101
|
Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S, Lazaris C, Chen X, Hu H, Bakogianni S, Wang J, Fu Y, Boccalatte F, Zhong H, Paietta E, Trimarchi T, Zhu Y, Van Vlierberghe P, Inghirami GG, Lionnet T, Aifantis I, Tsirigos A. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet 2020; 52:388-400. [PMID: 32203470 PMCID: PMC7138649 DOI: 10.1038/s41588-020-0602-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
Differences in three-dimensional (3D) chromatin architecture can influence the integrity of topologically associating domains (TADs) and rewire specific enhancer-promoter interactions, impacting gene expression and leading to human disease. Here we investigate the 3D chromatin architecture in T cell acute lymphoblastic leukemia (T-ALL) by using primary human leukemia specimens and examine the dynamic responses of this architecture to pharmacological agents. Systematic integration of matched in situ Hi-C, RNA-seq and CTCF ChIP-seq datasets revealed widespread differences in intra-TAD chromatin interactions and TAD boundary insulation in T-ALL. Our studies identify and focus on a TAD 'fusion' event associated with absence of CTCF-mediated insulation, enabling direct interactions between the MYC promoter and a distal super-enhancer. Moreover, our data also demonstrate that small-molecule inhibitors targeting either oncogenic signal transduction or epigenetic regulation can alter specific 3D interactions found in leukemia. Overall, our study highlights the impact, complexity and dynamic nature of 3D chromatin architecture in human acute leukemia.
Collapse
Affiliation(s)
- Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Palaniraja Thandapani
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Panagiotis Ntziachristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yohana Ghebrechristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Nomikou
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Charalampos Lazaris
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Xufeng Chen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Bakogianni
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Sciences, New York, NY, USA
| | - Jingjing Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yi Fu
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hua Zhong
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | | | - Thomas Trimarchi
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,BridgeBio Pharma, Palo Alto, CA, USA
| | - Yixing Zhu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Timothee Lionnet
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. .,Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
102
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
103
|
Huo W, Qi F, Wang K. Long non-coding RNA FER1L4 inhibits prostate cancer progression via sponging miR-92a-3p and upregulation of FBXW7. Cancer Cell Int 2020; 20:64. [PMID: 32140077 PMCID: PMC7049228 DOI: 10.1186/s12935-020-1143-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) is involved in development of prostate cancer. However, the molecular mechanisms of many lncRNAs in prostate cancer have not been studied yet. Methods The lncRNA Fer-1-like protein 4 (FER1L4) expression was explored in prostate tumors and normal prostate tissues by RT-qPCR and bioinformatic analysis. Overexpression of FER1L4 was performed to evaluate its role in prostate cancer cell proliferation and survival. The molecular mechanism of FER1L4 was investigated by dual luciferase reporter assay, RNA pull down assay, western blotting and RT-qPCR. Results It was found that FER1L4 was lower in prostate cancer tissues than normal tissues. Higher expression of FER1L4 was associated with prostate cancer tissues of early stage (AJCC stage I/II). Overexpression of FER1L4 inhibited cell proliferation and promoted cell apoptosis in prostate cancer cells. Bioinformatic analysis, RT-qPCR, RNA pull down assay and dual luciferase assay showed that FER1L4 upregulated F-box/WD repeat-containing protein 7 (FBXW7) tumor suppressor via sponging miR-92a-3p. Silencing of FBXW7 reversed the cell phenotypes caused by FER1L4 overexpression in prostate cancer cells. Conclusion The data demonstrated that FER1L4, a downregulated lncRNA in prostate cancer, was pivotal for cell proliferation and survival of prostate cancer. The study provided new sights into understanding of the signaling network in prostate cancer and implied that FER1L4 might be a biomarker for patients with prostate cancer.
