101
|
Abstract
Translocation renal cell carcinoma is a newly recognized subtype of renal cell carcinoma (RCC) with chromosomal translocations involving TFE3 (Xp11.2) or, less frequently, TFEB (6p21). Xp11 translocation RCC was originally described as a pediatric neoplasm representing 20% to 40% of pediatric RCCs, with a much lower frequency in the adult population. TFEB translocation RCC is very rare, with approximately 10 cases reported in the literature. Here, we describe the clinicopathologic features of adult translocation RCC from a single institution. Using tissue microarray, immunohistochemistry, cytogenetic examination, and fluorescence in situ hybridization, we identified 6 (∼5%) cases of TFE3 translocation RCC and 1 (<1%) case of TFEB translocation RCC in 121 consecutive adult RCC cases between 2001 and 2009. Our results suggest that weak TFE3 staining of a significant proportion of RCC cases may be because of expression of the full-length TFE3 protein rather than the chimeric fusion protein resulting from chromosomal translocation.
Collapse
|
102
|
Coffin CM, Alaggio R, Dehner LP. Some general considerations about the clinicopathologic aspects of soft tissue tumors in children and adolescents. Pediatr Dev Pathol 2012; 15:11-25. [PMID: 22375909 DOI: 10.2350/11-08-1081-pb.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Soft tissue tumors in children and adolescents are an important group of neoplasms, pseudoneoplasms, and tumefactive malformations with some distinctive clinicopathologic, genetic, syndromic, and therapeutic implications. In addition to the basic pathologic examination, there is the availability of diagnostic adjuncts in various settings based upon the histopathologic features that facilitate and/or corroborate a diagnosis. Immunohistochemistry, cytogenetics, molecular genetics, and an ever-increasing array of new technologies are available to address specific diagnostic questions and even potential therapeutic strategies. This review focuses upon some of the unique aspects of soft tissue tumors in children, including the classification, approach to the diagnosis, grading, clinical and pathologic staging, therapy-related changes, pathogenesis, and risk factors.
Collapse
Affiliation(s)
- Cheryl M Coffin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.
| | | | | |
Collapse
|
103
|
Abstract
Melanoma is often considered one of the most aggressive and treatment-resistant human cancers. It is a disease that, due to the presence of melanin pigment, was accurately diagnosed earlier than most other malignancies and that has been subjected to countless therapeutic strategies. Aside from early surgical resection, no therapeutic modality has been found to afford a high likelihood of curative outcome. However, discoveries reported in recent years have revealed a near avalanche of breakthroughs in the melanoma field-breakthroughs that span fundamental understanding of the molecular basis of the disease all the way to new therapeutic strategies that produce unquestionable clinical benefit. These discoveries have been born from the successful fruits of numerous researchers working in many-sometimes-related, although also distinct-biomedical disciplines. Discoveries of frequent mutations involving BRAF(V600E), developmental and oncogenic roles for the microphthalmia-associated transcription factor (MITF) pathway, clinical efficacy of BRAF-targeted small molecules, and emerging mechanisms underlying resistance to targeted therapeutics represent just a sample of the findings that have created a striking inflection in the quest for clinically meaningful progress in the melanoma field.
Collapse
Affiliation(s)
- Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- The Wellman Center for Photomedicine, Boston, Massachusetts 02114, USA
| | - Lynda Chin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Levi A. Garraway
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - David E. Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
104
|
Wagner AJ, Goldberg JM, DuBois SG, Choy E, Rosen L, Pappo A, Geller J, Judson I, Hogg D, Senzer N, Davis IJ, Chai F, Waghorne C, Schwartz B, Demetri GD. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors. Cancer 2012; 118:5894-902. [DOI: 10.1002/cncr.27582] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/02/2012] [Accepted: 02/27/2012] [Indexed: 11/07/2022]
|
105
|
The molecular biology of soft-tissue sarcomas and current trends in therapy. Sarcoma 2012; 2012:849456. [PMID: 22665999 PMCID: PMC3359746 DOI: 10.1155/2012/849456] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/30/2022] Open
Abstract
Basic research in sarcoma models has been fundamental in the discovery of scientific milestones leading to a better understanding of the molecular biology of cancer. Yet, clinical research in sarcoma has lagged behind other cancers because of the multiple clinical and pathological entities that characterize sarcomas and their rarity. Sarcomas encompass a very heterogeneous group of tumors with diverse pathological and clinical overlapping characteristics. Molecular testing has been fundamental in the identification and better definition of more specific entities among this vast array of malignancies. A group of sarcomas are distinguished by specific molecular aberrations such as somatic mutations, intergene deletions, gene amplifications, reciprocal translocations, and complex karyotypes. These and other discoveries have led to a better understanding of the growth signals and the molecular pathways involved in the development of these tumors. These findings are leading to treatment strategies currently under intense investigation. Disruption of the growth signals is being targeted with antagonistic antibodies, tyrosine kinase inhibitors, and inhibitors of several downstream molecules in diverse molecular pathways. Preliminary clinical trials, supported by solid basic research and strong preclinical evidence, promises a new era in the clinical management of these broad spectrum of malignant tumors.
Collapse
|
106
|
Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia 2012; 13:1081-92. [PMID: 22131883 DOI: 10.1593/neo.11794] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 12/20/2022] Open
Abstract
The human and Old World primate genomes possess conserved endogenous retrovirus sequences that have been implicated in evolution, reproduction, and carcinogenesis. Human endogenous retrovirus (HERV)-K with 5'LTR-gag-pro-pol-env-rec/np9-3'LTR sequences represents the newest retrovirus family that integrated into the human genome 1 to 5 million years ago. Although a high-level expression of HERV-K in melanomas, breast cancers, and teratocarcinomas has been demonstrated, the mechanism of the lineage-specific activation of the long terminal repeat (LTR) remains obscure. We studied chromosomal HERV-K expression in MeWo melanoma cells in comparison with the basal expression in human embryonic kidney 293 (HEK293) cells. Cloned LTR of HERV-K (HML-2.HOM) was also characterized by mutation and transactivation experiments. We detected multiple transcriptional initiator (Inr) sites in the LTR by rapid amplification of complementary DNA ends (5' RACE). HEK293 and MeWo showed different Inr usage. The most potent Inr was associated with a TATA box and three binding motifs of microphthalmia-associated transcription factor (MITF). Both chromosomal HERV-K expression and the cloned LTR function were strongly activated in HEK293 by transfection with MITF-M, a melanocyte/melanoma-specific isoform of MITF. Coexpression of MITF and the HERV-K core antigen was detected in retinal pigmented epithelium by an immunofluorescence analysis. Although malignant melanoma lines MeWo, G361, and SK-MEL-28 showed enhanced HERV-K transcription compared with normal melanocytes, the level of MITF-M messenger RNA persisted from normal to transformed melanocytes. Thus, MITF-M may be a prerequisite for the pigmented cell lineage-specific function of HERV-K LTR, leading to the high-level expression in malignant melanomas.
Collapse
|
107
|
Abstract
Renal cell carcinomas associated with Xp11.2 translocations have recently been identified as a distinct biological entity. The translocation results in the fusion of the transcription factor TFE3 to one of several different fusion partners including PRCC, PSF, NONO, ASPL or CTLC with consecutive overexpression of the chimeric protein. As the true frequency of these neoplasms as well as the biological properties of TFE3 activation in renal cell carcinomas are largely unknown, we have examined TFE3 expression as well as the underlying genetic alterations in a large, hospital-based series of renal cell carcinomas with long-term follow-up information. Out of a total of 876 tumours, TFE3 translocations were detected in five cases (0.6%). Three additional cases were identified in a second series of cases comprising of renal cell carcinomas developing in patients before the age of 50. However, using immunohistochemistry, 9% of all renal cell carcinomas showed some degree of TFE3 reactivity. Interestingly, these cases were associated with high nuclear grade, greater tumour extent and metastatic disease as well as an unfavourable patient outcome on uni- and multivariate analysis. Fluorescence in situ hybridisation (FISH) revealed TFE3 amplifications as an additional, novel mechanism leading to increased TFE3 expression levels. In conclusion, our data show that Xp11 translocation renal cell carcinomas are uncommon tumours accounting for <1% of adult renal cell carcinomas and that the diagnosis of Xp11 translocation renal cell carcinomas needs to be verified using molecular techniques. In turn, TFE3 overexpressing tumours show an aggressive behaviour and Xp11 translocation is only one of several possible underlying genomic alterations.
