101
|
Mafra D, Gidlund EK, Borges NA, Magliano DC, Lindholm B, Stenvinkel P, von Walden F. Bioactive food and exercise in chronic kidney disease: Targeting the mitochondria. Eur J Clin Invest 2018; 48:e13020. [PMID: 30144313 DOI: 10.1111/eci.13020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 08/11/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD), which affects 10%-15% of the population, associates with a range of complications-such as cardiovascular disease, frailty, infections, muscle and bone disorders and premature ageing-that could be related to alterations of mitochondrial number, distribution, structure and function. As mitochondrial biogenesis, bioenergetics and the dynamic mitochondrial networks directly or indirectly regulate numerous intra- and extracellular functions, the mitochondria have emerged as an important target for interventions aiming at preventing or improving the treatment of complications in CKD. In this review, we discuss the possible role of bioactive food compounds and exercise in the modulation of the disturbed mitochondrial function in a uraemic milieu.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Eva-Karin Gidlund
- Division of Molecular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Natália Alvarenga Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - D'Angelo Carlo Magliano
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Bengt Lindholm
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
102
|
Wang P, Fernandez-Sanz C, Wang W, Sheu SS. Why don't mice lacking the mitochondrial Ca 2+ uniporter experience an energy crisis? J Physiol 2018; 598:1307-1326. [PMID: 30218574 DOI: 10.1113/jp276636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 01/15/2023] Open
Abstract
Current dogma holds that the heart balances energy demand and supply effectively and sustainably by sequestering enough Ca2+ into mitochondria during heartbeats to stimulate metabolic enzymes in the tricarboxylic acid (TCA) cycle and electron transport chain (ETC). This process is called excitation-contraction-bioenergetics (ECB) coupling. Recent breakthroughs in identifying the mitochondrial Ca2+ uniporter (MCU) and its associated proteins have opened up new windows for interrogating the molecular mechanisms of mitochondrial Ca2+ homeostasis regulation and its role in ECB coupling. Despite remarkable progress made in the past 7 years, it has been surprising, almost disappointing, that germline MCU deficiency in mice with certain genetic background yields viable pups, and knockout of the MCU in adult heart does not cause lethality. Moreover, MCU deficiency results in few adverse phenotypes, normal performance, and preserved bioenergetics in the heart at baseline. In this review, we briefly assess the existing literature on mitochondrial Ca2+ homeostasis regulation and then we consider possible explanations for why MCU-deficient mice are spared from energy crises under physiological conditions. We propose that MCU and/or mitochondrial Ca2+ may have limited ability to set ECB coupling, that other mitochondrial Ca2+ handling mechanisms may play a role, and that extra-mitochondrial Ca2+ may regulate ECB coupling. Since the heart needs to regenerate a significant amount of ATP to assure the perpetuation of heartbeats, multiple mechanisms are likely to work in concert to match energy supply with demand.
Collapse
Affiliation(s)
- Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Celia Fernandez-Sanz
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
103
|
Yamada T, Murata D, Adachi Y, Itoh K, Kameoka S, Igarashi A, Kato T, Araki Y, Huganir RL, Dawson TM, Yanagawa T, Okamoto K, Iijima M, Sesaki H. Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease. Cell Metab 2018; 28:588-604.e5. [PMID: 30017357 PMCID: PMC6170673 DOI: 10.1016/j.cmet.2018.06.014] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/07/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
It is unknown what occurs if both mitochondrial division and fusion are completely blocked. Here, we introduced mitochondrial stasis by deleting two dynamin-related GTPases for division (Drp1) and fusion (Opa1) in livers. Mitochondrial stasis rescues liver damage and hypotrophy caused by the single knockout (KO). At the cellular level, mitochondrial stasis re-establishes mitochondrial size and rescues mitophagy defects caused by division deficiency. Using Drp1KO livers, we found that the autophagy adaptor protein p62/sequestosome-1-which is thought to function downstream of ubiquitination-promotes mitochondrial ubiquitination. p62 recruits two subunits of a cullin-RING ubiquitin E3 ligase complex, Keap1 and Rbx1, to mitochondria. Resembling Drp1KO, diet-induced nonalcoholic fatty livers enlarge mitochondria and accumulate mitophagy intermediates. Resembling Drp1Opa1KO, Opa1KO rescues liver damage in this disease model. Our data provide a new concept that mitochondrial stasis leads the spatial dimension of mitochondria to a stationary equilibrium and a new mechanism for mitochondrial ubiquitination in mitophagy.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shoichiro Kameoka
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoichi Araki
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
104
|
Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018; 34:1038-1055. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria originated from the endosymbiotic event commencing from the engulfment of an ancestral α-proteobacterium by the first eukaryotic ancestor. Establishment of niches has led to various adaptations among eukaryotes. In anaerobic parasitic protists, the mitochondria have undergone modifications by combining features shared from the aerobic mitochondria with lineage-specific components and mechanisms; a diversified class of organelles emerged and are generally called mitochondrion-related organelles (MROs). In this review we summarize and discuss the recent advances in the knowledge of MROs from parasitic protists, particularly the themes such as metabolic functions, contribution to parasitism, dynamics, protein targeting, and novel lineage- specific proteins, with emphasis on the diversity among these organelles.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
105
|
Xu XW, Yang XM, Zhao WJ, Zhou L, Li DC, Zheng YH. DNM1L, a key prognostic predictor for gastric adenocarcinoma, is involved in cell proliferation, invasion, and apoptosis. Oncol Lett 2018; 16:3635-3641. [PMID: 30127972 PMCID: PMC6096219 DOI: 10.3892/ol.2018.9138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Dynamin-1-like protein (DNM1L) encodes a member of the dynamin superfamily of GTPases. It mediates mitochondrial and peroxisomal division and is involved in the regulation of apoptosis. However, its role in gastric cancer remains unclear. MKN-45 gastric cancer cells were transfected with short hairpin RNA (shRNA) to suppress DNM1L expression. MTT, flow cytometry, and Transwell assays were used to detect the changes in cell proliferation, apoptosis, and invasion, respectively. Immunohistochemistry was used to detect DNM1L expression in gastric adenocarcinoma specimens, and the association of DNM1L expression with clinicopathological features and prognosis was analyzed. After the suppression of endogenous DNM1L expression in MKN-45 cells with shRNA, cell proliferation and invasion rates were significantly reduced, whereas apoptosis was significantly increased (all P<0.01). The expression of DNM1L was significantly higher in gastric adenocarcinoma specimens compared with that in pericarcinoma tissues (P<0.001). The expression of DNM1L increased with increasing infiltration depth, lymphatic metastasis, and higher tumor node metastasis stage (P<0.05). The expression of DNM1L associated negatively with prognosis (P<0.01). DNM1L plays a critical role in the proliferation, invasion and apoptosis of human gastric adenocarcinoma. DNM1L expression has prognostic significance for the survival of patients with gastric adenocarcinoma.