Collapse
Affiliation(s)
- Wei Huo
- 1Department of Urology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130001 People's Republic of China
| | - Fei Qi
- 2Department of Operating Room, China-Japan Union Hospital, Jilin University, Changchun, 130001 People's Republic of China
| | - Kaichen Wang
- 1Department of Urology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130001 People's Republic of China
| |
Collapse
|
104
|
Jiang J, Wang J, Yue M, Cai X, Wang T, Wu C, Su H, Wang Y, Han M, Zhang Y, Zhu X, Jiang P, Li P, Sun Y, Xiao W, Feng H, Qing G, Liu H. Direct Phosphorylation and Stabilization of MYC by Aurora B Kinase Promote T-cell Leukemogenesis. Cancer Cell 2020; 37:200-215.e5. [PMID: 32049046 PMCID: PMC7321798 DOI: 10.1016/j.ccell.2020.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/15/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Deregulation of MYC plays an essential role in T cell acute lymphoblastic leukemia (T-ALL), yet the mechanisms underlying its deregulation remain elusive. Herein, we identify a molecular mechanism responsible for reciprocal activation between Aurora B kinase (AURKB) and MYC. AURKB directly phosphorylates MYC at serine 67, counteracting GSK3β-directed threonine 58 phosphorylation and subsequent FBXW7-mediated proteasomal degradation. Stabilized MYC, in concert with T cell acute lymphoblastic leukemia 1 (TAL1), directly activates AURKB transcription, constituting a positive feedforward loop that reinforces MYC-regulated oncogenic programs. Therefore, inhibitors of AURKB induce prominent MYC degradation concomitant with robust leukemia cell death. These findings reveal an AURKB-MYC regulatory circuit that underlies T cell leukemogenesis, and provide a rationale for therapeutic targeting of oncogenic MYC via AURKB inhibition.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Jingchao Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ming Yue
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tianci Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Chao Wu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Hexiu Su
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yanwu Wang
- Department of Histology and Embryology, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology and Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology and Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Collaborative Innovation Center for Cancer Medicine, Beijing 100084, China
| | - Peng Li
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yonghua Sun
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Guoliang Qing
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
105
|
Zhu Q, Hu L, Guo Y, Xiao Z, Xu Q, Tong X. FBW7 in hematological tumors. Oncol Lett 2020; 19:1657-1664. [PMID: 32194657 PMCID: PMC7039162 DOI: 10.3892/ol.2020.11264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
F-box and WD repeat domain-containing protein 7 (FBW7), also known as FBXW7, AGO or hCDC4, is an F-box protein with seven tandem WD40 repeats. FBW7 is a key substrate recognition subunit of the Skp1-Cul1-F-box-protein E3 ubiquitin ligase. FBW7 targets for ubiquitination and destruction of numerous crucial transcription factors and protooncogenes, including cyclin E, c-Myc, c-Jun, Notch and MCL-1. FBW7 is a well-characterized tumor suppressor, and its gene is frequently mutated or deleted in various types of human cancer, including colorectal cancer, gastric cancer, ovarian cancer and different types of leukemia. Accumulating evidence indicates that the aberrant expression of FBW7 is involved in the development of hematological tumors, including T cell acute lymphoblastic leukemia, adult T cell leukemia/lymphoma, chronic lymphocytic leukemia and multiple myeloma. The present review will describe the latest findings on the role of FBW7 in hematological tumors, in order to identify a novel target for future therapies.
Collapse
Affiliation(s)
- Qiaojuan Zhu
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Linjun Hu
- Medical Department, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yang Guo
- Graduate Department, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zunqiang Xiao
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
106
|
Regulation of Stem Cells by Cullin-RING Ligase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:79-98. [PMID: 31898223 DOI: 10.1007/978-981-15-1025-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells can remain quiescent, self-renewal, and differentiate into many types of cells and even cancer stem cells. The coordination of these complex processes maintains the homeostasis of the organism. Ubiquitination is an important posttranslational modification process that regulates protein stability and activity. The ubiquitination levels of stem cell-associated proteins are closely related with stem cell characteristics. Cullin-RING Ligases (CRLs) are the largest family of E3 ubiquitin ligases, accounting for approximately 20% of proteins degraded by proteasome. In this review, we discuss the role of CRLs in stem cell homeostasis, self-renewal, and differentiation and expound their ubiquitination substrates. In addition, we also discuss the effect of CRLs on the formation of cancer stem cells that may provide promising therapy strategies for cancer.