Collapse
|
108
|
Patel M, Simon JM, Iglesia MD, Wu SB, McFadden AW, Lieb JD, Davis IJ. Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res 2011; 22:259-70. [PMID: 22086061 DOI: 10.1101/gr.125666.111] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chromosomal translocations involving transcription factor genes have been identified in an increasingly wide range of cancers. Some translocations can create a protein "chimera" that is composed of parts from different proteins. How such chimeras cause cancer, and why they cause cancer in some cell types but not others, is not understood. One such chimera is EWS-FLI, the most frequently occurring translocation in Ewing Sarcoma, a malignant bone and soft tissue tumor of children and young adults. Using EWS-FLI and its parental transcription factor, FLI1, we created a unique experimental system to address questions regarding the genomic mechanisms by which chimeric transcription factors cause cancer. We found that in tumor cells, EWS-FLI targets regions of the genome distinct from FLI1, despite identical DNA-binding domains. In primary endothelial cells, however, EWS-FLI and FLI1 demonstrate similar targeting. To understand this mistargeting, we examined chromatin organization. Regions targeted by EWS-FLI are normally repressed and nucleosomal in primary endothelial cells. In tumor cells, however, bound regions are nucleosome depleted and harbor the chromatin signature of enhancers. We next demonstrated that through chimerism, EWS-FLI acquired the ability to alter chromatin. Expression of EWS-FLI results in nucleosome depletion at targeted sites, whereas silencing of EWS-FLI in tumor cells restored nucleosome occupancy. Thus, the EWS-FLI chimera acquired chromatin-altering activity, leading to mistargeting, chromatin disruption, and ultimately, transcriptional dysregulation.
Collapse
Affiliation(s)
- Mukund Patel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Shenjere P, Salman WD, Singh M, Mangham DC, Williams A, Eyden BP, Howard N, Knight B, Banerjee SS. Intra-abdominal clear-cell sarcoma: a report of 3 cases, including 1 case with unusual morphological features, and review of the literature. Int J Surg Pathol 2011; 20:378-85. [PMID: 22084426 DOI: 10.1177/1066896911425485] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clear-cell sarcoma (CCS) is a soft-tissue neoplasm that morphologically resembles cutaneous malignant melanoma but has a distinct molecular profile. Gastrointestinal and intra-abdominal CCSs are very rare. Here, the authors present 3 cases of intra-abdominal CCS and review the literature. Of these cases, 2 involved the small bowel, and 1 involved the peritoneum. Cases 1 and 3 had the characteristic CCS morphology, but case 2 was morphologically unusual and therefore difficult to diagnose. It had relatively small cells with less prominence of clear cells; many pseudoglandular structures were also present. It also showed aberrant expression of epithelial membrane antigen (EMA). The other 2 cases also involved some diagnostic uncertainty and were therefore referred to specialized centers. The authors wish to emphasize the importance of molecular studies in making a conclusive diagnosis of intra-abdominal CCS.
Collapse
Affiliation(s)
- Patrick Shenjere
- Department of Histopathology, The Christie NHS Foundation Trust, Manchester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Negri T, Brich S, Conca E, Bozzi F, Orsenigo M, Stacchiotti S, Alberghini M, Mauro V, Gronchi A, Dusio GF, Pelosi G, Picci P, Casali PG, Pierotti MA, Pilotti S. Receptor tyrosine kinase pathway analysis sheds light on similarities between clear-cell sarcoma and metastatic melanoma. Genes Chromosomes Cancer 2011; 51:111-26. [DOI: 10.1002/gcc.20933] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/22/2022] Open
|
111
|
Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proc Natl Acad Sci U S A 2011; 108:E924-33. [PMID: 21949374 DOI: 10.1073/pnas.1106351108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) regulates normal melanocyte development and is also a lineage-selective oncogene implicated in melanoma and clear-cell sarcoma (i.e., melanoma of soft parts). We have observed that MITF expression is potently reduced under hypoxic conditions in primary melanocytes and melanoma and clear cell sarcoma cells through hypoxia inducible factor 1 (HIF1)-mediated induction of the transcriptional repressor differentially expressed in chondrocytes protein 1 (DEC1) (BHLHE40), which subsequently binds and suppresses the promoter of M-MITF (melanocyte-restricted MITF isoform). Correspondingly, hypoxic conditions or HIF1α stabilization achieved by using small-molecule prolyl-hydroxylase inhibitors reduced M-MITF expression, leading to melanoma cell growth arrest that was rescued by ectopic expression of M-MITF in vitro. Prolyl hydroxylase inhibition also potently suppressed melanoma growth in a mouse xenograft model. These studies illuminate a physiologic hypoxia response in pigment cells leading to M-MITF suppression, one that suggests a potential survival advantage mechanism for MITF amplification in metastatic melanoma and offers a small-molecule strategy for suppression of the MITF oncogene in vivo.
Collapse
|
112
|
Zhao X, Fiske B, Kawakami A, Li J, Fisher DE. Regulation of MITF stability by the USP13 deubiquitinase. Nat Commun 2011; 2:414. [PMID: 21811243 DOI: 10.1038/ncomms1421] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/05/2011] [Indexed: 11/09/2022] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is essential for melanocyte development. Mutation-induced MAPK pathway activation is common in melanoma and induces MITF phosphorylation, ubiquitination, and proteolysis. Little is known about the enzymes involved in MITF ubiquitination/deubiquitination. Here we report the identification of a deubiquitinating enzyme, named ubiquitin-specific protease 13 (USP13) that appears to be responsible for MITF deubiquitination, utilizing a short hairpin RNA library against known deubiquitinating enzymes. Through deubiquitination, USP13 stabilizes and upregulates MITF protein levels. Conversely, suppression of USP13 (through knockdown) leads to dramatic loss of MITF protein, but not messenger RNA. Through its effects on MITF deubiquitination, USP13 was observed to modulate expression of MITF downstream target genes and, thereby, to be essential for melanoma growth in soft agar and in nude mice. These observations suggest that as a potentially drugable protease, USP13 might be a viable therapeutic target for melanoma.
Collapse
Affiliation(s)
- Xiansi Zhao
- Cutaneous Biology Research Center & Melanoma Program, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | | | | | | |
Collapse
|
113
|
Taylor BS, Barretina J, Maki RG, Antonescu CR, Singer S, Ladanyi M. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer 2011; 11:541-57. [PMID: 21753790 PMCID: PMC3361898 DOI: 10.1038/nrc3087] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasingly, human mesenchymal malignancies are being classified by the abnormalities that drive their pathogenesis. Although many of these aberrations are highly prevalent within particular sarcoma subtypes, few are currently targeted therapeutically. Indeed, most subtypes of sarcoma are still treated with traditional therapeutic modalities, and in many cases sarcomas are resistant to adjuvant therapies. In this Review, we discuss the core molecular determinants of sarcomagenesis and emphasize the emerging genomic and functional genetic approaches that, coupled with novel therapeutic strategies, have the potential to transform the care of patients with sarcoma.
