction can lead to a variety of human diseases and cancers due to the complexity of autophagy and its ability to regulate vital cellular functions. The role that autophagy plays in both the development and treatment of cancer is highly complex, especially given the fact that most cancer therapies modulate autophagy. This review aims to discuss the balance of autophagy in the development, progression, and treatment of head and neck cancer, as well as highlighting the need for a deeper understanding of what is still unknown about autophagy.
Collapse
Affiliation(s)
- Samantha T Bradley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yong-Syu Lee
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
122
|
Aytatli A, Barlak N, Sanli F, Caglar HO, Gundogdu B, Tatar A, Ittmann M, Karatas OF. AZD4547 targets the FGFR/Akt/SOX2 axis to overcome paclitaxel resistance in head and neck cancer. Cell Oncol (Dordr) 2022; 45:41-56. [PMID: 34837170 DOI: 10.1007/s13402-021-00645-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Development of chemoresistance is one of the major obstacles to the treatment of head and neck squamous cell carcinoma (HNSCC). The PI3K/Akt pathway, involved in drug resistance, has been found to be overactivated in > 90% of HNSCCs. Aberrant activation of the FGF receptors (FGFRs) has been reported to cause overactivation of the PI3K/Akt pathway and to be associated with the maintenance of stem cell features, which is controlled via SOX2 expression. In this study, we aimed at investigating the potential of using AZD4547, an orally bioavailable FGFR inhibitor, to overcome taxol-resistance by targeting the FGFR/Akt/SOX2 axis in HNSCC. METHODS We initially evaluated FGFR2 and SOX2 expression using in silico tools. We analyzed the FGFR/Akt/SOX2 axis in normal/tumor tissue pairs and in recombinant FGF2 treated HNSCC cells. Next, we explored the effects of AZD4547 alone and in combination with taxol on the proliferation, migration and colony forming capacities of parental/taxol-resistant cells using in vitro models. RESULTS We found that the p-FGFR, p-AKT, p-GSK-3β and SOX2 expression levels were higher in tumor tissues than in its corresponding normal tissues, and that AZD4547 effectively suppressed the expression of FGFR and its downstream targets in recombinant FGF2 treated HNSCC cells. We also found that AZD4547 diminished the viability, migration and colony forming capacity of HNSCC cells, and that co-treatment with taxol potentiated the impact of taxol on these cells. Finally, we found that AZD4547 inhibited the overexpressed FGFR/Akt/SOX2 axis and profoundly suppressed cancer-related phenotypes in taxol-resistant HNSCC cells. CONCLUSION From our data we conclude that AZD4547 may increase the impact of taxol during HNSCC treatment. We suggest AZD4547 as a therapeutic agent to overcome taxol-resistance.
Collapse
Affiliation(s)
- Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Onur Caglar
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Michael E. DeBakey VAMC, Houston, TX, 77030, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey.
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
123
|
Deng C, Hu F, Zhao Z, Zhou Y, Liu Y, Zhang T, Li S, Zheng W, Zhang W, Wang T, Ma X. The Establishment of Quantitatively Regulating Expression Cassette with sgRNA Targeting BIRC5 to Elucidate the Synergistic Pathway of Survivin with P-Glycoprotein in Cancer Multi-Drug Resistance. Front Cell Dev Biol 2022; 9:797005. [PMID: 35047507 PMCID: PMC8762277 DOI: 10.3389/fcell.2021.797005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Quantitative analysis and regulating gene expression in cancer cells is an innovative method to study key genes in tumors, which conduces to analyze the biological function of the specific gene. In this study, we found the expression levels of Survivin protein (BIRC5) and P-glycoprotein (MDR1) in MCF-7/doxorubicin (DOX) cells (drug-resistant cells) were significantly higher than MCF-7 cells (wild-type cells). In order to explore the specific functions of BIRC5 gene in multi-drug resistance (MDR), a CRISPR/Cas9-mediated knocking-in tetracycline (Tet)-off regulatory system cell line was established, which enabled us to regulate the expression levels of Survivin quantitatively (clone 8 named MCF-7/Survivin was selected for further studies). Subsequently, the determination results of doxycycline-induced DOX efflux in MCF-7/Survivin cells implied that Survivin expression level was opposite to DOX accumulation in the cells. For example, when Survivin expression was down-regulated, DOX accumulation inside the MCF-7/Survivin cells was up-regulated, inducing strong apoptosis of cells (reversal index 118.07) by weakening the release of intracellular drug from MCF-7/Survivin cells. Also, down-regulation of Survivin resulted in reduced phosphorylation of PI3K, Akt, and mTOR in MCF-7/Survivin cells and significantly decreased P-gp expression. Previous studies had shown that PI3K/Akt/mTOR could regulate P-gp expression. Therefore, we speculated that Survivin might affect the expression of P-gp through PI3K/Akt/mTOR pathway. In summary, this quantitative method is not only valuable for studying the gene itself, but also can better analyze the biological phenomena related to it.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fabiao Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhangting Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiwen Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shihui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenliang Zhang
- Center of Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Tianwen Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
124
|
Wondergem NE, Nijenhuis DNLM, Poell JB, Leemans CR, Brakenhoff RH, van de Ven R. At the Crossroads of Molecular Biology and Immunology: Molecular Pathways for Immunological Targeting of Head and Neck Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:647980. [PMID: 35047999 PMCID: PMC8757702 DOI: 10.3389/froh.2021.647980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Recent advances in immunotherapy for head and neck squamous cell carcinoma (HNSCC) have led to implementation of anti-programmed death receptor 1 (PD-1) immunotherapy to standard of care for recurrent/metastatic HNSCC. However, the majority of tumors do not respond to these therapies, indicating that these tumors are not immunogenic or other immunosuppressive mechanisms might be at play. Aim: Given their role in carcinogenesis as well as in immune modulation, we discuss the relation between the STAT3, PI3K/AKT/mTOR and Wnt signaling pathways to identify potential targets to empower the immune response against HNSCC. Results: We focused on three pathways. First, STAT3 is often overactivated in HNSCC and induces the secretion of immunosuppressive cytokines, thereby promoting recruitment of immune suppressive regulatory T cells and myeloid-derived suppressor cells to the tumor microenvironment (TME) while hampering the development of dendritic cells. Second, PI3K/AKT/mTOR mutational activation results in increased tumor proliferation but could also be important in HNSCC immune evasion due to the downregulation of components in the antigen-processing machinery. Third, canonical Wnt signaling is overactivated in >20% of HNSCC and could be an interesting pleotropic target since it is related to increased tumor cell proliferation and the development of an immunosuppressive HNSCC TME. Conclusion: The molecular pathology of HNSCC is complex and heterogeneous, varying between sites and disease etiology (i.e., HPV). The in HNSCC widely affected signaling pathways STAT3, PI3K/AKT/mTOR and Wnt are implicated in some of the very mechanisms underlying immune evasion of HNSCC, thereby representing promising targets to possibly facilitate immunotherapy response.