Collapse
Affiliation(s)
- Xiao-Wu Xu
- Department of General Surgery, The Second Affiliated Hospital and Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiao-Min Yang
- Department of Pathology, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Wei-Jia Zhao
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325002, P.R. China
| | - Lei Zhou
- Department of General Surgery, The Second Affiliated Hospital and Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - De-Chun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yi-Hu Zheng
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325002, P.R. China
| |
Collapse
|
106
|
Yamada T, Adachi Y, Yanagawa T, Iijima M, Sesaki H. p62/sequestosome-1 knockout delays neurodegeneration induced by Drp1 loss. Neurochem Int 2018; 117:77-81. [PMID: 28527629 PMCID: PMC5847479 DOI: 10.1016/j.neuint.2017.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
Abstract
Purkinje neurons, one of the largest neurons in the brain, are critical for controlling body movements, and the dysfunction and degeneration of these cells cause ataxia. Purkinje neurons require a very efficient energy supply from mitochondria because of their large size and extensive dendritic arbors. We have previously shown that mitochondrial division mediated by dynamin-related protein 1 (Drp1) is critical for the development and survival of Purkinje neurons. Drp1 deficiency has been associated with one of the major types of ataxia: autosomal recessive spastic ataxia of Charlevoix Saguenay. Using post-mitotic Purkinje neuron-specific Drp1 knockout (KO) in mice, we investigated the molecular mechanisms that mediate the progressive degeneration of Drp1-KO Purkinje neurons in vivo. In these Purkinje neurons, p62/sequestosome-1, a multi-functional adaptor protein that balances apoptotic cell death and cell survival, was recruited to large mitochondria resulting from unopposed fusion in the absence of mitochondrial division. To test the role of p62 in Drp1-deficient neurodegeneration, we created mice lacking both Drp1 and p62 and found that the additional loss of p62 significantly extended the survival of Purkinje neurons lacking Drp1. These results provide insights into the neurodegenerative mechanisms of mitochondrial ataxia and a critical foundation for therapeutic interventions for this disease.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
107
|
Li X, Hou J, Du J, Feng J, Yang Y, Shen Y, Chen S, Feng J, Yang D, Li D, Pei H, Yang Y. Potential Protective Mechanism in the Cardiac Microvascular Injury. Hypertension 2018; 72:116-127. [PMID: 29735636 DOI: 10.1161/hypertensionaha.118.11035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/02/2018] [Accepted: 03/31/2018] [Indexed: 01/22/2023]
Abstract
Cardiac microvascular injury often occurs in patients with type 2 diabetes mellitus (T2DM) who develop hyperglycemia and hyperlipidemia. However, besides reported contradictory roles in cardiac diseases, the function of TRPV1 (transient receptor potential vanilloid 1) in cardiac microvessels is not well defined. This study was performed to determine the detailed role of TRPV1 in cardiac microvascular endothelial cells (CMECs) in T2DM. T2DM mice were established by multiple injections of low-dose streptozotocin and high-fat feeding. CMECs were cultured separately in mediums of normal glucose, high glucose (HG), high fatty acid (HF), and HG plus HF (HG-HF). HG-HF inhibited TRPV1 expression in CMECs, reducing cellular Ca2+ content ([Ca2+]i). T2DM impaired cardiac function, disturbed glucose uptake, and damaged microvascular barrier, which were further aggravated by TRPV1-/- Exposure to HG-HF, particularly in TRPV1-/- CMECs, led to a higher level of apoptosis and a lower level of nitric oxide production in viable CMECs. HG-HF markedly enhanced generation of reactive oxygen species and nitrotyrosine, especially in the absence of TRPV1. H2O2 administration reduced TRPV1 expression in CMECs. HG-HF significantly depressed expression of PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α) and OPA1 (optic atrophy 1) by reducing [Ca2+]i, whereas OPA1 supplementation partly reversed those detrimental effects induced by TRPV1-/- Furthermore, capsaicin treatment not only attenuated CMECs injury induced by HG-HF but also mitigated cardiac microvascular injury induced by T2DM. Collectively, T2DM leads to cardiac microvascular injury by exacerbating the vicious circle of TRPV1 blockage and reactive oxygen species overload. Long-term capsaicin can protect cardiac microvessels against T2DM via suppressing oxidative/nitrative stress mediated by TRPV1/Ca2+/PGC-1α/OPA1 pathway in CMECs.
Collapse
Affiliation(s)
- Xiuchuan Li
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Juanni Hou
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Jin Du
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Jian Feng
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Yi Yang
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Yang Shen
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Sha Chen
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Juan Feng
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Haifeng Pei
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| | - Yongjian Yang
- From the Graduate School, Third Military Medical University, Chongqing, China (X.L., J.H., J.D., H.P., Y.Y.)
- Department of Cardiology, Chengdu Military General Hospital, China (X.L., J.H., J.D., J.F., Y.Y., Y.S., S.C., J.F., D.Y., D.L., H.P., Y.Y.)
| |
Collapse
|
108
|
Kalia R, Wang RYR, Yusuf A, Thomas PV, Agard DA, Shaw JM, Frost A. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 2018; 558:401-405. [PMID: 29899447 PMCID: PMC6120343 DOI: 10.1038/s41586-018-0211-2] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
Mitochondrial inheritance, genome maintenance, and metabolic adaptation depend on organelle fission by Dynamin-Related Protein 1 (DRP1) and its mitochondrial receptors. DRP1 receptors include the paralogs Mitochondrial Dynamics 49 and 51 (MID49/MID51) and Mitochondrial Fission Factor (MFF), but the mechanisms by which these proteins recruit and regulate DRP1 are unknown. Here we present a cryoEM structure of human, full-length DRP1 coassembled with MID49 and an analysis of structure- and disease-based mutations. We report that GTP induces a remarkable elongation and rotation of the G-domain, Bundle-Signaling Element (BSE) and connecting hinge loops of DRP1. In this conformation, a network of multivalent interactions promotes polymerization of a linear DRP1 filament with MID49/MID51. Following coassembly, GTP hydrolysis and exchange lead to MID receptor dissociation, filament shortening and curling of DRP1 oligomers into constricted and closed rings. Together, these views of full-length, receptor- and nucleotide-bound conformations reveal how DRP1 performs mechanical work through nucleotide-driven allostery.
Collapse
Affiliation(s)
- Raghav Kalia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, USA
| | - Ray Yu-Ruei Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Ali Yusuf
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, USA
| | - Paul V Thomas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Janet M Shaw
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Howard Hughes Medical Institute, Salt Lake City, UT, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. .,California Institute for Quantitative Biomedical Research, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
109
|
Itoh K, Adachi Y, Yamada T, Suzuki TL, Otomo T, McBride HM, Yoshimori T, Iijima M, Sesaki H. A brain-enriched Drp1 isoform associates with lysosomes, late endosomes, and the plasma membrane. J Biol Chem 2018; 293:11809-11822. [PMID: 29853636 DOI: 10.1074/jbc.ra117.001253] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) constricts mitochondria as a mechanochemical GTPase during mitochondrial division. The Drp1 gene contains several alternative exons and produces multiple isoforms through RNA splicing. Here we performed a systematic analysis of Drp1 transcripts in different mouse tissues and identified a previously uncharacterized isoform that is highly enriched in the brain. This Drp1 isoform is termed Drp1ABCD because it contains four alterative exons: A, B, C, and D. Remarkably, Drp1ABCD is located at lysosomes, late endosomes, and the plasma membrane in addition to mitochondria. Furthermore, Drp1ABCD is concentrated at the interorganelle interface between mitochondria and lysosomes/late endosomes. The localizations of Drp1ABCD at lysosomes, late endosomes, and the plasma membrane require two exons, A and B, that are present in the GTPase domain. Drp1ABCD assembles onto these membranes in a manner that is regulated by its oligomerization and GTP hydrolysis. Experiments using lysosomal inhibitors show that the association of Drp1ABCD with lysosomes/late endosomes depends on lysosomal pH but not their protease activities. Thus, Drp1 may connect mitochondria to endosomal-lysosomal pathways in addition to mitochondrial division.
Collapse
Affiliation(s)
- Kie Itoh
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yoshihiro Adachi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tatsuya Yamada
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Takamichi L Suzuki
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Takanobu Otomo
- the Department of Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan, and
| | - Heidi M McBride
- the Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Tamotsu Yoshimori
- the Department of Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan, and
| | - Miho Iijima
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hiromi Sesaki
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,
| |
Collapse
|
110
|
Kashatus DF. The regulation of tumor cell physiology by mitochondrial dynamics. Biochem Biophys Res Commun 2018; 500:9-16. [PMID: 28676396 PMCID: PMC5748380 DOI: 10.1016/j.bbrc.2017.06.192] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022]
Abstract
Mitochondrial dynamics are increasingly recognized to play an important role in regulating mitochondrial function in response to diverse stimuli. Given the overlap in the physiological processes influenced by mitochondria and the physiological processes disrupted in tumor cells, we speculate that tumor cells alter mitochondrial shape to promote the tumorigenic phenotype. Here, we briefly review the evidence linking changes in mitochondrial fusion and fission to a number of key tumorigenic processes, including metabolic rewiring, inhibition of cell death, cell migration, cell proliferation and self-renewal capacity. The role of mitochondrial dynamics in tumor growth is an important emerging area of research, a better understanding of which may lead to promising new therapeutic options for the treatment of cancer.