Collapse
Affiliation(s)
- Barry S Taylor
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
114
|
Haq R, Fisher DE. Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J Clin Oncol 2011; 29:3474-82. [PMID: 21670463 DOI: 10.1200/jco.2010.32.6223] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Members of the micropthalmia (MiT) family of transcription factors (MITF, TFE3, TFEB, and TFEC) are physiologic regulators of cell growth, differentiation, and survival in several tissue types. Because their dysregulation can lead to melanoma, renal cell carcinoma, and some sarcomas, understanding why these genes are co-opted in carcinogenesis may be of general utility. Here we describe the structure of the MiT family of proteins, the ways in which they are aberrantly activated, and the molecular mechanisms by which they promote oncogenesis. We discuss how meaningful understanding of these mechanisms can be used to elucidate the oncogenic process. Because the expression of these proteins is essential for initiating and maintaining the oncogenic state in some cancer types, we propose ways that they can be exploited to prevent, diagnose, and rationally treat these malignancies.
Collapse
Affiliation(s)
- Rizwan Haq
- Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | | |
Collapse
|
115
|
Abstract
Melanoma is one of the most aggressive and yet poorly understood of human malignancies. Advances in genomics has allowed a more nuanced understanding of the disease, moving beyond the traditional dysplastic nevus-to-melanoma model and identifying multiple divergent oncogenic pathways leading to melanoma. An understanding of the molecular mechanisms driving melanoma has opened the doors for the development of targeted therapeutic approaches. As we enter the era of personalized medicine, it will be critical for clinicians to both appreciate and be able to determine the molecular profile of their patients' melanoma because this profile will guide risk stratification, genetic counseling, and treatment customization. A review of the divergent pathways of melanoma development is presented here, with a particular emphasis on recently identified mutations, and their implications for patient care.
Collapse
Affiliation(s)
- Justin M Ko
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
116
|
Ohanna M, Giuliano S, Bonet C, Imbert V, Hofman V, Zangari J, Bille K, Robert C, Bressac-de Paillerets B, Hofman P, Rocchi S, Peyron JF, Lacour JP, Ballotti R, Bertolotto C. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev 2011; 25:1245-61. [PMID: 21646373 DOI: 10.1101/gad.625811] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanoma cells can enter the process of senescence, but whether they express a secretory phenotype, as reported for other cells, is undetermined. This is of paramount importance, because this secretome can alter the tumor microenvironment and the response to chemotherapeutic drugs. More generally, the molecular events involved in formation of the senescent-associated secretome have yet to be determined. We reveal here that melanoma cells experiencing senescence in response to diverse stimuli, including anti-melanoma drugs, produce an inflammatory secretory profile, where the chemokine ligand-2 (CCL2) acts as a critical effector. Thus, we reveal how senescence induction might be involved in therapeutic failure in melanoma. We further provide a molecular relationship between senescence induction and secretome formation by revealing that the poly(ADP-ribose) polymerase-1 (PARP-1)/nuclear factor-κB (NF-κB) signaling cascade, activated during senescence, drives the formation of a secretome endowed with protumoral and prometastatic properties. Our findings also point to the existence of the PARP-1 and NF-κB-associated secretome, termed the PNAS, in nonmelanoma cells. Most importantly, inhibition of PARP-1 or NF-κB prevents the proinvasive properties of the secretome. Collectively, identification of the PARP-1/NF-κB axis in secretome formation opens new avenues for therapeutic intervention against cancers.
Collapse
Affiliation(s)
- Mickaël Ohanna
- Biologie et Pathologies des Mélanocytes de la Pigmentation Cutanée au Mélanome, Equipe labellisée Ligue Nationale contre le Cancer, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Liu JJ, Fisher DE. Lighting a path to pigmentation: mechanisms of MITF induction by UV. Pigment Cell Melanoma Res 2011; 23:741-5. [PMID: 20973930 DOI: 10.1111/j.1755-148x.2010.00775.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While sunlight is important for life, ultraviolet radiation (UVR) can have harmful and mutagenic effects. This duality is particularly relevant to human skin, in which UVR both participates in evolutionarily important photochemical reactions yet may act as a potential carcinogen. UVR can upregulate production of melanin, the "tanning response" that serves a photoprotective function. This genetic program is centrally tuned by the transcription factor MITF, a master regulator of melanogenesis and melanocyte function. In this review, we discuss the myriad consequences of UV exposure for skin homeostasis, highlighting the diverse pathways activated by this ultraviolet radiation.
Collapse
Affiliation(s)
- Jue J Liu
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
118
|
Hong SB, Oh H, Valera VA, Baba M, Schmidt LS, Linehan WM. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS One 2010; 5:e15793. [PMID: 21209915 PMCID: PMC3012117 DOI: 10.1371/journal.pone.0015793] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/29/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Germline mutations in a tumor suppressor gene FLCN lead to development of fibrofolliculomas, lung cysts and renal cell carcinoma (RCC) in Birt-Hogg-Dubé syndrome. TFE3 is a member of the MiTF/TFE transcription factor family and Xp11.2 translocations found in sporadic RCC involving TFE3 result in gene fusions and overexpression of chimeric fusion proteins that retain the C-terminal DNA binding domain of TFE3. We found that GPNMB expression, which is regulated by MiTF, was greatly elevated in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Since TFE3 is implicated in RCC, we hypothesized that elevated GPNMB expression was due to increased TFE3 activity resulting from the inactivation of FLCN. METHODOLOGY/PRINCIPAL FINDINGS TFE3 knockdown reduced GPNMB expression in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Moreover, FLCN knockdown induced GPNMB expression in FLCN-restored renal cancer cells. Conversely, wildtype FLCN suppressed GPNMB expression in FLCN-null cells. FLCN inactivation was correlated with increased TFE3 transcriptional activity accompanied by its nuclear localization as revealed by elevated GPNMB mRNA and protein expression, and predominantly nuclear immunostaining of TFE3 in renal cancer cells, mouse embryo fibroblast cells, mouse kidneys and mouse and human renal tumors. Nuclear localization of TFE3 was associated with TFE3 post-translational modifications including decreased phosphorylation. CONCLUSIONS/SIGNIFICANCE Increased TFE3 activity is a downstream event induced by FLCN inactivation and is likely to be important for renal tumor development. This study provides an important novel mechanism for induction of TFE3 activity in addition to TFE3 overexpression resulting from Xp11.2 translocations, suggesting that TFE3 may be more broadly involved in tumorigenesis.
Collapse
Affiliation(s)
- Seung-Beom Hong
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - HyoungBin Oh
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Vladimir A. Valera
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
119
|
Ng KP, Cheung F, Lee KAW. A transcription assay for EWS oncoproteins in Xenopus oocytes. Protein Cell 2010; 1:927-34. [PMID: 21204019 DOI: 10.1007/s13238-010-0114-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/18/2010] [Indexed: 11/29/2022] Open
Abstract
Aberrant chromosomal fusion of the Ewing's sarcoma oncogene (EWS) to several different cellular partners produces the Ewing's family of oncoproteins (EWS-fusion-proteins, EFPs) and associated tumors (EFTs). EFPs are potent transcriptional activators, dependent on the N-terminal region of EWS (the EWS-activation-domain, EAD) and this function is thought to be central to EFT oncogenesis and maintenance. Thus EFPs are promising therapeutic targets, but detailed molecular studies will be pivotal for exploring this potential. Such studies have so far largely been restricted to intact mammalian cells while recent evidence has indicated that a mammalian cell-free transcription system may not support bona fide EAD function. Therefore, the lack of manipulatable assays for the EAD presents a significant barrier to progress. Using Xenopus laevis oocytes we describe a plasmid-based micro-injection assay that supports efficient, bona fide EAD transcriptional activity and hence provides a new vehicle for molecular dissection of the EAD.
