101
|
Knipper JA, Ding X, Eming SA. Diabetes Impedes the Epigenetic Switch of Macrophages into Repair Mode. Immunity 2019; 51:199-201. [PMID: 31433963 DOI: 10.1016/j.immuni.2019.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this issue of Immunity, Kimball et al. (2019) show that restoring expression of the chromatin modifying enzyme Setdb2 in macrophages rescues impaired wound healing associated with type 2 diabetes. Their findings reveal epigenetic regulation as central to the resolution of macrophage-mediated inflammation in tissue repair and have therapeutic implications for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Johanna A Knipper
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Xiaolei Ding
- Department of Dermatology, University of Cologne, Kerpenerstr 62, 50937 Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Kerpenerstr 62, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
102
|
Stierli S, Imperatore V, Lloyd AC. Schwann cell plasticity-roles in tissue homeostasis, regeneration, and disease. Glia 2019; 67:2203-2215. [PMID: 31215712 DOI: 10.1002/glia.23643] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
How tissues are maintained over a lifetime and repaired following injury are fundamental questions in biology with a disruption to these processes underlying pathologies such as cancer and degenerative disorders. It is becoming increasingly clear that each tissue has a distinct mechanism to maintain homeostasis and respond to injury utilizing different types of stem/progenitor cell populations depending on the insult and/or with a contribution from more differentiated cells that are able to dedifferentiate to aid tissue regeneration. Peripheral nerves are highly quiescent yet show remarkable regenerative capabilities. Remarkably, there is no evidence for a classical stem cell population, rather all cell-types within the nerve are able to proliferate to produce new nerve tissue. Co-ordinating the regeneration of this tissue are Schwann cells (SCs), the main glial cells of the peripheral nervous system. SCs exist in architecturally stable structures that can persist for the lifetime of an animal, however, they are not postmitotic, in that following injury they are reprogrammed at high efficiency to a progenitor-like state, with these cells acting to orchestrate the nerve regeneration process. During nerve regeneration, SCs show little plasticity, maintaining their identity in the repaired tissue. However, once free of the nerve environment they appear to exhibit increased plasticity with reported roles in the repair of other tissues. In this review, we will discuss the mechanisms underlying the homeostasis and regeneration of peripheral nerves and how reprogrammed progenitor-like SCs have broader roles in the repair of other tissues with implications for pathologies such as cancer.
Collapse
Affiliation(s)
- Salome Stierli
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Alison C Lloyd
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
103
|
Nour S, Baheiraei N, Imani R, Khodaei M, Alizadeh A, Rabiee N, Moazzeni SM. A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:120. [PMID: 31630272 DOI: 10.1007/s10856-019-6319-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/08/2019] [Indexed: 05/17/2023]
Abstract
Nowadays, due to a growing number of tissue injuries, in particular, skin wounds, induction and promotion of tissue healing responses can be considered as a crucial step towards a complete regeneration. Recently, biomaterial design has been oriented towards promoting a powerful, effective, and successful healing. Biomaterials with wound management abilities have been developed for different applications such as providing a native microenvironment and supportive matrices that induce the growth of tissue, creating physical obstacles against microbial contamination, and to be used as delivery systems for therapeutic reagents. Until now, numerous strategies aiming to accelerate the wound healing process have been utilized and studied with their own pros and cons. In this review, tissue remodeling phenomena, wound healing mechanisms, and their related factors will be discussed. In addition, different methods for induction and acceleration of healing via cell therapy, bioactive therapeutic delivery, and/or biomaterial-based approaches will be reviewed.
Collapse
Affiliation(s)
- Shirin Nour
- Department of Biomedical Engineering, Amirkabir University of Technology (polytechnic of Tehran), Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (polytechnic of Tehran), Tehran, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - S Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
104
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
105
|
Mailand E, Li B, Eyckmans J, Bouklas N, Sakar MS. Surface and Bulk Stresses Drive Morphological Changes in Fibrous Microtissues. Biophys J 2019; 117:975-986. [PMID: 31427068 PMCID: PMC6731460 DOI: 10.1016/j.bpj.2019.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/11/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023] Open
Abstract
Engineered fibrous tissues consisting of cells encapsulated within collagen gels are widely used three-dimensional in vitro models of morphogenesis and wound healing. Although cell-mediated matrix remodeling that occurs within these scaffolds has been extensively studied, less is known about the mesoscale physical principles governing the dynamics of tissue shape. Here, we show both experimentally and by using computer simulations how surface contraction through the development of surface stresses (analogous to surface tension in fluids) coordinates with bulk contraction to drive shape evolution in constrained three-dimensional microtissues. We used microelectromechanical systems technology to generate arrays of fibrous microtissues and robot-assisted microsurgery to perform local incisions and implantation. We introduce a technique based on phototoxic activation of a small molecule to selectively kill cells in a spatially controlled manner. The model simulations, which reproduced the experimentally observed shape changes after surgical and photochemical operations, indicate that fitting of only bulk and surface contractile moduli is sufficient for the prediction of the equilibrium shape of the microtissues. The computational and experimental methods we have developed provide a general framework to study and predict the morphogenic states of contractile fibrous tissues under external loading at multiple length scales.
Collapse
Affiliation(s)
- Erik Mailand
- Institute of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bin Li
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Nikolaos Bouklas
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York.
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
106
|
Bernal-Chávez S, Nava-Arzaluz MG, Quiroz-Segoviano RIY, Ganem-Rondero A. Nanocarrier-based systems for wound healing. Drug Dev Ind Pharm 2019; 45:1389-1402. [PMID: 31099263 DOI: 10.1080/03639045.2019.1620270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In general, the systems intended for the treatment and recovery of wounds, seek to act as a coating for the damaged area, maintaining an adequate level of humidity, reducing pain, and preventing the invasion and proliferation of microorganisms. Although many of the systems that are currently on the market meet the purposes mentioned above, with the arrival of nanotechnology, it has sought to improve the performance of these coatings. The variety of nano-systems that have been proposed is very extensive, including the use of very different materials (natural or synthetic) ranging from polymers or lipids to systems derived from microorganisms. With the objective of improving the performance of the systems, seeking to combat several of the problems that arise in a wound, especially when it is chronic, these materials have been combined, giving rise to nanocomposites or scaffolds. In recent years, the interest in the development of systems for the treatment of wounds is notable, which is reflected in the increase in publications related to the subject. Therefore, this document presents generalities of systems involving nanocarriers, mentioning some examples of representative systems of each case.
