101
|
Transcription-generated torsional stress destabilizes nucleosomes. Nat Struct Mol Biol 2013; 21:88-94. [PMID: 24317489 PMCID: PMC3947361 DOI: 10.1038/nsmb.2723] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/30/2013] [Indexed: 01/03/2023]
Abstract
As RNA polymerase II (Pol II) transcribes a gene, it encounters an array of well-ordered nucleosomes. How it traverses through this array in vivo remains unresolved. One model proposes that torsional stress generated during transcription destabilizes nucleosomes ahead of Pol II. Here, we describe a method for high-resolution mapping of underwound DNA, using next-generation sequencing, and show that torsion is correlated with gene expression in Drosophila melanogaster cells. Accumulation of torsional stress, through topoisomerase inhibition, results in increased Pol II at transcription start sites. Whereas topoisomerase I inhibition results in increased nascent RNA transcripts, topoisomerase II inhibition causes little change. Despite the different effects on Pol II elongation, topoisomerase inhibition results in increased nucleosome turnover and salt solubility within gene bodies, thus suggesting that the elongation-independent effects of torsional stress on nucleosome dynamics contributes to the destabilization of nucleosomes.
Collapse
|
102
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
103
|
Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response. Chromosoma 2013; 123:79-90. [PMID: 24162931 DOI: 10.1007/s00412-013-0442-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/19/2023]
Abstract
Poly(ADP-ribose) (PAR) is a post-translational modification of proteins and is synthesised by PAR polymerases (PARPs), which have long been associated with the coordination of the cellular response to DNA damage, amongst other processes. Binding of some PARPs such as PARP1 to broken DNA induces a substantial wave of PARylation, which results in significant re-structuring of the chromatin microenvironment through modification of chromatin-associated proteins and recruitment of chromatin-modifying proteins. Similarly, other DNA damage response proteins are recruited to the damaged sites via PAR-specific binding modules, and in this way, PAR mediates not only local chromatin architecture but also DNA repair. Here, we discuss the expanding role of PAR in the DNA damage response, with particular focus on chromatin regulation.
Collapse
|
104
|
Kulaeva OI, Malyuchenko NV, Nikitin DV, Demidenko AV, Chertkov OV, Efimova NS, Kirpichnikov MP, Studitsky VM. Molecular mechanisms of transcription through a nucleosome by RNA polymerase II. Mol Biol 2013. [DOI: 10.1134/s0026893313050099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
105
|
Abstract
Elongation is becoming increasingly recognized as a critical step in eukaryotic transcriptional regulation. Although traditional genetic and biochemical studies have identified major players of transcriptional elongation, our understanding of the importance and roles of these factors is evolving rapidly through the recent advances in genome-wide and single-molecule technologies. Here, we focus on how elongation can modulate the transcriptional outcome through the rate-liming step of RNA polymerase II (Pol II) pausing near promoters and how the participating factors were identified. Among the factors we describe are the pausing factors--NELF (negative elongation factor) and DSIF (DRB sensitivity-inducing factor)--and P-TEFb (positive elongation factor b), which is the key player in pause release. We also describe the high-resolution view of Pol II pausing and propose nonexclusive models for how pausing is achieved. We then discuss Pol II elongation through the bodies of genes and the roles of FACT and SPT6, factors that allow Pol II to move through nucleosomes.
Collapse
Affiliation(s)
- Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703; ,
| | | |
Collapse
|
106
|
Li J, Liu Y, Rhee HS, Ghosh SKB, Bai L, Pugh BF, Gilmour DS. Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol Cell 2013; 50:711-22. [PMID: 23746353 DOI: 10.1016/j.molcel.2013.05.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/03/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022]
Abstract
Pausing of RNA polymerase II (Pol II) 20-60 bp downstream of transcription start sites is a major checkpoint during transcription in animal cells. Mechanisms that control pausing are largely unknown. We developed permanganate-ChIP-seq to evaluate the state of Pol II at promoters throughout the Drosophila genome, and a biochemical system that reconstitutes promoter-proximal pausing to define pausing mechanisms. Stable open complexes of Pol II are largely absent from the transcription start sites of most mRNA genes but are present at snRNA genes and the highly transcribed heat shock genes following their induction. The location of the pause is influenced by the timing between when NELF loads onto Pol II and how fast Pol II escapes the promoter region. Our biochemical analysis reveals that the sequence-specific transcription factor, GAF, orchestrates efficient pausing by recruiting NELF to promoters before transcription initiation and by assisting in loading NELF onto Pol II after initiation.
Collapse
Affiliation(s)
- Jian Li
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Adamik J, Wang KZQ, Unlu S, Su AJA, Tannahill GM, Galson DL, O’Neill LA, Auron PE. Distinct mechanisms for induction and tolerance regulate the immediate early genes encoding interleukin 1β and tumor necrosis factor α. PLoS One 2013; 8:e70622. [PMID: 23936458 PMCID: PMC3731334 DOI: 10.1371/journal.pone.0070622] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/19/2013] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Kent Z. Q. Wang
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Sebnem Unlu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - An-Jey A. Su
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | | | - Deborah L. Galson
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Luke A. O’Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Philip E. Auron
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
108
|
Chromatin dynamics during lytic infection with herpes simplex virus 1. Viruses 2013; 5:1758-86. [PMID: 23863878 PMCID: PMC3738960 DOI: 10.3390/v5071758] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
Latent HSV-1 genomes are chromatinized with silencing marks. Since 2004, however, there has been an apparent inconsistency in the studies of the chromatinization of the HSV-1 genomes in lytically infected cells. Nuclease protection and chromatin immunoprecipitation assays suggested that the genomes were not regularly chromatinized, having only low histone occupancy. However, the chromatin modifications associated with transcribed and non-transcribed HSV-1 genes were those associated with active or repressed transcription, respectively. Moreover, the three critical HSV-1 transcriptional activators all had the capability to induce chromatin remodelling, and interacted with critical chromatin modifying enzymes. Depletion or overexpression of some, but not all, chromatin modifying proteins affected HSV-1 transcription, but often in unexpected manners. Since 2010, it has become clear that both cellular and HSV-1 chromatins are highly dynamic in infected cells. These dynamics reconcile the weak interactions between HSV-1 genomes and chromatin proteins, detected by nuclease protection and chromatin immunoprecipitation, with the proposed regulation of HSV-1 gene expression by chromatin, supported by the marks in the chromatin in the viral genomes and the abilities of the HSV-1 transcription activators to modulate chromatin. It also explains the sometimes unexpected results of interventions to modulate chromatin remodelling activities in infected cells.
