101
|
Shi Z, Chen J, Li CY, An N, Wang ZJ, Yang SL, Huang KF, Bao JK. Antitumor effects of concanavalin A and Sophora flavescens lectin in vitro and in vivo. Acta Pharmacol Sin 2014; 35:248-56. [PMID: 24362332 DOI: 10.1038/aps.2013.151] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/18/2013] [Indexed: 12/23/2022]
Abstract
AIM Proteins with legume lectin domains are known to possess a wide range of biological functions. Here, the antitumor effects of two representative legume lectins, concanavalin A (ConA) and Sophora flavescens lectin (SFL), on human breast carcinoma cells were investigated in vitro and in vivo. METHODS Human breast carcinoma MCF-7 cells and human normal mammary epithelial MCF-10A cells were examined. Cell viability was detected using WST-1 and CCK-8 assays. Cell apoptosis was analyzed with Hoechst 33258 staining. Cell cycle was investigated using flow cytometry. The expression of relevant proteins was measured using Western blotting. Breast carcinoma MCF-7 bearing nude mice were used to study the antitumor effects in vivo. The mice were injected with ConA (40 mg/kg, ip) and SFL (55 mg/kg, ip) daily for 14 d. RESULTS ConA and SFL inhibited the growth of MCF-7 cells in dose- and time-dependent manners (IC50 values were 15 and 20 μg/mL, respectively). Both ConA and SFL induced apoptotic morphology in MCF-7 cells without affecting MCF-10A cells. ConA and SFL dose-dependently increased the sub-G1 proportion in MCF-7 cells, while SFL also triggered the G2/M phase cell cycle arrest. Both ConA and SFL dose-dependently increased the activities of caspase-3 and caspase-9 and release of cytochrome C from mitochondria into cytoplasm, up-regulated Bax and Bid, and down-regulated Bcl-2 and Bcl-XL in MCF-7 cells. ConA reduced NF-κB, ERK, and JNK levels, and increased p53 and p21 levels, while SFL caused similar changes in NF-κB, ERK, p53, and p21 levels, but did not affect JNK expression. Administration of ConA and SFL significantly decreased the subcutaneous tumor mass volume and weight in MCF-7 bearing nude mice. CONCLUSION ConA and SFL exert anti-tumor actions against human breast carcinoma MCF-7 cells both in vitro and in vivo.
Collapse
|
102
|
Mukhopadhyay S, Panda PK, Behera B, Das CK, Hassan MK, Das DN, Sinha N, Bissoyi A, Pramanik K, Maiti TK, Bhutia SK. In vitro and in vivo antitumor effects of Peanut agglutinin through induction of apoptotic and autophagic cell death. Food Chem Toxicol 2014; 64:369-77. [DOI: 10.1016/j.fct.2013.11.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/11/2013] [Accepted: 11/27/2013] [Indexed: 11/27/2022]
|
103
|
Kabir SR, Reza MA. Antibacterial Activity of Kaempferia rotunda Rhizome Lectin and Its Induction of Apoptosis in Ehrlich Ascites Carcinoma Cells. Appl Biochem Biotechnol 2014; 172:2866-76. [DOI: 10.1007/s12010-013-0720-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
|
104
|
Roy B, Pattanaik AK, Das J, Bhutia SK, Behera B, Singh P, Maiti TK. Role of PI3K/Akt/mTOR and MEK/ERK pathway in Concanavalin A induced autophagy in HeLa cells. Chem Biol Interact 2014; 210:96-102. [PMID: 24434245 DOI: 10.1016/j.cbi.2014.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022]
Abstract
Concanavalin A (Con A), a mannose or glucose specific legume lectin, is well known for its anti-proliferative and cytotoxic effect on different types of cancer cells, through its binding to the membrane receptors leading to a major stimulus for the induction of distinct metabolic responses. Recently it has been also been proved that, Con A induces autophagy in hepatoma cells through internalization and mitochondria mediated pathway involving a mitochondrial interacting protein named Bcl2/E1B-19kDa protein-interacting protein 3 (BNIP3). Through this current endeavor, we propose a membrane associated pathway involved in Con A induced autophagy, taking Human cervical cancer (HeLa) cell as a cancer model. Here, we deciphered the role of membrane mediated phosphatidylinositol 3 kinase (PI3K)/Akt/mTOR (mammalian target of rapamycin) and MEK/Extracellular signal-regulated kinases (ERK) pathway in Con A induced autophagy in HeLa cells. Subsequently, we found that Con A treatment suppresses the PI3K/Akt/mTOR and up regulates the MEK/ERK pathway leading to the activation of autophagy. This study will further help us to understand the mechanism behind the autophagic pathway induced by Con A and simultaneously it will strengthen its effective use as a prospective cancer chemo-therapeutic.
Collapse
Affiliation(s)
- Bibhas Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arup K Pattanaik
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joyjyoti Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Birendra Behera
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prashant Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
105
|
Weissenstein U, Kunz M, Urech K, Baumgartner S. Interaction of standardized mistletoe (Viscum album) extracts with chemotherapeutic drugs regarding cytostatic and cytotoxic effects in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:6. [PMID: 24397864 PMCID: PMC3893555 DOI: 10.1186/1472-6882-14-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/06/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Given the importance of complementary and alternative medicine (CAM) to cancer patients, there is an increasing need to learn more about possible interactions between CAM and anticancer drugs. Mistletoe (Viscum album L.) belongs to the medicinal herbs that are used as supportive care during chemotherapy. In the in vitro study presented here the effect of standardized mistletoe preparations on the cytostatic and cytotoxic activity of several common conventional chemotherapeutic drugs was investigated using different cancer cell lines. METHODS Human breast carcinoma cell lines HCC1937 and HCC1143 were treated with doxorubicin hydrochloride, pancreas adenocarcinoma cell line PA-TU-8902 with gemcitabine hydrochloride, prostate carcinoma cell line DU145 with docetaxel and mitoxantrone hydrochloride and lung carcinoma cell line NCI-H460 was treated with docetaxel and cisplatin. Each dose of the respective chemotherapeutic drug was combined with Viscum album extract (VAE) in clinically relevant concentrations and proliferation and apoptosis were measured. RESULTS VAE did not inhibit chemotherapy induced cytostasis and cytotoxicity in any of our experimental settings. At higher concentrations VAE showed an additive inhibitory effect. CONCLUSIONS Our in vitro results suggest that no risk of safety by herb drug interactions has to be expected from the exposition of cancer cells to chemotherapeutic drugs and VAE simultaneously.
Collapse
Affiliation(s)
| | - Matthias Kunz
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
| | - Konrad Urech
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
| | - Stephan Baumgartner
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
- Institute of Integrative Medicine, Witten/Herdecke University, Herdecke, Germany
| |
Collapse
|
106
|
Oliveira C, Teixeira JA, Domingues L. Recombinant production of plant lectins in microbial systems for biomedical application - the frutalin case study. FRONTIERS IN PLANT SCIENCE 2014; 5:390. [PMID: 25152749 PMCID: PMC4126444 DOI: 10.3389/fpls.2014.00390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/22/2014] [Indexed: 05/02/2023]
Abstract
Frutalin is a homotetrameric partly glycosylated α-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit) seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that "batch-to-batch" variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.