Collapse
Affiliation(s)
- Niels E Wondergem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Dennis N L M Nijenhuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jos B Poell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
125
|
Khalil BD, Sanchez R, Rahman T, Rodriguez-Tirado C, Moritsch S, Martinez AR, Miles B, Farias E, Mezei M, Nobre AR, Singh D, Kale N, Sproll KC, Sosa MS, Aguirre-Ghiso JA. An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy. J Exp Med 2022; 219:e20210836. [PMID: 34812843 PMCID: PMC8614154 DOI: 10.1084/jem.20210836] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/20/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
We describe the discovery of an agonist of the nuclear receptor NR2F1 that specifically activates dormancy programs in malignant cells. The agonist led to a self-regulated increase in NR2F1 mRNA and protein and downstream transcription of a novel dormancy program. This program led to growth arrest of an HNSCC PDX line, human cell lines, and patient-derived organoids in 3D cultures and in vivo. This effect was lost when NR2F1 was knocked out by CRISPR-Cas9. RNA sequencing revealed that agonist treatment induces transcriptional changes associated with inhibition of cell cycle progression and mTOR signaling, metastasis suppression, and induction of a neural crest lineage program. In mice, agonist treatment resulted in inhibition of lung HNSCC metastasis, even after cessation of the treatment, where disseminated tumor cells displayed an NR2F1hi/p27hi/Ki-67lo/p-S6lo phenotype and remained in a dormant single-cell state. Our work provides proof of principle supporting the use of NR2F1 agonists to induce dormancy as a therapeutic strategy to prevent metastasis.
Collapse
Affiliation(s)
- Bassem D. Khalil
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Western Atlantic University School of Medicine, Plantation, FL
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tasrina Rahman
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Stefan Moritsch
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alba Rodriguez Martinez
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brett Miles
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eduardo Farias
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deepak Singh
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nupura Kale
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Karl Christoph Sproll
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
126
|
Tang X, Sui X, Weng L, Liu Y. SNAIL1: Linking Tumor Metastasis to Immune Evasion. Front Immunol 2021; 12:724200. [PMID: 34917071 PMCID: PMC8669501 DOI: 10.3389/fimmu.2021.724200] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Snail1, a key inducer of epithelial-mesenchymal transition (EMT), plays a critical role in tumor metastasis. Its stability is strictly controlled by multiple intracellular signal transduction pathways and the ubiquitin-proteasome system (UPS). Increasing evidence indicates that methylation and acetylation of Snail1 also affects tumor metastasis. More importantly, Snail1 is involved in tumor immunosuppression by inducing chemokines and immunosuppressive cells into the tumor microenvironment (TME). In addition, some immune checkpoints potentiate Snail1 expression, such as programmed death ligand 1 (PD-L1) and T cell immunoglobulin 3 (TIM-3). This mini review highlights the pathways and molecules involved in maintenance of Snail1 level and the significance of Snail1 in tumor immune evasion. Due to the crucial role of EMT in tumor metastasis and tumor immunosuppression, comprehensive understanding of Snail1 function may contribute to the development of novel therapeutics for cancer.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Laboratory Medicine, Binzhou Medical University, Binzhou, China
| | - Xue Sui
- Department of Laboratory Medicine, Binzhou Medical University, Binzhou, China
| | - Liang Weng
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Institute of Gerontological Cancer Research, National Clinical Research Center for Gerontology, Changsha, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
| | - Yongshuo Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China.,Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
127
|
Li G, Zhong Y, Wang W, Jia X, Zhu H, Jiang W, Song Y, Xu W, Wu S. Sempervirine Mediates Autophagy and Apoptosis via the Akt/mTOR Signaling Pathways in Glioma Cells. Front Pharmacol 2021; 12:770667. [PMID: 34916946 PMCID: PMC8670093 DOI: 10.3389/fphar.2021.770667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
The potential antitumor effects of sempervirine (SPV), an alkaloid compound derived from the traditional Chinese medicine Gelsemium elegans Benth., on different malignant tumors were described in detail. The impact of SPV on glioma cells and the basic atomic components remain uncertain. This study aimed to investigate the activity of SPV in vitro and in vivo. The effect of SPV on the growth of human glioma cells was determined to explore three aspects, namely, cell cycle, cell apoptosis, and autophagy. In this study, glioma cells, U251 and U87 cells, and one animal model were used. Cells were treated with SPV (0, 1, 4, and 8 μM) for 48 h. The cell viability, cell cycle, apoptosis rate and autophagic flux were examined. Cell cycle, apoptotic, autophagy, and Akt/mTOR signal pathway-related proteins, such as CDK1, Cyclin B1, Beclin-1, p62, LC3, AKT, and mTOR were investigated by Western blot approach. As a result, cells induced by SPV led to G2/M phase arrest and apoptosis. SPV also promoted the effect of autophagic flux and accumulation of LC3B. SPV reduced the expression of p62 protein and induced the autophagic death of glioma cells. Furthermore, SPV downregulated the expressions of AKT and mTOR phosphorylated proteins in the mTOR signaling pathway, thereby affecting the onset of apoptosis and autophagy in U251 cells. In conclusion, SPV induced cellular G2/M phase arrest and blockade of the Akt/mTOR signaling pathway, thereby triggering apoptosis and cellular autophagy. The in vivo and in vitro studies confirmed that SPV inhibits the growth of glioma cancer.