Collapse
|
109
|
Dantzer F, Santoro R. The expanding role of PARPs in the establishment and maintenance of heterochromatin. FEBS J 2013; 280:3508-18. [DOI: 10.1111/febs.12368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/26/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Françoise Dantzer
- UMR7242; Centre National de la Recherche Scientifique Université de Strasbourg; Laboratoire d'Excellence Medalis; Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg; Ecole Supérieure de Biotechnologie de Strasbourg; Illkirch France
| | - Raffaella Santoro
- Institute of Veterinary Biochemistry and Molecular Biology; University of Zürich; Zürich Switzerland
| |
Collapse
|
110
|
Tariq M, Wegrzyn R, Anwar S, Bukau B, Paro R. Drosophila GAGA factor polyglutamine domains exhibit prion-like behavior. BMC Genomics 2013; 14:374. [PMID: 23731888 PMCID: PMC3701498 DOI: 10.1186/1471-2164-14-374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 05/30/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The Drosophila GAGA factor (GAF) participates in nucleosome remodeling to activate genes, acts as an antirepressor and is associated with heterochromatin, contributing to gene repression. GAF functions are intimately associated to chromatin-based epigenetic control, linking basic transcriptional regulation to heritable long-term maintenance of gene expression. These diverse functions require GAF to interact with different partners in different multiprotein complexes. The two isoforms of GAF depict highly conserved glutamine-rich C-terminal domains (Q domain), which have been implicated in complex formation. RESULTS Here we show that the Q domains exhibit prion-like properties. In an established yeast test system the two GAF Q domains convey prion activities comparable to well known yeast prions. The Q domains stably maintain two distinct conformational states imposing functional constraints on the fused yeast reporter protein. The prion-like phenotype can be reversibly cured in the presence of guanidine HCl or by over-expression of the Hsp104 chaperone protein. Additionally, when fused to GFP, the Q domains form aggregates in yeast cells. CONCLUSION We conclude that prion-like behavior of the GAF Q domain suggests that this C-terminal structure may perform stable conformational switches. Such a self-perpetuating change in the conformation could assist GAF executing its diverse epigenetic functions of gene control in Drosophila.
Collapse
Affiliation(s)
- Muhammad Tariq
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Renee Wegrzyn
- Zentrum für Molekulare Biologie Heidelberg, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Saima Anwar
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Bernd Bukau
- Zentrum für Molekulare Biologie Heidelberg, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
- Faculty of Science, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
111
|
Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. EMBO J 2013; 32:1829-41. [PMID: 23708796 DOI: 10.1038/emboj.2013.111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 01/14/2023] Open
Abstract
Thousands of genes in Drosophila have Pol II paused in the promoter proximal region. Almost half of these genes are associated with either GAGA factor (GAF) or a newly discovered factor we call M1BP. Although both factors dictate the association of Pol II at their target promoters, they are nearly mutually exclusive on the genome and mediate different mechanisms of regulation. High-resolution mapping of Pol II using permanganate-ChIP-seq indicates that pausing on M1BP genes is transient and could involve the +1 nucleosome. In contrast, pausing on GAF genes is much stronger and largely independent of nucleosomes. Distinct regulatory mechanisms are reflected by transcriptional plasticity: M1BP genes are constitutively expressed throughout development while GAF genes exhibit much greater developmental specificity. M1BP binds a core promoter element called Motif 1. Motif 1 potentially directs a distinct transcriptional mechanism from the canonical TATA box, which does not correlate with paused Pol II on the genomic scale. In contrast to M1BP and GAF genes, a significant portion of TATA box genes appear to be controlled at preinitiation complex formation.
Collapse
|
112
|
Wu BT, Lin WY, Chou IC, Liu HP, Lee CC, Tsai Y, Lee JY, Tsai FJ. Association of poly(ADP-ribose) polymerase-1 polymorphism with Tourette syndrome. Neurol Sci 2013; 34:1911-6. [PMID: 23576132 DOI: 10.1007/s10072-013-1405-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/13/2013] [Indexed: 01/09/2023]
Abstract
Tourette syndrome (TS) is an etiologically heterogeneous disorder, the pathogenesis of which is incompletely understood. Poly(ADP-ribose) polymerase 1 (PARP1) is involved in regulation of developmental processes and cellular differentiation, in transcription regulation, in DNA repair, and in cell death. However, the relationship between TS and single nucleotide polymorphisms (SNPs) of PARP1 is unknown. Therefore, the aim of this experiment was to test the hypothesis that whether the PARP1 SNP, rs1805404 (c.243C>T, Asp81Asp), had an association with TS. A case-control experiment was designed to test this hypothesis. 123 TS children and 122 normal children were enrolled in this study. Polymerase chain reaction restriction fragment length polymorphism was used for the detection of the PARP1 SNP, rs1805404, in TS patients and normal children. The data showed that there is a significant difference in genotype distributions between these two groups. The CT genotype was a risk factor for TS with an odds ratio of 2.34 for the CT versus TT genotype (95% CI 1.16-4.74). The data also showed this SNP had an association with TS under recessive model (P = 0.0426), and TT genotype had a protective effect against TS with an odds ratio of 0.50 (95% CI 0.26-0.98). The findings of this study suggested that variants in the PARP1 gene might play a role in susceptibility to TS.
Collapse
Affiliation(s)
- Bor-Tsang Wu
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Sarshad A, Sadeghifar F, Louvet E, Mori R, Böhm S, Al-Muzzaini B, Vintermist A, Fomproix N, Östlund AK, Percipalle P. Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression. PLoS Genet 2013; 9:e1003397. [PMID: 23555303 PMCID: PMC3605103 DOI: 10.1371/journal.pgen.1003397] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022] Open
Abstract
Actin and nuclear myosin 1c (NM1) cooperate in RNA polymerase I (pol I) transcription. NM1 is also part of a multiprotein assembly, B-WICH, which is involved in transcription. This assembly contains the chromatin remodeling complex WICH with its subunits WSTF and SNF2h. We report here that NM1 binds SNF2h with enhanced affinity upon impairment of the actin-binding function. ChIP analysis revealed that NM1, SNF2h, and actin gene occupancies are cell cycle-dependent and require intact motor function. At the onset of cell division, when transcription is temporarily blocked, B-WICH is disassembled due to WSTF phosphorylation, to be reassembled on the active gene at exit from mitosis. NM1 gene knockdown and motor function inhibition, or stable expression of NM1 mutants that do not interact with actin or chromatin, overall repressed rRNA synthesis by stalling pol I at the gene promoter, led to chromatin alterations by changing the state of H3K9 acetylation at gene promoter, and delayed cell cycle progression. These results suggest a unique structural role for NM1 in which the interaction with SNF2h stabilizes B-WICH at the gene promoter and facilitates recruitment of the HAT PCAF. This leads to a permissive chromatin structure required for transcription activation.
Collapse
Affiliation(s)
- Aishe Sarshad
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Li Q, Zhang Y, Fu J, Han L, Xue L, Lv C, Wang P, Li G, Tong T. FOXA1 mediates p16(INK4a) activation during cellular senescence. EMBO J 2013; 32:858-873. [PMID: 23443045 PMCID: PMC3604725 DOI: 10.1038/emboj.2013.35] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 02/01/2013] [Indexed: 12/22/2022] Open
Abstract
Mechanisms governing the transcription of p16(INK4a), one of the master regulators of cellular senescence, have been extensively studied. However, little is known about chromatin dynamics taking place at its promoter and distal enhancer. Here, we report that Forkhead box A1 protein (FOXA1) is significantly upregulated in both replicative and oncogene-induced senescence, and in turn activates transcription of p16(INK4a) through multiple mechanisms. In addition to acting as a classic sequence-specific transcriptional activator, FOXA1 binding leads to a decrease in nucleosome density at the p16(INK4a) promoter in senescent fibroblasts. Moreover, FOXA1, itself a direct target of Polycomb-mediated repression, antagonizes Polycomb function at the p16(INK4a) locus. Finally, a systematic survey of putative FOXA1 binding sites in the p16(INK4a) genomic region revealed an ∼150 kb distal element that could loop back to the promoter and potentiate p16(INK4a) expression. Overall, our findings establish several mechanisms by which FOXA1 controls p16(INK4a) expression during cellular senescence.