Collapse
Affiliation(s)
- King Pan Ng
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong, China
| | | | | |
Collapse
|
120
|
Kosemehmetoglu K, Folpe AL. Clear cell sarcoma of tendons and aponeuroses, and osteoclast-rich tumour of the gastrointestinal tract with features resembling clear cell sarcoma of soft parts: a review and update. J Clin Pathol 2010; 63:416-23. [PMID: 20418233 DOI: 10.1136/jcp.2008.057471] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clear cell sarcoma (CCS) is a rare, distinctive soft tissue neoplasm, typically occurring in the distal extremities of young adult patients. Although CCS shows melanocytic differentiation, it is now clear that it is clinicopathologically and genetically distinct from conventional malignant melanoma. The 'osteoclast-rich tumour of the gastrointestinal tract with features resembling clear cell sarcoma of soft parts' is an extraordinarily rare gastrointestinal neoplasm that shares some features of CCS, but differs from it in other ways. The historical, histopathological, ultrastructural, immunohistochemical and genetic aspects of these two tumours are reviewed in this article.
Collapse
Affiliation(s)
- Kemal Kosemehmetoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | |
Collapse
|
121
|
|
122
|
Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, Makino E, Lu J, Larue L, Beermann F, Chin L, Bosenberg M, Song JS, Fisher DE. Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell 2010; 141:994-1005. [PMID: 20550935 PMCID: PMC2897150 DOI: 10.1016/j.cell.2010.05.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 01/19/2010] [Accepted: 04/09/2010] [Indexed: 12/21/2022]
Abstract
DICER is a central regulator of microRNA maturation. However, little is known about mechanisms regulating its expression in development or disease. While profiling miRNA expression in differentiating melanocytes, two populations were observed: some upregulated at the pre-miRNA stage, and others upregulated as mature miRNAs (with stable pre-miRNA levels). Conversion of pre-miRNAs to fully processed miRNAs appeared to be dependent upon stimulation of DICER expression--an event found to occur via direct transcriptional targeting of DICER by the melanocyte master transcriptional regulator MITF. MITF binds and activates a conserved regulatory element upstream of DICER's transcriptional start site upon melanocyte differentiation. Targeted KO of DICER is lethal to melanocytes, at least partly via DICER-dependent processing of the pre-miRNA-17 approximately 92 cluster thus targeting BIM, a known proapoptotic regulator of melanocyte survival. These observations highlight a central mechanism underlying lineage-specific miRNA regulation which could exist for other cell types during development.
Collapse
Affiliation(s)
- Carmit Levy
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02114, USA
| | - Mehdi Khaled
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02114, USA
| | - Kathleen C. Robinson
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02114, USA
| | - Rosa A. Veguilla
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02114, USA
| | - Po-Hao Chen
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Satoru Yokoyama
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02114, USA
| | - Eiichi Makino
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02114, USA
| | - Jun Lu
- Broad Institute, Cambridge, MA 02141, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lionel Larue
- Institut Curie, Developmental Genetics of Melanocytes, UMR 146 CNRS, Bat. 110, 91405, Orsay Cedex, France
| | - Friedrich Beermann
- EPFL SV ISREC (Swiss Institute for Experimental Cancer Research), 1015 Lausanne, Switzerland
| | - Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jun. S. Song
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ 08540, USA
| | - David E. Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02114, USA
| |
Collapse
|
123
|
Dickson BC, Brooks JS, Pasha TL, Zhang PJ. TFE3 expression in tumors of the microphthalmia-associated transcription factor (MiTF) family. Int J Surg Pathol 2010; 19:26-30. [PMID: 20164056 DOI: 10.1177/1066896909352861] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The DNA-binding factor TFE3 is closely related to microphthalmia-associated transcription factor (MiTF) and is over-expressed in alveolar soft part sarcoma (ASPS) and select renal cell carcinomas. Reports of TFE3 expression in PEComa prompted investigation into TFE3 expression among other members of the putative MiTF group of neoplasms. The authors examined cases of PEComa (n = 6), conventional angiomyolipoma (AML; n = 22), metastatic melanoma (n = 16), and clear cell sarcoma (CCS; n = 9) for TFE3 expression. Nuclear immunostaining was observed in 74% (39/53) of cases, as follows: 5/6 PEComas, 18/22 AMLs, 10/16 metastatic melanomas, and 6/9 CCSs. However, with the exception of PEComas, compared with ASPS controls, TFE3 staining was significantly less intense in the tumors examined. These results illustrate that TFE3 immunoreactivity is detectable in other members of the MiTF family of neoplasms. For this reason, such neoplasms warrant consideration in the differential diagnosis with nuclear TFE3 immunoreactivity, particularly when staining is focal and less intense.
Collapse
|
124
|
Davis IJ, McFadden AW, Zhang Y, Coxon A, Burgess TL, Wagner AJ, Fisher DE. Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma. Cancer Res 2010; 70:639-45. [PMID: 20068147 DOI: 10.1158/0008-5472.can-09-1121] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clear cell sarcoma (CCS), a childhood tumor of the tendons and aponeuroses, is uniformly fatal once it has metastasized because of its profound therapeutic resistance. CCS is characterized by production of a chimeric transcription factor, EWS-ATF1, which is formed as the result of a disease-specific chromosomal translocation. EWS-ATF1 activates the melanocyte transcription factor MITF, which in turn activates transcription of c-Met, an oncogenic receptor tyrosine kinase recently shown to be activated in CCS. Based on this connection, we hypothesized that c-Met inhibition may offer a strategy to treat CCS, as an indirect tactic to defeat a transforming pathway downstream of EWS-ATF1. Here, we show that primary CCS and CCS-derived cell lines express c-Met, which is activated in an autocrine fashion by its ligand hepatocyte growth factor (HGF)/scatter factor in some CCS cell lines. c-Met expression is critical for CCS invasion, chemotaxis, and survival. Blocking c-Met activity with a small-molecule inhibitor (SU11274) or a neutralizing antibody to its ligand HGF (AMG 102) significantly reduced CCS cell growth in culture. Similarly, AMG 102 significantly suppressed in vivo tumor growth in an autocrine xenograft model of CCS. Collectively, these findings suggest the HGF:c-Met signaling axis as a candidate therapeutic target to improve clinical management of CCS.
Collapse
Affiliation(s)
- Ian J Davis
- Department of Pediatric Oncology, Ludwig Center for Cancer Research, Dana-Farber Cancer Institute, Children's Hospital Boston, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
|
126
|
Ng KP, Li KKC, Lee KAW. In vitro activity of the EWS oncogene transcriptional activation domain. Biochemistry 2009; 48:2849-57. [PMID: 19290668 DOI: 10.1021/bi802366h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant chromosomal fusion of the Ewings sarcoma oncogene (EWS) to several different cellular partners gives rise to the Ewing's family of oncogenic proteins [EWS fusion proteins (EFPs)] and associated tumors (EFTs). EFPs are potent transcriptional activators dependent on the N-terminal region of EWS [the EWS activation domain (EAD)], and this function is thought to be central to EFT oncogenesis and maintenance. Thus, EFPs are promising therapeutic targets, and detailed molecular studies of the EAD will be pivotal for exploring this potential. For many reasons, the molecular mechanism of EAD action is poorly understood and one major obstacle to progress is the lack of an in vitro transcription assay. Using well-characterized EAD-dependent activators and soluble nuclear extracts, we have attempted to recapitulate EAD transcriptional activity in vitro. We report that while the EAD activates transcription strongly in vitro, the effect of EAD mutations is strikingly different from that observed in vivo. Our results therefore suggest that crude soluble extracts do not support bona fide EAD activity in vitro, and we discuss our findings in relation to future assay development and potential mechanisms of EAD action.