Collapse
Affiliation(s)
- David F Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, PO Box 800734, Charlottesville, VA 22901, USA.
| |
Collapse
|
111
|
Han Y, Cho U, Kim S, Park IS, Cho JH, Dhanasekaran DN, Song YS. Tumour microenvironment on mitochondrial dynamics and chemoresistance in cancer. Free Radic Res 2018; 52:1271-1287. [PMID: 29607684 DOI: 10.1080/10715762.2018.1459594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria, evolutionally acquired symbionts of eukaryotic cells, are essential cytoplasmic organelles. They are structurally dynamic organelles that continually go through fission and fusion processes in response to various stimuli. Tumour tissue is composed of not just cancer cells but also various cell types like fibroblasts, mesenchymal stem and immune cells. Mitochondrial dynamics of cancer cells has been shown to be significantly affected by features of tumour microenvironment such as hypoxia, inflammation and energy deprivation. The interactions of cancer cells with tumour microenvironment like hypoxia give rise to the inter- and intratumoural heterogeneity, causing chemoresistance. In this review, we will focus on the chemoresistance by tumoural heterogeneity in relation to mitochondrial dynamics of cancer cells. Recent findings in molecular mechanisms involved in the control of mitochondrial dynamics as well as the impact of mitochondrial dynamics on drug sensitivity in cancer are highlighted in the current review.
Collapse
Affiliation(s)
- Youngjin Han
- a Biomodulation, Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Untack Cho
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Interdisciplinary Program in Cancer Biology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Soochi Kim
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,d Seoul National University Hospital Biomedical Research Institute , Seoul , Republic of Korea
| | - In Sil Park
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,e Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Jae Hyun Cho
- f Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Danny N Dhanasekaran
- g Stephenson Cancer Center , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Yong Sang Song
- a Biomodulation, Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Interdisciplinary Program in Cancer Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,f Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
112
|
Jin D, Gu B, Xiong D, Huang G, Huang X, Liu L, Xiao J. A Transcriptomic Analysis of Saccharomyces cerevisiae Under the Stress of 2-Phenylethanol. Curr Microbiol 2018; 75:1068-1076. [PMID: 29666939 DOI: 10.1007/s00284-018-1488-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
2-Phenylethanol (2-PE) is a kind of advanced aromatic alcohol with rose fragrance, which is wildly used for the deployment of flavors and fragrances. Microbial transformation is the most feasible method for the production of natural 2-PE. But a bottleneck problem is the toxicity of 2-PE on the cells. The molecular mechanisms of the toxic effect of 2-PE to Saccharomyces cerevisiae are not well studied. In this study, we analyzed the transcriptomes of S. cerevisiae in the media with and without 2-PE, respectively, using Illumina RNA-Seq technology. We identified 580 differentially expressed genes between S. cerevisiae in two different treatments. GO and KEGG enrichment analyses of these genes suggested that most genes encoding mitochondrial proteins, cytoplasmic, and plasma membrane proteins were significantly up-regulated, whereas the enzymes related to amino acid metabolism were down-regulated. These results indicated that 2-PE suppressed the synthesis of plasma membrane proteins, which suppressed the transport of nutrients required for growth. The findings in this study will provide insight into the inhibitory mechanism of 2-PE to yeast and other microbes.
Collapse
Affiliation(s)
- Danfeng Jin
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China.
| | - Bintao Gu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Dawei Xiong
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Guochang Huang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Xiaoping Huang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Lan Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Jun Xiao
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
113
|
Yu H, Lin X, Wang D, Zhang Z, Guo Y, Ren X, Xu B, Yuan J, Liu J, Spencer PS, Wang JZ, Yang X. Mitochondrial Molecular Abnormalities Revealed by Proteomic Analysis of Hippocampal Organelles of Mice Triple Transgenic for Alzheimer Disease. Front Mol Neurosci 2018; 11:74. [PMID: 29593495 PMCID: PMC5854685 DOI: 10.3389/fnmol.2018.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of Alzheimer's disease (AD). However, the precise mitochondrial molecular deficits in AD remain poorly understood. Mitochondrial and nuclear proteomic analysis in mature male triple transgenic AD mice (PS1M146V/APPSwe/TauP301L) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with MALDI-TOF-MS/MS, bio-informatics analysis and immunofluorescent staining were performed in this study. In addition to impaired spatial memory impairment and intracellular accumulation of amyloid 1-42 (Aβ1-42) in the 3xTg-AD mice, a well-accepted mouse model of the human disease, we also found significantly increased DNA oxidative damage in entorhinal cortex, hippocampal CA1, CA3 and dental gyrus (DG), as evidenced by the positive staining of 8-hydroxyguanosine, a biomarker of mild cognitive impairment early in AD. We identified significant differences in 27 hippocampal mitochondrial proteins (11 increased and 16 decreased), and 37 hippocampal nuclear proteins (12 increased and 25 decreased) in 3xTg-AD mice compared with the wild-type (WT) mice. Differentially expressed mitochondrial and nuclear proteins were mainly involved in energy metabolism (>55%), synapses, DNA damage, apoptosis and oxidative stress. Two proteins were differentially expressed in both hippocampal mitochondria and nuclei, namely electron transport chain (ETC)-related protein ATP synthase subunit d (ATP5H) was significantly decreased, and apoptosis-related dynamin-1 (DYN1), a pre-synaptic and mitochondrial division-regulated protein that was significantly increased. In sum, perturbations of hippocampus mitochondrial energy metabolism-related proteins responsible for ATP generation via oxidation phosphorylation (OXPHOS), especially nuclear-encoded OXPHOS proteins, correlated with the amyloid-associated cognitive deficits of this murine AD model. The molecular changes in respiratory chain-related proteins and DYN1 may represent novel biomarkers of AD.
Collapse
Affiliation(s)
- Haitao Yu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xuemei Lin
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dian Wang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yi Guo
- Department of Neurology, Second Clinical College, Jinan University, Shenzhen, China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianhui Yuan
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Peter S. Spencer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
114
|
Yoshida Y. Insights into the Mechanisms of Chloroplast Division. Int J Mol Sci 2018; 19:ijms19030733. [PMID: 29510533 PMCID: PMC5877594 DOI: 10.3390/ijms19030733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/08/2023] Open
Abstract
The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid) more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, Ibaraki 310-8512, Japan.