Collapse
Affiliation(s)
| | | | - Lucília Domingues
- *Correspondence: Lucília Domingues, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal e-mail:
| |
Collapse
|
107
|
|
108
|
Rafiq S, Majeed R, Qazi AK, Ganai BA, Wani I, Rakhshanda S, Qurishi Y, Sharma PR, Hamid A, Masood A, Hamid R. Isolation and antiproliferative activity of Lotus corniculatus lectin towards human tumour cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 21:30-38. [PMID: 24055517 DOI: 10.1016/j.phymed.2013.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/02/2013] [Accepted: 08/04/2013] [Indexed: 06/02/2023]
Abstract
The objective of the study was to investigate the anti cancer activity of a lectin isolated from Lotus corniculatus seeds. A tetrameric 70kDa galactose specific lectin was purified using two step simple purification protocol which involved affinity chromatography on AF-BlueHC650M and gel filtration on Sephadex G-100. The lectin was adsorbed on AF-BlueHC650M and desorbed using 1M NaCl in the starting buffer. Gel filtration on Sephadex G-100 yielded a major peak absorbance that gave two bands of 15kDa and 20kDa in SDS PAGE. Hemagglutination activity was completely preserved, when the temperature was in the range of 20-60°C. However, drastic reduction in activity occurred at temperatures above 60°C. Full hemagglutination activity was retained at ambient pH 4-12. Thereafter no activity was observed above pH 13. Hemaglutination of the lectin was inhibited by d-galactose. The lectin showed a strong antiproliferative activity towards human leukemic (THP-1) cancer cells followed by lung cancer (HOP62) cells and HCT116 with an IC50 of 39μg/ml and 50μg/ml and 60μg/ml respectively. Flow cytometry analysis showed an increase in the percentage of cells in sub G0G1 phase confirming that Lotus corniculatus lectin induced apoptosis. Morphological observations showed that Lotus corniculatus lectin (LCL) treated THP-1 cells displayed apparent apoptosis characteristics such as nuclear fragmentation, appearance of membrane enclosed apoptotic bodies and DNA fragmentation. Lotus corniculatus lectin (LCL) effectively inhibits the cell migration in a dose dependent manner as indicated by the wound healing assay.
Collapse
Affiliation(s)
- Shaista Rafiq
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar 190006, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Kabir SR, Nabi MM, Haque A, Rokon Uz Zaman, Mahmud ZH, Reza MA. Pea lectin inhibits growth of Ehrlich ascites carcinoma cells by inducing apoptosis and G2/M cell cycle arrest in vivo in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1288-96. [PMID: 23867650 DOI: 10.1016/j.phymed.2013.06.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Pea (Pisum sativum L.) lectin is known to have interesting pharmacological activities and of great interest on biomedical research. In the current research pea lectin was purified followed by ion exchange chromatography on DEAE column and affinity chromatography on glucose-sepharose column. The lectin shown 11.7-84% inhibitory effect against Ehrlich ascites carcinoma (EAC) cells at the concentration range of 8-120 μg/ml in RPMI 1640 medium as determined by MTT assay. Pea lectin was also shown 63% and 44% growth inhibition against EAC cells in vivo in mice when administered 2.8 mg/kg/day and 1.4 mg/kg/day (i.p.) respectively for five consequent days. When Pea lectin injected into the EAC bearing mice for 10 days its significantly increased the hemoglobin and RBC with the decreased of WBC levels toward the normal. Apoptotic cell morphological change of the treated EAC cells of mice was determined by fluorescence and optical microscope. Interestingly, cell growth inhibition of the lectin was significantly reduced in the presence of caspase inhibitors. Treatment with the lectin caused the cell cycle arrest at G2/M phase of EAC cells which was determined by flow cytometry. The expression of apoptosis-related genes, Bcl-2, Bcl-X and Bax was evaluated by reverse transcriptase polymerase chain reaction (RT-PCR). Intensive increase of Bax gene expression and totally despaired of Bcl-2 and Bcl-X gene expression were observed in the cells treated with Pea lectin for five consecutive days.
Collapse
Affiliation(s)
- Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| | | | | | | | | | | |
Collapse
|
110
|
Zhou W, Gao Y, Xu S, Yang Z, Xu T. Purification of a mannose-binding lectin Pinellia ternata agglutinin and its induction of apoptosis in Bel-7404 cells. Protein Expr Purif 2013; 93:11-7. [PMID: 24135063 DOI: 10.1016/j.pep.2013.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/07/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022]
Abstract
A novel high-throughput purification method for a monocot mannose-binding lectin, Pinellia ternata agglutinin (PTA), from tubers of P. ternata was established by mannose-Sephrose 4B affinity chromatography. The total protein was extracted from tubers of P. ternata using phosphate buffered saline (PBS) buffer. The extracted total protein was precipitated completely at 65% ammonium sulfate saturation and dissolved in different concentrations of NaCl solution to activate its binding affinity toward the column. PTA was bound to the affinity column by loading of the total protein into the column and elution using PBS buffer. The maximum purification yield (35.5mg/g) was obtained when PTA was treated with 25% (w/v) NaCl solution, and the purity of PTA analyzed by SDS-PAGE was ∼97%. The agglutination property of purified PTA was confirmed by mouse erythrocytes, which indicates its biological function. Nuclear staining assay and DNA fragmentation demonstrated that PTA could induce apoptosis of Bel-7404 cells, which further demonstrates its biological and pharmacological activities. Induction of apoptosis in the human tumor Bel-7404 cell line by PTA indicates its possible use in cancer therapy. The present investigation reports a significantly improved isolation method to obtain highly purified mannose-binding plant lectin proteins. The proposed method has great potential for industrial application because of its advantages, which include rapid isolation, high purity, high yield, low cost, and minimal requirement of chemical materials.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Bioengineering, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | | |
Collapse
|
111
|
Ang ASW, Cheung RCF, Dan X, Chan YS, Pan W, Ng TB. Purification and characterization of a glucosamine-binding antifungal lectin from Phaseolus vulgaris cv. Chinese pinto beans with antiproliferative activity towards nasopharyngeal carcinoma cells. Appl Biochem Biotechnol 2013; 172:672-86. [PMID: 24114321 DOI: 10.1007/s12010-013-0542-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/15/2013] [Indexed: 11/28/2022]
Abstract
A lectin has successfully been isolated from Phaseolus vulgaris cv. Chinese pinto bean using affinity chromatography, ion exchange chromatography, and gel filtration in succession, with a 15.4-fold purification. Investigation of its characteristics revealed that Chinese pinto bean lectin (CPBL) was a 58-kDa dimeric glucosamine-binding protein. Its Mg(2+)-dependent hemagglutinating activity was stable at pH 7-8 and at or below 60 °C. When the purified lectin was tested against six fungal species including Phyllosticta citriasiana, Magnaporthe grisea, Bipolans maydis, Valsa mali, Mycosphaerella arachidicola, and Setosphaeria turcica, only the mycelial growth of V. mali was reduced by 30.6 % by the lectin at 30 μM. The lectin did not exert any discernible antiproliferative effects on breast cancer MCF-7 cells, but was able to suppress proliferation of nasopharyngeal carcinoma HONE-1 cells, with an IC50 of 17.3 μM, as revealed by the MTT assay. Since few plant lectins demonstrate antifungal activity against V. mali, and not many others have inhibitory effects on HONE-1 cells, CPBL is a distinctive lectin which may be exploited for development into an agent against V. mali and HONE-1 cells.
Collapse
Affiliation(s)
- Andrew Si Wo Ang
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
112
|
Liu Z, Luo Y, Zhou TT, Zhang WZ. Could plant lectins become promising anti-tumour drugs for causing autophagic cell death? Cell Prolif 2013; 46:509-15. [PMID: 24033443 DOI: 10.1111/cpr.12054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/21/2013] [Indexed: 02/03/2023] Open
Abstract
Plant lectins, a group of highly diverse carbohydrate-binding proteins of non-immune origin, are ubiquitously distributed through a variety of plant species, and have recently drawn rising attention due to their remarkable ability to kill tumour cells using mechanisms implicated in autophagy. In this review, we provide a brief outline of structures of some representative plant lectins such as concanavalin A, Polygonatum cyrtonema lectin and mistletoe lectins. These can target autophagy by modulating BNIP-3, ROS-p38-p53, Ras-Raf and PI3KCI-Akt pathways, as well as Beclin-1, in many types of cancer cells. In addition, we further discuss how plant lectins are able to kill cancer cells by modulating autophagic death, for therapeutic purposes. Together, these findings provide a comprehensive perspective concerning plant lectins as promising new anti-tumour drugs, with respect to autophagic cell death in future cancer therapeutics.