Collapse
Affiliation(s)
- Qian Li
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Yu Zhang
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Jingxuan Fu
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Limin Han
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Lixiang Xue
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Cuicui Lv
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Pan Wang
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Guodong Li
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
115
|
Hoekstra LA, Montooth KL. Inducing extra copies of the Hsp70 gene in Drosophila melanogaster increases energetic demand. BMC Evol Biol 2013; 13:68. [PMID: 23510136 PMCID: PMC3641968 DOI: 10.1186/1471-2148-13-68] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/26/2013] [Indexed: 12/17/2022] Open
Abstract
Background Mutations that increase gene expression are predicted to increase energy allocation to transcription, translation and protein function. Despite an appreciation that energetic tradeoffs may constrain adaptation, the energetic costs of increased gene expression are challenging to quantify and thus easily ignored when modeling the evolution of gene expression, particularly for multicellular organisms. Here we use the well-characterized, inducible heat-shock response to test whether expressing additional copies of the Hsp70 gene increases energetic demand in Drosophila melanogaster. Results We measured metabolic rates of larvae with different copy numbers of the Hsp70 gene to quantify energy expenditure before, during, and after exposure to 36°C, a temperature known to induce robust expression of Hsp70. We observed a rise in metabolic rate within the first 30 minutes of 36°C exposure above and beyond the increase in routine metabolic rate at 36°C. The magnitude of this increase in metabolic rate was positively correlated with Hsp70 gene copy number and reflected an increase as great as 35% of the 22°C metabolic rate. Gene copy number also affected Hsp70 mRNA levels as early as 15 minutes after larvae were placed at 36°C, demonstrating that gene copy number affects transcript abundance on the same timescale as the metabolic effects that we observed. Inducing Hsp70 also had lasting physiological costs, as larvae had significantly depressed metabolic rate when returned to 22°C after induction. Conclusions Our results demonstrate both immediate and persistent energetic consequences of gene copy number in a multicellular organism. We discuss these consequences in the context of existing literature on the pleiotropic effects of variation in Hsp70 copy number, and argue that the increased energetic demand of expressing extra copies of Hsp70 may contribute to known tradeoffs in physiological performance of extra-copy larvae. Physiological costs of mutations that greatly increase gene expression, such as these, may constrain their utility for adaptive evolution.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
116
|
Vyas S, Chang P. Dual roles for PARP1 during heat shock: transcriptional activator and posttranscriptional inhibitor of gene expression. Mol Cell 2013; 49:1-3. [PMID: 23312545 DOI: 10.1016/j.molcel.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
117
|
Teves SS, Henikoff S. The heat shock response: A case study of chromatin dynamics in gene regulation. Biochem Cell Biol 2013; 91:42-8. [DOI: 10.1139/bcb-2012-0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies in transcriptional regulation using the Drosophila heat shock response system have elucidated many of the dynamic regulatory processes that govern transcriptional activation and repression. The classic view that the control of gene expression occurs at the point of RNA polymerase II (Pol II) recruitment is now giving way to a more complex outlook of gene regulation. Promoter chromatin dynamics coordinate with transcription factor binding to maintain the promoters of active genes accessible. For a large number of genes, the rate-limiting step in Pol II progression occurs during its initial elongation, where Pol II transcribes 30–50 bp and pauses for further signals. These paused genes have unique genic chromatin architecture and dynamics compared with genes where Pol II recruitment is rate limiting for expression. Further elongation of Pol II along the gene causes nucleosome turnover, a continuous process of eviction and replacement, which suggests a potential mechanism for Pol II transit along a nucleosomal template. In this review, we highlight recent insights into transcription regulation of the heat shock response and discuss how the dynamic regulatory processes involved at each transcriptional stage help to generate faithful yet highly responsive gene expression.
Collapse
Affiliation(s)
- Sheila S. Teves
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
118
|
Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-Fonseca M, de Almeida SF. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res 2013; 41:2881-93. [PMID: 23325844 PMCID: PMC3597667 DOI: 10.1093/nar/gks1472] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone H3 of nucleosomes positioned on active genes is trimethylated at Lys36 (H3K36me3) by the SETD2 (also termed KMT3A/SET2 or HYPB) methyltransferase. Previous studies in yeast indicated that H3K36me3 prevents spurious intragenic transcription initiation through recruitment of a histone deacetylase complex, a mechanism that is not conserved in mammals. Here, we report that downregulation of SETD2 in human cells leads to intragenic transcription initiation in at least 11% of active genes. Reduction of SETD2 prevents normal loading of the FACT (FAcilitates Chromatin Transcription) complex subunits SPT16 and SSRP1, and decreases nucleosome occupancy in active genes. Moreover, co-immunoprecipitation experiments suggest that SPT16 is recruited to active chromatin templates, which contain H3K36me3-modified nucleosomes. Our results further show that within minutes after transcriptional activation, there is a SETD2-dependent reduction in gene body occupancy of histone H2B, but not of histone H3, suggesting that SETD2 coordinates FACT-mediated exchange of histone H2B during transcription-coupled nucleosome displacement. After inhibition of transcription, we observe a SETD2-dependent recruitment of FACT and increased histone H2B occupancy. These data suggest that SETD2 activity modulates FACT recruitment and nucleosome dynamics, thereby repressing cryptic transcription initiation.
Collapse
Affiliation(s)
- Sílvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Lovato A, Panasci L, Witcher M. Is there an epigenetic component underlying the resistance of triple-negative breast cancers to parp inhibitors? Front Pharmacol 2013; 3:202. [PMID: 23293602 PMCID: PMC3530734 DOI: 10.3389/fphar.2012.00202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP-ribose) polymerase (Parp) is an enzyme responsible for catalyzing post-translational modifications through the addition of poly(ADP-ribose) chains (known as PARylation). Modification by PARylation modulates numerous cellular processes including transcription, chromatin remodeling, apoptosis, and DNA damage repair. In particular, the role of Parp activation in response to DNA damage has been intensely studied. Tumors bearing mutations of the breast cancer susceptibility genes, Brca1/2, are prone to DNA breakages whose restoration into functional double-strand DNA is Parp dependent. This concept has been exploited therapeutically in Brca mutated breast and ovarian tumors, where acute sensitivity to Parp inhibitors is observed. Based on in vitro and clinical studies it remains unclear to what extent Parp inhibitors can be utilized beyond treating Brca mutated tumors. This review will focus on the often overlooked roles of PARylation in chromatin remodeling, epigenetics, and transcription to explain why some cancers may be unresponsive to Parp inhibition. We predict that understanding the impact of PARylation on gene expression will lead to alternative approaches to manipulate the Parp pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Amanda Lovato
- The Departments of Oncology and Experimental Medicine, The Lady Davis Institute and Segal Cancer Centre of the Jewish General Hospital, McGill University Montreal QC, Canada
| | | | | |
Collapse
|
120
|
Schneiderman JI, Orsi GA, Hughes KT, Loppin B, Ahmad K. Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc Natl Acad Sci U S A 2012; 109:19721-6. [PMID: 23150573 PMCID: PMC3511725 DOI: 10.1073/pnas.1206629109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most nucleosomes that package eukaryotic DNA are assembled during DNA replication, but chromatin structure is routinely disrupted in active regions of the genome. Replication-independent nucleosome replacement using the H3.3 histone variant efficiently repackages these regions, but how histones are recruited to these sites is unknown. Here, we use an inducible system that produces nucleosome-depleted chromatin at the Hsp70 genes in Drosophila to define steps in the mechanism of nucleosome replacement. We find that the Xnp chromatin remodeler and the Hira histone chaperone independently bind nucleosome-depleted chromatin. Surprisingly, these two factors are only displaced when new nucleosomes are assembled. H3.3 deposition assays reveal that Xnp and Hira are required for efficient nucleosome replacement, and double-mutants are lethal. We propose that Xnp and Hira recognize exposed DNA and serve as a binding platform for the efficient recruitment of H3.3 predeposition complexes to chromatin gaps. These results uncover the mechanisms by which eukaryotic cells actively prevent the exposure of DNA in the nucleus.