| |
Collapse
|
115
|
Jhun BS, O‐Uchi J, Adaniya SM, Mancini TJ, Cao JL, King ME, Landi AK, Ma H, Shin M, Yang D, Xu X, Yoon Y, Choudhary G, Clements RT, Mende U, Sheu S. Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. J Physiol 2018; 596:827-855. [PMID: 29313986 PMCID: PMC5830422 DOI: 10.1113/jp275418] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Abnormal mitochondrial morphology and function in cardiomyocytes are frequently observed under persistent Gq protein-coupled receptor (Gq PCR) stimulation. Cardiac signalling mechanisms for regulating mitochondrial morphology and function under pathophysiological conditions in the heart are still poorly understood. We demonstrate that a downstream kinase of Gq PCR, protein kinase D (PKD) induces mitochondrial fragmentation via phosphorylation of dynamin-like protein 1 (DLP1), a mitochondrial fission protein. The fragmented mitochondria enhance reactive oxygen species generation and permeability transition pore opening in mitochondria, which initiate apoptotic signalling activation. This study identifies a novel PKD-specific substrate in cardiac mitochondria and uncovers the role of PKD on cardiac mitochondria, with special emphasis on the molecular mechanism(s) underlying mitochondrial injury with abnormal mitochondrial morphology under persistent Gq PCR stimulation. These findings provide new insights into the molecular basis of cardiac mitochondrial physiology and pathophysiology, linking Gq PCR signalling with the regulation of mitochondrial morphology and function. ABSTRACT Regulation of mitochondrial morphology is crucial for the maintenance of physiological functions in many cell types including cardiomyocytes. Small and fragmented mitochondria are frequently observed in pathological conditions, but it is still unclear which cardiac signalling pathway is responsible for regulating the abnormal mitochondrial morphology in cardiomyocytes. Here we demonstrate that a downstream kinase of Gq protein-coupled receptor (Gq PCR) signalling, protein kinase D (PKD), mediates pathophysiological modifications in mitochondrial morphology and function, which consequently contribute to the activation of apoptotic signalling. We show that Gq PCR stimulation induced by α1 -adrenergic stimulation mediates mitochondrial fragmentation in a fission- and PKD-dependent manner in H9c2 cardiac myoblasts and rat neonatal cardiomyocytes. Upon Gq PCR stimulation, PKD translocates from the cytoplasm to the outer mitochondrial membrane (OMM) and phosphorylates a mitochondrial fission protein, dynamin-like protein 1 (DLP1), at S637. PKD-dependent phosphorylation of DLP1 initiates DLP1 association with the OMM, which then enhances mitochondrial fragmentation, mitochondrial superoxide generation, mitochondrial permeability transition pore opening and apoptotic signalling. Finally, we demonstrate that DLP1 phosphorylation at S637 by PKD occurs in vivo using ventricular tissues from transgenic mice with cardiac-specific overexpression of constitutively active Gαq protein. In conclusion, Gq PCR-PKD signalling induces mitochondrial fragmentation and dysfunction via PKD-dependent DLP1 phosphorylation in cardiomyocytes. This study is the first to identify a novel PKD-specific substrate, DLP1 in mitochondria, as well as the functional role of PKD in cardiac mitochondria. Elucidation of these molecular mechanisms by which PKD-dependent enhanced fission mediates cardiac mitochondrial injury will provide novel insight into the relationship among mitochondrial form, function and Gq PCR signalling.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Jin O‐Uchi
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Stephanie M. Adaniya
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Thomas J. Mancini
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRIUSA
| | - Jessica L. Cao
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Michelle E. King
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Amy K. Landi
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
| | - Hanley Ma
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Milla Shin
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Donqin Yang
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Xiaole Xu
- Center for Translational Medicine, Department of MedicineThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Yisang Yoon
- Department of Physiology, Medical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Gaurav Choudhary
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRIUSA
| | - Richard T. Clements
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRIUSA
- Department of SurgeryRhode Island Hospital and Warren Alpert School of Brown UniversityProvidenceRIUSA
| | - Ulrike Mende
- Cardiovascular Research CenterRhode Island HospitalProvidenceRIUSA
- Department of MedicineWarren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Shey‐Shing Sheu
- Center for Translational Medicine, Department of MedicineThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
116
|
Abstract
Alzheimer's disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Synaptic damage, an early pathological event, correlates strongly with cognitive deficits and memory loss. Mitochondria are essential organelles for synaptic function. Neurons utilize specialized mechanisms to drive mitochondrial trafficking to synapses in which mitochondria buffer Ca2+ and serve as local energy sources by supplying ATP to sustain neurotransmitter release. Mitochondrial abnormalities are one of the earliest and prominent features in AD patient brains. Amyloid-β (Aβ) and tau both trigger mitochondrial alterations. Accumulating evidence suggests that mitochondrial perturbation acts as a key factor that is involved in synaptic failure and degeneration in AD. The importance of mitochondria in supporting synaptic function has made them a promising target of new therapeutic strategies for AD. Here, we review the molecular mechanisms regulating mitochondrial function at synapses, highlight recent findings on the disturbance of mitochondrial dynamics and transport in AD, and discuss how these alterations impact synaptic vesicle release and thus contribute to synaptic pathology associated with AD.
Collapse
|
117
|
Murphy E, Glancy B, Steenbergen C. What You Eat Affects Your Shape. Circ Res 2018; 122:8-10. [PMID: 29301836 DOI: 10.1161/circresaha.117.312335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elizabeth Murphy
- From the Cardiovascular Branch (E.M.) and Systems Biology Center (B.G.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD (C.S.).
| | - Brian Glancy
- From the Cardiovascular Branch (E.M.) and Systems Biology Center (B.G.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD (C.S.)
| | - Charles Steenbergen
- From the Cardiovascular Branch (E.M.) and Systems Biology Center (B.G.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD (C.S.)
| |
Collapse
|
118
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
119
|
Matsumura A, Higuchi J, Watanabe Y, Kato M, Aoki K, Akabane S, Endo T, Oka T. Inactivation of cardiolipin synthase triggers changes in mitochondrial morphology. FEBS Lett 2017; 592:209-218. [DOI: 10.1002/1873-3468.12948] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jun Higuchi
- Department of Life Science Rikkyo University Tokyo Japan
| | - Yasunori Watanabe
- Department of Bioscience Graduate School of Agriculture Ehime University Japan
| | - Masahiro Kato
- Department of Life Science Rikkyo University Tokyo Japan
| | - Keigo Aoki
- Department of Life Science Rikkyo University Tokyo Japan
| | - Shiori Akabane
- Department of Life Science Rikkyo University Tokyo Japan
| | - Toshiya Endo
- Faculty of Life Sciences Kyoto Sangyo University Japan
| | - Toshihiko Oka
- Department of Life Science Rikkyo University Tokyo Japan
| |
Collapse
|
120
|
Glycosyltransferase MDR1 assembles a dividing ring for mitochondrial proliferation comprising polyglucan nanofilaments. Proc Natl Acad Sci U S A 2017; 114:13284-13289. [PMID: 29180407 DOI: 10.1073/pnas.1715008114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria, which evolved from a free-living bacterial ancestor, contain their own genomes and genetic systems and are produced from preexisting mitochondria by binary division. The mitochondrion-dividing (MD) ring is the main skeletal structure of the mitochondrial division machinery. However, the assembly mechanism and molecular identity of the MD ring are unknown. Multi-omics analysis of isolated mitochondrial division machinery from the unicellular alga Cyanidioschyzon merolae revealed an uncharacterized glycosyltransferase, MITOCHONDRION-DIVIDING RING1 (MDR1), which is specifically expressed during mitochondrial division and forms a single ring at the mitochondrial division site. Nanoscale imaging using immunoelectron microscopy and componential analysis demonstrated that MDR1 is involved in MD ring formation and that the MD ring filaments are composed of glycosylated MDR1 and polymeric glucose nanofilaments. Down-regulation of MDR1 strongly interrupted mitochondrial division and obstructed MD ring assembly. Taken together, our results suggest that MDR1 mediates the synthesis of polyglucan nanofilaments that assemble to form the MD ring. Given that a homolog of MDR1 performs similar functions in chloroplast division, the establishment of MDR1 family proteins appears to have been a singular, crucial event for the emergence of endosymbiotic organelles.
Collapse
|
121
|
Liße D, Monzel C, Vicario C, Manzi J, Maurin I, Coppey M, Piehler J, Dahan M. Engineered Ferritin for Magnetogenetic Manipulation of Proteins and Organelles Inside Living Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700189. [PMID: 28960485 DOI: 10.1002/adma.201700189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/11/2017] [Indexed: 05/20/2023]
Abstract
Magnetogenetics is emerging as a novel approach for remote-controlled manipulation of cellular functions in tissues and organisms with high spatial and temporal resolution. A critical, still challenging issue for these techniques is to conjugate target proteins with magnetic probes that can satisfy multiple colloidal and biofunctional constraints. Here, semisynthetic magnetic nanoparticles are tailored based on human ferritin coupled to monomeric enhanced green fluorescent protein (mEGFP) for magnetic manipulation of proteins inside living cells. This study demonstrates efficient delivery, intracellular stealth properties, and rapid subcellular targeting of those magnetic nanoparticles via GFP-nanobody interactions. By means of magnetic field gradients, rapid spatial reorganization in the cytosol of proteins captured to the nanoparticle surface is achieved. Moreover, exploiting efficient nanoparticle targeting to intracellular membranes, remote-controlled arrest of mitochondrial dynamics using magnetic fields is demonstrated. The studies establish subcellular control of proteins and organelles with unprecedented spatial and temporal resolution, thus opening new prospects for magnetogenetic applications in fundamental cell biology and nanomedicine.