Collapse
Affiliation(s)
- King Pan Ng
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR China
| | | | | |
Collapse
|
127
|
Hida Y, Kubo Y, Miyajima O, Arase S. Primary dermal melanoma: A case report and molecular characterization. J Dermatol 2009; 36:346-52. [PMID: 19500183 DOI: 10.1111/j.1346-8138.2009.00650.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Swetter et al. proposed primary dermal melanoma (PDM) as a distinct entity based on an excellent prognosis. The histopathological features of PDM are extremely similar to those of metastatic melanoma or clear cell sarcoma (CCS). We describe a 38-year-old woman with a subcutaneous tumor in her left thigh. Physical and imaging examinations showed no evidence of metastatic melanoma. The lesion showed obvious strong expression of KIT by immunohistochemistry, but no EWS-ATF1 fusion transcript specific for CCS was detected by reverse transcription polymerase chain reaction. In further analyses of KIT expression in other tumors, three of four primary melanomas (75%) and six of 12 metastatic melanomas (50%) were moderately or strongly positive, however, both the primary and metastatic lesions of CCS tested negative. We believe this to be a case of PDM, and emphasize the distinctiveness of PDM.
Collapse
Affiliation(s)
- Yasutoshi Hida
- Department of Dermatology, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan
| | | | | | | |
Collapse
|
128
|
A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proc Natl Acad Sci U S A 2009; 106:17025-30. [PMID: 19805117 DOI: 10.1073/pnas.0909292106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Malignant melanoma is the most aggressive form of cutaneous carcinoma, accounting for 75% of all deaths caused by skin cancers. Microphthalmia-associated transcription factor (MITF) is a master gene regulating melanocyte development and functions as a "lineage addiction" oncogene in malignant melanoma. We have identified the receptor protein tyrosine kinase TYRO3 as an upstream regulator of MITF expression by a genome-wide gain-of-function cDNA screen and show that TYRO3 induces MITF-M expression in a SOX10-dependent manner in melanoma cells. Expression of TYRO3 is significantly elevated in human primary melanoma tissue samples and melanoma cell lines and correlates with MITF-M mRNA levels. TYRO3 overexpression bypasses BRAF(V600E)-induced senescence in primary melanocytes, inducing transformation of non-tumorigenic cell lines. Furthermore, TYRO3 knockdown represses cellular proliferation and colony formation in melanoma cells, and sensitizes them to chemotherapeutic agent-induced apoptosis; TYRO3 knockdown in melanoma cells also inhibits tumorigenesis in vivo. Taken together, these data indicate that TYRO3 may serve as a target for the development of therapeutic agents for melanoma.
Collapse
|
129
|
Toguchida J, Nakayama T. Molecular genetics of sarcomas: applications to diagnoses and therapy. Cancer Sci 2009; 100:1573-80. [PMID: 19555393 PMCID: PMC11159441 DOI: 10.1111/j.1349-7006.2009.01232.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 01/21/2023] Open
Abstract
Sarcomas are mesenchymal cancers consisting of tumors with various clinical and pathological features. Some of them compel affected individuals to lose important musculoskeletal functions, and some of them are highly malignant and life-threatening. A great amount of genetic information for sarcomas has accumulated during the past two decades, contributing diagnoses and treatments. From the standpoint of molecular genetics, sarcomas are classified into two groups: those with defined genetic alterations and those with various genetic alterations. The genetic alterations in the first group include reciprocal translocations resulting in fusion oncoproteins and oncogenic mutations of defined genes such as those of the c-kit gene in gastrointestinal stromal tumors. The function of fusion proteins includes transcription regulator, signal transducer, chromatic remodeling factor, and growth factor, some of which are suitable targets for the molecular therapy. In tumors belonging to the second group, the number of which is far larger than those of the first group, considerable genetic heterogeneity was found even among tumors with same pathological diagnosis. The disruption of the RB and p53 pathways was frequently found, resulting in the dysregulation of cell cycle and the genomic instability. The application of molecular target therapy for tumors in this group requires novel strategies to overcome cross talk between different signal pathways. Recent evidence from in vitro and in vivo experiments has indicated that the cells of origin of sarcomas are tissue stem cells such as mesenchymal stem cells, and the application of stem cell biology holds the promise of novel treatment options.
Collapse
Affiliation(s)
- Junya Toguchida
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University.
| | | |
Collapse
|
130
|
Abstract
Transcriptional regulation in melanoma is a complex process that tends to hijack the normal melanocyte signaling pathways involved in melanocyte development, pigmentation, and survival. At the center of these often overlapping networks of transcriptional activation and repression is microphthalmia-associated transcription factor (MITF), a melanocyte lineage marker that increases pigment production and exhibits diverse effects on cell survival, proliferation, and cell cycle arrest. The particular conditions that allow MITF to produce these potentially contradictory roles have not yet been fully elucidated, but analysis of the pathways involved provides opportunities to learn about new therapeutic strategies.
Collapse
|
131
|
Melanotic Xp11 translocation renal cancers: a distinctive neoplasm with overlapping features of PEComa, carcinoma, and melanoma. Am J Surg Pathol 2009; 33:609-19. [PMID: 19065101 DOI: 10.1097/pas.0b013e31818fbdff] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe 2 cases of malignant melanotic epithelioid renal neoplasms bearing TFE3 gene fusions. Both neoplasms occurred in children (an 11-y-old boy and a 12-y-old girl), and presented with disseminated metastatic disease including mediastinal and mesenteric adenopathy. Both neoplasms featured sheets of epithelioid cells with clear to finely granular eosinophilic cytoplasm set in a branching capillary vasculature. The neoplastic cells contained variable amounts of finely brown pigment confirmed to be melanin by histochemical stains. By immunohistochemistry, the neoplastic cells labeled for melanocytic markers HMB45 and Melan A, but not for S100 protein, MiTF, or any epithelial marker (cytokeratins, epithelial membrane antigen), renal tubular marker (CD10, PAX8, PAX2, RCC Marker) or muscle marker (actin, desmin). Both neoplasms demonstrated nuclear labeling for TFE3 protein by immunohistochemistry, and the presence of TFE3 gene fusions was confirmed by TFE3 fluorescence in situ hybridization analysis. These distinctive neoplasms combine morphologic features of perivascular epithelioid cell neoplasms (PEComas), Xp11 translocation carcinoma, and melanoma, though the phenotype most closely approaches PEComa. These neoplasms represent the first documented examples in which TFE3 gene fusions coexist with melanin production, and their identification raises the possibility that TFE3 gene fusions may underlie an aggressive subset of lesions currently classified as PEComa in young patients.