Collapse
|
107
|
Liu J, Peng Y, Zhang J, Long J, Liu J, Wei W. Targeting SCF E3 Ligases for Cancer Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:123-146. [PMID: 31898226 DOI: 10.1007/978-981-15-1025-0_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SKP1-cullin-1-F-box-protein (SCF) E3 ubiquitin ligase complex is responsible for the degradation of proteins in a strictly regulated manner, through which it exerts pivotal roles in regulating various key cellular processes including cell cycle and division, apoptosis, and differentiation. The substrate specificity of the SCF complex largely depends on the distinct F-box proteins, which function in either tumor promotion or suppression or in a context-dependent manner. Among the 69 F-box proteins identified in human genome, FBW7, SKP2, and β-TRCP have been extensively investigated among various types of cancer in respective of their roles in cancer development, progression, and metastasis. Moreover, several specific inhibitors have been developed to target those E3 ligases, and their efficiency in tumors has been determined. In this review, we provide a summary of the roles of SCF E3 ligases in cancer development, as well as the potential application of miRNA or specific inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
108
|
Alonso VL, Tavernelli LE, Pezza A, Cribb P, Ritagliati C, Serra E. Aim for the Readers! Bromodomains As New Targets Against Chagas’ Disease. Curr Med Chem 2019; 26:6544-6563. [DOI: 10.2174/0929867325666181031132007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone
proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery
because the miss-regulation of human bromodomains was discovered to be involved in the development
of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains
continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain-
containing proteins in protozoa, offering a new opportunity for the development of antiparasitic
drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains
were classified in eight groups based on sequence similarity but parasitic bromodomains are very
divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors
can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains
in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize
the myriad of small-molecules under study to treat different pathologies and which of them have been
tested in trypanosomatids and other protozoa. All the information available led us to propose that
T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules
to inhibit them should be empowered.
Collapse
Affiliation(s)
- Victoria Lucia Alonso
- Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Alejandro Pezza
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Carla Ritagliati
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Esteban Serra
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| |
Collapse
|
109
|
Nakagawa MM, Rathinam CV. Constitutive Activation of the Canonical NF-κB Pathway Leads to Bone Marrow Failure and Induction of Erythroid Signature in Hematopoietic Stem Cells. Cell Rep 2019; 25:2094-2109.e4. [PMID: 30463008 PMCID: PMC6945759 DOI: 10.1016/j.celrep.2018.10.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Constitutive activation of the canonical NF-κB pathway has been associated with a variety of human pathologies. However, molecular mechanisms through which canonical NF-κB affects hematopoiesis remain elusive. Here, we demonstrate that deregulated canonical NF-κB signals in hematopoietic stem cells (HSCs) cause a complete depletion of HSC pool, pancytopenia, bone marrow failure, and premature death. Constitutive activation of IKK2 in HSCs leads to impaired quiescence and loss of function. Gene set enrichment analysis (GSEA) identified an induction of “erythroid signature” in HSCs with augmented NF-κB activity. Mechanistic studies indicated a reduction of thrombopoietin (TPO)-mediated signals and its downstream target p57 in HSCs, due to reduced c-MpI expression in a cell-intrinsic manner. Molecular studies established Klf1 as a key suppressor of c-MpI in HSPCs with increased NF-κB. In essence, these studies identified a previously unknown mechanism through which exaggerated canonical NF-κB signals affect HSCs and cause pathophysiology. Nakagawa and Rathinam demonstrate that constitutive activation of IKK2 in HSCs causes a complete depletion of the HSC pool and impairs HSC functions due to a loss of “sternness” signature and an induction of erythroid signature.