Collapse
Affiliation(s)
- Gaopan Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuhuan Zhong
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenyi Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaokang Jia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huaichang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenwen Jiang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Song
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research and Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuisheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research and Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
128
|
Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur J Med Chem 2021; 226:113837. [PMID: 34530384 DOI: 10.1016/j.ejmech.2021.113837] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Currently, the arise of drug resistance and undesirable off-target effects of anti-cancer agents are major challenges for cancer treatment, which energizes medicinal chemists to develop more anti-cancer agents with high efficiency and low toxicity continuously. Sulfonamide derivatives are a class of promising compounds with diverse biological activities including anti-cancer, and parts of them have been marketed for cancer therapy, such as Belinostat, ABT-199 and Amsacrine. In this review, we summed up the recent advances of sulfonamide derivatives as potential anti-cancer agents based on the anti-cancer targets, such as aromatase, carbonic anhydrase (CA), anti-apoptotic B-cell lymphoma-2 (Bcl-2) proteins, topoisomerase and phosphatidylinositol 3-kinase (PI3K), and elucidated the corresponding structure-activity relationships (SARs) of most sulfonamide derivatives. We hope this review could provide a clear insight for medicinal chemists in the rational design of more potent and bio-target specific anti-cancer agents.
Collapse
|
129
|
Wang X, Dong K, Kong D, Zhou Y, Yin J, Cai F, Wang M, Ye H. A far-red light-inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation. SCIENCE ADVANCES 2021; 7:eabh2358. [PMID: 34890237 PMCID: PMC8664267 DOI: 10.1126/sciadv.abh2358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The CRISPR-Cas12a has been harnessed as a powerful tool for manipulating targeted gene expression. The possibility to manipulate the activity of CRISPR-Cas12a with a more precise spatiotemporal resolution and deep tissue permeability will enable targeted genome engineering and deepen our understanding of the gene functions underlying complex cellular behaviors. However, currently available inducible CRISPR-Cas12a systems are limited by diffusion, cytotoxicity, and poor tissue permeability. Here, we developed a far-red light (FRL)–inducible CRISPR-Cas12a (FICA) system that can robustly induce gene editing in mammalian cells, and an FRL-inducible CRISPR-dCas12a (FIdCA) system based on the protein-tagging system SUperNova (SunTag) that can be used for gene activation under light-emitting diode–based FRL. Moreover, we show that the FIdCA system can be deployed to activate target genes in mouse livers. These results demonstrate that these systems developed here provide robust and efficient platforms for programmable genome manipulation in a noninvasive and spatiotemporal fashion.
Collapse
Affiliation(s)
- Xinyi Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Kaili Dong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jianli Yin
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| | - Meiyan Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- Corresponding author. (M.W.); (H.Y.)
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- Corresponding author. (M.W.); (H.Y.)
| |
Collapse
|
130
|
Li Y, Wang J, Gao C, Hu Q, Mao X. Integral membrane protein 2A enhances sensitivity to chemotherapy via notch signaling pathway in cervical cancer. Bioengineered 2021; 12:10183-10193. [PMID: 34872446 PMCID: PMC8809943 DOI: 10.1080/21655979.2021.2001218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
As the second most common cancer among women, cervical cancer is a huge threat to their health all over the world. Integral membrane protein 2A (ITM2A), a member of the Type II Integral Membrane protein (ITM2) family, has been reported to act as a tumor suppressor in breast cancer and ovarian cancer. Moreover, the low expression of ITM2A was associated with cervical adenocarcinoma. However, the function of ITM2A in drug resistance in cervical cancer remains unclear. Here, we used bioinformatics methods to screen differentially expressed genes (DEGs) closely related to chemotherapeutic relapse cervical carcinoma. ITM2A is downregulated in cervical tumor tissues and is associated with poor survival. Furthermore, ITM2A is also downregulated in cervical cancer cells with cisplatin resistance. Overexpression of ITM2A increases the cisplatin sensitivity of cervical cancer cells. Mechanically, ITM2A upregulation mediates the sensitivity of cervical cancer cell through Notch signaling pathway. Our study suggests that ITM2A may serve as a target in mediating cisplatin-resistant cervical cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, the First People's Hospital of Yancheng, Yancheng, China
| | - Jianhua Wang
- Department of Gastroenterology, The Yancheng Clinical College of Xuzhou Medical University, the First People's Hospital of Yancheng , Yancheng, China
| | - Chengzhen Gao
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, the First People's Hospital of Yancheng, Yancheng, China
| | - Qiyan Hu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, China
| | - Xiaogang Mao
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, China
| |
Collapse
|
131
|
Li L, Tang S, Yin JC, Dong L, Yang Z, Liu Y, Ma J, Chang P, Pang J, Bao H, Mu D, Zheng X, Aishajiang R, He K, Zhang S, Ni M, Wu X, Wang X, Shao Y, Wang J, Ge H, Yu J, Yuan S. Comprehensive next-generation sequencing reveals novel predictive biomarkers of recurrence and thoracic toxicity risks following chemoradiotherapy in limited stage small-cell lung cancer. Int J Radiat Oncol Biol Phys 2021; 112:1165-1176. [DOI: 10.1016/j.ijrobp.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022]
|
132
|
Identification of an Immune-Related Biomarker Model Based on the CircRNA-Associated Regulatory Network for Esophageal Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:1334571. [PMID: 34840568 PMCID: PMC8612787 DOI: 10.1155/2021/1334571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Esophageal carcinoma (ESCA) is one of the most frequent types of malignant tumor that has a dismal prognosis. This research applied datasets aimed from the GEO and TCGA to create a prognostic signature for forecasting the clinical outcome of ESCA patients on the basis of a circRNA-associated regulatory network. Methods. A regulatory network associated with ESCA was established based on transcriptome data of circRNAs, miRNAs, and mRNAs. Functional annotations were implemented to further explore the mechanism of ESCA. Cox relative regression method was applied to create a risk signature. Besides, the immune microenvironment of the signature was investigated by utilizing the CIBERSORT algorithm. Results. Based on 27 DEcircRNAs, 65 DEmiRNAs, and 780 DEmRNAs, the circRNA-miRNA-mRNA network was finally set up. Functional enrichment unearthed that the regulatory network might participate in phosphorylation negative regulation, MAPK pathway, and PI3K/AKT pathway. This study established a risk scoring signature based on the seven immune-related genes (IRGs) (MARP14, RASGR1, PTK2, HMGB1, DKK1, RARB, and IGF1R), which was validated for its reliability. A stable and accurate nomogram combining immune-related risk scores with clinical features was constructed. Furthermore, we observed that the risk model was also related to the immunocyte infiltration. Conclusion. Our study successfully created a circRNA-associated regulatory network and further developed an immune-related model to forecast the clinical outcome of ESCA patients as well as to assess their immune status.