Collapse
Affiliation(s)
- S Bernal-Chávez
- a División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlán Izcalli , Mexico
| | - M G Nava-Arzaluz
- a División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlán Izcalli , Mexico
| | - R I Y Quiroz-Segoviano
- a División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlán Izcalli , Mexico
| | - A Ganem-Rondero
- a División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlán Izcalli , Mexico
| |
Collapse
|
107
|
Canales J, Morales D, Blanco C, Rivas J, Díaz N, Angelopoulos I, Cerda O. A TR(i)P to Cell Migration: New Roles of TRP Channels in Mechanotransduction and Cancer. Front Physiol 2019; 10:757. [PMID: 31275168 PMCID: PMC6591513 DOI: 10.3389/fphys.2019.00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell migration is a key process in cancer metastasis, allowing malignant cells to spread from the primary tumor to distant organs. At the molecular level, migration is the result of several coordinated events involving mechanical forces and cellular signaling, where the second messenger Ca2+ plays a pivotal role. Therefore, elucidating the regulation of intracellular Ca2+ levels is key for a complete understanding of the mechanisms controlling cellular migration. In this regard, understanding the function of Transient Receptor Potential (TRP) channels, which are fundamental determinants of Ca2+ signaling, is critical to uncovering mechanisms of mechanotransduction during cell migration and, consequently, in pathologies closely linked to it, such as cancer. Here, we review recent studies on the association between TRP channels and migration-related mechanotransduction events, as well as in the involvement of TRP channels in the migration-dependent pathophysiological process of metastasis.
Collapse
Affiliation(s)
- Jimena Canales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Ioannis Angelopoulos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
108
|
Badshah II, Brown S, Weibel L, Rose A, Way B, Sebire N, Inman G, Harper J, O'Shaughnessy RFL. Differential expression of secreted factors SOSTDC1 and ADAMTS8 cause profibrotic changes in linear morphoea fibroblasts. Br J Dermatol 2019; 180:1135-1149. [PMID: 30367460 DOI: 10.1111/bjd.17352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Linear morphoea (LM) is a rare connective tissue disorder characterized by a line of thickened skin and subcutaneous tissue and can also affect the underlying muscle and bone. Little is known about the disease aetiology, with treatment currently limited to immune suppression, and disease recurrence post-treatment is common. OBJECTIVES In order to uncover new therapeutic avenues, the cell-intrinsic changes in LM fibroblasts compared with site-matched controls were characterized. METHODS We grew fibroblasts from site-matched affected and unaffected regions from five patients with LM, we subjected them to gene expression analysis and investigation of SMAD signalling. RESULTS Fibroblasts from LM lesions showed increased migration, proliferation, altered collagen processing, and abnormally high basal levels of phosphorylated SMAD2, thereby rendering them less responsive to transforming growth factor (TGF)-β1 and reducing the degree of myofibroblast differentiation, which is a key component of the wound-healing and scarring process in normal skin. Conditioned media from normal fibroblasts could reverse LM-affected fibroblast migration and proliferation, suggesting that the LM phenotype is driven by an altered secretome. Gene array analysis and RNA-Seq indicated upregulation of ADAMTS8 and downregulation of FRAS1 and SOSTDC1. SOSTDC1 knock-down recapitulated the reduced TGF-β1 responsiveness and LM fibroblast migration, while overexpression of ADAMTS8 induced myofibroblast markers. CONCLUSIONS We demonstrate that cell-intrinsic changes in the LM fibroblast secretome lead to changes observed in the disease, and that secretome modulation could be a viable therapeutic approach in the treatment of LM.
Collapse
Affiliation(s)
- I I Badshah
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - S Brown
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
- Restoration of Appearance and Function Trust, Leopold Muller Building, Mount Vernon Hospital, Northwood, Middlesex, U.K
| | - L Weibel
- Department of Dermatology, University Hospital, Zurich, Switzerland
| | - A Rose
- Division of Cancer Research, University of Dundee, School of Medicine, Dundee, U.K
| | - B Way
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - N Sebire
- Histopathology, Great Ormond Street Hospital, London, U.K
| | - G Inman
- Division of Cancer Research, University of Dundee, School of Medicine, Dundee, U.K
| | - J Harper
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - R F L O'Shaughnessy
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, U.K
| |
Collapse
|
109
|
Pramotton FM, Robotti F, Giampietro C, Lendenmann T, Poulikakos D, Ferrari A. Optimized Topological and Topographical Expansion of Epithelia. ACS Biomater Sci Eng 2019; 5:3922-3934. [DOI: 10.1021/acsbiomaterials.8b01346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Francesca Michela Pramotton
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Francesco Robotti
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Tobias Lendenmann
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Überlandstrasse 129, Dübendorf 8600, Switzerland
- Institute for Mechanical Systems, ETH Zurich, Leonhardstrasse 21, Zurich CH-8092, Switzerland
| |
Collapse
|
110
|
Stedden CG, Menegas W, Zajac AL, Williams AM, Cheng S, Özkan E, Horne-Badovinac S. Planar-Polarized Semaphorin-5c and Plexin A Promote the Collective Migration of Epithelial Cells in Drosophila. Curr Biol 2019; 29:908-920.e6. [PMID: 30827914 PMCID: PMC6424623 DOI: 10.1016/j.cub.2019.01.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
Collective migration of epithelial cells is essential for morphogenesis, wound repair, and the spread of many cancers, yet how individual cells signal to one another to coordinate their movements is largely unknown. Here, we introduce a tissue-autonomous paradigm for semaphorin-based regulation of collective cell migration. Semaphorins typically regulate the motility of neuronal growth cones and other migrating cell types by acting as repulsive cues within the migratory environment. Studying the follicular epithelial cells of Drosophila, we discovered that the transmembrane semaphorin, Sema-5c, promotes collective cell migration by acting within the migrating cells themselves, not the surrounding environment. Sema-5c is planar polarized at the basal epithelial surface such that it is enriched at the leading edge of each cell. This location places it in a prime position to send a repulsive signal to the trailing edge of the cell ahead to communicate directional information between neighboring cells. Our data show that Sema-5c can signal across cell-cell boundaries to suppress protrusions in neighboring cells and that Plexin A is the receptor that transduces this signal. Finally, we present evidence that Sema-5c antagonizes the activity of Lar, another transmembrane guidance cue that operates along leading-trailing cell-cell interfaces in this tissue, via a mechanism that appears to be independent of Plexin A. Together, our results suggest that multiple transmembrane guidance cues can be deployed in a planar-polarized manner across an epithelium and work in concert to coordinate individual cell movements for collective migration.
Collapse
Affiliation(s)
- Claire G Stedden
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - William Menegas
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Allison L Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Audrey M Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
111
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
112
|
Meng K, Yang H, Wang Y, Sun D. Modeling and Control of Single-Cell Migration Induced by a Chemoattractant-Loaded Microbead. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:427-439. [PMID: 29990216 DOI: 10.1109/tcyb.2017.2776105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cell migration plays an essential role in cancer cell study. Investigation of a novel method for controlling cell migration movement can help develop new therapeutic strategies. In this paper, a chemoattractant-loaded microbead, which is controlled by optical tweezers, is used to stimulate a target cell to accomplish automated migration along a desired path while avoiding obstacles. Models of both tweezers-bead and bead-cell interactions are investigated. A dual closed-loop control strategy is proposed, which includes an inner tweezers-bead control loop and an outer bead-cell control loop. A proportional-integral feedback plus feedforward controller is used to control the inner loop, and an active disturbance rejection controller is used for the outer loop, which can address the cell migration modeling errors and unknown external disturbances. A traffic rule based on interference-clearing mechanism is also proposed to reduce external disturbances on the system by preventing other particles from interfering with the migration process. The effectiveness of the proposed control approach is verified by simulations and experiments on migrating leukemia cancer cells.