Collapse
Affiliation(s)
- Masahiro Marshall Nakagawa
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168(th) Street, New York, NY 10032, USA; Institute of Human Virology, University of Maryland, Baltimore, MD, USA; Center for Stem Cell & Regenerative Medicine, University of Maryland, Baltimore, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
110
|
Huang Y, Mouttet B, Warnatz HJ, Risch T, Rietmann F, Frommelt F, Ngo QA, Dobay MP, Marovca B, Jenni S, Tsai YC, Matzk S, Amstislavskiy V, Schrappe M, Stanulla M, Gstaiger M, Bornhauser B, Yaspo ML, Bourquin JP. The Leukemogenic TCF3-HLF Complex Rewires Enhancers Driving Cellular Identity and Self-Renewal Conferring EP300 Vulnerability. Cancer Cell 2019; 36:630-644.e9. [PMID: 31735627 DOI: 10.1016/j.ccell.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/18/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023]
Abstract
The chimeric transcription factor TCF3-HLF defines an incurable acute lymphoblastic leukemia subtype. Here we decipher the regulome of endogenous TCF3-HLF and dissect its essential transcriptional components and targets by functional genomics. We demonstrate that TCF3-HLF recruits HLF binding sites at hematopoietic stem cell/myeloid lineage associated (super-) enhancers to drive lineage identity and self-renewal. Among direct targets, hijacking an HLF binding site in a MYC enhancer cluster by TCF3-HLF activates a conserved MYC-driven transformation program crucial for leukemia propagation in vivo. TCF3-HLF pioneers the cooperation with ERG and recruits histone acetyltransferase p300 (EP300), conferring susceptibility to EP300 inhibition. Our study provides a framework for targeting driving transcriptional dependencies in this fatal leukemia.
Collapse
Affiliation(s)
- Yun Huang
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Brice Mouttet
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Thomas Risch
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Fabian Rietmann
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Quy A Ngo
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Maria Pamela Dobay
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Silvia Jenni
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Yi-Chien Tsai
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Sören Matzk
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jean-Pierre Bourquin
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland.
| |
Collapse
|
111
|
Flavone inhibited proliferation of T-ALL by promoting c-Cbl-induced ubiquitinylation and degradation of Notch1. Biochem Biophys Res Commun 2019; 522:684-689. [PMID: 31785807 DOI: 10.1016/j.bbrc.2019.11.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023]
Abstract
Aberrant activation of Notch1 signaling frequently occurs in T-cell acute lymphoblastic leukemia (T-ALL). Notch1 activation causes release of intracellular Notch1 (ICN1, the activated form of Notch1) from cell membrane to cytoplasm. As a transcription factor, ICN1 must be transferred into nucleus and bind to the promoters of its downstream target genes. E3 ubiquitin ligase induces ICN1 degradation in cytoplasm, which blocks ICN1 transfer into the nucleus. Flavone is a natural plant polyphenol, demonstrated to have anti-cancer effects in vitro and in vivo in breast and colon cancers. However, the effects of flavone on leukemia have not been reported. In this study, we demonstrated that flavone inhibited cell proliferation by down-regulating Notch1 signal pathway in CCRF-CEM and Molt-4 T-ALL cells. Flavone-mediated upregulation of c-Cbl level results in the increase in its interaction with ICN1, further caused ICN1 ubiquitinylation and degradation. Knockdown of c-Cbl reversed flavone-induced down-regulation of ICN1 and inhibition of cell proliferation in T-ALL cells. In short, this study indicated that flavone exerted resistance to T-ALL by promoting c-Cbl-induced ubiquitinylation and degradation of ICN1.
