101
|
Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, Sharma P. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 2012; 7:e30590. [PMID: 22363450 PMCID: PMC3281833 DOI: 10.1371/journal.pone.0030590] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/19/2011] [Indexed: 12/21/2022] Open
Abstract
Background Curcumin inhibits the growth of esophageal cancer cell lines; however, the mechanism of action is not well understood. It is becoming increasingly clear that aberrant activation of Notch signaling has been associated with the development of esophageal cancer. Here, we have determined that curcumin inhibits esophageal cancer growth via a mechanism mediated through the Notch signaling pathway. Methodology/Principal Findings In this study, we show that curcumin treatment resulted in a dose and time dependent inhibition of proliferation and colony formation in esophageal cancer cell lines. Furthermore, curcumin treatment induced apoptosis through caspase 3 activation, confirmed by an increase in the ratio of Bax to Bcl2. Cell cycle analysis demonstrated that curcumin treatment induced cell death and down regulated cyclin D1 levels. Curcumin treatment also resulted in reduced number and size of esophagospheres. Furthermore, curcumin treatment led to reduced Notch-1 activation, expression of Jagged-1 and its downstream target Hes-1. This reduction in Notch-1 activation was determined to be due to the down-regulation of critical components of the γ-secretase complex proteins such as Presenilin 1 and Nicastrin. The combination of a known γ-secretase inhibitor DAPT and curcumin further decreased proliferation and induced apoptosis in esophageal cancer cells. Finally, curcumin treatment down-regulate the expressions of Notch-1 specific microRNAs miR-21 and miR-34a, and upregulated tumor suppressor let-7a miRNA. Conclusion/Significance Curcumin is a potent inhibitor of esophageal cancer growth that targets the Notch-1 activating γ-secretase complex proteins. These data suggest that Notch signaling inhibition is a novel mechanism of action for curcumin during therapeutic intervention in esophageal cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * (D. Subramaniam); (PS)
| | - Sivapriya Ponnurangam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Prabhu Ramamoorthy
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - David Standing
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Richard J. Battafarano
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Prateek Sharma
- Division of Gastroenterology and Hepatology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * (D. Subramaniam); (PS)
| |
Collapse
|
102
|
Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation. Brain Tumor Pathol 2012; 29:73-86. [DOI: 10.1007/s10014-011-0077-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 12/14/2022]
|
103
|
Bullock MD, Sayan AE, Packham GK, Mirnezami AH. MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell 2011; 104:3-12. [DOI: 10.1111/boc.201100115] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
|
104
|
Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 2011. [PMID: 21503965 DOI: 10.1002/jcb.23150.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 2011; 112:2296-306. [PMID: 21503965 DOI: 10.1002/jcb.23150] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Zhou JX, Han JB, Chen SM, Xu Y, Kong YG, Xiao BK, Tao ZZ. γ-secretase inhibition combined with cisplatin enhances apoptosis of nasopharyngeal carcinoma cells. Exp Ther Med 2011; 3:357-361. [PMID: 22969896 DOI: 10.3892/etm.2011.410] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/02/2011] [Indexed: 11/06/2022] Open
Abstract
The Notch signaling pathway plays an important role in the proliferation and differentiation of cells. Although recent studies have shown that Notch plays a role in the mechanisms of cisplatin resistance, the mechanism by which Notch plays roles in intrinsic or acquired cisplatin resistance remains unclear. In the present study, poorly differentiated nasopharyngeal carcinoma cells were treated with a γ-secretase inhibitor (DAPT), which led to a decrease in the Notch intracellular domain and inhibition of Notch signaling. Treatment was not sufficient to induce pronounced apoptosis of CNE-2 cells, but did result in the down-regulation of the P-glycoprotein and ERCC1 protein. In contrast, the combined treatment of DAPT and cisplatin induced substantial cell apoptosis compared to cisplatin treatment alone.
Collapse
Affiliation(s)
- Jun-Xu Zhou
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | | | | | | | | | | | | |
Collapse
|
107
|
Georgi SA, Reh TA. Dicer is required for the maintenance of notch signaling and gliogenic competence during mouse retinal development. Dev Neurobiol 2011; 71:1153-69. [PMID: 21542136 PMCID: PMC5373852 DOI: 10.1002/dneu.20899] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
MicroRNAs (miRNAs) are 19-25 nucleotide RNAs that regulate messenger RNA translation and stability. Recently, we performed a conditional knockout (CKO) of the miRNA-processing enzyme Dicer during mouse retinal development and showed an essential role for miRNAs in the transition of retinal progenitors from an early to a late competence state (Georgi and Reh [2010]: J Neurosci 30:4048-4061). Notably, Dicer CKO progenitors failed to express Ascl1 and generated ganglion cells beyond their normal competence window. Because Ascl1 regulates multiple Notch signaling components, we hypothesized that Notch signaling is downregulated in Dicer CKO retinas. We show here that Notch signaling is severely reduced in Dicer CKO retinas, but that retinal progenitors still retain a low level of Notch signaling. By increasing Notch signaling in Dicer CKO progenitors through constitutive expression of the Notch intracellular domain (NICD), we show that transgenic rescue of Notch signaling has little effect on the competence of retinal progenitors or the enhanced generation of ganglion cells, suggesting that loss of Notch signaling is not a major determinant of these phenotypes. Nevertheless, transgenic NICD expression restored horizontal cells, suggesting an interaction between miRNAs and Notch signaling in the development of this cell type. Furthermore, while NICD overexpression leads to robust glial induction in control retinas, NICD overexpression was insufficient to drive Dicer-null retinal progenitors to a glial fate. Surprisingly, the presence of transgenic NICD expression did not prevent the differentiation of some types of retinal neurons, suggesting that Notch inactivation is not an absolute requirement for the initial stages of neuronal differentiation.