Collapse
|
133
|
Kumar M, Molkentine D, Molkentine J, Bridges K, Xie T, Yang L, Hefner A, Gao M, Bahri R, Dhawan A, Frederick MJ, Seth S, Abdelhakiem M, Beadle BM, Johnson F, Wang J, Shen L, Heffernan T, Sheth A, Ferris RL, Myers JN, Pickering CR, Skinner HD. Inhibition of histone acetyltransferase function radiosensitizes CREBBP/EP300 mutants via repression of homologous recombination, potentially targeting a gain of function. Nat Commun 2021; 12:6340. [PMID: 34732714 PMCID: PMC8566594 DOI: 10.1038/s41467-021-26570-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Despite radiation forming the curative backbone of over 50% of malignancies, there are no genomically-driven radiosensitizers for clinical use. Herein we perform in vivo shRNA screening to identify targets generally associated with radiation response as well as those exhibiting a genomic dependency. This identifies the histone acetyltransferases CREBBP/EP300 as a target for radiosensitization in combination with radiation in cognate mutant tumors. Further in vitro and in vivo studies confirm this phenomenon to be due to repression of homologous recombination following DNA damage and reproducible using chemical inhibition of histone acetyltransferase (HAT), but not bromodomain function. Selected mutations in CREBBP lead to a hyperacetylated state that increases CBP and BRCA1 acetylation, representing a gain of function targeted by HAT inhibition. Additionally, mutations in CREBBP/EP300 are associated with recurrence following radiation in squamous cell carcinoma cohorts. These findings provide both a mechanism of resistance and the potential for genomically-driven treatment.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bilaspur, Himachal Pradesh, India
| | - David Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jessica Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kathleen Bridges
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Liangpeng Yang
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Hefner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Meng Gao
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Reshub Bahri
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Annika Dhawan
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mitchell J Frederick
- Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sahil Seth
- TRACTION Platform, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed Abdelhakiem
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Beth M Beadle
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Faye Johnson
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jing Wang
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy Heffernan
- TRACTION Platform, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Aakash Sheth
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Heath D Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
134
|
Ma H, Lin J, Li L, Ding Z, Huang P, Song X, Lou K, Wang W, Xu H. Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. CHEMOSPHERE 2021; 282:131149. [PMID: 34470174 DOI: 10.1016/j.chemosphere.2021.131149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde (FA) is widely used in chemical industry, which is also known as a common indoor air pollutant. Exposure of FA has been associated with multiple detrimental health effects. Our previous study showed that FA could inhibit the development of T lymphocytes in mice, leading to impaired immune functions. Macrophages are important innate immune cells which trigger inflammatory responses in tissues. In the present study, FA exposure at 2.0 mg/m3 was found to enhance the pro-inflammatory responses of macrophages in male BALB/c mice, which was confirmed by elevated pro-inflammatory cytokine release and NO secretion in macrophages isolated from the FA-exposed mice and in vitro macrophage models upon lipopolysaccharide stimulation. Glycolysis is the key metabolic process for the classical activation of macrophages, which was found to be elevated in the in vitro macrophage models treated with FA at 50 and 100 μM concentrations for 18 h. HIF-1α and the associated proteins in its signaling cascade, which are known to mediate glycolytic metabolism and inflammatory responses, were found to be upregulated by 50 and 100 μM FA in THP-1 derived and RAW264.7 macrophage models, and the enhanced pro-inflammatory responses induced by 100 μM FA were reversed by inhibitory compounds interfering with glucose metabolism or suppressing HIF-1α activity. Collectively, the results in this study revealed that FA could enhance the pro-inflammatory responses of macrophages through the induction of glycolysis, which outlined the FA-triggered metabolic and functional alterations in immune cells.
Collapse
Affiliation(s)
- Huijuan Ma
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Jinxuan Lin
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Linyi Li
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Zhaoqian Ding
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Ping Huang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Kaiyan Lou
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| | - Wei Wang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China; Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| | - Huan Xu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| |
Collapse
|
135
|
Yang Y, Yuan H, Yang T, Li Y, Gao C, Jiao T, Cai Y, Zhao S. The Expression Regulatory Network in the Lung Tissue of Tibetan Pigs Provides Insight Into Hypoxia-Sensitive Pathways in High-Altitude Hypoxia. Front Genet 2021; 12:691592. [PMID: 34691141 PMCID: PMC8529057 DOI: 10.3389/fgene.2021.691592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
To adapt to a low-oxygen environment, Tibetan pigs have developed a series of unique characteristics and can transport oxygen more effectively; however, the regulation of the associated processes in high-altitude animals remains elusive. We performed mRNA-seq and miRNA-seq, and we constructed coexpression regulatory networks of the lung tissues of Tibetan and Landrace pigs. HBB, AGT, COL1A2, and EPHX1 were identified as major regulators of hypoxia-induced genes that regulate blood pressure and circulation, and they were enriched in pathways related to signal transduction and angiogenesis, such as HIF-1, PI3K-Akt, mTOR, and AMPK. HBB may promote the combination of hemoglobin and oxygen as well as angiogenesis for high-altitude adaptation in Tibetan pigs. The expression of MMP2 showed a similar tendency of alveolar septum thickness among the four groups. These results indicated that MMP2 activity may lead to widening of the alveolar wall and septum, alveolar structure damage, and collapse of alveolar space with remarkable fibrosis. These findings provide a perspective on hypoxia-adaptive genes in the lungs in addition to insights into potential candidate genes in Tibetan pigs for further research in the field of high-altitude adaptation.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Tianliang Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongqing Li
- Research on Quality Standard of Animal Husbandry, Xinjiang Academy of Animal Sciences, Xinjiang, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
136
|
Riobello C, Sánchez-Fernández P, Cabal VN, García-Marín R, Suárez-Fernández L, Vivanco B, Blanco-Lorenzo V, Álvarez Marcos C, López F, Llorente JL, Hermsen MA. Aberrant Signaling Pathways in Sinonasal Intestinal-Type Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13195022. [PMID: 34638506 PMCID: PMC8507674 DOI: 10.3390/cancers13195022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023] Open
Abstract
Sinonasal intestinal-type adenocarcinoma (ITAC) is strongly related to occupational exposure to wood and leather dust, however, little is known on the genetic alterations involved in tumor development and progression. The aim of this study was to identify tumorigenic signaling pathways affected by gene mutations and their relation to clinical features. We applied whole exome sequencing of 120 cancer-related genes in 50 ITACs and analyzed the signaling activity of four specific pathways frequently affected by mutations. Genes involved in DNA damage response showed somatic mutations in 30% of cases, including four tumors that also harbored germline mutations. Genes in Wnt, MAPK and PI3K pathways harbored mutations in 20%, 20% and 24% of cases, respectively. Mutations and copy number gains in receptor tyrosine kinases possibly affecting MAPK and PI3K pathways occurred in 44% of cases. Expression of key pathway proteins showed no correlation to mutations in these pathways, except for nuclear β-catenin and APC/CTNNB1 mutation. No specific gene mutation, mutated pathway, nor pathway activity level showed correlation to clinical data or survival. In addition, a similar mutational profile was observed among histological subtypes. The wide spectrum of gene mutations suggests that ITAC is a genetically heterogeneous without specific characterizing gene mutations.