Collapse
Affiliation(s)
- Z Liu
- Department of Hepato-biliary Surgery, General Hospital of PLA, Beijing, 1000853, China
| | | | | | | |
Collapse
|
113
|
A Calcium Ion-Dependent Dimeric Bean Lectin with Antiproliferative Activity Toward Human Breast Cancer MCF-7 Cells. Protein J 2013; 32:208-15. [DOI: 10.1007/s10930-013-9477-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
114
|
Schepetkin IA, Kouakou K, Yapi A, Kirpotina LN, Jutila MA, Quinn MT. Immunomodulatory and hemagglutinating activities of acidic polysaccharides isolated from Combretum racemosum. Int Immunopharmacol 2013; 15:628-37. [PMID: 23380150 PMCID: PMC3647372 DOI: 10.1016/j.intimp.2013.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/09/2013] [Accepted: 01/17/2013] [Indexed: 12/12/2022]
Abstract
Extracts of leaves of different species of the genus Combretum have been used historically to treat a variety of medicinal problems. However, little is known about the active components conferring therapeutic properties to these extracts. In the present studies, we evaluated biochemical properties and immunomodulatory activity of polysaccharides isolated from the leaves of Combretum racemosum. Water-soluble polysaccharides from leaves of C. racemosum were extracted and fractionated by DEAE-cellulose and Diaion HP-20 to obtain a Diaion-bound fraction, designated Combretum polysaccharide-acidic bound or CP-AB, which was eluted with methanol, and an unbound fraction, designated as CP-AU. Molecular weight determination, sugar analysis, and other physical and chemical characterization of the fractions were performed. Fraction CP-AU (mol. weight 5.0 kDa) contained type II arabinogalactan and had potent immunomodulatory activity, inducing the production of interleukin (IL)-1β, -6, -10, and tumor necrosis factor-α (TNF-α) by human peripheral blood mononuclear cells (PBMC) and MonoMac-6 monocytic cells. Likewise, intraperitoneal administration of CP-AU increased in vivo serum levels of IL-6 and monocyte chemoattractant protein-1 (MCP-1) in mice. CP-AU-induced secretion of TNF-α in PBMC was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS. Treatment with CP-AU induced phosphorylation of Akt2, Akt3, GSK-3β, HSP27, mTOR, and all p38 MAPK isoforms (α, β, δ, and γ), as well as stimulation of AP-1/NF-κB transcriptional activity. In addition, CP-AU effectively agglutinated erythrocytes from several species, including human, mouse, and rabbit. In contrast, fraction CP-AB was inactive in all biological tests, including cytokine production and hemagglutination. These data suggest that at least part of the beneficial therapeutic effects reported for the water extracts of leaves from C. racemosum are due to modulation of leukocyte functions.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
115
|
Shi Z, An N, Zhao S, Li X, Bao JK, Yue BS. In silico analysis of molecular mechanisms of legume lectin-induced apoptosis in cancer cells. Cell Prolif 2013; 46:86-96. [PMID: 23294355 DOI: 10.1111/cpr.12009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/20/2012] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The legume lectin family, one of the most extensively studied plant lectin families, has received increasing attention for the remarkable anti-tumor activities of its members for binding specific cancer cell surface glycoconjugates. MicroRNAs, a class of small, non-coding RNAs, control translation and stability of mRNAs at post-transcriptional and translational levels. To date, accumulating evidence has revealed that microRNAs are involved in progression of a number of human diseases, especially cancers. However, the molecular manners of microRNA-modulated apoptosis in legume lectin-treated cancer cells are still under investigation. MATERIALS AND METHODS We performed in silico analyses to study the interactions between three typical legume lectins (ConA, SFL and SAL) and some specific sugar-containing receptors (for example, EGFR, TNFR1, HSP70 and HSP90). Additionally, we predicted some relevant microRNAs which could significantly regulate these aforementioned targetreceptors and thus inhibiting down-stream cancer-related signaling pathways. RESULTS The results showed that these three legume lectins could competitively bind sugar-containing receptors such as EGFR, TNFR1, HSP70 and HSP90 in two ways, via anti-apoptotic or survival pathways. On the one hand, the legume lectins could induce cancer cell death through triggering receptor-mediated signaling pathways, which resulted from indirect binding between legume lectins and mannoses resided in receptors. On the other hand, direct binding between legume lectins and receptors could lead to steric hindrance, which would disturb efficient interactions between them, and thus, the legume lectins would induce cancer cell death by triggering receptor-mediated signaling pathways. In addition, we identified several relevant microRNAs that regulated these targeted receptors, thereby ultimately causing cancer cell apoptosis. CONCLUSIONS These findings provide new perspectives for exploring microRNA-modulated cell death in legume lectin-treated cancer cells, which could be utilized in combination therapy for future cancer drug development.
Collapse
Affiliation(s)
- Z Shi
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | |
Collapse
|
116
|
Fernandez-del-Carmen A, Juárez P, Presa S, Granell A, Orzáez D. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity. J Biotechnol 2013; 163:391-400. [PMID: 23220214 DOI: 10.1016/j.jbiotec.2012.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins.
Collapse
Affiliation(s)
- Asun Fernandez-del-Carmen
- Instituto de Biología Molecular y Celular de Plantas-IBMCP, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Avda Tarongers SN, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
117
|
Arnaud J, Audfray A, Imberty A. Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev 2013; 42:4798-813. [PMID: 23353569 DOI: 10.1039/c2cs35435g] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The large diversity and complexity of glycan structures together with their crucial role in many biological or pathological processes require the development of new high-throughput techniques for analyses. Lectins are classically used for characterising, imaging or targeting glycoconjugates and, when printed on microarrays, they are very useful tools for profiling glycomes. Development of recombinant lectins gives access to reliable and reproducible material, while engineering of new binding sites on existing scaffolds allows tuning of specificity. From the accumulated knowledge on protein-carbohydrate interactions, it is now possible to use nucleotide and peptide (bio)synthesis for producing new carbohydrate-binding molecules. Such a biomimetic approach can also be addressed by boron chemistry and supra-molecular chemistry for the design of fully artificial glycosensors.
Collapse
Affiliation(s)
- Julie Arnaud
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-CNRS), affiliated to Grenoble-Université and ICMG, Grenoble, France
| | | | | |
Collapse
|
118
|
Active Targeting to Osteosarcoma Cells and Apoptotic Cell Death Induction by the Novel Lectin Eucheuma serra Agglutinin Isolated from a Marine Red Alga. JOURNAL OF DRUG DELIVERY 2012; 2012:842785. [PMID: 23346404 PMCID: PMC3543805 DOI: 10.1155/2012/842785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/21/2012] [Indexed: 11/17/2022]
Abstract
Previously, we demonstrated that the novel lectin Eucheuma serra agglutinin from a marine red alga (ESA) induces apoptotic cell death in carcinoma. We now find that ESA induces apoptosis also in the case of sarcoma cells. First, propidium iodide assays with OST cells and LM8 cells showed a decrease in cell viability after addition of ESA. With 50 μg/ml ESA, the viabilities after 24 hours decreased to 54.7 ± 11.4% in the case of OST cells and to 41.7 ± 12.3% for LM8 cells. Second, using fluorescently labeled ESA and flow cytometric and fluorescence microscopic measurements, it could be shown that ESA does not bind to cells that were treated with glycosidases, indicating importance of the carbohydrate chains on the surface of the cells for efficient ESA-cell interactions. Third, Span 80 vesicles with surface-bound ESA as active targeting ligand were shown to display sarcoma cell binding activity, leading to apoptosis and complete OST cell death after 48 hours at 2 μg/ml ESA. The findings indicate that Span 80 vesicles with surface-bound ESA are a potentially useful drug delivery system not only for the treatment of carcinoma but also for the treatment of osteosarcoma.