Collapse
Affiliation(s)
- Sean A Georgi
- Neurobiology and Behavior Program, Department of Biological Structure, School of Medicine, University of Washington, Seattle, USA
| | | |
Collapse
|
108
|
Lim QE, Zhou L, Ho YK, Wan G, Too HP. snoU6 and 5S RNAs are not reliable miRNA reference genes in neuronal differentiation. Neuroscience 2011; 199:32-43. [PMID: 22051575 DOI: 10.1016/j.neuroscience.2011.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/08/2011] [Accepted: 10/14/2011] [Indexed: 12/20/2022]
Abstract
Accurate profiling of microRNAs (miRNAs) is an essential step for understanding the functional significance of these small RNAs in both physiological and pathological processes. Quantitative real-time PCR (qPCR) has gained acceptance as a robust and reliable transcriptomic method to profile subtle changes in miRNA levels and requires reference genes for accurate normalization of gene expression. 5S and snoU6 RNAs are commonly used as reference genes in microRNA quantification. It is currently unknown if these small RNAs are stably expressed during neuronal differentiation. Panels of miRNAs have been suggested as alternative reference genes to 5S and snoU6 in various physiological contexts. To test the hypothesis that miRNAs may serve as stable references during neuronal differentiation, the expressions of eight miRNAs, 5S and snoU6 RNAs in five differentiating neuronal cell types were analyzed using qPCR. The stabilities of the expressions were evaluated using two complementary statistical approaches (geNorm and Normfinder). Expressions of 5S and snoU6 RNAs were stable under some but not all conditions of neuronal differentiation and thus are not suitable reference genes. In contrast, a combination of three miRNAs (miR-103, miR-106b and miR-26b) allowed accurate expression normalization across different models of neuronal differentiation.
Collapse
Affiliation(s)
- Q E Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | | | | | | | | |
Collapse
|
109
|
Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One 2011; 6:e23461. [PMID: 21887253 PMCID: PMC3162555 DOI: 10.1371/journal.pone.0023461] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/18/2011] [Indexed: 12/29/2022] Open
Abstract
Background The Notch signaling pathway regulates adult neurogenesis under physiological and pathophysiological conditions. MicroRNAs are small non-coding RNA molecules that regulate gene expression. The present study investigated the effect of miR-124a on the Notch signaling pathway in stroke-induced neurogenesis. Methodology and Principal Findings We found that adult rats subjected to focal cerebral ischemia exhibited substantial reduction of miR-124a expression, a neuron specific miRNA, in the neural progenitor cells of the subventricular zone (SVZ) of the lateral ventricle, which was inversely associated with activation of Notch signals. In vitro, transfection of neural progenitor cells harvested from the SVZ of adult rat with miR-124a repressed Jagged-1 (JAG1), a ligand of Notch, in a luciferase construct containing the JAG1 target site. Introduction of miR-124a in neural progenitor cells significantly reduced JAG1 transcript and protein levels, leading to inactivation of Notch signals. Transfection of neural progenitor cells with miR-124a significantly reduced progenitor cell proliferation and promoted neuronal differentiation measured by an increase in the number of Doublecortin positive cells, a marker of neuroblasts. Furthermore, introduction of miR-124a significantly increased p27Kip1 mRNA and protein levels, a downstream target gene of the Notch signaling pathway. Conclusions Collectively, our study demonstrated that in vivo, stroke alters miRNA expression in SVZ neural progenitor cells and that in vitro, miR-124a mediates stroke-induced neurogenesis by targeting the JAG-Notch signaling pathway.