Collapse
Affiliation(s)
- Cristina Riobello
- Department of Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.R.); (V.N.C.); (R.G.-M.); (L.S.-F.)
| | - Paula Sánchez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (C.Á.M.); (F.L.); (J.L.L.)
| | - Virginia N. Cabal
- Department of Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.R.); (V.N.C.); (R.G.-M.); (L.S.-F.)
| | - Rocío García-Marín
- Department of Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.R.); (V.N.C.); (R.G.-M.); (L.S.-F.)
| | - Laura Suárez-Fernández
- Department of Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.R.); (V.N.C.); (R.G.-M.); (L.S.-F.)
| | - Blanca Vivanco
- Department Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.); (V.B.-L.)
| | - Verónica Blanco-Lorenzo
- Department Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.); (V.B.-L.)
| | - César Álvarez Marcos
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (C.Á.M.); (F.L.); (J.L.L.)
| | - Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (C.Á.M.); (F.L.); (J.L.L.)
| | - José Luis Llorente
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (C.Á.M.); (F.L.); (J.L.L.)
| | - Mario A. Hermsen
- Department of Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.R.); (V.N.C.); (R.G.-M.); (L.S.-F.)
- Correspondence:
| |
Collapse
|
137
|
Kong L, Zhang Q, Mao J, Cheng L, Shi X, Yu L, Hu J, Yang M, Li L, Liu B, Qian X. A dual-targeted molecular therapy of PP242 and cetuximab plays an anti-tumor effect through EGFR downstream signaling pathways in colorectal cancer. J Gastrointest Oncol 2021; 12:1625-1642. [PMID: 34532116 DOI: 10.21037/jgo-21-467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) and its downstream Ras-mitogen-activated protein kinase kinase (MAPKK, MEK)-extracellular regulated protein kinase (ERK) signaling pathway and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway play important roles in the pathogenesis of colorectal cancer (CRC). The combination therapy of anti-EGFR and anti-mTOR needs to be explored. Methods Here we combined the anti-EGFR monoclonal antibody cetuximab (CTX) with the mTOR inhibitor PP242 in CRC cell lines and mouse xenograft models and discussed the changes of EGFR downstream signaling pathways of CRC cell lines. Results In HT-29 cells and Caco-2 cells, combined application of CTX and PP242 significantly inhibited the proliferation of CRC cells in vivo and in vitro. In BRAF wild-type Caco-2 cells, combined application of CTX and PP242 inhibited the activation of the EGFR and its downstream signaling pathways. Conclusions Our research further demonstrates the effectiveness of the combined application of CTX and PP242 in inhibiting CRC cell lines from the perspective of cell proliferation, cell cycle, apoptosis, and mouse xenografts. We revealed that the combined application of CTX and PP242 can inhibit tumor growth and proliferation by inhibiting the phosphorylation of key molecules in EGFR downstream MEK-ERK and MEK 4/7 (MKK)-c-Jun N-terminal kinase (JNK) signaling pathways in BRAF wild-type CRC cells. In addition, we found that in BRAF mutant CRC cells, the monotherapy of PP242 resulted in negative feedback increased EGFR phosphorylation rates, accompanied by significant up-regulation of downstream MEK and ERK phosphorylation.
Collapse
Affiliation(s)
- Linghui Kong
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qun Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jialei Mao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Cheng
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing Hu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mi Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
138
|
Abstract
Background and Objectives Obesity is the accumulation of adipose tissue caused by excess energy in the body, accompanied by long-term chronic low-grade inflammation of adipose tissue. More than 50% of interstitial cells in adipose tissue are macrophages, which produce cytokines closely related to insulin resistance. Macrophage biology is driven by two polarization phenotypes, M1 (proinflammatory) and M2 (anti-inflammatory). This study aimed to investigate the effect of gastric hormone des-acyl ghrelin (DAG) on the polarization phenotype of macrophages and elucidate the role of macrophages in adipose tissue inflammation and insulin sensitivity and its molecular mechanism. Methods Mice were subcutaneously administrated with DAG in osmotic minipumps. The mice were fed a normal diet or a high-fat diet (HFD). Different macrophage markers were detected by real-time revere transcription polymerase chain reaction. Results Exogenous administration of DAG significantly inhibited the increase of adipocyte volume caused by HFD and reduced the number of rosette-like structures in adipose tissue. HFD in the control group significantly increased M1 macrophage markers, tumor necrosis factor α (TNFα), and inducible NO synthase (iNOS). However, these increases were reduced or even reversed after DAG administration in vitro. The M2 markers, macrophage galactose type C-type Lectin-1 (MGL1), arginase 1 (Arg1), and macrophage mannose receptor 1 (MRC1) were decreased by HFD, and the downward trend was inhibited or reversed after DAG administration. Although Arg1 was elevated after HFD, the fold increase after DAG administration in vitro was much greater than that in the control group. Conclusion DAG inhibits adipose tissue inflammation caused by HFD, reduces infiltration of macrophages in adipose tissue, and promotes polarization of macrophages to M2, thus alleviating obesity and improving insulin sensitivity.