Collapse
|
119
|
Wang ZG, Liu SL, Tian ZQ, Zhang ZL, Tang HW, Pang DW. Myosin-driven intercellular transportation of wheat germ agglutinin mediated by membrane nanotubes between human lung cancer cells. ACS NANO 2012; 6:10033-10041. [PMID: 23102457 DOI: 10.1021/nn303729r] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Membrane nanotubes can facilitate direct intercellular communication between cells and provide a unique channel for intercellular transfer of cellular contents. However, the transport mechanisms of membrane nanotubes remain poorly understood between cancer cells. Also largely unknown is the transport pattern mediated by membrane nanotubes. In this work, wheat germ agglutinin (WGA), a widely used drug carrier and potential antineoplastic drug, was labeled with quantum dots (QDs-WGA) as a model for exploring the intercellular transportation via membrane nanotubes. We found that membrane nanotubes allowed effective transfer of QDs-WGA. Long-term single-particle tracking indicated that the movements of QDs-WGA exhibited a slow and directed motion pattern in nanotubes. Significantly, the transport of QDs-WGA was driven by myosin molecular motors in an active and unidirectional manner. These results contribute to a better understanding of cell-to-cell communication for cancer research.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|
120
|
Lotter-Stark HCT, Rybicki EP, Chikwamba RK. Plant made anti-HIV microbicides--a field of opportunity. Biotechnol Adv 2012; 30:1614-26. [PMID: 22750509 PMCID: PMC7132877 DOI: 10.1016/j.biotechadv.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 06/10/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
HIV remains a significant global burden and without an effective vaccine, it is crucial to develop microbicides to halt the initial transmission of the virus. Several microbicides have been researched with various levels of success. Amongst these, the broadly neutralising antibodies and peptide lectins are promising in that they can immediately act on the virus and have proven efficacious in in vitro and in vivo protection studies. For the purpose of development and access by the relevant population groups, it is crucial that these microbicides be produced at low cost. For the promising protein and peptide candidate molecules, it appears that current production systems are overburdened and expensive to establish and maintain. With recent developments in vector systems for protein expression coupled with downstream protein purification technologies, plants are rapidly gaining credibility as alternative production systems. Here we evaluate the advances made in host and vector system development for plant expression as well as the progress made in expressing HIV neutralising antibodies and peptide lectins using plant-based platforms.
Collapse
|
121
|
Zhang X, Chen L, Ouyang L, Cheng Y, Liu B. Plant natural compounds: targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif 2012; 45:466-76. [PMID: 22765290 PMCID: PMC6496896 DOI: 10.1111/j.1365-2184.2012.00833.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/04/2012] [Indexed: 12/16/2022] Open
Abstract
Natural compounds derived from plant sources are well characterized as possessing a wide variety of remarkable anti-tumour properties, for example modulating programmed cell death, primarily referring to apoptosis, and autophagy. Distinct from apoptosis, autophagy (an evolutionarily conserved, multi-step lysosomal degradation process in which a cell destroys long-lived proteins and damaged organelles) may play crucial regulatory roles in many pathological processes, most notably in cancer. In this review, we focus on highlighting several representative plant natural compounds such as curcumin, resveratrol, paclitaxel, oridonin, quercetin and plant lectin - that may lead to cancer cell death - for regulation of some core autophagic pathways, involved in Ras-Raf signalling, Beclin-1 interactome, BCR-ABL, PI3KCI/Akt/mTOR, FOXO1 signalling and p53. Taken together, these findings would provide a new perspective for exploiting more plant natural compounds as potential novel anti-tumour drugs, by targeting the pathways of autophagy, for future cancer therapeutics.
Collapse
Affiliation(s)
- X. Zhang
- Department of Natural Products ChemistrySchool of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangChina
| | - L.‐X. Chen
- Department of Natural Products ChemistrySchool of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangChina
| | - L. Ouyang
- The State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Y. Cheng
- Department of Pharmacology and The Penn State Cancer InstituteThe Pennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvaniaUSA
| | - B. Liu
- The State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
122
|
Purified mulberry leaf lectin (MLL) induces apoptosis and cell cycle arrest in human breast cancer and colon cancer cells. Chem Biol Interact 2012; 200:38-44. [DOI: 10.1016/j.cbi.2012.08.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 11/19/2022]
|
123
|
Fu L, Zhao X, Xu H, Wen X, Wang S, Liu B, Bao J, Wei Y. Identification of microRNA-regulated autophagic pathways in plant lectin-induced cancer cell death. Cell Prolif 2012; 45:477-85. [PMID: 22882626 PMCID: PMC6496687 DOI: 10.1111/j.1365-2184.2012.00840.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 05/14/2012] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Plant lectins, carbohydrate-binding proteins of non-immune origin, have recently been reported to induce programmed cell death (including apoptosis and autophagy) in many types of cancer cells. MicroRNAs (miRNAs), small, non-coding endogenous RNAs, ~22 nucleotides (nt) in length, have been well characterized to play essential roles in regulation of the autophagy process in cancer; however, how these miRNAs regulate autophagic pathways in plant lectin-induced cancer cells, still remains an enigma. MATERIALS AND METHODS Identification of microRNA-regulated autophagic pathways was carried out using a series of elegant systems - biology and bioinformatics approaches, such as network construction, hub protein identification, targeted microRNA prediction, microarray analyses and molecular docking. RESULTS We computationally constructed the human autophagic protein-protein interaction (PPI) network, and further modified this network into a plant lectin-induced network. Subsequently, we identified 9 autophagic hub proteins and 13 relevant oncogenic and tumour suppressive miRNAs, that could regulate these aforementioned targeted autophagic hub proteins, in human breast carcinoma MCF-7 cells. In addition, we confirmed that plant lectins could block the sugar-containing receptor EGFR-mediated survival pathways, involved in autophagic hub proteins and relevant miRNAs, thereby ultimately culminating in autophagic cell death. CONCLUSIONS These results demonstrate that network-based identification of microRNAs modulate autophagic pathways in plant lectin-treated cancer cells, which may shed new light on the discovery of plant lectins as potent autophagic inducers, for cancer drug discovery.
Collapse
Affiliation(s)
- L.‐L. Fu
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - X. Zhao
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - H.‐L. Xu
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - X. Wen
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - S.‐Y. Wang
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - B. Liu
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - J.‐K. Bao
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Y.‐Q. Wei
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
124
|
Zuo Z, Fan H, Wang X, Zhou W, Li L. Purification and characterization of a novel plant lectin from Pinellia ternata with antineoplastic activity. SPRINGERPLUS 2012; 1:13. [PMID: 23961344 PMCID: PMC3725870 DOI: 10.1186/2193-1801-1-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/07/2012] [Indexed: 12/05/2022]
Abstract
A novel Pinellia ternata lectin was purified from the bulbs of a Chinese herb Pinellia ternata using a combination of hydrophobic chromatography and DEAE-ion exchange chromatography. The lectin was found to be a homodimer of 12093.3 Da subunits as determined by gel filtration and MS. Biochemical characterization of the lectin revealed the existence of a glycoprotein, which contains 3.22% neutral sugars. The N-terminal 10-amino acid sequence of the lectin, QGVNISGQVK, has not been reported for other lectins. The lectin had a special agglutinating activity with mouse erythrocytes at a minimum concentration of 8.0 ug/ml. The lectin was stable in the pH range of pH 5–12 and temperatures up to 80°C for 30 min. The results of MTT experiment showed that the lectin had significant effect towards tumor cells, the maximum inhibition of cell proliferation with Sarcoma 180, HeLa and K562 cell line were 85.2%, 74.6% and 59.4% respectively. Experimental therapy in vivo also showed that PTL apparently inhibited transplanted tumor in mice. Flow cytometric analysis demonstrated that PTL inhibited the proliferation of Sarcoma 180 in a time- and dose-dependent manner through inhibiting the transition of G1/S and subsequently inducing G0/G1 cell cycle arrest. Thus, Pinellia ternata lectin displays a high potential for antitumor activity.