Collapse
|
132
|
Kitago M, Koyanagi K, Nakamura T, Goto Y, Faries M, O’Day SJ, Morton DL, Ferrone S, Hoon DS. mRNA expression and BRAF mutation in circulating melanoma cells isolated from peripheral blood with high molecular weight melanoma-associated antigen-specific monoclonal antibody beads. Clin Chem 2009; 55:757-64. [PMID: 19233913 PMCID: PMC2760934 DOI: 10.1373/clinchem.2008.116467] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The detection of circulating tumor cells (CTCs) in the peripheral blood of melanoma patients by quantitative real-time reverse-transcription PCR (qRT-PCR) analysis correlates with a poor prognosis. The assessment of CTCs from blood has been difficult because of lack of a good monoclonal antibody (mAb) directed against surface cell antigens to capture melanoma cells. METHODS Blood was collected prospectively from 57 melanoma patients (43 test and 14 test-development cases) and 5 healthy donors. High molecular weight melanoma-associated antigen (HMW-MAA)-specific mAbs bound to immunomagnetic beads were used to isolate CTCs. mRNA and/or DNA were extracted from CTCs. Testing for the expression of a melanoma-associated gene panel (MLANA, MAGEA3, and MITF) with qRT-PCR and for the presence of BRAFmt (a BRAF gene variant encoding the V600E mutant protein) verified the beads-isolated CTCs to be melanoma cells. A peptide nucleic acid-clamping PCR assay was used for BRAFmt analysis. RESULTS Spiking of peripheral blood cells (PBCs) with melanoma cells showed that the beads-based detection assay can detect approximately 1 melanoma cell in 5 x 10(6) PBCs. qRT-PCR analysis detected MLANA, MAGEA3, and MITF expression in 19 (44%), 29 (67%), and 19 (44%) of the patients, respectively. At least one biomarker of the panel was positive in 40 (93%) of the 43 melanoma patients. BRAFmt was detected in 17 (81%) of the 21 assessed stage IV melanoma patients. CONCLUSION The assay of bead capture coupled with the PCR has utility for assessing CTCs in melanoma patients, which can then be characterized for both genomic and transcriptome expression.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antigens, Neoplasm/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Separation
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Leukocytes
- Melanoma/blood
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/pathology
- Mutation/genetics
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Minoru Kitago
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, Santa Monica, CA
| | - Kazuo Koyanagi
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, Santa Monica, CA
| | - Takeshi Nakamura
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, Santa Monica, CA
| | - Yasufumi Goto
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, Santa Monica, CA
| | - Mark Faries
- Division of Surgical Oncology, John Wayne Cancer Institute at Saint John’s Health Center, Santa Monica, CA
| | | | - Donald L. Morton
- Division of Surgical Oncology, John Wayne Cancer Institute at Saint John’s Health Center, Santa Monica, CA
| | - Soldano Ferrone
- Departments of Surgery, Immunology, and Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Dave S.B. Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, Santa Monica, CA
| |
Collapse
|
133
|
Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. Genes Dev 2009; 22:2980-93. [PMID: 18981476 DOI: 10.1101/gad.1689708] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During cellular differentiation, both permissive and repressive epigenetic modifications must be negotiated to create cell-type-specific gene expression patterns. The T-box transcription factor family is important in numerous developmental systems ranging from embryogenesis to the differentiation of adult tissues. By analyzing point mutations in conserved sequences in the T-box DNA-binding domain, we found that two overlapping, but physically separable regions are required for the physical and functional interaction with H3K27-demethylase and H3K4-methyltransferase activities. Importantly, the ability to associate with these histone-modifying complexes is a conserved function for the T-box family. These novel mechanisms for T-box-mediated epigenetic regulation are essential, because point mutations that disrupt these interactions are found in a diverse array of human developmental genetic diseases.
Collapse
|
134
|
Robinson KC, Fisher DE. Specification and loss of melanocyte stem cells. Semin Cell Dev Biol 2009; 20:111-6. [DOI: 10.1016/j.semcdb.2008.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/21/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
|
135
|
Yokoyama S, Feige E, Poling LL, Levy C, Widlund HR, Khaled M, Kung AL, Fisher DE. Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell Melanoma Res 2008; 21:457-63. [PMID: 18627530 PMCID: PMC3771662 DOI: 10.1111/j.1755-148x.2008.00480.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melanoma incidence continues to rise at an alarming rate while effective systemic therapies remain very limited. Microphthalmia-associated transcription factor (MITF) is required for development of melanocytes and is an amplified oncogene in a fraction of human melanomas. Microphthalmia-associated transcription factor also plays an oncogenic role in human clear cell sarcomas, which typically exhibit melanoma-like features. Although pharmacologic suppression of MITF is of potential interest in a variety of clinical settings, it is not known to contain intrinsic catalytic activity capable of direct small molecule inhibition. An alternative drug-targeting strategy is to identify and interfere with lineage-restricted mechanisms required for its expression. Here, we report that multiple histone deacetylase (HDAC)-inhibitor drugs potently suppress MITF expression in melanocytes, melanoma and clear cell sarcoma cells. Although HDAC inhibitors may affect numerous cellular targets, we observed suppression of skin pigmentation by topical drug application as well as evidence of anti-melanoma efficacy in vitro and in mouse xenografts. Consequently, HDAC inhibitor drugs are candidates to play therapeutic roles in targeting conditions affecting the melanocyte lineage.
Collapse
Affiliation(s)
- Satoru Yokoyama
- Department of Pediatric Hematology/Oncology, Melanoma Program in Medical Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol 2008; 32:452-60. [PMID: 18300804 DOI: 10.1097/pas.0b013e31814b18fb] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clear cell sarcoma (CCS) of soft tissue is a rare sarcoma with morphologic similarities to malignant melanoma but a distinct genetic background including a chromosomal translocation, t(12;22)(q13;q12), or a resultant EWSR1-ATF1 fusion gene. In addition, the tumors occurring in the gastrointestinal tract may have a variant fusion gene EWSR1-CREB1. This study analyzed the clinicopathologic and molecular genetic features of 33 CCSs of soft tissue. The patients' ages ranged from 13 to 73 years (median, 30 y), and there was a male predominance (20 males, 13 females). The tumors were located in the deep soft tissues of the extremities (N=25) or in the trunk or limb girdles (N=8). The median tumor size was 4 cm (range, 1 to 15 cm). The tumor cells were either spindle or epithelioid, and they were arranged predominantly in a short fascicular (N=19) or a solid sheetlike growth pattern (N=14). Minor histologic variations included the existence of rhabdoid cells (N=8), bizarre pleomorphic cells (N=6), alveolar structures due to loss of cellular cohesion (N=3), and a seminomalike pattern (N=2). Tumor necrosis was evident in 14 tumors, and the mitotic activity ranged from 0 to 43 mitotic figures (MF)/10 high-power fields (HPF) (mean: 4 MF/10 HPF). Immunohistochemically, the tumors were consistently positive for S-100 protein (33/33) and variably or focally for HMB45 (32/33), microphthalmia transcription factor (26/32), Melan A (23/32), CD57 (25/33), bcl-2 (30/32), synaptophysin (14/32), CD56 (7/32), epithelial membrane antigen (12/33), cytokeratin (AE1/AE3) (1/32), CD34 (3/32), c-erbB-2 (10/32), c-kit (5/32), and c-met (5/32). alpha-Smooth muscle actin, desmin, and cytokeratin (CAM5.2) were negative. Reverse transcription-polymerase chain reaction using RNA extracted from formalin-fixed, paraffin-embedded tissues demonstrated transcripts of the EWSR1-ATF1 (31/33) or EWSR1-CREB1 fusion gene (2/33). In 26 cases with available clinical information, local recurrences and metastases developed in 2 and 15 patients, respectively. Ten patients were dead of the disease, and the overall survival rate was 63% at 5 years. However, no clinicopathologic or molecular variables associated with the patients' prognosis were identified. This study confirms that CCS is an aggressive soft tissue tumor with a melanocytic phenotype and wider morphologic variations than had been generally considered. In cases with unusual histologic findings, molecular detection of the EWSR1-ATF1/CREB1 fusion genes provides critical information regarding the diagnosis of the tumor.