Collapse
|
113
|
Li L, Zhang J, Zhang Q, Zhang D, Xiang F, Jia J, Wei P, Zhang J, Hu J, Huang Y. High Glucose Suppresses Keratinocyte Migration Through the Inhibition of p38 MAPK/Autophagy Pathway. Front Physiol 2019; 10:24. [PMID: 30745880 PMCID: PMC6360165 DOI: 10.3389/fphys.2019.00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Wound healing is delayed frequently in patients with diabetes. Proper keratinocyte migration is an essential step during re-epithelialization. Impaired keratinocyte migration is a critical underlying factor responsible for the deficiency of diabetic wound healing, which is mainly attributed to the hyperglycemic state. However, the underlying mechanisms remain largely unknown. Previously, we demonstrated a marked activation of p38/mitogen-activated protein kinase (MAPK) pathway in the regenerated migrating epidermis, which in turn promoted keratinocyte migration. In the present study, we find that p38/MAPK pathway is downregulated and accompanied by inactivation of autophagy under high glucose (HG) environment. In addition, we demonstrate that inactivation of p38/MAPK and autophagy result in the inhibition of keratinocyte migration under HG environment, and the activating p38/MAPK by MKK6(Glu) overexpression rescues cell migration through an autophagy-dependent way. Moreover, diabetic wound epidermis shows a significant inhibition of p38/MAPK and autophagy. Targeting these dysfunctions may provide novel therapeutic approaches.
Collapse
Affiliation(s)
- Lingfei Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Wei
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiaping Zhang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiongyu Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
114
|
Soares Cavalcante-Costa V, Costa-Reginaldo M, Queiroz-Oliveira T, Silva Oliveira AC, Couto NF, dos Anjos DO, Lima-Santos J, Andrade LDO, Horta MF, Castro-Gomes T. Leishmania amazonensis hijacks host cell lysosomes involved in plasma membrane repair to induce invasion in fibroblasts. J Cell Sci 2019; 132:jcs.226183. [DOI: 10.1242/jcs.226183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022] Open
Abstract
Intracellular parasites of the genus Leishmania are the causative agents of leishmaniasis. The disease is transmitted by the bite of a sand fly vector which inoculates the parasite into the skin of mammalian hosts, including humans. During chronic infection the parasite lives and replicates inside phagocytic cells, notably the macrophages. An interesting but overlooked finding is that other cell types and even non-phagocytic cells have been found infected by Leishmania spp. Nevertheless, the mechanisms by which Leishmania invades such cells were not studied to date. Here we show that L. amazonensis can actively induce their own entry into fibroblasts independently of actin cytoskeleton activity, thus by a mechanism that is distinct from phagocytosis. Invasion involves subversion of host cell functions such as calcium signaling and recruitment and exocytosis of host cell lysosomes involved in plasma membrane repair.
Collapse
Affiliation(s)
- Victor Soares Cavalcante-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Mariana Costa-Reginaldo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Thamires Queiroz-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Anny Carolline Silva Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Natália Fernanda Couto
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | | | - Jane Lima-Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Bahia, Brasil
| | - Luciana de Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Thiago Castro-Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| |
Collapse
|
115
|
Abstract
A multilayered epithelium to fulfil its function must be replaced throughout the lifespan. This is possible due to the presence of multipotent, self-renewing epidermal stem cells that give rise to differentiated cell lineages: keratinocytes, hairs, as well as sebocytes. Till now the molecular mechanisms responsible for stem cell quiescent, proliferation, and differentiation have not been fully established. It is suggested that epidermal stem cells might change their fate, both due to intrinsic events and as a result of niche-dependent extrinsic signals; however other yet unknown factors may also be involved in this process. Given the increasing excitement evoked by self-renewing epidermal stem cells, as one of the sources of adult stem cells, it seems important to reveal the mechanisms that govern their fate. In this chapter, we describe recent advances in the characterisation of the epidermal stem cells and their compartments. Furthermore, we focus on the interplay between epidermal stem cells and extrinsic signals and their role in quiescence, proliferation, and differentiation of appropriate epidermal stem cell lineages.
Collapse
|
116
|
Mahadik K, Yadav P, Bhatt B, Shah RA, Balaji KN. Deregulated AUF1 Assists BMP-EZH2-Mediated Delayed Wound Healing during Candida albicans Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:3617-3629. [PMID: 30429285 DOI: 10.4049/jimmunol.1800688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Tissue repair is a complex process that necessitates an interplay of cellular processes, now known to be dictated by epigenetics. Intriguingly, macrophages are testimony to a large repertoire of evolving functions in this process. We identified a role for BMP signaling in regulating macrophage responses to Candida albicans infection during wound repair in a murine model. In this study, the RNA binding protein, AU-rich element-binding factor 1, was posttranslationally destabilized to bring about ubiquitin ligase, NEDD4-directed activation of BMP signaling. Concomitantly, PI3K/PKCδ mobilized the rapid phosphorylation of BMP-responsive Smad1/5/8. Activated BMP pathway orchestrated the elevated recruitment of EZH2 at promoters of genes assisting timely wound closure. In vivo, the repressive H3K27 trimethylation was observed to persist, accompanied by a robust upregulation of BMP pathway upon infection with C. albicans, culminating in delayed wound healing. Altogether, we uncovered the signaling networks coordinated by fungal colonies that are now increasingly associated with the infected wound microbiome, resulting in altered wound fate.
Collapse
Affiliation(s)
- Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Preeti Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | |
Collapse
|
117
|
Chen G, Wu Y, Yu D, Li R, Luo W, Ma G, Zhang C. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis. J Biomater Appl 2018; 33:989-996. [PMID: 30509120 DOI: 10.1177/0885328218814988] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poor blood circulation makes it difficult for antitubercular drugs to achieve effective bactericidal concentration at tuberculose focus. The residual Mycobacterium tuberculosis around surgical wound would multiply, resulting in nonunion or sinus formation. Carbon nanotubes have strong tissue penetration and can cross many kinds of physiological barriers. Here, we constructed a chitosan/carbon nanotubes nanoparticles to control slow release of isoniazid. Transmission electron microscopy and nanoparticle tracking and analysis results showed that the diameter of chitosan/carbon nanotubes nanoparticles was between 150 and 250 nm. Chitosan/carbon nanotubes nanoparticles significantly prolonged the release time of isoniazid, and the release rate was more uniform, no sudden release was observed. In vitro experiments showed that chitosan/carbon nanotubes nanoparticles did not destroy biological function of isoniazid, but could reduce its cytotoxicity and inflammation. We further constructed animal model of tuberculous ulcer. The results showed that isoniazid/chitosan/carbon nanotubes nanoparticles promoted the healing of tuberculosis ulcer. Compared with isoniazid group and isoniazid/carbon nanotubes group, the area of wounds decreased by 94.6% and 89.8%, respectively. Immunohistochemistry showed that CD3+ and CD4+ T cell number decreased significantly in isoniazid/chitosan/carbon nanotubes group. In conclusion, we constructed a kind of isoniazid/chitosan/carbon nanotubes nanoparticles, which can significantly promote the healing of tuberculosis ulcer. Our study provided an effective way for the treatment of secondary wound healing of bone tuberculosis.