Collapse
Affiliation(s)
- Zhenyu Zuo
- College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, 430081 China
| | | | | | | | | |
Collapse
|
125
|
Wu L, Bao JK. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins. Glycoconj J 2012; 30:269-79. [DOI: 10.1007/s10719-012-9440-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/24/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
|
126
|
Liu Z, Zhang Q, Peng H, Zhang WZ. Animal lectins: potential antitumor therapeutic targets in apoptosis. Appl Biochem Biotechnol 2012; 168:629-37. [PMID: 22826026 DOI: 10.1007/s12010-012-9805-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 07/10/2012] [Indexed: 12/15/2022]
Abstract
Lectins, a group of carbohydrate-binding proteins ubiquitously distributed into plants and animals, are well-known to have astonishing numerous links to human cancers. In this review, we present a brief outline of the representative animal lectins such as galectins, C-type lectins, and annexins by targeting programmed cell death (or apoptosis) pathways, and also summarize these representative lectins as possible anti-cancer drug targets. Taken together, these inspiring findings would provide a comprehensive perspective for further elucidating the multifaceted roles of animal lectins in apoptosis pathways of cancer, which, in turn, may ultimately help us to exploit lectins for their therapeutic purposes in future drug discovery.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Hepatobiliary Surgery, General Hospital of PLA, Beijing 100853, China
| | | | | | | |
Collapse
|
127
|
Ochoa-Alvarez JA, Krishnan H, Shen Y, Acharya NK, Han M, McNulty DE, Hasegawa H, Hyodo T, Senga T, Geng JG, Kosciuk M, Shin SS, Goydos JS, Temiakov D, Nagele RG, Goldberg GS. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration. PLoS One 2012; 7:e41845. [PMID: 22844530 PMCID: PMC3402461 DOI: 10.1371/journal.pone.0041845] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 06/29/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.
Collapse
Affiliation(s)
- Jhon Alberto Ochoa-Alvarez
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
|
129
|
Faheina-Martins GV, da Silveira AL, Cavalcanti BC, Ramos MV, Moraes MO, Pessoa C, Araújo DAM. Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicol In Vitro 2012; 26:1161-9. [PMID: 22776218 DOI: 10.1016/j.tiv.2012.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/16/2012] [Accepted: 06/29/2012] [Indexed: 01/19/2023]
Abstract
The antiproliferative activity of lectins Canavalia ensiformis (ConA) and Canavalia brasiliensis (ConBr) were studied using human leukemia MOLT-4 and HL-60 cell lines. It was revealed that both ConA and ConBr were markedly cytotoxic to cells using MTT and NAC assays. The IC(50) values were approximately 3 and 20 μg/mL for ConA and ConBr, respectively, for both MOLT-4 and HL-60 cells. However, in normal human peripheral blood lymphocytes, the lectins were not cytotoxic, even when tested at concentrations as high as 200 μg/ml. Using comet assay, the lectins produced a rate of DNA damage exceeding 80% in MOLT-4 and HL-60 cells. Fluorescence analysis revealed the morphology characteristic of apoptosis, with low concentrations of apoptotic bodies and fragmented DNA (5 μg/ml). Flow cytometric analysis demonstrated an accumulation of cells in the sub-G1 cell cycle that is characteristic of DNA fragmentation, and a decrease in membrane integrity at high concentrations. Lastly, we evaluated the alterations in mitochondrial potential that reduced after treatment with lectins. Our results indicate that ConA and ConBr inhibited cell proliferation selectively in tumor cells and that apoptosis was the main death mechanism. Therefore, lectins can be considered a class of molecules with a high antitumor activity potential.
Collapse
Affiliation(s)
- Glaucia V Faheina-Martins
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | | | | | | | | | | |
Collapse
|
130
|
Medeiros A, Berois N, Incerti M, Bay S, Franco Fraguas L, Osinaga E. A Tn antigen binding lectin from Myrsine coriacea displays toxicity in human cancer cell lines. J Nat Med 2012; 67:247-54. [PMID: 22645079 DOI: 10.1007/s11418-012-0671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/11/2012] [Indexed: 02/06/2023]
Abstract
The Tn antigen (GalNAc-O-Ser/Thr) is one of the most specific human cancer-associated structures. In the present study we characterize the biochemical and functional properties of the Myrsine coriacea lectin (McL). We show that McL is an unusual high molecular weight highly glycosylated protein, which displays a strong Tn binding activity. The lectin exhibits in vitro inhibition of proliferation in the six cancer cell lines evaluated, in a dose-dependent manner (the strongest activity being against HT-29 and HeLa cells), whereas it does not exhibit toxicity against normal lymphocytes. McL could be exploited in the design of potential new tools for the diagnosis or treatment of cancer.
Collapse
Affiliation(s)
- Andrea Medeiros
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, 11800, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
131
|
Perçin I, Yavuz H, Aksöz E, Denizli A. Mannose-specific lectin isolation from Canavalia ensiformis seeds by PHEMA-based cryogel. Biotechnol Prog 2012; 28:756-61. [PMID: 22505183 DOI: 10.1002/btpr.1552] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/28/2012] [Indexed: 11/07/2022]
Abstract
Mannose-specific lectin Concanavalin A (Con A) was purified from Canavalia ensiformis seeds. For this purpose, mannose attached poly(hydroxyethyl methacrylate) (PHEMA) cryogel was prepared by cryopolymerization. Mannose was used as the affinity ligand and was covalently attached onto the PHEMA cryogel via carbodiimide activation. The PHEMA cryogel containing 23.3 mmol mannose/g polymer were used in the binding studies. Con A binding with the mannose attached PHEMA cryogel from Con A aqueous solution was 5.2 mg/g at pH 7. Maximum binding capacity for Con A from C. ensiformis seed extract was 39 mg/g. Con A was eluted with 0.3 M galactose, and the purity of Con A was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. It was observed that the mannose attached PHEMA cryogel can be used without significant decrease in Con A binding capacity after six binding-elution cycles.
Collapse
Affiliation(s)
- Işık Perçin
- Department of Biology, Molecular Biology Div., Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
132
|
Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett 2012; 323:115-27. [PMID: 22542808 DOI: 10.1016/j.canlet.2012.02.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 12/13/2022]
Abstract
Autophagy is an evolutionarily conserved mechanism for intracellular substance degradation, responsible for the recycling of metabolic substances and the maintenance of intracellular stability. It has early been demonstrated to play a significant role in tumorigenesis, but whether it acts as a promoter or a suppressor during tumorigenesis seems to be context-specific. Moreover, autophagy is also implicated in promoting chemoresistance of cancer cells so as to attenuate therapeutic efficacy of chemotherapy. On the contrary, other reports highlight a tumor-killing role of autophagy during cancer treatment. Herein, this review aims to revisit the key features of autophagy, summarize the seemingly contradictory roles of autophagy during both tumorigenesis and cancer chemotherapy, and evaluate the feasibility of altering the level of cellular autophagy as part of cancer adjuvant treatment.