Collapse
Affiliation(s)
- Domenik Liße
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005, Paris, France
- Department of Biology/Chemistry, Division of Biophysics, University of Osnabrück, 49076, Osnabrück, Germany
| | - Cornelia Monzel
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005, Paris, France
| | - Chiara Vicario
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005, Paris, France
| | - John Manzi
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005, Paris, France
| | - Isabelle Maurin
- Laboratoire de Physique de la Matière Condensée, École Polytechnique, 91128, Palaiseau, France
| | - Mathieu Coppey
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005, Paris, France
| | - Jacob Piehler
- Department of Biology/Chemistry, Division of Biophysics, University of Osnabrück, 49076, Osnabrück, Germany
| | - Maxime Dahan
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005, Paris, France
| |
Collapse
|
122
|
Walczak J, Partyka M, Duszyński J, Szczepanowska J. Implications of mitochondrial network organization in mitochondrial stress signalling in NARP cybrid and Rho0 cells. Sci Rep 2017; 7:14864. [PMID: 29093569 PMCID: PMC5665886 DOI: 10.1038/s41598-017-14964-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/19/2017] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial dysfunctions lead to the generation of signalling mediators that influence the fate of that organelle. Mitochondrial dynamics and their positioning within the cell are important elements of mitochondria-nucleus communication. The aim of this project was to examine whether mitochondrial shape, distribution and fusion/fission proteins are involved in the mitochondrial stress response in a cellular model subjected to specifically designed chronic mitochondrial stress: WT human osteosarcoma cells as controls, NARP cybrid cells as mild chronic stress and Rho0 as severe chronic stress. We characterized mitochondrial distribution in these cells using confocal microscopy and evaluated the level of proteins directly involved in the mitochondrial dynamics and their regulation. We found that the organization of mitochondria within the cell is correlated with changes in the levels of proteins involved in mitochondrial dynamics and proteins responsible for regulation of this process. Induction of the autophagy/mitophagy process, which is crucial for cellular homeostasis under stress conditions was also shown. It seems that mitochondrial shape and organization within the cell are implicated in retrograde signalling in chronic mitochondrial stress.
Collapse
Affiliation(s)
- Jarosław Walczak
- Laboratory of Bioenergetics and Biomembranes, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur St, 02-993, Warsaw, Poland
| | - Małgorzata Partyka
- Laboratory of Bioenergetics and Biomembranes, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur St, 02-993, Warsaw, Poland
| | - Jerzy Duszyński
- Laboratory of Bioenergetics and Biomembranes, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur St, 02-993, Warsaw, Poland
| | - Joanna Szczepanowska
- Laboratory of Bioenergetics and Biomembranes, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur St, 02-993, Warsaw, Poland.
| |
Collapse
|
123
|
Hetero-oligomer of dynamin-related proteins participates in the fission of highly divergent mitochondria from Entamoeba histolytica. Sci Rep 2017; 7:13439. [PMID: 29044162 PMCID: PMC5647421 DOI: 10.1038/s41598-017-13721-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022] Open
Abstract
Entamoeba histolytica is an anaerobic parasitic protist and possesses mitosomes, one of the most highly divergent mitochondrion-related organelles (MROs). Although unique metabolism and protein/metabolite transport machinery have been demonstrated in Entamoeba mitosomes, the mechanism of mitosomal fusion and fission remains to be elucidated. In this study, we demonstrate that two dynamin-related proteins (DRPs) are cooperatively involved in the fission of Entamoeba mitosomes. Expression of a dominant negative form of EhDrpA and EhDrpB, and alternatively, repression of gene expression of EhDrpA and EhDrpB genes, caused elongation of mitosomes, reflecting inhibition of mitosomal fission. Moreover, EhDrpA and EhDrpB formed an unprecedented hetero-oligomeric complex with an approximate 1:2 to 1:3 ratio, suggesting that the observed elongation of mitosomes is likely caused by the disruption and instability of the complex caused by an imbalance in the two DRPs. Altogether, this is the first report of a hetero-oligomeric DRP complex which participates in the fission of mitochondria and MROs.
Collapse
|
124
|
Kameoka S, Adachi Y, Okamoto K, Iijima M, Sesaki H. Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. Trends Cell Biol 2017; 28:67-76. [PMID: 28911913 DOI: 10.1016/j.tcb.2017.08.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Membrane organelles comprise both proteins and lipids. Remodeling of these membrane structures is controlled by interactions between specific proteins and lipids. Mitochondrial structure and function depend on regulated fusion and the division of both the outer and inner membranes. Here we discuss recent advances in the regulation of mitochondrial dynamics by two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL). These two lipids interact with the core components of mitochondrial fusion and division (Opa1, mitofusin, and Drp1) to activate and inhibit these dynamin-related GTPases. Moreover, lipid-modifying enzymes such as phospholipases and lipid phosphatases may organize local lipid composition to spatially and temporarily coordinate a balance between fusion and division to establish mitochondrial morphology.
Collapse
Affiliation(s)
- Shoichiro Kameoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
125
|
Adachi Y, Itoh K, Yamada T, Cerveny KL, Suzuki TL, Macdonald P, Frohman MA, Ramachandran R, Iijima M, Sesaki H. Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division. Mol Cell 2017; 63:1034-43. [PMID: 27635761 DOI: 10.1016/j.molcel.2016.08.013] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria divide to control their size, distribution, turnover, and function. Dynamin-related protein 1 (Drp1) is a critical mechanochemical GTPase that drives constriction during mitochondrial division. It is generally believed that mitochondrial division is regulated during recruitment of Drp1 to mitochondria and its oligomerization into a division apparatus. Here, we report an unforeseen mechanism that regulates mitochondrial division by coincident interactions of Drp1 with the head group and acyl chains of phospholipids. Drp1 recognizes the head group of phosphatidic acid (PA) and two saturated acyl chains of another phospholipid by penetrating into the hydrophobic core of the membrane. The dual phospholipid interactions restrain Drp1 via inhibition of oligomerization-stimulated GTP hydrolysis that promotes membrane constriction. Moreover, a PA-producing phospholipase, MitoPLD, binds Drp1, creating a PA-rich microenvironment in the vicinity of a division apparatus. Thus, PA controls the activation of Drp1 after the formation of the division apparatus.
Collapse
Affiliation(s)
- Yoshihiro Adachi
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tatsuya Yamada
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kara L Cerveny
- Department of Biology, Reed College, Portland, OR 97202, USA
| | - Takamichi L Suzuki
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick Macdonald
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Miho Iijima
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
126
|
Kraus F, Ryan MT. The constriction and scission machineries involved in mitochondrial fission. J Cell Sci 2017; 130:2953-2960. [PMID: 28842472 DOI: 10.1242/jcs.199562] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key event in the evolution of eukaryotic cells was the engulfment of an aerobic bacterium by a larger anaerobic archaebacterium, leading to a close relationship between the host and the newly formed endosymbiont. Mitochondria, originating from this event, have evolved to be the main place of cellular ATP production. Maintaining elements of their independence, mitochondria undergo growth and division in the cell, thereby ensuring that new daughter cells inherit a mitochondrial complement. Mitochondrial division is also important for other processes, including quality control, mitochondrial (mt)DNA inheritance, transport and cell death. However, unlike bacterial fission, which uses a dynamin-related protein to constrict the membrane at its inner face, mitochondria use dynamin and dynamin-related proteins to constrict the outer membrane from the cytosolic face. In this Review, we summarize the role of proteins from the dynamin superfamily in mitochondrial division. This includes recent findings highlighting that dynamin-2 (Dnm2) is involved in mitochondrial scission, which led to the reappraisal of the role of dynamin-related protein 1 (Drp1; also known as Dnm1l) and its outer membrane adaptors as components of the mitochondrial constriction machinery along with ER components and actin.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, Australia
| |
Collapse
|
127
|
Ramachandran R. Mitochondrial dynamics: The dynamin superfamily and execution by collusion. Semin Cell Dev Biol 2017; 76:201-212. [PMID: 28754444 DOI: 10.1016/j.semcdb.2017.07.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/25/2022]
Abstract
Distinct dynamin superfamily GTPases catalyze the constant fission and fusion of the elaborate mitochondrial networks that navigate the eukaryotic cytoplasm. Long believed to be the singular handiwork of dynamin-related protein 1 (Drp1), a cytosolic family member that transiently localizes to the mitochondrial surface, the execution of mitochondrial fission is now arguably believed to entail membrane remodeling events that are initiated upstream of Drp1 by ER-associated cytoskeletal networks and completed downstream by the prototypical dynamin, dynamin 2 (Dyn2). Recent developments in the field have also placed a sharp focus on the membrane microenvironment around the division apparatus and the potential facilitatory role of specific lipids in mitochondrial fission. Here, I will review current progress, as well as highlight the most visible gaps in knowledge, in elucidating the varied functions of the dynamin superfamily in the coordinated events of mitochondrial fission and fusion. The essential roles of protein and lipid cofactors are also highlighted.