Collapse
|
137
|
Rossi S, Szuhai K, Ijszenga M, Tanke HJ, Zanatta L, Sciot R, Fletcher CDM, Dei Tos AP, Hogendoorn PCW. EWSR1-CREB1 and EWSR1-ATF1 Fusion Genes in Angiomatoid Fibrous Histiocytoma. Clin Cancer Res 2007; 13:7322-8. [DOI: 10.1158/1078-0432.ccr-07-1744] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
138
|
Riggi N, Cironi L, Suvà ML, Stamenkovic I. Sarcomas: genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J Pathol 2007; 213:4-20. [PMID: 17691072 DOI: 10.1002/path.2209] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sarcomas comprise some of the most aggressive solid tumours that, for the most part, respond poorly to chemo- and radiation therapy and are associated with a sombre prognosis when surgical removal cannot be performed or is incomplete. Partly because of their lower frequency, sarcomas have not been studied as intensively as carcinomas and haematopoietic malignancies, and the molecular mechanisms that underlie their pathogenesis are only beginning to be understood. Even more enigmatic is the identity of the primary cells from which these tumours originate. Over the past 25 years, however, several non-random chromosomal translocations have been found to be associated with defined sarcomas. Each of these translocations generates a fusion gene believed to be directly related to the pathogenesis of the sarcoma in which it is expressed. The corresponding fusion proteins provide a unique tool not only to study the process of sarcoma development, but also to identify cells that are permissive for their putative oncogenic properties. This is the first of two reviews that cover the mechanisms whereby specific fusion/mutant gene products participate in sarcoma development and the cellular context that may provide the necessary permissiveness for their expression and oncogenicity. Part 1 of the review focuses on sarcomas that express fusion genes containing TET gene family products, including EWSR1, TLS/FUS, and TAFII68. Part 2 (J Pathol 2007; DOI: 10.1002/path.2008) summarizes our current understanding of the genetic and cellular origins of sarcomas expressing fusion genes exclusive of TET family members; it also covers soft tissue malignancies harbouring specific mutations in RTK-encoding genes, the prototype of which are gastrointestinal stromal tumours (GIST).
Collapse
Affiliation(s)
- N Riggi
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
139
|
Medendorp K, van Groningen JJM, Schepens M, Vreede L, Thijssen J, Schoenmakers EFPM, van den Hurk WH, Geurts van Kessel A, Kuiper RP. Molecular mechanisms underlying the MiT translocation subgroup of renal cell carcinomas. Cytogenet Genome Res 2007; 118:157-65. [PMID: 18000366 DOI: 10.1159/000108296] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 01/04/2007] [Indexed: 01/28/2023] Open
Abstract
Renal cell carcinomas (RCCs) represent a heterogeneous group of neoplasms, which differ in histological, pathologic and clinical characteristics. The tumors originate from different locations within the nephron and are accompanied by different recurrent (cyto)genetic anomalies. Recently, a novel subgroup of RCCs has been defined, i.e., the MiT translocation subgroup of RCCs. These tumors originate from the proximal tubule of the nephron, exhibit pleomorphic histological features including clear cell morphologies and papillary structures, and are found predominantly in children and young adults. In addition, these tumors are characterized by the occurrence of recurrent chromosomal translocations, which result in disruption and fusion of either the TFE3 or TFEB genes, both members of the MiT family of basic helix-loop-helix/leucine-zipper transcription factor genes. Hence the name MiT translocation subgroup of RCCs. In this review several features of this RCC subgroup will be discussed, including the molecular mechanisms that may underlie their development.
Collapse
Affiliation(s)
- K Medendorp
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Bruder E, Moch H, Ehrlich D, Leuschner I, Harms D, Argani P, Briner J, Graf N, Selle B, Rufle A, Paulussen M, Koesters R. Wnt signaling pathway analysis in renal cell carcinoma in young patients. Mod Pathol 2007; 20:1217-29. [PMID: 17873895 DOI: 10.1038/modpathol.3800957] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal cell carcinomas in young patients constitute a morphologically and genetically heterogeneous group. Twenty percent belong to the newly recognized Xp11.2 translocation-associated family and rare tumors arise from nephroblastoma. Aberrant Wnt signaling through beta-catenin mutation has been implicated in nephroblastoma pathogenesis and has been found to synergize with WT1 mutations. To characterize Wnt signaling activity in renal cell carcinomas in young patients, we gathered 34 tumors (three clear cell, ten Xp11.2 translocation associated, five papillary, two chromophobe, two collecting duct, one neuroblastoma associated, eight unclassified renal cell carcinomas, and three carcinomas combined with nephroblastoma) from patients less than 22 years. Expression of beta-catenin, its homologue gamma-catenin, and of WT1 was assessed by immunohistochemistry in 30 tumors, and sequence analysis of CTNNB1, CTNNG1, and WT1 genes was performed in 25 tumors. Cytoplasmic beta-catenin accumulation was demonstrated in two papillary carcinomas, one neuroblastoma-associated carcinoma, and two carcinomas arising from nephroblastoma. The pattern of gamma-catenin expression paralleled that of beta-catenin but its signal intensity was lower in 22, equal in 7, and stronger only in 1 tumor, respectively. Four tumors showed nuclear WT1 expression. One Xp11.2 translocation-associated carcinoma presented a rare intronic CTNNB1 single nucleotide polymorphism and cytoplasmic beta-catenin accumulation. There were no further CTNNB1 or CTNNG1 sequence alterations. A WT1 mutation was found in the nephroblastoma component of a carcinoma arising from nephroblastoma. These findings suggest Wnt signaling pathway activation only in a minority of renal cell carcinomas in young patients. CTNNB1 mutations are rare events. Cytoplasmic beta-catenin accumulation in an Xp11.2-associated carcinoma suggests potential interaction of Wnt signaling components with microphthalmia transcription factor family also in Xp11.2 translocation carcinomas. WT1 mutation in the nephroblastoma component of a mixed-type renal cell carcinoma provides direct evidence for clonal independence of nephroblastoma and carcinoma components in this exceptional tumor.
Collapse
Affiliation(s)
- Elisabeth Bruder
- Institute of Pathology, University Hospital Basel, Schoenbeinstrasse 40, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
The cAMP response element-binding protein (CREB) is a stimulus-induced transcription factor that responds rapidly to phosphorylation and/or coactivator activation. Regulated activation of CREB has a significant impact on cellular growth, proliferation and survival. To overturn the cellular control of these processes, tumor cells have developed various mechanisms to achieve constitutive activation of CREB, including gene amplification, chromosome translocation, interaction with viral oncoproteins, and inactivation of tumor suppressor genes. These mechanisms converge on the phosphorylation of CREB and/or the activation of transducer of regulated CREB activity (TORC) coactivators to effect uncontrolled proliferation of cells. This minireview summarizes the different lines of existing evidence that support a direct role of CREB in oncogenesis.
Collapse
Affiliation(s)
- Yeung-Tung Siu
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
142
|
Hallor KH, Micci F, Meis-Kindblom JM, Kindblom LG, Bacchini P, Mandahl N, Mertens F, Panagopoulos I. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007; 251:158-63. [DOI: 10.1016/j.canlet.2006.11.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/13/2006] [Indexed: 12/11/2022]
|
143
|
Abstract
The incidence of melanoma is increasing at one of the highest rates of any form of cancer in the United States, with the current lifetime risk being one in 68. At present, there are limited systemic therapies to treat advanced stages of melanoma, and the key to improved survival remains early detection. Recent discoveries have allowed for a clearer picture of the molecular events leading to melanoma development and progression. Since identifying prevalent activating mutations of the BRAF kinase in melanomas, there has been a flood of additional molecular studies to further clarify the role of this pathway and others in melanomagenesis. In particular, recent genetic studies have demonstrated specific genotype-phenotype correlations that provide the first major insights into the molecular subclassification of melanoma and the heterogeneous nature of this malignancy. In this article, we review the most up-to-date molecular discoveries in melanoma biology and provide a framework for understanding their significance in melanoma development and progression. We also provide details on the development of novel therapies based on these recent molecular discoveries and insight into current and planned clinical trials. It is expected that these latest studies in melanoma will help define the critical molecular events involved in disease onset and progression and allow us to move rapidly toward a true molecular classification. We eagerly anticipate rationally designed melanoma therapies based on such a classification scheme and the associated improvements in patient outcomes.