Collapse
|
133
|
Oliveira C, Teixeira JA, Domingues L. Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools. Crit Rev Biotechnol 2012; 33:66-80. [DOI: 10.3109/07388551.2012.670614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
134
|
Das MK, Sharma RS, Mishra V. Induction of apoptosis by ribosome inactivating proteins: importance of N-glycosidase activity. Appl Biochem Biotechnol 2012; 166:1552-61. [PMID: 22262020 DOI: 10.1007/s12010-012-9550-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/05/2012] [Indexed: 11/26/2022]
Abstract
Apoptotic cell death is a fundamental process in the development and physiological homeostasis of multicellular organisms. It is associated with control of cell numbers in tissues and organs during development, with cell turnover, and with response to infection. Molecules that trigger this process in continuously proliferating cancer cells can be used as chemotherapeutic agents. Ribosome inactivating proteins (RIPs) that inhibit translation in a cell by depurinating (N-glycosidase activity) the 28S rRNA are known to serve as apoptosis inducers. However, the role of depurination activity of the RIPs in apoptosis induction is still controversial. Presently, there are three different hypotheses which propose that depurination is: (1) essential, (2) essential but not the sole factor, or (3) not essential for apoptosis induction. This article reviews various experimental outcomes on the importance of N-glycosidase activity of RIPs in the induction of apoptosis.
Collapse
Affiliation(s)
- Mrinal Kumar Das
- Department of Environmental Studies, Laboratory of Bioresources & Environmental Biotechnology, University of Delhi, Delhi, -110 007, India
| | | | | |
Collapse
|
135
|
Huang LH, Yan QJ, Kopparapu NK, Jiang ZQ, Sun Y. Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif 2011; 45:15-21. [PMID: 22172162 DOI: 10.1111/j.1365-2184.2011.00800.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Recently, plant lectins have attracted great interest due to their various biological activities such as anti-cancer, anti-fungal and anti-viral activities. We have reported earlier concerning anti-proliferation of human cancer cell lines by a galactose-binding lectin (AML), from a Chinese herb, ASTRAGALUS MEMBRANACEUS: In the present study, detailed investigations into the mechanism of such anti-proliferation properties have been carried out. MATERIALS AND METHODS Mechanism of apoptosis initiation in K562 cells by AML was investigated by morphology, flow cytometry and western blot analysis. RESULTS AML induced apoptosis in a caspase-dependent manner in the chronic myeloid leukemia cell line, K562. Furthermore, we observed that cytotoxicity and apoptosis of K562 cells induced by AML were completely abolished in presence of lactose or galactose. CONCLUSIONS Our results suggest that AML could act as a potential anti-cancer drug.
Collapse
Affiliation(s)
- L H Huang
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
136
|
Huang LH, Yan QJ, Kopparapu NK, Jiang ZQ, Sun Y. Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif 2011. [DOI: 10.1111/j.1365-2184.2011.00800.x pmid: 22172162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
137
|
Kejík Z, Kaplánek R, Bříza T, Králová J, Martásek P, Král V. Supramolecular approach for target transport of photodynamic anticancer agents. Supramol Chem 2011. [DOI: 10.1080/10610278.2011.631705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Zdeněk Kejík
- a Department of Analytical Chemistry , Faculty of Chemical Engineering, Institute of Chemical Technology , Technická 5, 166 28, Prague 6 , Czech Republic
- b First Faculty of Medicine, Charles University in Prague , Katerinská 32, 121 08, Prague 2 , Czech Republic
| | - Robert Kaplánek
- a Department of Analytical Chemistry , Faculty of Chemical Engineering, Institute of Chemical Technology , Technická 5, 166 28, Prague 6 , Czech Republic
| | - Tomáš Bříza
- a Department of Analytical Chemistry , Faculty of Chemical Engineering, Institute of Chemical Technology , Technická 5, 166 28, Prague 6 , Czech Republic
- b First Faculty of Medicine, Charles University in Prague , Katerinská 32, 121 08, Prague 2 , Czech Republic
| | - Jarmila Králová
- c Institute of Molecular Genetics, Academy of Sciences of the Czech Republic , Vídenská 1083, 142 20, Prague 4 , Czech Republic
| | - Pavel Martásek
- b First Faculty of Medicine, Charles University in Prague , Katerinská 32, 121 08, Prague 2 , Czech Republic
| | - Vladimír Král
- a Department of Analytical Chemistry , Faculty of Chemical Engineering, Institute of Chemical Technology , Technická 5, 166 28, Prague 6 , Czech Republic
- d Zentiva R&D, part of Sanofi-Aventis , U Kabelovny 130, 102 37, Prague 10 , Czech Republic
| |
Collapse
|
138
|
Brustein VP, Cavalcanti CLB, de Melo-Junior MR, Correia MTS, Beltrão EIC, Carvalho LB. Chemiluminescent detection of carbohydrates in the tumoral breast diseases. Appl Biochem Biotechnol 2011; 166:268-75. [PMID: 22068691 DOI: 10.1007/s12010-011-9422-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022]
Abstract
Nowadays, there is an increase of investigations into the fibroadenoma, mainly because some studies have shown that the occurrence of fibroadenoma is linked to an increased risk of developing breast carcinoma. Currently, the chemiluminescence biomarkers are applied for validation methods and screening. Here, a lectin chemiluminescence is proposed as new histochemistry method to identify carbohydrates in mammary tumoral tissues. The lectins concanavalin A (Con A) and peanut agglutinin (PNA) conjugated to acridinium ester were used to characterize the glycocode of breast tissues: normal, fibroadenoma, and invasive duct carcinoma (IDC). The lectin chemiluminescence expressed in relative light units (RLU) was higher in fibroadenoma and IDC than in normal tissue for both lectins tested. The relationship RLU emission versus tissue area described a linear and hyperbolic curve for IDC and fibroadenoma, respectively, using Con A whereas hyperbolic curves for both transformed tissues using PNA. RLU was abolished by inhibiting the interaction between tissues and lectins using their specific carbohydrates: methyl-α-D: -mannoside (Con A) and galactose (PNA). The intrinsic fluorescence emission did not change with combination of the lectins (Con A/PNA) to the acridinium ester for hydrophobic residues. These results represent the lectin chemiluminescence as an alternative of histochemistry method for tumoral diagnosis in the breast.
Collapse
|
139
|
Cytotoxic effects of native and recombinant frutalin, a plant galactose-binding lectin, on HeLa cervical cancer cells. J Biomed Biotechnol 2011; 2011:568932. [PMID: 22131813 PMCID: PMC3206378 DOI: 10.1155/2011/568932] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 02/07/2023] Open
Abstract
Frutalin is the α-D-galactose-binding lectin isolated from breadfruit seeds. Frutalin was obtained from two different sources: native frutalin was purified from its natural origin, and recombinant frutalin was produced and purified from Pichia pastoris. This work aimed to study and compare the effect of native and recombinant frutalin on HeLa cervical cancer cells proliferation and apoptosis. Furthermore, the interaction between frutalin and the HeLa cells was investigated by confocal microscopy. Despite having different carbohydrate-binding affinities, native and recombinant frutalin showed an identical magnitude of cytotoxicity on HeLa cells growth (IC₅₀~100 μg/mL) and equally induced cell apoptosis. The interaction studies showed that both lectins were rapidly internalised and targeted to HeLa cell's nucleus. Altogether, these results indicate that frutalin action is not dependent on its sugar-binding properties. This study provides important information about the bioactivity of frutalin and contributes to the understanding of the plant lectins cytotoxic activity.