Collapse
|
112
|
Park CS, Lewis AH, Chen TJ, Bridges CS, Shen Y, Suppipat K, Puppi M, Tomolonis JA, Pang PD, Mistretta TA, Ma L, Green MR, Rau R, Lacorazza HD. A KLF4-DYRK2-mediated pathway regulating self-renewal in CML stem cells. Blood 2019; 134:1960-1972. [PMID: 31515251 PMCID: PMC6887114 DOI: 10.1182/blood.2018875922] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/06/2019] [Indexed: 02/02/2023] Open
Abstract
Leukemia stem cells are a rare population with a primitive progenitor phenotype that can initiate, sustain, and recapitulate leukemia through a poorly understood mechanism of self-renewal. Here, we report that Krüppel-like factor 4 (KLF4) promotes disease progression in a murine model of chronic myeloid leukemia (CML)-like myeloproliferative neoplasia by repressing an inhibitory mechanism of preservation in leukemia stem/progenitor cells with leukemia-initiating capacity. Deletion of the Klf4 gene severely abrogated the maintenance of BCR-ABL1(p210)-induced CML by impairing survival and self-renewal in BCR-ABL1+ CD150+ lineage-negative Sca-1+ c-Kit+ leukemic cells. Mechanistically, KLF4 repressed the Dyrk2 gene in leukemic stem/progenitor cells; thus, loss of KLF4 resulted in elevated levels of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2), which were associated with inhibition of survival and self-renewal via depletion of c-Myc protein and p53 activation. In addition to transcriptional regulation, stabilization of DYRK2 protein by inhibiting ubiquitin E3 ligase SIAH2 with vitamin K3 promoted apoptosis and abrogated self-renewal in murine and human CML stem/progenitor cells. Altogether, our results suggest that DYRK2 is a molecular checkpoint controlling p53- and c-Myc-mediated regulation of survival and self-renewal in CML cells with leukemic-initiating capacity that can be targeted with small molecules.
Collapse
MESH Headings
- Animals
- Cell Survival/drug effects
- Cell Survival/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Deletion
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Knockout
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Signal Transduction
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Vitamin K 3/pharmacology
- Dyrk Kinases
Collapse
Affiliation(s)
| | - Andrew H Lewis
- Department of Pathology and Immunology and
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX
| | - Taylor J Chen
- Department of Pathology and Immunology and
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX
| | | | - Ye Shen
- Department of Pathology and Immunology and
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX
| | - Koramit Suppipat
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, TX
| | | | | | - Paul D Pang
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX
| | | | - Leyuan Ma
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Michael R Green
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Rachel Rau
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
113
|
Fbxw7 is a driver of uterine carcinosarcoma by promoting epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2019; 116:25880-25890. [PMID: 31772025 PMCID: PMC6926017 DOI: 10.1073/pnas.1911310116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Uterine carcinosarcoma (UCS) is an aggressive endometrial cancer variant distinguished from endometrial adenocarcinoma (EC) by admixed malignant epithelial and mesenchymal components (carcinoma and sarcoma). The molecular events underlying UCS are enigmatic, as cancer gene mutations are generally shared among UCS/EC. We take advantage of genetic approaches in mice to show that inactivation of Fbxw7 and Pten results in UCS through spontaneous acquisition of mutations in a third gene (Tp53), arguing for strong biological selection and synergism in UCS. We used this UCS model including tumor-derived cell lines to show that Fbxw7 loss drives epithelial–mesenchymal transition, explaining Fbxw7’s role in UCS. This model system argues that simultaneous genetic defects in 3 distinct pathways (Fbxw7, Pten/PI3K, Tp53) converge in UCS genesis. Uterine carcinosarcoma is an aggressive variant of endometrial carcinoma characterized by unusual histologic features including discrete malignant epithelial and mesenchymal components (carcinoma and sarcoma). Recent studies have confirmed a monoclonal origin, and comprehensive genomic characterizations have identified mutations such as Tp53 and Pten. However, the biological origins and specific combination of driver events underpinning uterine carcinosarcoma have remained mysterious. Here, we explored the role of the tumor suppressor Fbxw7 in endometrial cancer through defined genetic model systems. Inactivation of Fbxw7 and Pten resulted in the formation of precancerous lesions (endometrioid intraepithelial neoplasia) and well-differentiated endometrioid adenocarcinomas. Surprisingly, all adenocarcinomas eventually developed into definitive uterine carcinosarcomas with carcinomatous and sarcomatous elements including heterologous differentiation, yielding a faithful genetically engineered model of this cancer type. Genomic analysis showed that most tumors spontaneously acquired Trp53 mutations, pointing to a triad of pathways (p53, PI3K, and Fbxw7) as the critical combination underpinning uterine carcinosarcoma, and to Fbxw7 as a key driver of this enigmatic endometrial cancer type. Lineage tracing provided formal genetic proof that the uterine carcinosarcoma cell of origin is an endometrial epithelial cell that subsequently undergoes a prominent epithelial–mesenchymal transition underlying the attainment of a highly invasive phenotype specifically driven by Fbxw7.