Collapse
Affiliation(s)
- Leslie A Fecher
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, USA
| | | | | | | |
Collapse
|
144
|
Abstract
When connective tissue undergoes malignant transformation, glioblastomas and sarcomas arise. However, the ancient biochemical mechanisms, which are now operational in sarcomas distorted by mutations and gene fusions in misaligned chromosomes, were originally acquired by those cells that emerged during the Cambrian explosion. Preserved throughout evolution up to the genus Homo, these mechanisms dictate the apoptosis- and senescence-resistant immortality of malignant cells. A 'retroviral paradox' distinguishes human sarcomas from those of the animal world. In contrast to the retrovirally induced sarcomatous transformation of animal (avian, murine, feline and simian) cells, human sarcomas have so far failed to yield a causative retroviral isolate. However, the proto-oncogenes/oncogenes transduced from their host cells by retroviruses of animals are the same that are active in human sarcomas. Since the encoded oncoproteins arise after birth, they are recognized frequently by the immune system of the host. Immune lymphocytes that kill autologous sarcoma cells in vitro commonly fail to do so in vivo. Sarcoma vaccines generate immune T- and natural killer cell reactions; even when vaccinated patients do not show a clinical response, their tumors become more sensitive to chemotherapy. The aim of this review is to lay a solid molecular biological foundation for the conclusion that targeting the sarcoma oncogenes will result in regression of the disease.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- Cancer Institute of St. Joseph's Hospital Affiliated with the HL Moffitt Cancer Center, The University of South Florida College of Medicine, Department of Medical Microbiology and Immunology, Tampa, Florida, USA.
| |
Collapse
|
145
|
Antonescu CR, Dal Cin P, Nafa K, Teot LA, Surti U, Fletcher CD, Ladanyi M. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007; 46:1051-60. [PMID: 17724745 DOI: 10.1002/gcc.20491] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The molecular hallmark of angiomatoid fibrous histiocytoma (AFH) is not well defined, with only six cases with specific gene fusions reported to date, consisting of either FUS-ATF1 or EWSR1-ATF1. To address this, we investigated the presence of FUS-ATF1, EWSR1-ATF1, and the highly related EWSR1-CREB1 fusion in a group of nine AFHs. All cases were subjected to RT-PCR for EWSR1-ATF1 and EWSR1-CREB1. FISH for EWSR1 and FUS rearrangements was performed in most cases. Transcriptional profiling was performed in three tumors and their gene expression was compared to five clear cell sarcomas expressing either the EWSR1-ATF1 or EWSR1-CREB1 fusion. By RT-PCR, eight out of nine tumors showed the presence of the EWSR1-CREB1 fusion, while one had an EWSR1-ATF1 transcript. FISH showed evidence of EWSR1 rearrangement in seven out of eight cases. Karyotypic analysis performed in one tumor showed a t(2;22)(q33;q12). High transcript levels were noted for TFE3 in AFH tumors, while overexpression of genes involved in melanogenesis, such as MITF, GP100, and MET was noted in somatic clear cell sarcomas. We report for the first time the presence of EWSR1-CREB1 in AFH, which now appears to be the most frequent gene fusion in this tumor. EWSR1-CREB1 is a novel translocation recently described in clear cell sarcoma of the GI tract. EWSR1-ATF1, identified in some AFH cases, is the most common genetic abnormality in soft tissue clear cell sarcoma. Thus, identical fusions involving ATF1 and CREB1 are found in two distinct sarcomas, which may be able to transform two different types of mesenchymal precursor cells, unlike most other sarcoma gene fusions.
Collapse
Affiliation(s)
- Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
146
|
|
147
|
Esumi N, Kachi S, Campochiaro PA, Zack DJ. VMD2 promoter requires two proximal E-box sites for its activity in vivo and is regulated by the MITF-TFE family. J Biol Chem 2006; 282:1838-50. [PMID: 17085443 DOI: 10.1074/jbc.m609517200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinal pigment epithelium (RPE) is crucial for the function and survival of retinal photoreceptors. VMD2 encodes bestrophin, an oligomeric chloride channel that is preferentially expressed in the RPE and, when mutated, causes Best macular dystrophy. Previously, we defined the VMD2 upstream region from -253 to +38 bp as being sufficient to direct RPE-specific expression in the eye, and we suggested microphthalmia-associated transcription factor (MITF) as a possible positive regulator. Here we show that in transgenic mice the -154 to +38 bp region is sufficient for RPE expression, and mutation of two E-boxes, 1 and 2, within this region leads to loss of promoter activity. A yeast one-hybrid screen using bait containing E-box 1 identified clones encoding MITF, TFE3, and TFEB, and chromatin immunoprecipitation with antibodies against these proteins enriched the VMD2 proximal promoter. Analysis using in vivo electroporation with constructs containing mutation of each E-box indicated that expression in native RPE requires both E-boxes, yet in vitro DNA binding studies suggested that MITF binds well to E-box 1 but only minimally to E-box 2. MITF knockdown by small interfering RNA (siRNA) in cell culture revealed a strong correlation between MITF and VMD2 mRNA levels. Sequential transfection of a luciferase construct with expression vectors following MITF siRNA revealed that TFE3 and TFEB can also transactivate the VMD2 promoter. Taken together, we suggest that VMD2 is regulated by the MITF-TFE family through two E-boxes, with E-box 1 required for a direct interaction of MITF-TFE factors and E-box 2 for binding of the as yet unidentified factor(s).
Collapse
Affiliation(s)
- Noriko Esumi
- The Guerrieri Center for Genetic Engineering and Molecular Ophthalmology, The Wilmer Eye Institute, the Departments of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9289, USA.
| | | | | | | |
Collapse
|
148
|
Abstract
Cell for cell, probably no human cancer is as aggressive as melanoma. It is among a handful of cancers whose dimensions are reported in millimeters. Tumor thickness approaching 4 mm presents a high risk of metastasis, and a diagnosis of metastatic melanoma carries with it an abysmal median survival of 6-9 mo. What features of this malignancy account for such aggressive behavior? Is it the migratory history of its cell of origin or the programmed adaptation of its differentiated progeny to environmental stress, particularly ultraviolet radiation? While the answers to these questions are far from complete, major strides have been made in our understanding of the cellular, molecular, and genetic underpinnings of melanoma. More importantly, these discoveries carry profound implications for the development of therapies focused directly at the molecular engines driving melanoma, suggesting that we may have reached the brink of an unprecedented opportunity to translate basic science into clinical advances. In this review, we attempt to summarize our current understanding of the genetics and biology of this disease, drawing from expanding genomic information and lessons from development and genetically engineered mouse models. In addition, we look forward toward how these new insights will impact on therapeutic options for metastatic melanoma in the near future.
Collapse
Affiliation(s)
- Lynda Chin
- Melanoma Program, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
149
|
Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006; 12:406-14. [PMID: 16899407 DOI: 10.1016/j.molmed.2006.07.008] [Citation(s) in RCA: 815] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/06/2006] [Accepted: 07/28/2006] [Indexed: 01/11/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) acts as a master regulator of melanocyte development, function and survival by modulating various differentiation and cell-cycle progression genes. It has been demonstrated that MITF is an amplified oncogene in a fraction of human melanomas and that it also has an oncogenic role in human clear cell sarcoma. However, MITF also modulates the state of melanocyte differentiation. Several closely related transcription factors also function as translocated oncogenes in various human malignancies. These data place MITF between instructing melanocytes towards terminal differentiation and/or pigmentation and, alternatively, promoting malignant behavior. In this review, we survey the roles of MITF as a master lineage regulator in melanocyte development and its emerging activities in malignancy. Understanding the molecular function of MITF and its associated pathways will hopefully shed light on strategies for improving therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Carmit Levy
- Melanoma Program and Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|