Collapse
|
140
|
Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials 2011; 32:7616-24. [DOI: 10.1016/j.biomaterials.2011.06.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
|
141
|
He XM, Ji N, Xiang XC, Luo P, Bao JK. Purification, characterization, and molecular cloning of a novel antifungal lectin from the roots of Ophioglossum pedunculosum. Appl Biochem Biotechnol 2011; 165:1458-72. [PMID: 21947760 DOI: 10.1007/s12010-011-9367-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
A novel mannan-specific lectin was isolated from the roots of a traditional Chinese herbal medicine, Ophioglossum pedunculosum through ion-exchange chromatography and gel filtration. With a molecular mass of 19,835.7 Da demonstrated by MALDI-TOF analysis, this novel agglutinin was designated as O. pedunculosum agglutinin (OPA), specifically agglutinating human O erythrocytes and rabbit erythrocytes. The hemagglutination could be strongly inhibited by mannan and thyroglobulin, the activity of which was stable in pH range of 4.0-8.0 and at temperatures below 50 °C. Chemical modification studies indicated that tryptophan and arginine residues were essential for its hemagglutinating activity. Meanwhile, it showed antifungal activities toward Sclerotium rolfsii and Fusarium graminearum. In addition, to amplify cDNA of OPA by 3'/5'-rapid amplification of cDNA ends (RACE), the N-terminal 30 amino acids sequence of OPA was determined, and degenerate primers were designed. The obtained full-length cDNA of OPA contained 885 bp with an open-reading frame of 600 bp encoding a precursor protein of 199 amino acids, while the mature protein had 170 amino acids.
Collapse
Affiliation(s)
- Xue-Mei He
- School of Life Sciences, Sichuan University, Chengdu 610064, China
| | | | | | | | | |
Collapse
|
142
|
Li WW, Yu JY, Xu HL, Bao JK. Concanavalin A: a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochem Biophys Res Commun 2011; 414:282-6. [PMID: 21951850 DOI: 10.1016/j.bbrc.2011.09.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/14/2011] [Indexed: 01/17/2023]
Abstract
Concanavalin A (ConA), a Ca(2+)/Mn(2+)-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-κB-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.
Collapse
Affiliation(s)
- Wen-wen Li
- School of Life Sciences & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | | | | | | |
Collapse
|
143
|
Purification and characterization of a Ca2+-dependent novel lectin from Nymphaea nouchali tuber with antiproliferative activities. Biosci Rep 2011; 31:465-75. [DOI: 10.1042/bsr20100126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A lectin (termed NNTL) was purified from the extracts of Nymphaea nouchali tuber followed by anion-exchange chromatography on DEAE-cellulose, hydrophobic chromatography on HiTrap Phenyl HP and by repeated anion-exchange chromatography on HiTrap Q FF column. The molecular mass of the purified lectin was 27.0 ± 1.0 kDa, as estimated by SDS/PAGE both in the presence and in the absence of 2-mercaptoethanol. NNTL was an o-nitrophenyl β-D-galactopyranoside sugar-specific lectin that agglutinated rat, chicken and different groups of human blood cells and exhibited high agglutination activity over the pH range 5–9 and temperatures of 30–60°C. The N-terminal sequence of NNTL did not show sequence similarity with any other lectin and the amino acid analysis revealed that NNTL was rich in leucine, methionine and glycine residues. NNTL was a glycoprotein containing 8% neutral sugar and showed toxicity against brine shrimp nauplii with an LC50 value of 120 ± 29 μg/ml and exerted strong agglutination activity against four pathogenic bacteria (Bacillus subtilis, Sarcina lutea, Shigella shiga and Shigella sonnei). In addition, antiproliferative activity of this lectin against EAC (Ehrlich ascites carcinoma) cells showed 56% and 76% inhibition in vivo in mice at 1.5 and 3 mg·kg−1·day−1 respectively. NNTL was a divalent ion-dependent glycoprotein, which lost its activity markedly in the presence of denaturants. Furthermore, measurement of fluorescence spectra in the presence and absence of urea and CaCl2 indicated the requirement of Ca2+ for the stability of NNTL.
Collapse
|
144
|
Poiroux G, Pitié M, Culerrier R, Lafont E, Ségui B, Van Damme EJM, Peumans WJ, Bernadou J, Levade T, Rougé P, Barre A, Benoist H. Targeting of T/Tn antigens with a plant lectin to kill human leukemia cells by photochemotherapy. PLoS One 2011; 6:e23315. [PMID: 21858067 PMCID: PMC3157357 DOI: 10.1371/journal.pone.0023315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 07/15/2011] [Indexed: 11/18/2022] Open
Abstract
Photochemotherapy is used both for solid tumors and in extracorporeal treatment of various hematologic disorders. Nevertheless, its development in oncology remains limited, because of the low selectivity of photosensitizers (PS) towards human tumor cells. To enhance PS efficiency, we recently covalently linked a porphyrin (TrMPyP) to a plant lectin (Morniga G), known to recognize with high affinity tumor-associated T and Tn antigens. The conjugation allowed a quick uptake of PS by Tn-positive Jurkat leukemia cells and efficient PS-induced phototoxicity. The present study was performed: (i) to evaluate the targeting potential of the conjugate towards tumor and normal cells and its phototoxicity on various leukemia cells, (ii) to investigate the mechanism of conjugate-mediated cell death. The conjugate: (i) strongly increased (×1000) the PS phototoxicity towards leukemic Jurkat T cells through an O-glycan-dependent process; (ii) specifically purged tumor cells from a 1∶1 mixture of Jurkat leukemia (Tn-positive) and healthy (Tn-negative) lymphocytes, preserving the activation potential of healthy lymphocytes; (iii) was effective against various leukemic cell lines with distinct phenotypes, as well as fresh human primary acute and chronic lymphoid leukemia cells; (iv) induced mostly a caspase-independent cell death, which might be an advantage as tumor cells often resist caspase-dependent cell death. Altogether, the present observations suggest that conjugation with plant lectins can allow targeting of photosensitizers towards aberrant glycosylation of tumor cells, e.g. to purge leukemia cells from blood and to preserve the normal leukocytes in extracorporeal photochemotherapy.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
- Université de Toulouse, UMR UPS-CNRS 5546, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Marguerite Pitié
- Centre National de la Recherhce Scientifique, Laboratoire de Chimie de Coordination, 205 route de Narbonne, F-31077, Toulouse, France
| | - Raphaël Culerrier
- Université de Toulouse, UMR UPS-CNRS 5546, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Elodie Lafont
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
| | - Bruno Ségui
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
| | - Els J. M. Van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Willy J. Peumans
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Jean Bernadou
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
- Centre National de la Recherhce Scientifique, Laboratoire de Chimie de Coordination, 205 route de Narbonne, F-31077, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
| | - Pierre Rougé
- Université de Toulouse, UMR UPS-CNRS 5546, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Annick Barre
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
- Université de Toulouse, UMR UPS-CNRS 5546, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Hervé Benoist
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
- * E-mail:
| |
Collapse
|
145
|
Boonmee A, Srisomsap C, Chokchaichamnankit D, Karnchanatat A, Sangvanich P. A proteomic analysis of Curcuma comosa Roxb. rhizomes. Proteome Sci 2011; 9:43. [PMID: 21801377 PMCID: PMC3199743 DOI: 10.1186/1477-5956-9-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 07/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The similarly in plant physiology and the difficulty of plant classification, in some medicinal plant species, especially plants of the Zingiberaceae family, are a major problem for pharmacologists, leading to mistaken use. To overcome this problem, the proteomic base method was used to study protein profiles of the plant model, Curcuma comosa Roxb., which is a member of the Zingiberaceae and has been used in traditional Thai medicine as an anti-inflammatory agent for the treatment of postpartum uterine bleeding. RESULTS Due to the complexity of protein extraction from this plant, microscale solution-phase isoelectric focusing (MicroSol-IEF) was used to enrich and improve the separation of Curcuma comosa rhizomes phenol-soluble proteins, prior to resolving and analyzing by two-dimensional polyacrylamide gel electrophoresis and identification by tandem mass spectrometry. The protein patterns showed a high abundance of protein spots in the acidic range, including three lectin proteins. The metabolic and defense enzymes, such as superoxide dismutase (SOD) and ascorbate peroxidase, that are associated with antioxidant activity, were mainly found in the basic region. Furthermore, cysteine protease was found in this plant, as had been previously reported in other Zingiberaceae plants. CONCLUSION This report presents the protein profiles of the ginger plant, Curcuma comosa. Several interesting proteins were identified in this plant that may be used as a protein marker and aid in identifying plants of the Zingiberaceae family.