Collapse
|
114
|
Zhang Q, Mady ASA, Ma Y, Ryan C, Lawrence TS, Nikolovska-Coleska Z, Sun Y, Morgan MA. The WD40 domain of FBXW7 is a poly(ADP-ribose)-binding domain that mediates the early DNA damage response. Nucleic Acids Res 2019; 47:4039-4053. [PMID: 30722038 PMCID: PMC6486556 DOI: 10.1093/nar/gkz058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
FBXW7, a classic tumor suppressor, is a substrate recognition subunit of the Skp1-cullin-F-box (SCF) ubiquitin ligase that targets oncoproteins for ubiquitination and degradation. We recently found that FBXW7 is recruited to DNA damage sites to facilitate nonhomologous end-joining (NHEJ). The detailed underlying molecular mechanism, however, remains elusive. Here we report that the WD40 domain of FBXW7, which is responsible for substrate binding and frequently mutated in human cancers, binds to poly(ADP-ribose) (PAR) immediately following DNA damage and mediates rapid recruitment of FBXW7 to DNA damage sites, whereas ATM-mediated FBXW7 phosphorylation promotes its retention at DNA damage sites. Cancer-associated arginine mutations in the WD40 domain (R465H, R479Q and R505C) abolish both FBXW7 interaction with PAR and recruitment to DNA damage sites, causing inhibition of XRCC4 polyubiquitination and NHEJ. Furthermore, inhibition or silencing of poly(ADP-ribose) polymerase 1 (PARP1) inhibits PAR-mediated recruitment of FBXW7 to the DNA damage sites. Taken together, our study demonstrates that the WD40 domain of FBXW7 is a novel PAR-binding motif that facilitates early recruitment of FBXW7 to DNA damage sites for subsequent NHEJ repair. Abrogation of this ability seen in cancer-derived FBXW7 mutations provides a molecular mechanism for defective DNA repair, eventually leading to genome instability.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ahmed S A Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuanyuan Ma
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caila Ryan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Yi Sun
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
115
|
Robaina MC, Mazzoccoli L, Klumb CE. Germinal Centre B Cell Functions and Lymphomagenesis: Circuits Involving MYC and MicroRNAs. Cells 2019; 8:E1365. [PMID: 31683676 PMCID: PMC6912346 DOI: 10.3390/cells8111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The transcription factor MYC regulates several biological cellular processes, and its target gene network comprises approximately 15% of all human genes, including microRNAs (miRNAs), that also contribute to MYC regulatory activity. Although miRNAs are emerging as key regulators of immune functions, the specific roles of miRNAs in the regulation/dysregulation of germinal centre B-cells and B-cell lymphomas are still being uncovered. The regulatory network that integrates MYC, target genes and miRNAs is a field of intense study, highlighting potential pathways to be explored in the context of future clinical approaches. METHODS The scientific literature that is indexed in PUBMED was consulted for publications involving MYC and miRNAs with validated bioinformatics analyses or experimental protocols. Additionally, seminal studies on germinal centre B-cell functions and lymphomagenesis were reported. CONCLUSIONS This review summarizes the interactions between MYC and miRNAs through regulatory loops and circuits involving target genes in germinal centre B-cell lymphomas with MYC alterations. Moreover, we provide an overview of the understanding of the regulatory networks between MYC and miRNAs, highlighting the potential implication of this approach for the comprehension of germinal centre B-cell lymphoma pathogenesis. Therefore, circuits involving MYC, target genes and miRNAs provide novel insight into lymphomagenesis that could be useful for new improved therapeutic strategies.