Collapse
Affiliation(s)
| | - Guillermo A. Orsi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02115; and
| | - Kelly T. Hughes
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02115; and
| | - Benjamin Loppin
- Unité Mixte de Recherche 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, F-69622 Cedex, France
| | - Kami Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02115; and
| |
Collapse
|
121
|
Barbi M, Mozziconacci J, Wong H, Victor JM. DNA topology in chromosomes: a quantitative survey and its physiological implications. J Math Biol 2012. [PMID: 23179130 DOI: 10.1007/s00285-012-0621-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using a simple geometric model, we propose a general method for computing the linking number of the DNA embedded in chromatin fibers. The relevance of the method is reviewed through the single molecule experiments that have been performed in vitro with magnetic tweezers. We compute the linking number of the DNA in the manifold conformational states of the nucleosome which have been evidenced in these experiments and discuss the functional dynamics of chromosomes in the light of these manifold states.
Collapse
Affiliation(s)
- Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, and CNRS GDR 3536, Université Pierre et Marie Curie, Case courrier 121, 4 place Jussieu, 75252 , Paris, France,
| | | | | | | |
Collapse
|
122
|
DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9. Nature 2012; 493:120-4. [PMID: 23160493 PMCID: PMC3536934 DOI: 10.1038/nature11658] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/04/2012] [Indexed: 01/20/2023]
Abstract
In response to genotoxic stress, a transient arrest in cell-cycle progression enforced by the DNA-damage checkpoint (DDC) signalling pathway positively contributes to genome maintenance. Because hyperactivated DDC signalling can lead to a persistent and detrimental cell-cycle arrest, cells must tightly regulate the activity of the kinases involved in this pathway. Despite their importance, the mechanisms for monitoring and modulating DDC signalling are not fully understood. Here we show that the DNA-repair scaffolding proteins Slx4 and Rtt107 prevent the aberrant hyperactivation of DDC signalling by lesions that are generated during DNA replication in Saccharomyces cerevisiae. On replication stress, cells lacking Slx4 or Rtt107 show hyperactivation of the downstream DDC kinase Rad53, whereas activation of the upstream DDC kinase Mec1 remains normal. An Slx4-Rtt107 complex counteracts the checkpoint adaptor Rad9 by physically interacting with Dpb11 and phosphorylated histone H2A, two positive regulators of Rad9-dependent Rad53 activation. A decrease in DDC signalling results from hypomorphic mutations in RAD53 and H2A and rescues the hypersensitivity to replication stress of cells lacking Slx4 or Rtt107. We propose that the Slx4-Rtt107 complex modulates Rad53 activation by a competition-based mechanism that balances the engagement of Rad9 at replication-induced lesions. Our findings show that DDC signalling is monitored and modulated through the direct action of DNA-repair factors.
Collapse
|
123
|
Bayarmagnai B, Nicolay BN, Islam ABMMK, Lopez-Bigas N, Frolov MV. Drosophila GAGA factor is required for full activation of the dE2f1-Yki/Sd transcriptional program. Cell Cycle 2012; 11:4191-202. [PMID: 23070566 DOI: 10.4161/cc.22486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Hippo signaling pathway regulates organ size by controlling the activity of the transcriptional co-activator Yorkie (Yki). Yki is recruited to its target genes by DNA-binding proteins such as Scalloped (Sd). In addition, transcription factor dE2f1, of the Retinoblastoma (Rb) pathway, cooperates with Yki/Sd to synergistically activate a set of common cell cycle target genes. However, little is known about other factors that ensure the proper transcriptional output of Hippo signaling. In this report we identified the chromatin protein GAGA factor (GAF), which is encoded by the Trithorax-like (Trl) gene, as a novel and critical partner in transcriptional regulation by Yki/Sd and dE2f1. We show that GAF is required for the full activation of target genes by dE2f1 and Yki/Sd; while ablation of GAF compromises both normal and inappropriate cell proliferation driven by Yki and dE2f1 in multiple tissues. The importance of GAF is further supported by strong genetic interactions between GAF and the Rb and Hippo pathways. Additionally, we show that GAF directly interacts with RBF, a Drosophila pRB homolog, and partially co-localizes with RBF on polytene chromosomes. Collectively, our data provide a novel connection between a chromatin-binding protein and a transcriptional program governed by the Hippo and Rb pathways.
Collapse
Affiliation(s)
- Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
124
|
Dunlap D, Yokoyama R, Ling H, Sun HY, McGill K, Cugusi S, Lucchesi JC. Distinct contributions of MSL complex subunits to the transcriptional enhancement responsible for dosage compensation in Drosophila. Nucleic Acids Res 2012; 40:11281-91. [PMID: 23047951 PMCID: PMC3526317 DOI: 10.1093/nar/gks890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The regulatory mechanism of dosage compensation is the paramount example of epigenetic regulation at the chromosomal level. In Drosophila, this mechanism, designed to compensate for the difference in the dosage of X-linked genes between the sexes, depends on the MSL complex that enhances the transcription of the single dose of these genes in males. We have investigated the function of various subunits of the complex in mediating dosage compensation. Our results confirm that the highly enriched specific acetylation of histone H4 at lysine 16 of compensated genes by the histone acetyl transferase subunit MOF induces a more disorganized state of their chromatin. We have determined that the association of the MSL complex reduces the level of negative supercoiling of the deoxyribonucleic acid of compensated genes, and we have defined the role that the other subunits of the complex play in this topological modification. Lastly, we have analyzed the potential contribution of ISWI-containing remodeling complexes to the architecture of compensated chromatin, and we suggest a role for this remodeling factor in dosage compensation.
Collapse
Affiliation(s)
- David Dunlap
- Department of Cell Biology and Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Fujimoto M, Takaki E, Takii R, Tan K, Prakasam R, Hayashida N, Iemura SI, Natsume T, Nakai A. RPA Assists HSF1 Access to Nucleosomal DNA by Recruiting Histone Chaperone FACT. Mol Cell 2012; 48:182-94. [DOI: 10.1016/j.molcel.2012.07.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/22/2012] [Accepted: 07/24/2012] [Indexed: 01/10/2023]
|
126
|
Induced transcription results in local changes in chromatin structure, replication timing, and DNA polytenization in a site of intercalary heterochromatin. Chromosoma 2012; 121:573-83. [PMID: 23015267 DOI: 10.1007/s00412-012-0382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/12/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
In salivary gland polytene chromosomes of Drosophila melanogaster, the regions of intercalary heterochromatin are characterized by late replication, under-replication, and genetic silencing. Using Gal4/UAS system, we induced transcription of sequences adjacent to transgene insertions in the band 11A6-9. This activation resulted in a loss of "silent" and appearance of "active" epigenetic marks, recruitment of RNA polymerase II, and formation of a puff. The activated region is now early replicating and shows increased level of DNA polytenization. Notably, all these changes are restricted to the area around the inserts, whereas the rest of the band remains inactive and late replicating. Although only a short area near the insertion site is transcribed, it results in an "open" chromatin conformation in a much broader region. We conclude that regions of intercalary heterochromatin do not form stand-alone units of late replication and under-replication. Every part of such regions can be activated and polytenized independently of other parts.