Collapse
|
139
|
Wu L, Lin P, Zhao Y, Li X, Yang H, He Y. Prediction of Genetic Alterations in Oncogenic Signaling Pathways in Squamous Cell Carcinoma of the Head and Neck: Radiogenomic Analysis Based on Computed Tomography Images. J Comput Assist Tomogr 2021; 45:932-940. [PMID: 34469904 PMCID: PMC8608003 DOI: 10.1097/rct.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study investigated the role of radiomics in evaluating the alterations of oncogenic signaling pathways in head and neck cancer. METHODS Radiomics features were extracted from 106 enhanced computed tomography images with head and neck squamous cell carcinoma. Support vector machine-recursive feature elimination was used for feature selection. Support vector machine algorithm was used to develop radiomics scores to predict genetic alterations in oncogenic signaling pathways. The performance was evaluated by the area under the curve (AUC) of the receiver operating characteristic curve. RESULTS The alterations of the Cell Cycle, HIPPO, NOTCH, PI3K, RTK RAS, and TP53 signaling pathways were predicted by radiomics scores. The AUC values of the training cohort were 0.94, 0.91, 0.94, 0.93, 0.87, and 0.93, respectively. The AUC values of the validation cohort were all greater than 0.7. CONCLUSIONS Radiogenomics is a new method for noninvasive acquisition of tumor molecular information at the genetic level.
Collapse
Affiliation(s)
- Linyong Wu
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Peng Lin
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yujia Zhao
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Xin Li
- GE Healthcare, Shanghai, China
| | - Hong Yang
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yun He
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| |
Collapse
|
140
|
Chandrasekaran S, Funk CR, Kleber T, Paulos CM, Shanmugam M, Waller EK. Strategies to Overcome Failures in T-Cell Immunotherapies by Targeting PI3K-δ and -γ. Front Immunol 2021; 12:718621. [PMID: 34512641 PMCID: PMC8427697 DOI: 10.3389/fimmu.2021.718621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
PI3K-δ and PI3K-γ are critical regulators of T-cell differentiation, senescence, and metabolism. PI3K-δ and PI3K-γ signaling can contribute to T-cell inhibition via intrinsic mechanisms and regulation of suppressor cell populations, including regulatory T-cells and myeloid derived suppressor cells in the tumor. We examine an exciting new role for using selective inhibitors of the PI3K δ- and γ-isoforms as modulators of T-cell phenotype and function in immunotherapy. Herein we review the current literature on the implications of PI3K-δ and -γ inhibition in T-cell biology, discuss existing challenges in adoptive T-cell therapies and checkpoint blockade inhibitors, and highlight ongoing efforts and future directions to incorporate PI3K-δ and PI3K-γ as synergistic T-cell modulators in immunotherapy.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Christopher Ronald Funk
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Troy Kleber
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Chrystal M. Paulos
- Department of Surgery/Microbiology & Immunology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| |
Collapse
|
141
|
Chitsike L, Duerksen-Hughes PJ. Targeted Therapy as a Potential De-Escalation Strategy in Locally Advanced HPV-Associated Oropharyngeal Cancer: A Literature Review. Front Oncol 2021; 11:730412. [PMID: 34490123 PMCID: PMC8418093 DOI: 10.3389/fonc.2021.730412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape of locally advanced HPV-oropharyngeal squamous cell carcinoma (OPSCC) is undergoing transformation. This is because the high cures rates observed in OPSCC are paired with severe treatment-related, long-term toxicities. These significant adverse effects have led some to conclude that the current standard of care is over-treating patients, and that de-intensifying the regimens may achieve comparable survival outcomes with lower toxicities. Consequently, several de-escalation approaches involving locally advanced OPSCC are underway. These include the reduction of dosage and volume of intensive cytotoxic regimens, as well as elimination of invasive surgical procedures. Such de-intensifying treatments have the potential to achieve efficacy and concurrently alleviate morbidity. Targeted therapies, given their overall safer toxicity profiles, also make excellent candidates for de-escalation, either alone or alongside standard treatments. However, their role in these endeavors is currently limited, because few targeted therapies are currently in clinical use for head and neck cancers. Unfortunately, cetuximab, the only FDA-approved targeted therapy, has shown inferior outcomes when paired with radiation as compared to cisplatin, the standard radio-sensitizer, in recent de-escalation trials. These findings indicate the need for a better understanding of OPSCC biology in the design of rational therapeutic strategies and the development of novel, OPSCC-targeted therapies that are safe and can improve the therapeutic index of standard therapies. In this review, we summarize ongoing research on mechanism-based inhibitors in OPSCC, beginning with the salient molecular features that modulate tumorigenic processes and response, then exploring pharmacological inhibition and pre-clinical validation studies of candidate targeted agents, and finally, summarizing the progression of those candidates in the clinic.
Collapse
|
142
|
Xiao Y, Li F, Zheng A, Chen Q, Chen F, Cheng X, Tao Z. Ginkgolic Acid Suppresses Nasopharyngeal Carcinoma Growth by Inducing Apoptosis and Inhibiting AKT/NF-κB Signaling. J Med Food 2021; 24:806-816. [PMID: 34382859 DOI: 10.1089/jmf.2021.k.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Even though nasopharyngeal carcinoma (NPC) is not common worldwide, it is a major public health burden in endemic areas. Distant metastasis often leads to a poor prognosis for NPC; therefore, new and effective anticancer strategies are needed. Ginkgolic acid (GA) is small-molecule compound existing in Ginkgo biloba that has various biologically relevant activities, including antitumor properties; however, its effects and mechanism of action in NPC are unknown. The effects of GA on NPC and such underlying mechanisms were investigated using 5-8F and CNE2 cells and NP69 human immortalized nasopharyngeal epithelial cells in this study. Moreover, the xenograft models were built to examine GA's effection in vivo. GA treatment decreased the survival and invasive capacity of 5-8F and CNE2 and induced their apoptosis, which varied with dose; this was accompanied by downregulation of B cell lymphoma (Bcl)2, upregulation of Bcl2-associated X protein, and activation of poly-ADP ribose polymerase, and caspase-9/-3. G0/G1 phase arrest was induced by GA in NPCs. It also reduced the expression of cyclin-dependent kinase 6 and its regulators cyclin D2 and cyclin D3. GA inhibited the activation of protein kinase B/nuclear factor signaling; this effect was potentiated with GA and 5-fluorouracil (5-FU), which also enhanced 5-FU-induced apoptosis. In summary, GA may be effective as an adjuvant to conventional chemotherapy drugs in preventing the progression of NPC.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fen Li
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyuan Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuhai Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
143
|
Kleszcz R, Skalski M, Krajka-Kuźniak V, Paluszczak J. The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. Eur J Pharm Sci 2021; 166:105961. [PMID: 34363938 DOI: 10.1016/j.ejps.2021.105961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Novel therapeutics are required to improve treatment outcomes in head and neck squamous cell carcinoma (HNSCC) patients. Histone lysine demethylases (KDM) have emerged recently as new potential drug targets for HNSCC therapy. They might also potentiate the action of the inhibitors of EGFR and PI3K signaling pathways. This study aimed at evaluating the anti-cancer effects of KDM4 (ML324) and KDM6 (GSK-J4) inhibitors and their combinations with EGFR (erlotinib) and PI3K (HS-173) inhibitors in HNSCC cells. The effect of the inhibitors on the viability of CAL27 and FaDu cells was evaluated using resazurin assay. The effect of the chemicals on cell cycle and apoptosis was assessed using propidium iodide and Annexin V staining, respectively. The effect of the compounds on gene expression was determined using qPCR and Western blot. The changes in cell cycle distribution upon treatment with the compounds were small to moderate, with the exception of erlotinib, which induced G1 arrest. However, all the compounds and their combinations induced apoptosis in both cell lines. These effects were associated with changes in the level of expression of CDKN1A, CCND1 and BIRC5. The inhibition of KDM4 and KDM6 using ML324 and GSK-J4, respectively, can be regarded as a novel therapeutic strategy in HNSCC.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Marcin Skalski
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland.