Collapse
Affiliation(s)
- Marcela Cristina Robaina
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Luciano Mazzoccoli
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Claudete Esteves Klumb
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| |
Collapse
|
116
|
Ribeiro ML, Reyes-Garau D, Armengol M, Fernández-Serrano M, Roué G. Recent Advances in the Targeting of Epigenetic Regulators in B-Cell Non-Hodgkin Lymphoma. Front Genet 2019; 10:986. [PMID: 31681423 PMCID: PMC6807552 DOI: 10.3389/fgene.2019.00986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
In the last 10 years, major advances have been made in the diagnosis and development of selective therapies for several blood cancers, including B-cell non-Hodgkin lymphoma (B-NHL), a heterogeneous group of malignancies arising from the mature B lymphocyte compartment. However, most of these entities remain incurable and current treatments are associated with variable efficacy, several adverse events, and frequent relapses. Thus, new diagnostic paradigms and novel therapeutic options are required to improve the prognosis of patients with B-NHL. With the recent deciphering of the mutational landscapes of B-cell disorders by high-throughput sequencing, it came out that different epigenetic deregulations might drive and/or promote B lymphomagenesis. Consistently, over the last decade, numerous epigenetic drugs (or epidrugs) have emerged in the clinical management of B-NHL patients. In this review, we will present an overview of the most relevant epidrugs tested and/or used so far for the treatment of different subtypes of B-NHL, from first-generation epigenetic therapies like histone acetyl transferases (HDACs) or DNA-methyl transferases (DNMTs) inhibitors to new agents showing selectivity for proteins that are mutated, translocated, and/or overexpressed in these diseases, including EZH2, BET, and PRMT. We will dissect the mechanisms of action of these epigenetic inhibitors, as well as the molecular processes underlying their lack of efficacy in refractory patients. This review will also provide a summary of the latest strategies being employed in preclinical and clinical settings, and will point out the most promising lines of investigation in the field.
Collapse
Affiliation(s)
- Marcelo L. Ribeiro
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo, Brazil
| | - Diana Reyes-Garau
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Marc Armengol
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Miranda Fernández-Serrano
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
117
|
Reyes-Garau D, Ribeiro ML, Roué G. Pharmacological Targeting of BET Bromodomain Proteins in Acute Myeloid Leukemia and Malignant Lymphomas: From Molecular Characterization to Clinical Applications. Cancers (Basel) 2019; 11:cancers11101483. [PMID: 31581671 PMCID: PMC6826405 DOI: 10.3390/cancers11101483] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Alterations in protein-protein and DNA-protein interactions and abnormal chromatin remodeling are a major cause of uncontrolled gene transcription and constitutive activation of critical signaling pathways in cancer cells. Multiple epigenetic regulators are known to be deregulated in several hematologic neoplasms, by somatic mutation, amplification, or deletion, allowing the identification of specific epigenetic signatures, but at the same time providing new therapeutic opportunities. While these vulnerabilities have been traditionally addressed by hypomethylating agents or histone deacetylase inhibitors, pharmacological targeting of bromodomain-containing proteins has recently emerged as a promising approach in a number of lymphoid and myeloid malignancies. Indeed, preclinical and clinical studies highlight the relevance of targeting the bromodomain and extra-terminal (BET) family as an efficient strategy of target transcription irrespective of the presence of epigenetic mutations. Here we will summarize the main advances achieved in the last decade regarding the preclinical and clinical evaluation of BET bromodomain inhibitors in hematologic cancers, either as monotherapies or in combinations with standard and/or experimental agents. A mention will finally be given to the new concept of the protein degrader, and the perspective it holds for the design of bromodomain-based therapies.
Collapse
Affiliation(s)
- Diana Reyes-Garau
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
| | - Marcelo L Ribeiro
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo 12916-900, Brazil.