Collapse
Affiliation(s)
- Rajesh Ramachandran
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
128
|
Adachi Y, Iijima M, Sesaki H. An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid. Small GTPases 2017; 9:472-479. [PMID: 28644713 PMCID: PMC6204998 DOI: 10.1080/21541248.2017.1321614] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) is a dynamin superfamily GTPase, which drives membrane constriction during mitochondrial division. To mediate mitochondrial division, Drp1 is recruited to the mitochondrial outer membrane and is assembled into the division machinery. We previously showed that Drp1 interacts with phosphatidic acid (PA) and saturated phospholipids in the mitochondrial membrane, and this interaction restrains Drp1 in initiating the constriction of mitochondria. Here, we show that the role of saturated acyl chains of phospholipids is independent of their contribution to the membrane curvature or lipid packing suggesting their direct interaction with Drp1. We further show that an unstructured loop in the stalk domain of Drp1 is critical for interaction with unsaturated PA. Our data significantly advance our understanding of this unique protein-lipid interaction involved in mitochondrial division.
Collapse
Affiliation(s)
- Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,CONTACT Hiromi Sesaki 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
129
|
The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2712751. [PMID: 28607629 PMCID: PMC5457758 DOI: 10.1155/2017/2712751] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022]
Abstract
Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human's current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject's profile will be discussed.
Collapse
|
130
|
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1066-1077. [PMID: 27836629 PMCID: PMC5423868 DOI: 10.1016/j.bbadis.2016.11.010] [Citation(s) in RCA: 976] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, including ATP production, intracellular Ca2+ regulation, reactive oxygen species production & scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been made in understanding mitochondrial structure, function and their physiology in metabolic syndromes such as diabetes, obesity, stroke and hypertension, and heart disease. Further, progress has also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight the recent progress on the mitochondrial role in metabolic syndromes and also summarize the progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Biotechnology and Bioinformatics, Sri Guru Gobind Singh College, Sector-26, Chandigarh 160019, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Gurjit Kaur Bhatti
- UGC Centre of Excellence in Nano applications, Panjab University, UIPS building, Chandigarh 160014, India
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States
| |
Collapse
|
131
|
Aouacheria A, Baghdiguian S, Lamb HM, Huska JD, Pineda FJ, Hardwick JM. Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochem Int 2017; 109:141-161. [PMID: 28461171 DOI: 10.1016/j.neuint.2017.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
The morphology of a population of mitochondria is the result of several interacting dynamical phenomena, including fission, fusion, movement, elimination and biogenesis. Each of these phenomena is controlled by underlying molecular machinery, and when defective can cause disease. New understanding of the relationships between form and function of mitochondria in health and disease is beginning to be unraveled on several fronts. Studies in mammals and model organisms have revealed that mitochondrial morphology, dynamics and function appear to be subject to regulation by the same proteins that regulate apoptotic cell death. One protein family that influences mitochondrial dynamics in both healthy and dying cells is the Bcl-2 protein family. Connecting mitochondrial dynamics with life-death pathway forks may arise from the intersection of Bcl-2 family proteins with the proteins and lipids that determine mitochondrial shape and function. Bcl-2 family proteins also have multifaceted influences on cells and mitochondria, including calcium handling, autophagy and energetics, as well as the subcellular localization of mitochondrial organelles to neuronal synapses. The remarkable range of physical or functional interactions by Bcl-2 family proteins is challenging to assimilate into a cohesive understanding. Most of their effects may be distinct from their direct roles in apoptotic cell death and are particularly apparent in the nervous system. Dual roles in mitochondrial dynamics and cell death extend beyond BCL-2 family proteins. In this review, we discuss many processes that govern mitochondrial structure and function in health and disease, and how Bcl-2 family proteins integrate into some of these processes.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institute of Evolutionary Sciences of Montpellier (ISEM), CNRS UMR 5554, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Stephen Baghdiguian
- Institute of Evolutionary Sciences of Montpellier (ISEM), CNRS UMR 5554, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - Jason D Huska
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - Fernando J Pineda
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
132
|
Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival. Biomol Concepts 2017; 7:259-70. [PMID: 27505095 DOI: 10.1515/bmc-2016-0015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival.
Collapse
|
133
|
Bhatti JS, Kumar S, Vijayan M, Bhatti GK, Reddy PH. Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:13-46. [PMID: 28253984 DOI: 10.1016/bs.pmbts.2016.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.
Collapse
Affiliation(s)
- J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India.
| | - S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - G K Bhatti
- UGC Centre of Excellence in Nano Applications, Panjab University, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
134
|
López Del Amo V, Palomino-Schätzlein M, Seco-Cervera M, García-Giménez JL, Pallardó FV, Pineda-Lucena A, Galindo MI. A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration. Biochim Biophys Acta Mol Basis Dis 2017; 1863:801-809. [PMID: 28065847 DOI: 10.1016/j.bbadis.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023]
Abstract
Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdap1 gene. In order to get an overview about the changes that Gdap1 mutations cause in our disease model, we have combined a comprehensive determination of the metabolic profile in the flies by nuclear magnetic resonance spectroscopy with gene expression analyses and biophysical tests. Our results revealed that both up- and down-regulation of Gdap1 results in an early systemic inactivation of the insulin pathway before the onset of neuromuscular degeneration, followed by an accumulation of carbohydrates and an increase in the β-oxidation of lipids. Our findings are in line with emerging reports of energy metabolism impairments linked to different types of neural pathologies caused by defective mitochondrial function, which is not surprising given the central role of mitochondria in the control of energy metabolism. The relationship of mitochondrial dynamics with metabolism during neurodegeneration opens new avenues to understand the cause of the disease, and for the discovery of new biomarkers and treatments.
Collapse
Affiliation(s)
- Víctor López Del Amo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain
| | | | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Federico Vicente Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Antonio Pineda-Lucena
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Máximo Ibo Galindo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; IDM-Institute of Molecular Recognition, Universidad Politécnica de Valencia, 46022 Valencia, Spain; UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, Valencia, Spain.
| |
Collapse
|
135
|
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability and lead to early death. The total amount of dietary fat consumption may be the most potent food-related risk factor for weight gain. In this respect, dietary intake of high-caloric, high-fat diets due to chronic over-eating and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues . Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance in an inflammation-independent manner. Even in the absence of metabolic disorders, mismatch between fatty acid uptake and utilization leads to the accumulation of toxic lipid species resulting in organ dysfunction. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction may play role in the pathogenesis of lipotoxicity. The hypothalamus senses availability of circulating levels of glucose, lipids and amino acids, thereby modifies feeding according to the levels of those molecules. However, the hypothalamus is also similarly vulnerable to lipotoxicity as the other ectopic lipid accumulated tissues. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B kinase beta subunit/nuclear factor kappa B (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, the mechanisms by which high-fat diet induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown. In this chapter, besides lipids and leptin, the role of glucose and insulin on specialized fuel-sensing neurons of hypothalamic neuronal circuits has been debated.