| |
Collapse
|
144
|
Kleszcz R, Paluszczak J. The combinatorial inhibition of Wnt signaling and Akt kinase is beneficial for reducing the survival and glycolytic activity of tongue cancer cells. J Oral Pathol Med 2021; 51:231-239. [PMID: 34358376 DOI: 10.1111/jop.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Wnt signaling is important in the development of head and neck squamous cell carcinomas (HNSCC); however, Wnt pathway inhibitors lack satisfactory potency when used in monotherapy. The aim of this study was to assess the effects of the combinations of Wnt-signaling inhibitors and the inhibitor of Akt kinase on the survival and glycolytic activity of tongue carcinoma cells. METHODS CAL27, SCC-25, and BICR22 tongue cancer cell lines were used. Cells were treated with Wnt signaling (PRI-724 and IWP-O1) and Akt-kinase inhibitors. The effect of the chemicals on cell viability and cytotoxicity were evaluated by MTS and CellTox Green assays, respectively. Cell cycle distribution was analyzed cytometrically after propidium iodide staining. Annexin V binding to externalized phosphatidylserine and analysis of mitochondrial potential allowed the assessment of apoptosis. Glucose uptake and lactate release were evaluated luminometrically. Additionally, the viability of cells in spheroids was analyzed based on ATP content. RESULTS The Akt-kinase inhibitor showed significant cytotoxicity toward primary cancer cells. Moreover, its pro-apoptotic effects were enhanced by Wnt-pathway inhibitors. The activity of Akt inhibitor was even higher (by twofold) in 3D spheroids in comparison to cells grown in monolayer. The synergistic reduction in the growth of spheroids was observed between Akt inhibitor and IWP-O1. Reduced glucose consumption may play a part in the combinatorial effects of these chemicals. CONCLUSION The results point to the therapeutic potential of the combinatorial use of Wnt inhibitors together with Akt inhibitors in HNSCC.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
145
|
Wang J, Sun Z, Wang J, Tian Q, Huang R, Wang H, Wang X, Han F. Expression and prognostic potential of PLEK2 in head and neck squamous cell carcinoma based on bioinformatics analysis. Cancer Med 2021; 10:6515-6533. [PMID: 34331382 PMCID: PMC8446404 DOI: 10.1002/cam4.4163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background PLEK2 (pleckstrin) could bind to membrane‐bound phosphatidylinositols and further promote cell spread. Recently, several studies have noted the importance of PLEK2 in tumor metastasis. However, the role of PLEK2 in head and neck squamous cell carcinoma (HNSCC) remains to be elucidated. Methods The PLEK2 expression in HNSCC was identified using Oncomine, Gene Expression Omnibus (GEO), UALCAN databases, and western blot analysis. Prognosis analysis was performed using Kaplan–Meier plotter, DriverDBv3, UALCAN, UCSC Xena, and GEO databases. Single‐cell functional analysis was further performed using the cancerSEA database. The PLEK2‐related co‑expressed genes were identified, and gene set enrichment analysis was performed using LinkedOmics. Furthermore, the top 10 hub genes were identified using the cytoHubba plug‐in of Cytoscape. Then, gene enrichment analysis, pathway activity, and drug sensitivity analyses of the hub genes were performed using the R package “clusterProfiler” and GSCAlite. Finally, the UCSC Xena browser was utilized to explore the hub gene most likely to play a synergic role with PLEK2 in HNSCC. Results Elevated expression of PLEK2 was observed in HNSCC and even in HNSCC subgroups based on diverse clinicopathological features, portending a poor prognosis in HNSCC. PLEK2 was correlated with metastasis and hypoxia in HNSCC, and the PLEK2‐related co‐expressed genes were mainly involved in the focal adhesion pathway. The top 10 hub genes were primarily enriched in focal adhesion, HPV infection, ECM‐receptor interaction, and PI3K‐AKT signaling pathway, and epithelial–mesenchymal transition pathway was activated. Furthermore, the expression levels of the hub genes were associated with sensitivity and resistance to various small molecules and anti‐cancer drugs. Further study suggested that ITGA3 and PLEK2 might be viewed as inextricably linked in facilitating HNSCC metastasis. Conclusions In general, PLEK2 might serve as a potential biomarker for the diagnosis of HNSCC and guide the development of targeted therapies for HNSCC.
Collapse
Affiliation(s)
- Jingyun Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhuang Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong Province, People's Republic of China
| | - Jing Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong Province, People's Republic of China
| | - Qihai Tian
- West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Runda Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong Province, People's Republic of China
| | - Hanyu Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaohui Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong Province, People's Republic of China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
146
|
Abstract
The major problems with cancer therapy are drug-induced side effects. There is an urgent need for safe anti-tumor drugs. Artemisinin is a Chinese herbal remedy for malaria with efficacy and safety. However, several studies reported that artemisinin causes neurotoxicity and cardiotoxicity in animal models. Recently, nanostructured drug delivery systems have been designed to improve therapeutic efficacy and reduce toxicity. Artemisinin has been reported to show anticancer properties. The anticancer effects of artemisinin appear to be mediated by inducing cell cycle arrest, promoting ferroptosis and autophagy, inhibiting cell metastasis. Therefore, the review is to concentrate on mechanisms and molecular targets of artemisinin as anti-tumor agents. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as potent anticancer agents.