Collapse
Affiliation(s)
- Gangquan Chen
- 1 Department of burn, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yaling Wu
- 2 Nursing faculty, Jiangxi Health Vocational college, Nanchang 330006, China
| | - Dongping Yu
- 1 Department of burn, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Rubing Li
- 1 Department of burn, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenyuan Luo
- 3 Department of orthopedics, Gansu Provincial People's Hospital, Lanzhou, Gansu Province, China
| | - Guifu Ma
- 3 Department of orthopedics, Gansu Provincial People's Hospital, Lanzhou, Gansu Province, China
| | - Chao Zhang
- 1 Department of burn, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
118
|
Affiliation(s)
- Sebastian Willenborg
- Department of Dermatology, University of Cologne, Kerpenerstraße 62, 50937 Köln, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Kerpenerstraße 62, 50937 Köln, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
119
|
Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine Growth Factor Rev 2018; 44:69-79. [PMID: 30470511 DOI: 10.1016/j.cytogfr.2018.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
With chronic wounds remaining a substantial healthcare issue, new therapies are sought to improve patient outcomes. Various studies have explored the benefits of promoting angiogenesis in wounds by targeting proangiogenic factors such as Vascular Endothelial Growth Factor (VEGF) family members to improve wound healing. Along similar lines, Mesenchymal Stem Cell (MSC) secretions, usually containing VEGF, have been used to improve angiogenesis in wound healing via a paracrine mechanism. Recent evidence for keratinocyte VEGF receptor expression, as well as proliferative and chemotactic responses by keratinocytes to exogenous VEGFA in vitro implies distinct non-angiogenic actions for VEGF during wound healing. In this review, we discuss the expression of VEGF family members and their receptors in keratinocytes in relation to the potential for wound healing treatments. We also explore recent findings of MSC secreted paracrine wound healing activity on keratinocytes. We report here the concept of keratinocyte wound healing responses driven by MSC-derived VEGF that is supported in the literature, providing a new mechanism for cell-free therapy of chronic wounds.
Collapse
|
120
|
Dillekås H, Straume O. The link between wound healing and escape from tumor dormancy. Surg Oncol 2018; 28:50-56. [PMID: 30851911 DOI: 10.1016/j.suronc.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Tumor dormancy is considered one of the major unsolved questions in cancer biology. Understanding the mechanisms responsible for maintaining and interrupting dormancy would be a major step towards preventing overt metastatic disease. Increasing evidence points to tissue trauma and subsequent wound healing as contributing events in escape from dormancy. In this review, we outline relevant aspects of the wound healing process, and relate this to mechanisms of tumor dormancy and metastatic progression. In addition to important findings in epidemiological and experimental studies, more direct evidence of such a link has recently been presented. These results can have major implications for treatment and prevention of cancer.
Collapse
Affiliation(s)
- Hanna Dillekås
- Department of Clinical Science, University of Bergen, N5020, Bergen, Norway.
| | - Oddbjørn Straume
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, N5020, Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, N5021, Bergen, Norway.
| |
Collapse
|
121
|
Kim S, Lee SK, Kim H, Kim TM. Exosomes Secreted from Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Accelerate Skin Cell Proliferation. Int J Mol Sci 2018; 19:ijms19103119. [PMID: 30314356 PMCID: PMC6213597 DOI: 10.3390/ijms19103119] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) serve as a unique source for cell therapy. We investigated whether exosomes from iMSCs promote the proliferation of human keratinocytes (HaCaT) and human dermal fibroblasts (HDFs). iPSCs were established from human Wharton's jelly MSCs and were allowed to differentiate into iMSCs. Exosomes were collected from the culture supernatant of MSCs (MSC-exo) and iMSCs (iMSC-exo), and their characteristics were investigated. Both exosome types possessed basic characteristics of exosomes and were taken up by skin cells in vitro and in vivo. A significant increase in HaCaT proliferation was observed with iMSC-exo, although both exosomes increased the viability and cell cycle progression in HaCaT and HDFs. No significant difference was observed in the closure of wound scratch and the expression of reparative genes between cells treated with the two exosome types. Both exosomes enhanced the secretion of collagen in HaCaT and HDFs; however, an increase in fibronectin level was observed only in HaCaT, and this effect was better with iMSC-exo treatment. Only iMSC-exo increased the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2. Our results indicate that iMSC-exo promote the proliferation of skin cells by stimulating ERK1/2 and highlight the application of iMSCs for producing exosomes.
Collapse
Affiliation(s)
- Soo Kim
- Stem Cell Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea.
| | - Seul Ki Lee
- Stem Cell Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea.
| | - Hyunjung Kim
- Stem Cell Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea.
| | - Tae Min Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Pyeongchang Daero 1447, Seoul National University, Pyeongchang, Gangwon-do 25354, Korea.
| |
Collapse
|
122
|
Kuwabara Y, Kobayashi T, D'Alessandro-Gabazza CN, Toda M, Yasuma T, Nishihama K, Takeshita A, Fujimoto H, Nagao M, Fujisawa T, Gabazza EC. Role of Matrix Metalloproteinase-2 in Eosinophil-Mediated Airway Remodeling. Front Immunol 2018; 9:2163. [PMID: 30294331 PMCID: PMC6158585 DOI: 10.3389/fimmu.2018.02163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Airway remodeling is responsible for the progressive decline of lung function in bronchial asthma. Matrix metalloproteinase-2 and fibroblast-to-myofibroblast transition are involved in tissue remodeling. Here we evaluated whether eosinophils play a role in fibroblasts-to-myofibroblasts transition and in the expression of matrix metalloproteinase-2. We co-cultured human eosinophils with human fetal lung fibroblast-1 cells, assessed the expression of remodeling-associated molecules by immunoassays and polymerase-chain reaction, and eosinophils-mediated migration of human fetal lung fibroblast-1 cells using a Boyden chamber. To clarify the participation of matrix metalloproteinase-2 in airway remodeling we administered bone marrow-derived eosinophils by intra-tracheal route to transgenic mice overexpressing the human matrix metalloproteinase-2. The expression of α-smooth muscle actin significantly increased in human fetal lung fibroblast-1 cells co-cultured with human eosinophils compared to controls. There was enhanced expression of matrix metalloproteinase-2 during fibroblast-to-myofibroblast transition. An inhibitor of matrix metalloproteinases blocked eosinophils-associated fibroblast-to-myofibroblast transition and increased migration of fibroblasts. The human matrix metalloproteinase-2 transgenic mice receiving adoptive transfer of mouse eosinophils exhibited increased inflammation and advanced airway remodeling compared to wild type mice. This study demonstrated that eosinophils induce fibroblast-to-myofibroblast transition, secretion of matrix metalloproteinase-2, accelerated migration of fibroblasts, and promote matrix metalloproteinase-2-related airway remodeling. These findings provide a novel mechanistic pathway for eosinophil-associated airway remodeling in bronchial asthma.