Collapse
Affiliation(s)
- Apaporn Boonmee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Aphichart Karnchanatat
- Research Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
146
|
Plant lectins: targeting programmed cell death pathways as antitumor agents. Int J Biochem Cell Biol 2011; 43:1442-9. [PMID: 21798364 DOI: 10.1016/j.biocel.2011.07.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/06/2023]
Abstract
Lectins, a group of highly diverse, carbohydrate-binding proteins of non-immune origin that are ubiquitously distributed in plants, animals and fungi, are well-characterized to have numerous links a wide range of pathological processes, most notably cancer. In this review, we present a brief outline of the representative plant lectins including Ricin-B family, proteins with legume lectin domains and GNA family that can induce cancer cell death via targeting programmed cell death pathways. Amongst these above-mentioned lectins, we demonstrate that mistletoe lectins (MLs), Ricin, Concanavalin A (ConA) and Polygonatum cyrtonema lectin (PCL) can lead to cancer cell programmed death via targeting apoptotic pathways. In addition, we show that ConA and PCL can also result in cancer cell programmed death by targeting autophagic pathways. Moreover, we summarize the possible anti-cancer therapeutic implications of plant lectins such as ConA, Phaseolus vulgaris lectin (PHA) and MLs that have been utilized at different stages of preclinical and clinical trials. Together, these findings can provide a comprehensive perspective for further elucidating the roles of plant lectins that may target programmed cell death pathways in cancer pathogenesis and therapeutics. And, this research may, in turn, ultimately help cancer biologists and clinicians to exploit lectins as potential novel antitumor drugs in the future.
Collapse
|
147
|
Yu QJ, Li ZY, Yao S, Ming M, Wang SY, Liu B, Bao JK. In silico analysis of molecular mechanisms of Galanthus nivalis agglutinin-related lectin-induced cancer cell death from carbohydrate-binding motif evolution hypothesis. Appl Biochem Biotechnol 2011; 165:1037-46. [PMID: 21748493 DOI: 10.1007/s12010-011-9318-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 06/27/2011] [Indexed: 02/05/2023]
Abstract
Galanthus nivalis agglutinin-related lectins, a superfamily of strictly mannose-binding-specific lectins widespread amongst monotyledonous plants, have drawn a rising attention for their remarkable anti-proliferative and apoptosis-inducing activities toward various types of cancer cells; however, the precise molecular mechanisms by which they induce tumor cell apoptosis are still only rudimentarily understood. Herein, we found that the three conserved motifs "QXDXNXVXY," the mannose-specific binding sites, could mutate at one or more amino acid sites, which might be a driving force for the sequential evolution and thus ultimately leading to the complete disappearance of the three conserved motifs. In addition, we found that the motif evolution could result in the diversification of sugar-binding types that G. nivalis agglutinin-related lectins could bind from specific mannose receptors to more types of sugar-containing receptors in cancer cells. Subsequently, we indicated that some sugar-containing receptors such as TNFR1, EGFR, Hsp90, and Hsp70 could block downstream anti-apoptotic or survival signaling pathways, which, in turn, resulted in tumor cell apoptosis. Taken together, our hypothesis that carbohydrate-binding motif evolution may impact the G. nivalis agglutinin-related lectin-induced survival or anti-apoptotic pathways would provide a new perspective for further elucidating the intricate relationships between the carbohydrate-binding specificities and complex molecular mechanisms by which G. nivalis agglutinin-related lectins induce cancer cell death.
Collapse
Affiliation(s)
- Qi-Jia Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School & School of Life Sciences, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | |
Collapse
|
148
|
Evangelio E, Poiroux G, Culerrier R, Pratviel G, Van Damme EJM, Peumans WJ, Barre A, Rougé P, Benoist H, Pitié M. Comparative study of the phototoxicity of long-wavelength photosensitizers targeted by the MornigaG lectin. Bioconjug Chem 2011; 22:1337-44. [PMID: 21671658 DOI: 10.1021/bc1005703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Morniga G is a plant lectin selective for high density of tumor-associated carbohydrate T and Tn antigens on the surface of cells. The interaction of the protein with Tn induces its cell penetration. This property was used for targeting photosensitizers (consisting of the porphyrins TrMPyP and TPPS, the Al(III)-phthalocyanin AlPcS(4), and the chlorin e6) against leukemic Jurkat T cells after covalent coupling to the protein. The control of MornigaG/photosensitizer loading allowed the comparison of the toxicity of the different photosensitizer conjugates. Conjugate including a single AlPcS(4) per protein appeared promising, since it is poorly toxic when irradiated under white light, while it shows a strong phototoxicity (LD(50) = 4 nM) when irradiated in the therapeutic window, it preferentially kills cancerous lymphocytes, and the sugar binding specificity of the lectin part of the molecule remains unaltered.
Collapse
Affiliation(s)
- Emi Evangelio
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Yang Y, Xu HL, Zhang ZT, Liu JJ, Li WW, Ming H, Bao JK. Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:748-755. [PMID: 21146383 DOI: 10.1016/j.phymed.2010.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/21/2010] [Accepted: 11/07/2010] [Indexed: 05/30/2023]
Abstract
Polygonatum odoratum lectin (POL), a novel mannose-binding lectin with anti-viral and apoptosis-inducing activities, was isolated from rhizomes of Polygonatum odoratum (Mill.) Druce. POL was a homo-tetramer with molecular weight of 11953.623Da per subunits as determined by gel filtration, SDS-PAGE and mass spectrometry. Based on its N-terminal 29-amino acid sequence the full-length cDNA sequence of POL was cloned. Subsequent phylogenetic analysis and molecular modeling revealed that POL belonged to the Galanthus nivalis agglutinin (GNA)-related lectin family, which acquired unique mannose-binding specificity. The hemagglutinating activities of POL were metal ion-independent, and were stable within certain range of pH and temperature alterations. Moreover, POL showed remarkable anti-HSV-II activity towards Vero cells, cytotoxicity towards human melanoma A375 cells and induced apoptosis in a caspase-dependent manner.
Collapse
Affiliation(s)
- Yun Yang
- School of Life Sciences & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
150
|
Xu HL, Li CY, He XM, Niu KQ, Peng H, Li WW, Zhou CC, Bao JK. Molecular modeling, docking and dynamics simulations of GNA-related lectins for potential prevention of influenza virus (H1N1). J Mol Model 2011; 18:27-37. [PMID: 21445708 DOI: 10.1007/s00894-011-1022-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/13/2011] [Indexed: 11/24/2022]
Abstract
The Galanthus nivalis agglutinin (GNA)-related lectin family exhibit significant anti-HIV and anti-HSV properties that are closely related to their carbohydrate-binding activities. However, there is still no conclusive evidence that GNA-related lectins possess anti-influenza properties. The hemagglutinin (HA) of influenza virus is a surface protein that is involved in binding host cell sialic acid during the early stages of infection. Herein, we studied the 3D-QSARs (three-dimensional quantitative structure-activity relationships) of lectin- and HA-sialic acid by molecular modeling. The affinities and stabilities of lectin- and HA-sialic acid complexes were also assessed by molecular docking and molecular dynamics simulations. Finally, anti-influenza GNA-related lectins that possess stable conformations and higher binding affinities for sialic acid than HAs of human influenza virus were screened, and a possible mechanism was proposed. Accordingly, our results indicate that some GNA-related lectins, such as Yucca filamentosa lectin and Polygonatum cyrtonema lectin, could act as drugs that prevent influenza virus infection via competitive binding. In conclusion, the GNA-related lectin family may be helpful in the design of novel candidate agents for preventing influenza A infection through the use of competitive combination against sialic acid specific viral infection.
Collapse
Affiliation(s)
- Huai-long Xu
- School of Life Sciences, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|