Collapse
Affiliation(s)
- Xian Shuang Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Rui Lan Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Tang Tao
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Xin Li Wang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Haifa Kassis
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Ann Hozeska-Solgot
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Charles Chen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
110
|
Activated K-ras and INK4a/Arf deficiency cooperate during the development of pancreatic cancer by activation of Notch and NF-κB signaling pathways. PLoS One 2011; 6:e20537. [PMID: 21673986 PMCID: PMC3108612 DOI: 10.1371/journal.pone.0020537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/02/2011] [Indexed: 01/17/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the United States, suggesting that novel strategies for the prevention and treatment of PDAC are urgently needed. K-ras mutations are observed in >90% of pancreatic cancer, suggesting its role in the initiation and early developmental stages of PDAC. In order to gain mechanistic insight as to the role of mutated K-ras, several mouse models have been developed by targeting a conditionally mutated K-rasG12D for recapitulating PDAC. A significant co-operativity has been shown in tumor development and metastasis in a compound mouse model with activated K-ras and Ink4a/Arf deficiency. However, the molecular mechanism(s) by which K-ras and Ink4a/Arf deficiency contribute to PDAC has not been fully elucidated. Methodology/Principal Findings To assess the molecular mechanism(s) that are involved in the development of PDAC in the compound transgenic mice with activated K-ras and Ink4a/Arf deficiency, we used multiple methods, such as Real-time RT-PCR, western blotting assay, immunohistochemistry, MTT assay, invasion, EMSA and ELISA. We found that the deletion of Ink4a/Arf in K-rasG12D expressing mice leads to PDAC, which is in part mediated through the activation of Notch and NF-κB signaling pathways. Moreover, we found down-regulation of miR-200 family, which could also play important roles in tumor development and progression of PDAC in the compound transgenic mice. Conclusions/Significance Our results suggest that the activation of Notch and NF-κB together with the loss of miR-200 family is mechanistically linked with the development and progression of PDAC in the compound K-rasG12D and Ink4a/Arf deficient transgenic mice.
Collapse
|
111
|
Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, Banerjee S, Azmi AS, Miele L, Sarkar FH. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 2011; 307:26-36. [PMID: 21463919 DOI: 10.1016/j.canlet.2011.03.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/17/2011] [Indexed: 12/14/2022]
Abstract
Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes-1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Zhiwei Wang
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Division of Hematology/Oncology Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Lucio Miele
- University of Mississippi Cancer Institute, Jackson, MS, USA
| | - Fazlul H Sarkar
- Department of Pathology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
112
|
|
113
|
The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 2011; 30:770-82. [PMID: 21224848 DOI: 10.1038/emboj.2010.349] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/07/2010] [Indexed: 02/06/2023] Open
Abstract
Notch signalling is important for development and tissue homeostasis and activated in many human cancers. Nevertheless, mutations in Notch pathway components are rare in solid tumours. ZEB1 is an activator of an epithelial-mesenchymal transition (EMT) and has crucial roles in tumour progression towards metastasis. ZEB1 and miR-200 family members repress expression of each other in a reciprocal feedback loop. Since miR-200 members target stem cell factors, ZEB1 indirectly induces stemness maintenance and associated drug resistance. Here, we link ZEB1 and its cancer promoting properties to Notch activation. We show that miR-200 members target Notch pathway components, such as Jagged1 (Jag1) and the mastermind-like coactivators Maml2 and Maml3, thereby mediating enhanced Notch activation by ZEB1. We further detected a coordinated upregulation of Jag1 and ZEB1, associated with reduced miR-200 expression in two aggressive types of human cancer, pancreatic adenocarcinoma and basal type of breast cancer. These findings explain increased Notch signalling in some types of cancers, where mutations in Notch pathway genes are rare. Moreover, they indicate an additional way how ZEB1 exerts its tumour progressing functions.
Collapse
|
114
|
Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, Sarkar FH. Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resist Updat 2010; 13:109-18. [PMID: 20692200 PMCID: PMC2956795 DOI: 10.1016/j.drup.2010.07.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 02/06/2023]
Abstract
Although chemotherapy is an important therapeutic strategy for cancer treatment, it fails to eliminate all tumor cells due to intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Emerging evidence suggests an intricate role of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT)-type cells in anticancer drug resistance. Recent studies also demonstrated that microRNAs (miRNAs) play critical roles in the regulation of drug resistance. Here we will discuss current knowledge regarding CSCs, EMT and the role of regulation by miRNAs in the context of drug resistance, tumor recurrence and metastasis. A better understanding of the molecular intricacies of drug-resistant cells will help to design novel therapeutic strategies by selective targeting of CSCs and EMT-phenotypic cells through alterations in the expression of specific miRNAs towards eradicating tumor recurrence and metastasis. A particular promising lead is the potential synergistic combination of natural compounds that affect critical miRNAs, such as curcumin or epigallocatechin-3-gallate (EGCG) with chemotherapeutic agents.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Asfar S Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
115
|
Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D, Sarkar FH. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta Rev Cancer 2010; 1806:258-67. [PMID: 20600632 DOI: 10.1016/j.bbcan.2010.06.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/08/2010] [Accepted: 06/11/2010] [Indexed: 12/21/2022]
Abstract
Chemotherapy is an important therapeutic strategy for cancer treatment and remains the mainstay for the management of human malignancies; however, chemotherapy fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Recently, emerging evidences suggest that Notch signaling pathway is one of the most important signaling pathways in drug-resistant tumor cells. Moreover, down-regulation of Notch pathway could induce drug sensitivity, leading to increased inhibition of cancer cell growth, invasion, and metastasis. This article will provide a brief overview of the published evidences in support of the roles of Notch in drug resistance and will further summarize how targeting Notch by "natural agents" could become a novel and safer approach for the improvement of tumor treatment by overcoming drug resistance.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
116
|
|