Collapse
|
136
|
Aufschnaiter A, Kohler V, Diessl J, Peselj C, Carmona-Gutierrez D, Keller W, Büttner S. Mitochondrial lipids in neurodegeneration. Cell Tissue Res 2017; 367:125-140. [PMID: 27449929 PMCID: PMC5203858 DOI: 10.1007/s00441-016-2463-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Abstract
Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Didac Carmona-Gutierrez
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| |
Collapse
|
137
|
Adachi Y, Itoh K, Iijima M, Sesaki H. Assay to Measure Interactions between Purified Drp1 and Synthetic Liposomes. Bio Protoc 2017; 7:e2266. [PMID: 28835909 DOI: 10.21769/bioprotoc.2266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A mitochondrion is a dynamic intracellular organelle that actively divides and fuses to control its size, number and shape in cells. A regulated balance between mitochondrial division and fusion is fundamental to the function, distribution and turnover of mitochondria (Roy et al., 2015). Mitochondrial division is mediated by dynamin-related protein 1 (Drp1), a mechano-chemical GTPase that constricts mitochondrial membranes (Tamura et al., 2011). Mitochondrial membrane lipids such as phosphatidic acid and cardiolipin bind Drp1, and Drp1-phospholipid interactions provide key regulatory mechanisms for mitochondrial division (Montessuit et al., 2010; Bustillo-Zabalbeitia et al., 2014; Macdonald et al., 2014; Stepanyants et al., 2015; Adachi et al., 2016). Here, we describe biochemical experiments that quantitatively measure interactions of Drp1 with lipids using purified recombinant Drp1 and synthetic liposomes with a defined set of phospholipids. This assay makes it possible to define the specificity of protein-lipid interaction and the role of the head group and acyl chains.
Collapse
Affiliation(s)
- Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
138
|
The Effects of Ascorbate, N-Acetylcysteine, and Resveratrol on Fibroblasts from Patients with Mitochondrial Disorders. J Clin Med 2016; 6:jcm6010001. [PMID: 28025489 PMCID: PMC5294954 DOI: 10.3390/jcm6010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/11/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are assumed to be implicated in the pathogenesis of inborn mitochondrial diseases affecting oxidative phosphorylation (OXPHOS). In the current study, we characterized the effects of three small molecules with antioxidant properties (N-acetylcysteine, ascorbate, and resveratrol) on ROS production and several OXPHOS parameters (growth in glucose free medium, ATP production, mitochondrial content and membrane potential (MMP)), in primary fibroblasts derived from seven patients with different molecularly defined and undefined mitochondrial diseases. N-acetylcysteine appeared to be the most beneficial compound, reducing ROS while increasing growth and ATP production in some patients' cells. Ascorbate showed a variable positive or negative effect on ROS, ATP production, and mitochondrial content, while incubation with resveratrol disclosed either no effect or detrimental effect on ATP production and MMP in some cells. The individual responses highlight the importance of investigating multiple parameters in addition to ROS to obtain a more balanced view of the overall effect on OXPHOS when evaluating antioxidant treatment options for mitochondrial diseases.
Collapse
|
139
|
Popov LD. Mitochondrial networking in diabetic left ventricle cardiomyocytes. Mitochondrion 2016; 34:24-31. [PMID: 28007605 DOI: 10.1016/j.mito.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte mitochondria preserve "the quorum sensing" attribute of their aerobic bacterial ancestors, as shown by the transient physical connectivity and communication not only with each other, but also with other intracellular organelles and with cytosol, ensuing cellular homeostasis. In this review, we present original electron microscopy evidence on mitochondrial networking within diabetic left ventricular cardiomyocytes, focusing on: (i) the inter-mitochondrial communication, allowing electrochemical signals transfer and outer membrane components or matrix proteins exchange, (ii) the interplay between mitochondria and the cardiomyocyte nucleus, nucleolus, sarcoplasmic reticulum, lysosomes, and lipid droplets viewed as attributes of mitochondrial "quality control" and "retrograde signaling function", and (iii) the crosstalk between mitochondria and cardiomyocyte cytosol, as part of the adaptive responses that allow cells survival. Confirmation of such interactions in diabetic myocardium and identification of molecules involved are ongoing, foreseeing the alleviation of heart contractile dysfunction in cardiomyopathy.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- "Nicolae Simionescu" Institute of Cellular Biology and Pathology of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest 050568, Romania.
| |
Collapse
|
140
|
CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple Roles of Mitochondria in Aging Processes. Physiol Res 2016; 65:S519-S531. [DOI: 10.33549/physiolres.933538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle. According to mitochondrial theory of aging, mitochondrial dysfunction is widely considered a major contributor to age-related processes. Mitochondria are both the main source and targets of detrimental reactions initiated in association with age-dependent deterioration of the cellular functions. Reactions leading to increased reactive oxygen species generation, mtDNA mutations, and oxidation of mitochondrial proteins result in subsequent induction of apoptotic events, impaired oxidative phosphorylation capacity, mitochondrial dynamics, biogenesis and autophagy. This review summarizes the major changes of mitochondria related to aging, with emphasis on mitochondrial DNA mutations, the role of the reactive oxygen species, and structural and functional changes of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - J. KUNCOVA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
141
|
Yamada T, Adachi Y, Fukaya M, Iijima M, Sesaki H. Dynamin-Related Protein 1 Deficiency Leads to Receptor-Interacting Protein Kinase 3-Mediated Necroptotic Neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2798-2802. [PMID: 27640145 DOI: 10.1016/j.ajpath.2016.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are dynamic organelles that divide and fuse to modulate their number and shape. We have previously reported that the loss of dynamin-related protein 1 (Drp1), which mediates mitochondrial division, leads to the degeneration of cerebellar Purkinje cells in mice. Because Drp1 has been shown to be important for apoptosis and necroptosis, it is puzzling how Purkinje neurons die in the absence of Drp1. In this study, we tested whether neurodegeneration involves necrotic cell death by generating Purkinje cell-specific Drp1-knockout (KO) mice that lack the receptor-interacting protein kinase 3 (Rip3), which regulates necroptosis. We found that the loss of Rip3 significantly delays the degeneration of Drp1-KO Purkinje neurons. In addition, before neurodegeneration, mitochondrial tubules elongate because of unopposed fusion and subsequently become large spheres as a result of oxidative damage. Surprisingly, Rip3 loss also helps Drp1-KO Purkinje cells maintain the elongated morphology of the mitochondrial tubules. These data suggest that Rip3 plays a role in neurodegeneration and mitochondrial morphology in the absence of mitochondrial division.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
142
|
Riquelme SA, Carreño LJ, Espinoza JA, Mackern-Oberti JP, Alvarez-Lobos MM, Riedel CA, Bueno SM, Kalergis AM. Modulation of antigen processing by haem-oxygenase 1. Implications on inflammation and tolerance. Immunology 2016; 149:1-12. [PMID: 26938875 PMCID: PMC4981612 DOI: 10.1111/imm.12605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
Haem-oxygenase-1 (HO-1) is an enzyme responsible for the degradation of haem that can suppress inflammation, through the production of carbon monoxide (CO). It has been shown in several experimental models that genetic and pharmacological induction of HO-1, as well as non-toxic administration of CO, can reduce inflammatory diseases, such as endotoxic shock, type 1 diabetes and graft rejection. Recently, it was shown that the HO-1/CO system can alter the function of antigen-presenting cells (APCs) and reduce T-cell priming, which can be beneficial during immune-driven inflammatory diseases. The molecular mechanisms by which the HO-1 and CO reduce both APC- and T-cell-driven immunity are just beginning to be elucidated. In this article we discuss recent findings related to the immune regulatory capacity of HO-1 and CO at the level of recognition of pathogen-associated molecular patterns and T-cell priming by APCs. Finally, we propose a possible regulatory role for HO-1 and CO over the recently described mitochondria-dependent immunity. These concepts could contribute to the design of new therapeutic tools for inflammation-based diseases.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
| | - Leandro J Carreño
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Janyra A Espinoza
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Mackern-Oberti
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina
- Institute of Physiology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
143
|
Korwitz A, Merkwirth C, Richter-Dennerlein R, Tröder SE, Sprenger HG, Quirós PM, López-Otín C, Rugarli EI, Langer T. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol 2016; 212:157-66. [PMID: 26783299 PMCID: PMC4738383 DOI: 10.1083/jcb.201507022] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Loss of OMA1 in a mouse model of neurodegeneration stabilizes fusion-active L-OPA1, which supports neuronal survival by preventing apoptosis, independent of its effects on cristae morphogenesis. Proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 in mitochondria is emerging as a central regulatory hub that determines mitochondrial morphology under stress and in disease. Stress-induced OPA1 processing by OMA1 triggersmitochondrial fragmentation, which is associated with mitophagy and apoptosis in vitro. Here, we identify OMA1 as a critical regulator of neuronal survival in vivo and demonstrate that stress-induced OPA1 processing by OMA1 promotes neuronal death and neuroinflammatory responses. Using mice lacking prohibitin membrane scaffolds as a model of neurodegeneration, we demonstrate that additional ablation of Oma1 delays neuronal loss and prolongs lifespan. This is accompanied by the accumulation of fusion-active, long OPA1 forms, which stabilize the mitochondrial genome but do not preserve mitochondrial cristae or respiratory chain supercomplex assembly in prohibitin-depleted neurons. Thus, long OPA1 forms can promote neuronal survival independently of cristae shape, whereas stress-induced OMA1 activation and OPA1 cleavage limit mitochondrial fusion and promote neuronal death.