Collapse
Affiliation(s)
- Yu Kuwabara
- Allergy Center, Mie National Hospital, Tsu, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kota Nishihama
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mizuho Nagao
- Allergy Center, Mie National Hospital, Tsu, Japan
| | | | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
123
|
Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA. The evolving relationship of wound healing and tumor stroma. JCI Insight 2018; 3:99911. [PMID: 30232274 DOI: 10.1172/jci.insight.99911] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The stroma in solid tumors contains a variety of cellular phenotypes and signaling pathways associated with wound healing, leading to the concept that a tumor behaves as a wound that does not heal. Similarities between tumors and healing wounds include fibroblast recruitment and activation, extracellular matrix (ECM) component deposition, infiltration of immune cells, neovascularization, and cellular lineage plasticity. However, unlike a wound that heals, the edges of a tumor are constantly expanding. Cell migration occurs both inward and outward as the tumor proliferates and invades adjacent tissues, often disregarding organ boundaries. The focus of our review is cancer associated fibroblast (CAF) cellular heterogeneity and plasticity and the acellular matrix components that accompany these cells. We explore how similarities and differences between healing wounds and tumor stroma continue to evolve as research progresses, shedding light on possible therapeutic targets that can result in innovative stromal-based treatments for cancer.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Ryan C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey A Norton
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
124
|
Coordinated collective migration and asymmetric cell division in confluent human keratinocytes without wounding. Nat Commun 2018; 9:3665. [PMID: 30202009 PMCID: PMC6131553 DOI: 10.1038/s41467-018-05578-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Epithelial sheet spreading is a fundamental cellular process that must be coordinated with cell division and differentiation to restore tissue integrity. Here we use consecutive serum deprivation and re-stimulation to reconstruct biphasic collective migration and proliferation in cultured sheets of human keratinocytes. In this system, a burst of long-range coordinated locomotion is rapidly generated throughout the cell sheet in the absence of wound edges. Migrating cohorts reach correlation lengths of several millimeters and display dependencies on epidermal growth factor receptor-mediated signaling, self-propelled polarized migration, and a G1/G0 cell cycle environment. The migration phase is temporally and spatially aligned with polarized cell divisions characterized by pre-mitotic nuclear migration to the cell front and asymmetric partitioning of nuclear promyelocytic leukemia bodies and lysosomes to opposite daughter cells. This study investigates underlying mechanisms contributing to the stark contrast between cells in a static quiescent state compared to the long-range coordinated collective migration seen in contact with blood serum. Epithelial sheet migration requires polarized and coordinated cell movement. Here, the authors demonstrate serum-activated collective migration followed by polarized asymmetric cell divisions in otherwise quiescent human keratinocyte monolayers in the absence of wound edges.
Collapse
|
125
|
Rognoni E, Watt FM. Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends Cell Biol 2018; 28:709-722. [PMID: 29807713 PMCID: PMC6098245 DOI: 10.1016/j.tcb.2018.05.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Skin architecture and function depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, it is now recognised that there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss recent insights into how these distinct cell populations are maintained and coordinated during development, homeostasis, and wound healing. We highlight the importance of the local environment, or niche, in cellular plasticity. We also discuss new mechanisms that have been identified as influencing wound repair and cancer progression.
Collapse
Affiliation(s)
- Emanuel Rognoni
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
126
|
Rognoni E, Pisco AO, Hiratsuka T, Sipilä KH, Belmonte JM, Mobasseri SA, Philippeos C, Dilão R, Watt FM. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol Syst Biol 2018; 14:e8174. [PMID: 30158243 PMCID: PMC6113774 DOI: 10.15252/msb.20178174] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/25/2023] Open
Abstract
Murine dermis contains functionally and spatially distinct fibroblast lineages that cease to proliferate in early postnatal life. Here, we propose a model in which a negative feedback loop between extracellular matrix (ECM) deposition and fibroblast proliferation determines dermal architecture. Virtual-tissue simulations of our model faithfully recapitulate dermal maturation, predicting a loss of spatial segregation of fibroblast lineages and dictating that fibroblast migration is only required for wound healing. To test this, we performed in vivo live imaging of dermal fibroblasts, which revealed that homeostatic tissue architecture is achieved without active cell migration. In contrast, both fibroblast proliferation and migration are key determinants of tissue repair following wounding. The results show that tissue-scale coordination is driven by the interdependence of cell proliferation and ECM deposition, paving the way for identifying new therapeutic strategies to enhance skin regeneration.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | - Toru Hiratsuka
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Kalle H Sipilä
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Julio M Belmonte
- Developmental Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Christina Philippeos
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Rui Dilão
- Nonlinear Dynamics Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
127
|
Sano T, Kobayashi T, Ogawa O, Matsuda M. Gliding Basal Cell Migration of the Urothelium during Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2564-2573. [PMID: 30121259 DOI: 10.1016/j.ajpath.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023]
Abstract
Collective cell migration during wound healing has been extensively studied in the epidermis. However, it remains unknown whether the urothelium repairs wounds in a manner similar to the epidermis. By in vivo two-photon excitation microscopy of transgenic mice that express fluorescent biosensors, we studied the collective cell migration of the urothelium in comparison with that of the epidermis. In vivo time-lapse imaging revealed that, even in the absence of a wound, urothelial cells continuously moved and sometimes glided as a sheet over the underlying lamina propria. On abrasion of the epithelium, the migration speed of each epidermal cell was inversely correlated with the distance to the wound edge. Repetitive activation waves of extracellular signal-regulated kinase (ERK) were generated at and propagated away from the wound edge. In contrast, urothelial cells glided as a sheet over the lamina propria without any ERK activation waves. Accordingly, the mitogen-activated protein kinase/ERK kinase inhibitor PD0325901 decreased the migration velocity of the epidermis but not the urothelium. Interestingly, the tyrosine kinase inhibitor dasatinib inhibited migration of the urothelium as well as the epidermis, suggesting that the gliding migration of the urothelium is an active, not a passive, migration. In conclusion, the urothelium glides over the lamina propria to fill wounds in an ERK-independent manner, whereas the epidermis crawls to cover wounds in an ERK-dependent manner.
Collapse
Affiliation(s)
- Takeshi Sano
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
128
|
Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med 2018; 12:361-373. [PMID: 30043221 PMCID: PMC6186394 DOI: 10.1007/s11684-018-0656-6] [Citation(s) in RCA: 470] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic states arrayed along the epithelial-mesenchymal phenotypic axis. These cell states display distinctive cellular characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade malignancies.
Collapse
Affiliation(s)
- Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA. .,MIT Department of Biology, Cambridge, MA, 02142, USA. .,Ludwig/MIT Center for Molecular Oncology, Cambridge, MA, 02142, USA.
| |
Collapse
|
129
|
Sandoval-Guzmán T, Currie JD. The journey of cells through regeneration. Curr Opin Cell Biol 2018; 55:36-41. [PMID: 30031323 DOI: 10.1016/j.ceb.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 10/28/2022]
Abstract
The process of building an organ, appendage, or organism requires the precise coordination of cells in space and time. Regeneration of those same tissues adds an additional element of complexity, emerging from the chaos of disease or injury to build a mass of progenitors from mature tissue. Translating insights from natural examples of tissue regeneration into engineered regenerative therapies requires a deep understanding of the journey of a cell directly following injury to its contribution to functional, scaled replacement tissue. Here we step through the chronological phases of regeneration and highlight emerging work that brings us closer to elucidating the unique intrinsic and extrinsic properties of cells during epimorphic regeneration.