Collapse
|
127
|
Cui F, Cole HA, Clark DJ, Zhurkin VB. Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing. Nucleic Acids Res 2012; 40:10753-64. [PMID: 23012262 PMCID: PMC3510488 DOI: 10.1093/nar/gks870] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleosomes often undergo extensive rearrangement when genes are activated for transcription. We have shown previously, using paired-end sequencing of yeast nucleosomes, that major changes in chromatin structure occur when genes are activated by 3-aminotriazole (3AT), an inducer of the transcriptional activator Gcn4. Here, we provide a global analysis of these data. At the genomic level, nucleosomes are regularly phased relative to the transcription start site. However, for a subset of 234 strongly induced genes, this phasing is much more irregular after induction, consistent with the loss of some nucleosomes and the re-positioning of the remaining nucleosomes. To address the nature of this rearrangement, we developed the inter-nucleosome distance auto-correlation (DAC) function. At long range, DAC analysis indicates that nucleosomes have an average spacing of 162 bp, consistent with the reported repeat length. At short range, DAC reveals a 10.25-bp periodicity, implying that nucleosomes in overlapping positions are rotationally related. DAC analysis of the 3AT-induced genes suggests that transcription activation coincides with rearrangement of nucleosomes into irregular arrays with longer spacing. Sequence analysis of the +1 nucleosomes belonging to the 45 most strongly activated genes reveals a distinctive periodic oscillation in the A/T-dinucleotide occurrence that is present throughout the nucleosome and extends into the linker. This unusual pattern suggests that the +1 nucleosomes might be prone to sliding, thereby facilitating transcription.
Collapse
Affiliation(s)
- Feng Cui
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Building 37, Room 3035A, Convent Dr., Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
128
|
Kulaeva OI, Hsieh FK, Chang HW, Luse DS, Studitsky VM. Mechanism of transcription through a nucleosome by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:76-83. [PMID: 22982194 DOI: 10.1016/j.bbagrm.2012.08.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/31/2022]
Abstract
Efficient maintenance of chromatin structure during passage of RNA polymerase II (Pol II) is critical for cell survival and functioning. Moderate-level transcription of eukaryotic genes by Pol II is accompanied by nucleosome survival, extensive exchange of histones H2A/H2B and minimal exchange of histones H3/H4. Complementary in vitro studies have shown that transcription through chromatin by single Pol II complexes is uniquely coupled with nucleosome survival via formation of a small intranucleosomal DNA loop (Ø-loop) containing the transcribing enzyme. In contrast, transient displacement and exchange of all core histones are observed during intense transcription. Indeed, multiple transcribing Pol II complexes can efficiently overcome the high nucleosomal barrier and displace the entire histone octamer in vitro. Thus, various Pol II complexes can remodel chromatin to different extents. The mechanisms of nucleosome survival and displacement during transcription and the role of DNA-histone interactions and various factors during this process are discussed. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Olga I Kulaeva
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
129
|
Beneke S. Regulation of chromatin structure by poly(ADP-ribosyl)ation. Front Genet 2012; 3:169. [PMID: 22969794 PMCID: PMC3432497 DOI: 10.3389/fgene.2012.00169] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/17/2012] [Indexed: 12/23/2022] Open
Abstract
The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose) has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose), the zinc-finger protein poly(ADP-ribose) polymerase-1 (PARP1), was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.
Collapse
Affiliation(s)
- Sascha Beneke
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
130
|
Brogaard K, Xi L, Wang JP, Widom J. A map of nucleosome positions in yeast at base-pair resolution. Nature 2012; 486:496-501. [PMID: 22722846 PMCID: PMC3786739 DOI: 10.1038/nature11142] [Citation(s) in RCA: 344] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 04/11/2012] [Indexed: 12/25/2022]
Abstract
The exact positions of nucleosomes along genomic DNA can influence many aspects of chromosome function, yet existing methods for mapping nucleosomes do not provide the necessary single base pair accuracy to determine these positions. Here we develop and apply a new approach for direct mapping of nucleosome centers based on chemical modification of engineered histones. The resulting map locates nucleosome positions genome-wide in unprecedented detail and accuracy. It reveals novel aspects of the in vivo nucleosome organization that are linked to transcription factor binding, RNA polymerase pausing, and the higher order structure of the chromatin fiber.
Collapse
Affiliation(s)
- Kristin Brogaard
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
131
|
Sebald J, Morettini S, Podhraski V, Lass-Flörl C, Lusser A. CHD1 contributes to intestinal resistance against infection by P. aeruginosa in Drosophila melanogaster. PLoS One 2012; 7:e43144. [PMID: 22912810 PMCID: PMC3418260 DOI: 10.1371/journal.pone.0043144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/16/2012] [Indexed: 01/31/2023] Open
Abstract
Drosophila SNF2-type ATPase CHD1 catalyzes the assembly and remodeling of nucleosomal arrays in vitro and is involved in H3.3 incorporation in viin vivo during early embryo development. Evidence for a role as transcriptional regulator comes from its colocalization with elongating RNA polymerase II as well as from studies of fly Hsp70 transcription. Here we used microarray analysis to identify target genes of CHD1. We found a fraction of genes that were misregulated in Chd1 mutants to be functionally linked to Drosophila immune and stress response. Infection experiments using different microbial species revealed defects in host defense in Chd1-deficient adults upon oral infection with P. aeruginosa but not upon septic injury, suggesting a so far unrecognized role for CHD1 in intestinal immunity. Further molecular analysis showed that gut-specific transcription of antimicrobial peptide genes was overactivated in the absence of infection in Chd1 mutant flies. Moreover, microbial colonization of the intestine was elevated in Chd1 mutants and oral infection resulted in strong enrichment of bacteria in the body cavity indicating increased microbial passage across intestinal epithelia. However, we did not detect enhanced epithelial damage or alterations of the intestinal stem cell population. Collectively, our data provide evidence that intestinal resistance against infection by P. aeruginosa in Drosophila is linked to maintaining proper balance of gut-microbe interactions and that the chromatin remodeler CHD1 is involved in regulating this aspect.
Collapse
Affiliation(s)
- Johanna Sebald
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Stefano Morettini
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Valerie Podhraski
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
132
|
Fasulo B, Deuring R, Murawska M, Gause M, Dorighi KM, Schaaf CA, Dorsett D, Brehm A, Tamkun JW. The Drosophila MI-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo. PLoS Genet 2012; 8:e1002878. [PMID: 22912596 PMCID: PMC3415455 DOI: 10.1371/journal.pgen.1002878] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/17/2012] [Indexed: 11/24/2022] Open
Abstract
dMi-2 is a highly conserved ATP-dependent chromatin-remodeling factor that regulates transcription and cell fates by altering the structure or positioning of nucleosomes. Here we report an unanticipated role for dMi-2 in the regulation of higher-order chromatin structure in Drosophila. Loss of dMi-2 function causes salivary gland polytene chromosomes to lose their characteristic banding pattern and appear more condensed than normal. Conversely, increased expression of dMi-2 triggers decondensation of polytene chromosomes accompanied by a significant increase in nuclear volume; this effect is relatively rapid and is dependent on the ATPase activity of dMi-2. Live analysis revealed that dMi-2 disrupts interactions between the aligned chromatids of salivary gland polytene chromosomes. dMi-2 and the cohesin complex are enriched at sites of active transcription; fluorescence-recovery after photobleaching (FRAP) assays showed that dMi-2 decreases stable association of cohesin with polytene chromosomes. These findings demonstrate that dMi-2 is an important regulator of both chromosome condensation and cohesin binding in interphase cells.