Collapse
Affiliation(s)
- Dongning Li
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Zhao
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
147
|
Xu X, Hong P, Wang Z, Tang Z, Li K. MicroRNAs in Transforming Growth Factor-Beta Signaling Pathway Associated With Fibrosis Involving Different Systems of the Human Body. Front Mol Biosci 2021; 8:707461. [PMID: 34381815 PMCID: PMC8350386 DOI: 10.3389/fmolb.2021.707461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, a major cause of morbidity and mortality, is a histopathological manifestation of many chronic inflammatory diseases affecting different systems of the human body. Two types of transforming growth factor beta (TGF-β) signaling pathways regulate fibrosis: the canonical TGF-β signaling pathway, represented by SMAD-2 and SMAD-3, and the noncanonical pathway, which functions without SMAD-2/3 participation and currently includes TGF-β/mitogen-activated protein kinases, TGF-β/SMAD-1/5, TGF-β/phosphatidylinositol-3-kinase/Akt, TGF-β/Janus kinase/signal transducer and activator of transcription protein-3, and TGF-β/rho-associated coiled-coil containing kinase signaling pathways. MicroRNA (miRNA), a type of non-coding single-stranded small RNA, comprises approximately 22 nucleotides encoded by endogenous genes, which can regulate physiological and pathological processes in fibrotic diseases, particularly affecting organs such as the liver, the kidney, the lungs, and the heart. The aim of this review is to introduce the characteristics of the canonical and non-canonical TGF-β signaling pathways and to classify miRNAs with regulatory effects on these two pathways based on the influenced organ. Further, we aim to summarize the limitations of the current research of the mechanisms of fibrosis, provide insights into possible future research directions, and propose therapeutic options for fibrosis.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Pengyu Hong
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Zhefu Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Kun Li
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
148
|
Aggarwal N, Yadav J, Chhakara S, Janjua D, Tripathi T, Chaudhary A, Chhokar A, Thakur K, Singh T, Bharti AC. Phytochemicals as Potential Chemopreventive and Chemotherapeutic Agents for Emerging Human Papillomavirus-Driven Head and Neck Cancer: Current Evidence and Future Prospects. Front Pharmacol 2021; 12:699044. [PMID: 34354591 PMCID: PMC8329252 DOI: 10.3389/fphar.2021.699044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Suhail Chhakara
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
149
|
Huang H, Yi JK, Lim SG, Park S, Zhang H, Kim E, Jang S, Lee MH, Liu K, Kim KR, Kim EK, Lee Y, Kim SH, Ryoo ZY, Kim MO. Costunolide Induces Apoptosis via the Reactive Oxygen Species and Protein Kinase B Pathway in Oral Cancer Cells. Int J Mol Sci 2021; 22:7509. [PMID: 34299129 PMCID: PMC8305390 DOI: 10.3390/ijms22147509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.H.); (H.Z.); (E.K.)
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Korea;
| | - Su-Geun Lim
- School of Life Science, Kyungpook National University, Daegu 41566, Korea; (S.-G.L.); (S.P.); (S.J.)
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu 41566, Korea; (S.-G.L.); (S.P.); (S.J.)
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.H.); (H.Z.); (E.K.)
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.H.); (H.Z.); (E.K.)
| | - Soyoung Jang
- School of Life Science, Kyungpook National University, Daegu 41566, Korea; (S.-G.L.); (S.P.); (S.J.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450008, China;
| | - Ki-Rim Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Korea; (K.-R.K.); (E.-K.K.)
| | - Eun-Kyong Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Korea; (K.-R.K.); (E.-K.K.)
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41566, Korea;
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam 34134, Korea;
| | - Zae-Young Ryoo
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Korea;
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.H.); (H.Z.); (E.K.)
| |
Collapse
|
150
|
Periyasamy L, Muruganantham B, Deivasigamani M, Lakshmanan H, Muthusami S. Acetogenin Extracted from Annona muricata Prevented the Actions of EGF in PA-1 Ovarian Cancer Cells. Protein Pept Lett 2021; 28:304-314. [PMID: 32938339 DOI: 10.2174/0929866527666200916141730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In individuals with ovarian cancer, an increase in the circulating level of the epidermal growth factor (EGF) is readily apparent. Ovarian cancer cells exhibit signaling pathway of the epidermal growth factor (EGFR) and respond to the EGF. Annona muricata (AM) has been shown to decrease ovarian cell proliferation however, role of AM in regulating EGF actions is not yet to be reported. OBJECTIVE In this study, we proposed that the fractionated compound acetogenin can inhibit the activation of EGFR-regulated signaling cascades such as MAPK7 / PI3K-Akt / mTOR / STAT upon EGF stimulation. METHODS Ethanolic extract was prepared for the whole AM plant and Thin Layer Chromatography (TLC) was performed to characterize the secondary metabolites and each fraction was assessed using kedde reagent for the presence of acetogenin. The effects of acetogenins were then tested on the survival of PA-1 ovarian cancer cells under basal and EGF stimulated conditions. To delineate the role of acetogenin in EGFR signaling cascades, the in silico docking studies were conducted. RESULTS The fraction of acetogenin decreased the viability of EGF induced PA-1 ovarian cancer cells that indicating the EGF inhibitory effects of acetogenin. The docking studies specifically illustrated that when the acetogenin binding with tyrosine kinase (TK) and regulatory unit (RU) which subsequently resulted in a reduction in EGF induced the survival of PA-1 ovarian cancer cells. DISCUSSION The vital regulatory role of acetogenin reported in this study indicate significant anticancer activities of acetogenin from AM. The in silico study of the acetogenin function predicted that it binds specifically to Asp837 (phosphor-acceptor site) of EGFR, essential for phosphorylation of substrates in the TK domain and RU which promote downstream signaling. CONCLUSION Acetogenin isolated from AM effectively inhibited the survival of PA-1 ovarian cancer cells through impaired EGF signaling.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Malarvizhi Deivasigamani
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Hariprasath Lakshmanan
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| |
Collapse
|