Collapse
Affiliation(s)
- Tatiana Sandoval-Guzmán
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| | - Joshua D Currie
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
130
|
Kannan N, Tang VW. Myosin-1c promotes E-cadherin tension and force-dependent recruitment of α-actinin to the epithelial cell junction. J Cell Sci 2018; 131:jcs.211334. [PMID: 29748378 DOI: 10.1242/jcs.211334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Actomyosin II contractility in epithelial cell plays an essential role in tension-dependent adhesion strengthening. One key unsettling question is how cellular contraction transmits force to the nascent cell-cell adhesion when there is no stable attachment between the nascent adhesion complex and actin filament. Here, we show that myosin-1c is localized to the lateral membrane of polarized epithelial cells and facilitates the coupling between actin and cell-cell adhesion. Knockdown of myosin-1c compromised the integrity of the lateral membrane, reduced the generation of tension at E-cadherin, decreased the strength of cell-cell cohesion in an epithelial cell monolayer and prevented force-dependent recruitment of junctional α-actinin. Application of exogenous force to cell-cell adhesions in a myosin-1c-knockdown cell monolayer fully rescued the localization defect of α-actinin, indicating that junction mechanoregulation remains intact in myosin-1c-depleted cells. Our study identifies a role of myosin-1c in force transmission at the lateral cell-cell interface and underscores a non-junctional contribution to tension-dependent junction regulation.
Collapse
Affiliation(s)
- Nivetha Kannan
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| |
Collapse
|
131
|
Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE, Bray LK, Thomas JM, Dunn K, Blaikley J, O'Neill JS. Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci Transl Med 2018; 9:9/415/eaal2774. [PMID: 29118260 DOI: 10.1126/scitranslmed.aal2774] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/25/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Abstract
Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping, which imparts an approximately 24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence, the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately affect the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse's active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than nighttime wounds. We suggest that circadian regulation of the cytoskeleton influences wound-healing efficacy from the cellular to the organismal scale.
Collapse
Affiliation(s)
- Nathaniel P Hoyle
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Estere Seinkmane
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marrit Putker
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kevin A Feeney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Toke P Krogager
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Johanna E Chesham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Liam K Bray
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Justyn M Thomas
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QH, UK
| | - Ken Dunn
- University Hospital South Manchester and Honorary, Centre for Health Informatics, Institute of Population Health, University of Manchester, Manchester M23 9LT, UK
| | - John Blaikley
- Centre for Respiratory Medicine and Allergy, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester M23 9LT, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
132
|
Lim HK, Rahim AB, Leo VI, Das S, Lim TC, Uemura T, Igarashi K, Common J, Vardy LA. Polyamine Regulator AMD1 Promotes Cell Migration in Epidermal Wound Healing. J Invest Dermatol 2018; 138:2653-2665. [PMID: 29906410 DOI: 10.1016/j.jid.2018.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/29/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022]
Abstract
Wound healing is a dynamic process involving gene-expression changes that drive re-epithelialization. Here, we describe an essential role for polyamine regulator AMD1 in driving cell migration at the wound edge. The polyamines, putrescine, spermidine, and spermine are small cationic molecules that play essential roles in many cellular processes. We demonstrate that AMD1 is rapidly upregulated following wounding in human skin biopsies. Knockdown of AMD1 with small hairpin RNAs causes a delay in cell migration that is rescued by the addition of spermine. We further show that spermine can promote cell migration in keratinocytes and in human ex vivo wounds, where it significantly increases epithelial tongue migration. Knockdown of AMD1 prevents the upregulation of urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor on wounding and results in a failure in actin cytoskeletal reorganization at the wound edge. We demonstrate that keratinocytes respond to wounding by modulating polyamine regulator AMD1 in order to regulate downstream gene expression and promote cell migration. This article highlights a previously unreported role for the regulation of polyamine levels and ratios in cellular behavior and fate.
Collapse
Affiliation(s)
- Hui Kheng Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Immunos, Singapore
| | - Anisa B Rahim
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Immunos, Singapore
| | - Vonny Ivon Leo
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Immunos, Singapore
| | - Shatarupa Das
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Immunos, Singapore
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Hospital and National University of Singapore, Kent Ridge Wing, Singapore
| | - Takeshi Uemura
- Graduate School of Pharmaceutical Sciences, Chiba, University, Chiba, Japan
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba, University, Chiba, Japan
| | - John Common
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Immunos, Singapore
| | - Leah A Vardy
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Immunos, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
133
|
Mori R, Tanaka K, Shimokawa I. Identification and functional analysis of inflammation-related miRNAs in skin wound repair. Dev Growth Differ 2018; 60:306-315. [PMID: 29873073 DOI: 10.1111/dgd.12542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Inflammation at a wound site is essential for preventing infection. However, misregulated inflammation leads to pathologies of the healing process, including chronic non-healing wounds and scarring. MicroRNAs (miRNAs) are key regulators of the inflammatory response and tissue repair, acting by translational processing of target mRNAs. In the final step of miRNA processing, Argonaute 2 (Ago2)-bound mature miRNA complexes bind to target mRNAs and inhibit their translation. A variety of wound healing-related miRNAs have been identified and their misregulation likely contributes to wound pathologies, including scarring and chronic healing. Recently, we have developed an Ago2-bound mature miRNA purification system that uses Ago2 antibody to analyze the expression of miRNAs from wound tissues by microarray and next generation sequencing. We have identified several wound inflammation-related miRNAs via Ago2-target immunoprecipitation assays and next generation sequencing of wound tissues from wild-type and PU.1 knockout mice, which exhibit no inflammatory response because of a lack of immune cell lineages. We demonstrated that miR-142, an identified inflammation-related miRNA, is essential role for neutrophilic chemotaxis via inhibition of small GTPase translation; its misregulation leads to susceptibility to infection against Staphylococcus aureus at skin wound sites. In this review, we summarize recent advances of miRNA studies in skin wound healing, introduce our miRNA purification system using an immunoprecipitation assay method, and discuss the function of miR-142 in skin wound healing.
Collapse
Affiliation(s)
- Ryoichi Mori
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Tanaka
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Plastic and Reconstructive Surgery, Ehime Prefectural Center Hospital, Matsuyama, Japan
| | - Isao Shimokawa
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
134
|
Elkon KB. Review: Cell Death, Nucleic Acids, and Immunity: Inflammation Beyond the Grave. Arthritis Rheumatol 2018; 70:805-816. [PMID: 29439290 PMCID: PMC5984680 DOI: 10.1002/art.40452] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/08/2018] [Indexed: 12/29/2022]
Abstract
Cells of the innate immune system are rigged with sensors that detect nucleic acids derived from microbes, especially viruses. It has become clear that these same sensors that respond to nucleic acids derived from damaged cells or defective intracellular processing are implicated in triggering diseases such as lupus and arthritis. The ways in which cells die and the concomitant presence of proteins and peptides that allow nucleic acids to re-enter cells profoundly influence innate immune responses. In this review, we briefly discusses different types of programmed necrosis, such as pyroptosis, necroptosis, and NETosis, and explains how nucleic acids can engage intracellular receptors and stimulate inflammation. Host protective mechanisms that include compartmentalization of receptors and nucleases as well as the consequences of nuclease deficiencies are explored. In addition, proximal and distal targets in the nucleic acid stimulation of inflammation are discussed in terms of their potential amenability to therapy for the attenuation of innate immune activation and disease pathogenesis.