Collapse
Affiliation(s)
- Barbara Fasulo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Renate Deuring
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Magdalena Murawska
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kristel M. Dorighi
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Cheri A. Schaaf
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Alexander Brehm
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - John W. Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
133
|
Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation. Proc Natl Acad Sci U S A 2012; 109:13331-6. [PMID: 22853951 DOI: 10.1073/pnas.1203280109] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cofactors for estrogen receptor α (ERα) can modulate gene activity by posttranslationally modifying histone tails at target promoters. Here, we found that stimulation of ERα-positive cells with 17β-estradiol (E2) promotes global citrullination of histone H3 arginine 26 (H3R26) on chromatin. Additionally, we found that the H3 citrulline 26 (H3Cit26) modification colocalizes with ERα at decondensed chromatin loci surrounding the estrogen-response elements of target promoters. Surprisingly, we also found that citrullination of H3R26 is catalyzed by peptidylarginine deiminase (PAD) 2 and not by PAD4 (which citrullinates H4R3). Further, we showed that PAD2 interacts with ERα after E2 stimulation and that inhibition of either PAD2 or ERα strongly suppresses E2-induced H3R26 citrullination and ERα recruitment at target gene promoters. Collectively, our data suggest that E2 stimulation induces the recruitment of PAD2 to target promoters by ERα, whereby PAD2 then citrullinates H3R26, which leads to local chromatin decondensation and transcriptional activation.
Collapse
|
134
|
Lagha M, Bothma JP, Levine M. Mechanisms of transcriptional precision in animal development. Trends Genet 2012; 28:409-16. [PMID: 22513408 PMCID: PMC4257495 DOI: 10.1016/j.tig.2012.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
We review recently identified mechanisms of transcriptional control that ensure reliable and reproducible patterns of gene expression in natural populations of developing embryos, despite inherent fluctuations in gene regulatory processes, variations in genetic backgrounds and exposure to diverse environmental conditions. These mechanisms are not responsible for switching genes on and off. Instead, they control the fine-tuning of gene expression and ensure regulatory precision. Several such mechanisms are discussed, including redundant binding sites within transcriptional enhancers, shadow enhancers, and 'poised' enhancers and promoters, as well as the role of 'redundant' gene interactions within regulatory networks. We propose that such regulatory mechanisms provide population fitness and 'fine-tune' the spatial and temporal control of gene expression.
Collapse
Affiliation(s)
- Mounia Lagha
- Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
135
|
Liu S, Tao Y. Interplay between chromatin modifications and paused RNA polymerase II in dynamic transition between stalled and activated genes. Biol Rev Camb Philos Soc 2012; 88:40-8. [PMID: 22765520 DOI: 10.1111/j.1469-185x.2012.00237.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dynamic interplay between chromatin modification (e.g. DNA methylation) and RNA polymerase II (Pol II) plays a critical role in gene transcription during stem cell development, establishment, and maintenance and in the cellular response to extracellular stimuli such as those that cause DNA damage. Pol II is recruited to the promoter-proximal regions of numerous inactive genes at high conentrations in a process called Pol II stalling. This is a key process prior to gene activation and it involves many interacting factors. Chromatin modification including nucleosome position is dependent on chromatin structure. Stalled genes create a particular structural conformation of chromatin, which acts as a target for chromatin modification. In this way, Pol II stalling may be regarded as a type of signal for chromatin modification in these regions during the dynamic transition between stalled and activated genes.
Collapse
Affiliation(s)
- Shuang Liu
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | | |
Collapse
|
136
|
Cole HA, Nagarajavel V, Clark DJ. Perfect and imperfect nucleosome positioning in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:639-43. [PMID: 22306662 PMCID: PMC3358424 DOI: 10.1016/j.bbagrm.2012.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/05/2012] [Accepted: 01/11/2012] [Indexed: 11/17/2022]
Abstract
Numerous studies of nucleosome positioning have shown that nucleosomes almost invariably adopt one of several alternative overlapping positions on a short DNA fragment in vitro. We define such a set of overlapping positions as a "position cluster", and the 5S RNA gene positioning sequence is presented as an example. The notable exception is the synthetic 601-sequence, which can position a nucleosome perfectly in vitro, though not in vivo. Many years ago, we demonstrated that nucleosome position clusters are present on the CUP1 and HIS3 genes in native yeast chromatin. Recently, using genome-wide paired-end sequencing of nucleosomes, we have shown that position clusters are the general rule in yeast chromatin, not the exception. We argue that, within a cell population, one of several alternative nucleosomal arrays is formed on each gene. We show how position clusters and alternative arrays can give rise to typical nucleosome occupancy profiles, and that position clusters are disrupted by transcriptional activation. The centromeric nucleosome is a rare example of perfect positioning in vivo. It is, however, a special case, since it contains the centromeric histone H3 variant instead of normal H3. Perfect positioning might be due to centromeric sequence-specific DNA binding proteins. Finally, we point out that the existence of position clusters implies that the putative nucleosome code is degenerate. We suggest that degeneracy might be a crucial point in the debate concerning the code. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Hope A. Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda MD
| | - V. Nagarajavel
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda MD
| | - David J. Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda MD
| |
Collapse
|
137
|
Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 2012; 13:411-24. [PMID: 22713970 DOI: 10.1038/nrm3376] [Citation(s) in RCA: 951] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are enzymes that transfer ADP-ribose groups to target proteins and thereby affect various nuclear and cytoplasmic processes. The activity of PARP family members, such as PARP1 and PARP2, is tied to cellular signalling pathways, and through poly(ADP-ribosyl)ation (PARylation) they ultimately promote changes in gene expression, RNA and protein abundance, and the location and activity of proteins that mediate signalling responses. PARPs act in a complex response network that is driven by the cellular, molecular and chemical biology of poly(ADP-ribose) (PAR). This PAR-dependent response network is crucial for a broad array of physiological and pathological responses and thus is a good target for chemical therapeutics for several diseases.
Collapse
Affiliation(s)
- Bryan A Gibson
- Signalling and Gene Regulation Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-78511, USA
| | | |
Collapse
|
138
|
Kulaeva OI, Studitsky VM. Mechanism of histone survival during transcription by RNA polymerase II. Transcription 2012; 1:85-8. [PMID: 21326897 DOI: 10.4161/trns.1.2.12519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 02/05/2023] Open
Abstract
This work is related to and stems from our recent NSMB paper, "Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II" (December 2009). Synopsis. Recent genomic studies from many laboratories have suggested that nucleosomes are not displaced from moderately transcribed genes. Furthermore, histones H3/H4 carrying the primary epigenetic marks are not displaced or exchanged (in contrast to H2A/H2B histones) during moderate transcription by RNA polymerase II (Pol II) in vivo. These exciting observations suggest that the large molecule of Pol II passes through chromatin structure without even transient displacement of H3/H4 histones. The most recent analysis of the RNA polymerase II (Pol II)-type mechanism of chromatin remodeling in vitro (described in our NSMB 2009 paper) suggests that nucleosome survival is tightly coupled with formation of a novel intermediate: a very small intranucleosomal DNA loop (Ø-loop) containing transcribing Pol II. In the submitted manuscript we critically evaluate one of the key predictions of this model: the lack of even transient displacement of histones H3/H4 during Pol II transcription in vitro. The data suggest that, indeed, histones H3/H4 are not displaced during Pol II transcription in vitro. These studies are directly connected with the observation in vivo on the lack of exchange of histones H3/H4 during Pol II transcription.