Collapse
Affiliation(s)
- Anne Korwitz
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Carsten Merkwirth
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Ricarda Richter-Dennerlein
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Simon E Tröder
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Hans-Georg Sprenger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Pedro M Quirós
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Elena I Rugarli
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany Max Planck Institute for Biology of Aging, 50931 Cologne, Germany
| |
Collapse
|
144
|
Hernández-Aguilera A, Fernández-Arroyo S, Cuyàs E, Luciano-Mateo F, Cabre N, Camps J, Lopez-Miranda J, Menendez JA, Joven J. Epigenetics and nutrition-related epidemics of metabolic diseases: Current perspectives and challenges. Food Chem Toxicol 2016; 96:191-204. [PMID: 27503834 DOI: 10.1016/j.fct.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
We live in a world fascinated by the relationship between disease and nutritional disequilibrium. The subtle and slow effects of chronic nutrient toxicity are a major public health concern. Since food is potentially important for the development of "metabolic memory", there is a need for more information on the type of nutrients causing adverse or toxic effects. We now know that metabolic alterations produced by excessive intake of some nutrients, drugs and chemicals directly impact epigenetic regulation. We envision that understanding how metabolic pathways are coordinated by environmental and genetic factors will provide novel insights for the treatment of metabolic diseases. New methods will enable the assembly and analysis of large sets of complex molecular and clinical data for understanding how inflammation and mitochondria affect bioenergetics, epigenetics and health. Collectively, the observations we highlight indicate that energy utilization and disease are intimately connected by epigenetics. The challenge is to incorporate metabolo-epigenetic data in better interpretations of disease, to expedite therapeutic targeting of key pathways linking nutritional toxicity and metabolism. An additional concern is that changes in the parental phenotype are detectable in the methylome of subsequent offspring. The effect might create a menace to future generations and preconceptional considerations.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Noemi Cabre
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
145
|
Miller N, Shi H, Zelikovich AS, Ma YC. Motor neuron mitochondrial dysfunction in spinal muscular atrophy. Hum Mol Genet 2016; 25:3395-3406. [PMID: 27488123 DOI: 10.1093/hmg/ddw262] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, predominantly affects high metabolic tissues including motor neurons, skeletal muscles and the heart. Although the genetic cause of SMA has been identified, mechanisms underlying tissue-specific vulnerability are not well understood. To study these mechanisms, we carried out a deep sequencing analysis of the transcriptome of spinal motor neurons in an SMA mouse model, in which we unexpectedly found changes in many genes associated with mitochondrial bioenergetics. Importantly, functional measurement of mitochondrial activities showed decreased basal and maximal mitochondrial respiration in motor neurons from SMA mice. Using a reduction-oxidation sensitive GFP and fluorescence sensors specifically targeted to mitochondria, we found increased oxidative stress level and impaired mitochondrial membrane potential in motor neurons affected by SMA. In addition, mitochondrial mobility was impaired in SMA disease conditions, with decreased retrograde transport but no effect on anterograde transport. We also found significantly increased fragmentation of the mitochondrial network in primary motor neurons from SMA mice, with no change in mitochondria density. Electron microscopy study of SMA mouse spinal cord revealed mitochondria fragmentation, edema and concentric lamellar inclusions in motor neurons affected by the disease. Intriguingly, these functional and structural deficiencies in the SMA mouse model occur during the presymptomatic stage of disease, suggesting a role in initiating SMA. Altogether, our findings reveal a critical role for mitochondrial defects in SMA pathogenesis and suggest a novel target for improving tissue health in the disease.
Collapse
Affiliation(s)
- Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Han Shi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Aaron S Zelikovich
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Yong-Chao Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
146
|
Bioenergetic roles of mitochondrial fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1277-1283. [DOI: 10.1016/j.bbabio.2016.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
|
147
|
Benigni A, Perico L, Macconi D. Mitochondrial Dynamics Is Linked to Longevity and Protects from End-Organ Injury: The Emerging Role of Sirtuin 3. Antioxid Redox Signal 2016; 25:185-99. [PMID: 26972664 DOI: 10.1089/ars.2016.6682] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Mitochondrial integrity is instrumental in protecting against damage associated with aging and a variety of chronic disease conditions. Mitochondrial silent information regulator 3 (Sirt3) plays pivotal roles in maintaining mitochondrial homeostasis by regulating different aspects of the organelle processes. RECENT ADVANCES Mitochondria are highly dynamic organelles that constantly fuse and divide to maintain normal cell function, and perturbation in mitochondrial dynamics is responsible for mitochondrial dysfunction. Improved knowledge of mitochondrial physiology has disclosed the pleiotropic role of Sirt3 in mitochondria and shows how alterations in protein expression and/or activity may have an important impact on aging-associated organ dysfunction. CRITICAL ISSUES This review describes updated experimental evidence on the role of mitochondrial dysfunction during aging and renal diseases and highlights the emerging role of Sirt3 as a crucial regulator of mitochondrial dynamics. FUTURE DIRECTIONS Strategies that activate Sirt3 may offer attractive therapies to achieve healthy longevity and preserve functional integrity of multiple organs. Antioxid. Redox Signal. 25, 185-199.
Collapse
Affiliation(s)
- Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Luca Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Macconi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
148
|
Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress. Sci Rep 2016; 6:30027. [PMID: 27458051 PMCID: PMC4960558 DOI: 10.1038/srep30027] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 01/23/2023] Open
Abstract
Cellular energy production processes are composed of many Mg2+ dependent enzymatic reactions. In fact, dysregulation of Mg2+ homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg2+ stores. Several biological stimuli alter mitochondrial Mg2+ concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg2+ alteration affect cellular energy metabolism remains unclear. Mg2+ transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg2+ uptake system. Here, we comprehensively analyzed intracellular Mg2+ levels and energy metabolism in Mrs2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg2+ homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, Mrs2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg2+via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg2+ level in response to physiological stimuli.
Collapse
|
149
|
Córdova-Dávalos L, Carrera-Calvo D, Solís-Navarrete J, Mercado-Gómez OF, Arriaga-Ávila V, Agredano-Moreno LT, Jiménez-García LF, Guevara-Guzmán R. Status epilepticus triggers early mitochondrial fusion in the rat hippocampus in a lithium-pilocarpine model. Epilepsy Res 2016; 123:11-9. [DOI: 10.1016/j.eplepsyres.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/09/2016] [Accepted: 03/27/2016] [Indexed: 12/21/2022]
|
150
|
Roy M, Itoh K, Iijima M, Sesaki H. Parkin suppresses Drp1-independent mitochondrial division. Biochem Biophys Res Commun 2016; 475:283-8. [PMID: 27181353 DOI: 10.1016/j.bbrc.2016.05.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/08/2016] [Indexed: 12/12/2022]
Abstract
The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson's disease-associated protein-parkin, which biochemically and genetically interacts with Drp1-in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division.
Collapse
Affiliation(s)
- Madhuparna Roy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|