Collapse
Affiliation(s)
- Keith B. Elkon
- Department of Medicine and Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
135
|
Mignon C, Uzunbajakava NE, Castellano-Pellicena I, Botchkareva NV, Tobin DJ. Differential response of human dermal fibroblast subpopulations to visible and near-infrared light: Potential of photobiomodulation for addressing cutaneous conditions. Lasers Surg Med 2018; 50:859-882. [PMID: 29665018 DOI: 10.1002/lsm.22823] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND OBJECTIVES The past decade has witnessed a rapid expansion of photobiomodulation (PBM), demonstrating encouraging results for the treatment of cutaneous disorders. Confidence in this approach, however, is impaired not only by a lack of understanding of the light-triggered molecular cascades but also by the significant inconsistency in published experimental outcomes, design of the studies and applied optical parameters. This study aimed at characterizing the response of human dermal fibroblast subpopulations to visible and near-infrared (NIR) light in an attempt to identify the optical treatment parameters with high potential to address deficits in aging skin and non-healing chronic wounds. MATERIALS AND METHODS Primary human reticular and papillary dermal fibroblasts (DF) were isolated from the surplus of post-surgery human facial skin. An in-house developed LED-based device was used to irradiate cell cultures using six discrete wavelengths (450, 490, 550, 590, 650, and 850 nm). Light dose-response at a standard oxygen concentration (20%) at all six wavelengths was evaluated in terms of cell metabolic activity. This was followed by an analysis of the transcriptome and procollagen I production at a protein level, where cells were cultured in conditions closer to in vivo at 2% environmental oxygen and 2% serum. Furthermore, the production of reactive oxygen species (ROS) was accessed using real-time fluorescence confocal microscopy imaging. Here, production of ROS in the presence or absence of antioxidants, as well as the cellular localization of ROS, was evaluated. RESULTS In terms of metabolic activity, consecutive irradiation with short-wavelength light (⇐530 nm) exerted an inhibitory effect on DF, while longer wavelengths (>=590 nm) had essentially a neutral effect. Cell behavior following treatment with 450 nm was biphasic with two distinct states: inhibitory at low- to mid- dose levels (<=30 J/cm2 ), and cytotoxic at higher dose levels (>30 J/cm2 ). Cell response to blue light was accompanied by a dose-dependent release of ROS that was localized in the perinuclear area close to mitochondria, which was attenuated by an antioxidant. Overall, reticular DFs exhibited a greater sensitivity to light treatment at the level of gene expression than did papillary DFs, with more genes significantly up- or down- regulated. At the intra-cellular signaling pathway level, the up- or down- regulation of vital pathways was observed only for reticular DF, after treatment with 30 J/cm2 of blue light. At the cellular level, short visible wavelengths exerted a greater inhibitory effect on reticular DF. Several genes involved in the TGF-β signaling pathway were also affected. In addition, procollagen I production was inhibited. By contrast, 850 nm near-infrared (NIR) light (20 J/cm2 ) exerted a stimulatory metabolic effect in these cells, with no detectable intracellular ROS formation. Here too, reticular DF were more responsive than papillary DF. This stimulatory effect was only observed under in vivo-like low oxygen conditions, corresponding to normal dermal tissue oxygen levels (approximately 2%). CONCLUSION This study highlights a differential impact of light on human skin cells with upregulation of metabolic activity with NIR light, and inhibition of pro-collagen production and proliferation in response to blue light. These findings open-up new avenues for developing therapies for different cutaneous conditions (e.g., treatment of keloids and fibrosis) or differential therapy at distinct stages of wound healing. Lasers Surg. Med. 50:859-882, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charles Mignon
- Centre for Skin Sciences, University of Bradford, BD71DP, Bradford, United-Kingdom.,Philips Research, High Tech Campus, Eindhoven, Netherlands
| | | | - Irene Castellano-Pellicena
- Centre for Skin Sciences, University of Bradford, BD71DP, Bradford, United-Kingdom.,Philips Research, High Tech Campus, Eindhoven, Netherlands
| | | | - Desmond J Tobin
- Centre for Skin Sciences, University of Bradford, BD71DP, Bradford, United-Kingdom
| |
Collapse
|
136
|
Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. Trends Immunol 2018; 39:315-327. [DOI: 10.1016/j.it.2018.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
|
137
|
Li Z, Gothard E, Coles MC, Ambler CA. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin. Front Immunol 2018. [PMID: 29535723 PMCID: PMC5835106 DOI: 10.3389/fimmu.2018.00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.
Collapse
Affiliation(s)
- Zhi Li
- Biosciences Department, Biophysical Sciences Institute, Durham University, Durham, United Kingdom.,Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Elizabeth Gothard
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Mark C Coles
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Carrie A Ambler
- Biosciences Department, Biophysical Sciences Institute, Durham University, Durham, United Kingdom
| |
Collapse
|
138
|
Pfeiffer J, Tarbashevich K, Bandemer J, Palm T, Raz E. Rapid progression through the cell cycle ensures efficient migration of primordial germ cells - The role of Hsp90. Dev Biol 2018; 436:84-93. [PMID: 29477339 DOI: 10.1016/j.ydbio.2018.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 01/21/2023]
Abstract
Zebrafish primordial germ cells (PGCs) constitute a useful in vivo model to study cell migration and to elucidate the role of specific proteins in this process. Here we report on the role of the heat shock protein Hsp90aa1.2, a protein whose RNA level is elevated in the PGCs during their migration. Reducing Hsp90aa1.2 activity slows down the progression through the cell cycle and leads to defects in the control over the MTOC number in the migrating cells. These defects result in a slower migration rate and compromise the arrival of PGCs at their target, the region where the gonad develops. Our results emphasize the importance of ensuring rapid progression through the cell cycle during single-cell migration and highlight the role of heat shock proteins in the process.
Collapse
Affiliation(s)
- Jana Pfeiffer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Jan Bandemer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Thomas Palm
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany.
| |
Collapse
|
139
|
Deckers J, Hammad H, Hoste E. Langerhans Cells: Sensing the Environment in Health and Disease. Front Immunol 2018; 9:93. [PMID: 29449841 PMCID: PMC5799717 DOI: 10.3389/fimmu.2018.00093] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, our understanding of Langerhans cells (LCs) has drastically changed based on novel findings regarding the developmental origin and biological functions of these epidermis-specific resident immune cells. It has become clear that LCs not only exert pivotal roles in immune surveillance and homeostasis but also impact on pathology by either inducing tolerance or mediating inflammation. Their unique capabilities to self-renew within the epidermis, while also being able to migrate to lymph nodes in order to present antigen, place LCs in a key position to sample the local environment and decide on the appropriate cutaneous immune response. Exciting new data distinguishing LCs from Langerin+ dermal dendritic cells (DCs) on a functional and ontogenic level reveal crucial roles for LCs in trauma and various skin pathologies, which will be thoroughly discussed here. However, despite rapid progress in the field, the exact role of LCs during immune responses has not been completely elucidated. This review focuses on what mouse models that have been developed in order to enable the study of murine LCs and other Langerin-expressing DCs have taught us about LC development and function.