Collapse
Affiliation(s)
- Olga I Kulaeva
- University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, USA
| | | |
Collapse
|
139
|
Thorne JL, Ouboussad L, Lefevre PF. Heterochromatin protein 1 gamma and IκB kinase alpha interdependence during tumour necrosis factor gene transcription elongation in activated macrophages. Nucleic Acids Res 2012; 40:7676-89. [PMID: 22649058 PMCID: PMC3439902 DOI: 10.1093/nar/gks509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IκB kinase α (IKKα) is part of the cytoplasmic IKK complex regulating nuclear factor-κB (NF-κB) release and translocation into the nucleus in response to pro-inflammatory signals. IKKα can also be recruited directly to the promoter of NF-κB-dependent genes by NF-κB where it phosphorylates histone H3 at serine 10, triggering recruitment of the bromodomain-containing protein 4 and the positive transcription elongation factor b. Herein, we report that IKKα travels with the elongating form of ribonucleic acid polymerase II together with heterochromatin protein 1 gamma (HP1γ) at NF-κB-dependent genes in activated macrophages. IKKα binds to and phosphorylates HP1γ, which in turn controls IKKα binding to chromatin and phosphorylation of the histone variant H3.3 at serine 31 within transcribing regions. Downstream of transcription end sites, IKKα accumulates with its inhibitor the CUE-domain containing protein 2, suggesting a link between IKKα inactivation and transcription termination.
Collapse
Affiliation(s)
- James L Thorne
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
140
|
Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:847-56. [PMID: 22505693 DOI: 10.1093/pcp/pcs053] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Changes in chromatin status are correlated with gene regulation of biological processes such as development and stress responses in plants. In this study, we focused on the transition of chromatin status toward gene repression during the process of recovery from drought stress of drought-inducible genes (RD20, RD29A and AtGOLS2) and a rehydration-inducible gene (ProDH). In response to drought, RNA polymerase II was recruited on the drought-inducible genes and rapidly disappeared after rehydration, although mRNA levels of these genes were maintained to some degree after rehydration, suggesting that the transcriptional activities of these genes were rapidly inactivated by rehydration treatment. Histone H3K9ac was enriched by drought and rapidly removed from these regions by rehydration. In contrast, histone H3K4me3 was gradually decreased by rehydration but was maintained at low levels after rehydration, suggesting that H3K4me3 functions as an epigenetic mark of stress memory. These results show that the transcriptional activity and chromatin status are rapidly changed from an active to inactive mode during the recovery process. Our results demonstrate that histone modifications are correlated with the inactivation of drought-inducible genes during the recovery process by rehydration.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
141
|
Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol Cell Biol 2012; 32:2490-502. [PMID: 22547677 DOI: 10.1128/mcb.06667-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The packaging of DNA into nucleosomes imposes obstacles on gene transcription, and histone-modifying and nucleosome-remodeling complexes work in concert to alleviate these obstacles so as to facilitate transcription. Emerging evidence shows that chromatin-associated poly(ADP-ribose) polymerase 1 (PARP-1) and its enzymatic activity facilitate inflammatory gene transcription and modulate the inflammatory response in animal models. However, the molecular mechanisms by which PARP-1 enzymatic activity facilitates transcription are not well understood. Here we show that through an intracellular signaling pathway, lipopolysaccharide (LPS) stimulation induces PARP-1 enzymatic activity and the ADP-ribosylation of histones at transcriptionally active and accessible chromatin regions in macrophages. In vitro DNase I footprinting and restriction endonuclease accessibility assays reveal that histone ADP-ribosylation directly destabilizes histone-DNA interactions in the nucleosome and increases the site accessibility of the nucleosomal DNA to nucleases. Consistent with this, LPS stimulation-induced ADP-ribosylation at the nucleosome-occupied promoters of il-1β, mip-2, and csf2 facilitates NF-κB recruitment and the transcription of these genes in macrophages. Therefore, our data suggest that PARP-1 enzymatic activity facilitates gene transcription through increasing promoter accessibility by histone ADP-ribosylation.
Collapse
|
142
|
Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 2012; 26:417-32. [PMID: 22391446 DOI: 10.1101/gad.183509.111] [Citation(s) in RCA: 581] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular stress responses are mediated through a series of regulatory processes that occur at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These responses require a complex network of sensors and effectors from multiple signaling pathways, including the abundant and ubiquitous nuclear enzyme poly(ADP-ribose) (PAR) polymerase-1 (PARP-1). PARP-1 functions at the center of cellular stress responses, where it processes diverse signals and, in response, directs cells to specific fates (e.g., DNA repair vs. cell death) based on the type and strength of the stress stimulus. Many of PARP-1's functions in stress response pathways are mediated by its regulated synthesis of PAR, a negatively charged polymer, using NAD(+) as a donor of ADP-ribose units. Thus, PARP-1's functions are intimately tied to nuclear NAD(+) metabolism and the broader metabolic profile of the cell. Recent studies in cell and animal models have highlighted the roles of PARP-1 and PAR in the response to a wide variety of extrinsic and intrinsic stress signals, including those initiated by oxidative, nitrosative, genotoxic, oncogenic, thermal, inflammatory, and metabolic stresses. These responses underlie pathological conditions, including cancer, inflammation-related diseases, and metabolic dysregulation. The development of PARP inhibitors is being pursued as a therapeutic approach to these conditions. In this review, we highlight the newest findings about PARP-1's role in stress responses in the context of the historical data.
Collapse
Affiliation(s)
- Xin Luo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
143
|
Petesch SJ, Lis JT. Overcoming the nucleosome barrier during transcript elongation. Trends Genet 2012; 28:285-94. [PMID: 22465610 DOI: 10.1016/j.tig.2012.02.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
Abstract
RNA polymerase II (Pol II) must break the nucleosomal barrier to gain access to DNA and transcribe genes efficiently. New single-molecule techniques have elucidated many molecular details of nucleosome disassembly and what happens once Pol II encounters a nucleosome. Our review highlights mechanisms that Pol II utilizes to transcribe through nucleosomes, including the roles of chromatin remodelers, histone chaperones, post-translational modifications of histones, incorporation of histone variants into nucleosomes, and activation of the poly(ADP-ribose) polymerase (PARP) enzyme. Future studies need to assess the molecular details and the contribution of each of these mechanisms, individually and in combination, to transcription across the genome to understand how cells are able to regulate transcription in response to developmental, environmental and nutritional cues.
Collapse
Affiliation(s)
- Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
144
|
Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R. Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell 2012; 45:790-800. [PMID: 22405650 DOI: 10.1016/j.molcel.2012.01.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/14/2011] [Accepted: 01/10/2012] [Indexed: 01/13/2023]
Abstract
Faithful propagation of specific chromatin states requires re-establishment of epigenetic marks after every cell division. How the original epigenetic signature is inherited after disruption during DNA replication is still poorly understood. Here, we show that the poly(ADP-ribose)-polymerase-1 (PARP1/ARTD1) is implicated in the maintenance of silent rDNA chromatin during cell division. We demonstrate that PARP1 associates with TIP5, a subunit of the NoRC complex, via the noncoding pRNA and binds to silent rRNA genes after their replication in mid-late S phase. PARP1 represses rRNA transcription and is implicated in the formation of silent rDNA chromatin. Silent rDNA chromatin is a specific substrate for ADP-ribosylation and the enzymatic activity of PARP1 is necessary to establish rDNA silencing. The data unravel a function of PARP1 and ADP-ribosylation that serves to allow for the inheritance of silent chromatin structures, shedding light on how epigenetic marks are transmitted during each cell cycle.
Collapse
Affiliation(s)
- Claudio Guetg
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
145
|
Gilchrist DA, Adelman K. Coupling polymerase pausing and chromatin landscapes for precise regulation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:700-6. [PMID: 22406341 DOI: 10.1016/j.bbagrm.2012.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/17/2012] [Accepted: 02/23/2012] [Indexed: 12/22/2022]
Abstract
Altering gene expression in response to stimuli is a pivotal mechanism through which organisms execute developmental programs and respond to changes in their environment. Packaging of promoter DNA into chromatin can greatly impact the ability of RNA polymerase II to access and transcribe a gene. Promoter chromatin environments thus play a central role in establishing transcriptional output appropriate for specific environmental conditions or developmental states. Recent genomic studies have illuminated general principles of chromatin organization and deepened our understanding of how promoter sequence and nucleosome architecture may impact gene expression. Concurrently, pausing of polymerase during early elongation has been recognized as an important event influencing transcription of genes within stimulus-responsive networks. Promoters regulated by pausing are now recognized to possess a distinct chromatin architecture that may facilitate the plasticity of gene expression in response to signaling events. Here we review advances in understanding chromatin and pausing, and explore how coupling Pol II pausing to distinct promoter architectures may help organisms achieve flexible yet precise transcriptional control. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Daniel A Gilchrist
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
146
|
Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae. Genetics 2012; 191:95-106. [PMID: 22377631 DOI: 10.1534/genetics.111.135806] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mediator is a modular multisubunit complex that functions as a critical coregulator of RNA polymerase II (Pol II) transcription. While it is well accepted that Mediator plays important roles in the assembly and function of the preinitiation complex (PIC), less is known of its potential roles in regulating downstream steps of the transcription cycle. Here we use a combination of genetic and molecular approaches to investigate Mediator regulation of Pol II elongation in the model eukaryote, Saccharomyces cerevisiae. We find that ewe (expression without heat shock element) mutations in conserved Mediator subunits Med7, Med14, Med19, and Med21-all located within or adjacent to the middle module-severely diminish heat-shock-induced expression of the Hsf1-regulated HSP82 gene. Interestingly, these mutations do not impede Pol II recruitment to the gene's promoter but instead impair its transit through the coding region. This implies that a normal function of Mediator is to regulate a postinitiation step at HSP82. In addition, displacement of histones from promoter and coding regions, a hallmark of activated heat-shock genes, is significantly impaired in the med14 and med21 mutants. Suggestive of a more general role, ewe mutations confer hypersensitivity to the anti-elongation drug 6-azauracil (6-AU) and one of them-med21-impairs Pol II processivity on a GAL1-regulated reporter gene. Taken together, our results suggest that yeast Mediator, acting principally through its middle module, can regulate Pol II elongation at both heat-shock and non-heat-shock genes.
Collapse
|
147
|
Mathieu EL, Finkernagel F, Murawska M, Scharfe M, Jarek M, Brehm A. Recruitment of the ATP-dependent chromatin remodeler dMi-2 to the transcribed region of active heat shock genes. Nucleic Acids Res 2012; 40:4879-91. [PMID: 22362736 PMCID: PMC3367206 DOI: 10.1093/nar/gks178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ATP-dependent chromatin remodeler dMi-2 can play both positive and negative roles in gene transcription. Recently, we have shown that dMi-2 is recruited to the hsp70 gene in a heat shock-dependent manner, and is required to achieve high transcript levels. Here, we use chromatin immunoprecipitation sequencing (ChIP-Seq) to identify other chromatin regions displaying increased dMi-2 binding upon heat shock and to characterize the distribution of dMi-2 over heat shock genes. We show that dMi-2 is recruited to the body of at least seven heat shock genes. Interestingly, dMi-2 binding extends several hundred base pairs beyond the polyadenylation site into the region where transcriptional termination occurs. We find that dMi-2 does not associate with the entire nucleosome-depleted hsp70 locus 87A. Rather, dMi-2 binding is restricted to transcribed regions. Our results suggest that dMi-2 distribution over active heat shock genes are determined by transcriptional activity.
Collapse
Affiliation(s)
- Eve-Lyne Mathieu
- Institute for Molecular Biology and Tumor Research, Philipps-University, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
148
|
Teif VB, Shkrabkou AV, Egorova VP, Krot VI. Nucleosomes in gene regulation: Theoretical approaches. Mol Biol 2012. [DOI: 10.1134/s002689331106015x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
149
|
Zhang T, Berrocal JG, Yao J, DuMond ME, Krishnakumar R, Ruhl DD, Ryu KW, Gamble MJ, Kraus WL. Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J Biol Chem 2012; 287:12405-16. [PMID: 22334709 DOI: 10.1074/jbc.m111.304469] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
NMNAT-1 and PARP-1, two key enzymes in the NAD(+) metabolic pathway, localize to the nucleus where integration of their enzymatic activities has the potential to control a variety of nuclear processes. Using a variety of biochemical, molecular, cell-based, and genomic assays, we show that NMNAT-1 and PARP-1 physically and functionally interact at target gene promoters in MCF-7 cells. Specifically, we show that PARP-1 recruits NMNAT-1 to promoters where it produces NAD(+) to support PARP-1 catalytic activity, but also enhances the enzymatic activity of PARP-1 independently of NAD(+) production. Furthermore, using two-photon excitation microscopy, we show that NMNAT-1 catalyzes the production of NAD(+) in a nuclear pool that may be distinct from other cellular compartments. In expression microarray experiments, depletion of NMNAT-1 or PARP-1 alters the expression of about 200 protein-coding genes each, with about 10% overlap between the two gene sets. NMNAT-1 enzymatic activity is required for PARP-1-dependent poly(ADP-ribosyl)ation at the promoters of commonly regulated target genes, as well as the expression of those target genes. Collectively, our studies link the enzymatic activities of NMNAT-1 and PARP-1 to the regulation of a set of common target genes through functional interactions at target gene promoters.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Barbi M, Mozziconacci J, Victor JM, Wong H, Lavelle C. On the topology of chromatin fibres. Interface Focus 2012; 2:546-54. [PMID: 24098838 DOI: 10.1098/rsfs.2011.0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/10/2012] [Indexed: 11/12/2022] Open
Abstract
The ability of cells to pack, use and duplicate DNA remains one of the most fascinating questions in biology. To understand DNA organization and dynamics, it is important to consider the physical and topological constraints acting on it. In the eukaryotic cell nucleus, DNA is organized by proteins acting as spools on which DNA can be wrapped. These proteins can subsequently interact and form a structure called the chromatin fibre. Using a simple geometric model, we propose a general method for computing topological properties (twist, writhe and linking number) of the DNA embedded in those fibres. The relevance of the method is reviewed through the analysis of magnetic tweezers single molecule experiments that revealed unexpected properties of the chromatin fibre. Possible biological implications of these results are discussed.
Collapse
Affiliation(s)
- Maria Barbi
- Laboratoire de Physique Théorique des la Matière condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Case Courrier 121, 4 place Jussieu 75252, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|