Collapse
Affiliation(s)
- Julie Deckers
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
140
|
Simkin J, Seifert AW. Concise Review: Translating Regenerative Biology into Clinically Relevant Therapies: Are We on the Right Path? Stem Cells Transl Med 2017; 7:220-231. [PMID: 29271610 PMCID: PMC5788874 DOI: 10.1002/sctm.17-0213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
Despite approaches in regenerative medicine using stem cells, bio‐engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large‐scale, multi‐tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue. Rabbits and African spiny mice re‐grow tissue to fill large musculoskeletal defects through their ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes through fibrotic repair. This Review explores the utility of these comparative healing models using the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into reparative regeneration might serve to advance regenerative medicine. Specifically, we consider how inflammation and immunity, extracellular matrix composition, and controlled cell proliferation intersect to establish a pro‐regenerative microenvironment in response to injuries. Understanding how some mammals naturally regenerate complex tissue can provide a blueprint for how we might manipulate the injury microenvironment to enhance regenerative abilities in humans. Stem Cells Translational Medicine2018;7:220–231
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
141
|
Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond) 2017; 131:2865-2883. [DOI: 10.1042/cs20171246] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
For many years, oxidative stress arising from the ubiquitous production of reactive oxygen species (ROS) has been implicated in the pathogenesis of various eye diseases. While emerging research has provided some evidence of the important physiological role of ROS in normal cell function, disease may arise where the concentration of ROS exceeds and overwhelms the body’s natural defence against them. Additionally, ROS may induce genomic aberrations which affect cellular homoeostasis and may result in disease. This literature review examines the current evidence for the role of oxidative stress in important ocular diseases with a view to identifying potential therapeutic targets for future study. The need is particularly pressing in developing treatments for conditions which remain notoriously difficult to treat, including glaucoma, diabetic retinopathy and age-related macular degeneration.
Collapse
|
142
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
143
|
Affiliation(s)
- Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, CA 94305, USA.
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, CA 94305, USA. .,Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
144
|
Ramouz A, Rasihashemi SZ, Daghigh F, Faraji E, Rouhani S. Predisposing factors for seroma formation in patients undergoing thyroidectomy: Cross-sectional study. Ann Med Surg (Lond) 2017; 23:8-12. [PMID: 28970942 PMCID: PMC5612789 DOI: 10.1016/j.amsu.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022] Open
Abstract
Introduction Seroma is defined as collection of fluid within the surgical site during postoperative period that causes several complications. Recognition of predisposing risk factors can lead to avoid seroma formation after thyroidectomy. Materials and methods A cross-sectional study was carried out during a 3-year period and 678 patients were enrolled the study. We recorded demographic data, past medical history and the type of thyroidectomy were for all patients. We measured total and ionized serum calcium and albumin level in all patients before surgery and a day after it. All patients underwent total or subtotal thyroidectomy and if needed central neck dissection was performed subsequently. Patients underwent serial aspiration If they had seroma formation. Results The overall post-thyroidectomy seroma incidence was 2.2%. There was no statistically significant correlation while evaluating gender, age and body mass index with post-operative seroma formation. However, seroma formation was significantly higher in patients underwent total thyroidectomy (P = 0.041). The results of postoperative laboratory tests showed a significant lower level of ionized calcium in patients with seroma formation (P < 0.0001). Logistic regression showed statistically significant value for variables including age, BMI and decreased ionized calcium level, in developing of seroma. Conclusion We showed that Seroma formation was lower during thyroidectomy via electrical vessel sealing system in comparison with previous studies. In our study, older age, greater body mass index and decreased ionized calcium level were predictors of seroma formation.
Collapse
Affiliation(s)
- Ali Ramouz
- Department of Cardiothoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Faeze Daghigh
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Faraji
- Department of Endocrinology and Metabolic Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Rouhani
- Department of Cardiothoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
145
|
EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids. Cancers (Basel) 2017; 9:cancers9080098. [PMID: 28758926 PMCID: PMC5575601 DOI: 10.3390/cancers9080098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET). In the saving economy of the living organisms, the same (Ying-Yang) tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-β and BMPs) have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D) cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-β-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-β-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This latter, in particular, for its ability to convey multiple types of stimuli into relevant changes of the cell transcriptional program, can be regarded as a heterogeneous "stress-sensor" for EMT-related inducers (growth factor, hypoxia, mechano-stress), and thus as a therapeutic target.
Collapse
|
146
|
Juanes MA, Bouguenina H, Eskin JA, Jaiswal R, Badache A, Goode BL. Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. J Cell Biol 2017; 216:2859-2875. [PMID: 28663347 PMCID: PMC5584174 DOI: 10.1083/jcb.201702007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/14/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT-actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration.
Collapse
Affiliation(s)
| | - Habib Bouguenina
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | | | - Richa Jaiswal
- Department of Biology, Brandeis University, Waltham, MA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
147
|
Wood W, Martin P. Macrophage Functions in Tissue Patterning and Disease: New Insights from the Fly. Dev Cell 2017; 40:221-233. [PMID: 28171746 PMCID: PMC5300050 DOI: 10.1016/j.devcel.2017.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/02/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
Macrophages are multifunctional innate immune cells that seed all tissues within the body and play disparate roles throughout development and in adult tissues, both in health and disease. Their complex developmental origins and many of their functions are being deciphered in mammalian tissues, but opportunities for live imaging and the genetic tractability of Drosophila are offering complementary insights into how these fascinating cells integrate a multitude of guidance cues to fulfill their many tasks and migrate to distant sites to either direct developmental patterning or raise an inflammatory response.
Collapse
Affiliation(s)
- Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Martin
- Departments of Biochemistry and Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
148
|
Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017; 11:755-769. [PMID: 28548345 PMCID: PMC5496498 DOI: 10.1002/1878-0261.12083] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Kathryn E Ware
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shivee Gilja
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jason A Somarelli
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
149
|
Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. ACTA ACUST UNITED AC 2017; 4:39-53. [PMID: 28616244 PMCID: PMC5469729 DOI: 10.1002/reg2.77] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
This review provides a concise summary of the changing phenotypes of macrophages and fibroblastic cells during the local inflammatory response, the onset of tissue repair, and the resolution of inflammation which follow injury to an organ. Both cell populations respond directly to damage and present coordinated sequences of activation states which determine the reparative outcome, ranging from true regeneration of the organ to fibrosis and variable functional deficits. Recent work with mammalian models of organ regeneration, including regeneration of full‐thickness skin, hair follicles, ear punch tissues, and digit tips, is summarized and the roles of local immune cells in these systems are discussed. New investigations of the early phase of amphibian limb and tail regeneration, including the effects of pro‐inflammatory and anti‐inflammatory agents, are then briefly discussed, focusing on the transition from the normally covert inflammatory response to the initiation of the regeneration blastema by migrating fibroblasts and the expression of genes for limb patterning.
Collapse
Affiliation(s)
- Anthony L Mescher
- Department of Anatomy and Cell Biology, Indiana University School of Medicine - Bloomington Indiana University Center for Developmental and Regenerative Biology Bloomington IN 47405 USA
| |
Collapse
|
150
|
Abstract
Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.
Collapse
Affiliation(s)
- Xiuxiu He
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|