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
118
|
Wang J, Wang H, Peters M, Ding N, Ribback S, Utpatel K, Cigliano A, Dombrowski F, Xu M, Chen X, Song X, Che L, Evert M, Cossu A, Gordan J, Zeng Y, Chen X, Calvisi DF. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. J Hepatol 2019; 71:742-752. [PMID: 31195063 PMCID: PMC6773530 DOI: 10.1016/j.jhep.2019.05.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The ubiquitin ligase F-box and WD repeat domain-containing 7 (FBXW7) is recognized as a tumor suppressor in many cancer types due to its ability to promote the degradation of numerous oncogenic target proteins. Herein, we aimed to elucidate its role in intrahepatic cholangiocarcinoma (iCCA). METHODS Herein, we first confirmed that FBXW7 gene expression was reduced in human iCCA specimens. To identify the molecular mechanisms by which FBXW7 dysfunction promotes cholangiocarcinogenesis, we generated a mouse model by hydrodynamic tail vein injection of Fbxw7ΔF, a dominant negative form of Fbxw7, either alone or in association with an activated/myristylated form of AKT (myr-AKT). We then confirmed the role of c-MYC in human iCCA cell lines and its relationship to FBXW7 expression in human iCCA specimens. RESULTS FBXW7 mRNA expression is almost ubiquitously downregulated in human iCCA specimens. While forced overexpression of Fbxw7ΔF alone did not induce any appreciable abnormality in the mouse liver, co-expression with AKT triggered cholangiocarcinogenesis and mice had to be euthanized by 15 weeks post-injection. At the molecular level, a strong induction of Fbxw7 canonical targets, including Yap, Notch2, and c-Myc oncoproteins, was detected. However, only c-MYC was consistently confirmed as a FBXW7 target in human CCA cell lines. Most importantly, selected ablation of c-Myc completely impaired iCCA formation in AKT/Fbxw7ΔF mice, whereas deletion of either Yap or Notch2 only delayed tumorigenesis in the same model. In human iCCA specimens, an inverse correlation between the expression levels of FBXW7 and c-MYC transcriptional activity was observed. CONCLUSIONS Downregulation of FBXW7 is ubiquitous in human iCCA and cooperates with AKT to induce cholangiocarcinogenesis in mice via c-Myc-dependent mechanisms. Targeting c-MYC might represent an innovative therapy against iCCA exhibiting low FBXW7 expression. LAY SUMMARY There is mounting evidence that FBXW7 functions as a tumor suppressor in many cancer types, including intrahepatic cholangiocarcinoma, through its ability to promote the degradation of numerous oncoproteins. Herein, we have shown that the low expression of FBXW7 is ubiquitous in human cholangiocarcinoma specimens. This low expression is correlated with increased c-MYC activity, leading to tumorigenesis. Our findings suggest that targeting c-MYC might be an effective treatment for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Haichuan Wang
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Michele Peters
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Ning Ding
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Antonio Cigliano
- Institute of Pathology, University of Greifswald, Greifswald, Germany,Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Meng Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California,Department of General Surgery, The Second Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Xinyan Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California,Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Antonio Cossu
- Unit of Pathology, Azienda Ospedaliero Universitaria Sassari, Sassari, Italy
| | - John Gordan
- Department of Medicine, University of California, San Francisco, California
| | - Yong Zeng
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, United States.
| | - Diego F. Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany,Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
119
|
Gusscott S, Tamiro F, Giambra V, Weng AP. Insulin-like growth factor (IGF) signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100652. [PMID: 31543360 DOI: 10.1016/j.jbior.2019.100652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer, characterized by an uncontrolled expansion and accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and occupy the bone marrow compartment, thereby interfering with the production of normal blood cells. Pediatric T-ALL is curable with intensive chemotherapy, but there are significant, long-term side effects and ~20% of patients suffer relapse for which there are limited treatment options. Adult T-ALL in contrast is largely incurable and refractory/relapsed disease is common despite multi-agent chemotherapy (5-year overall survival of ~40%), and thus new therapeutic targets are needed. We have reported previously on the role of insulin-like growth factor (IGF) signaling in T-ALL, and shown that it exerts potent phenotypes in both leukemia stem cell and bulk tumor cell populations. Modulators of IGF signaling may thus prove useful in improving outcomes in patients with T-ALL. In this review, we summarize the most recent findings relating to IGF signaling in T-ALL and outline therapeutic options using clinically relevant IGF signaling modulators.
Collapse
Affiliation(s)
- Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Francesco Tamiro
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
120
|
Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front Oncol 2019; 9:893. [PMID: 31572683 PMCID: PMC6751266 DOI: 10.3389/fonc.2019.00893] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of highly conserved, non-coding single-stranded RNAs transcribed as ~70 nucleotide precursors to an 18–22 nucleotide product (1). miRNAs can silence their homologous target genes at the post-transcriptional level, and these genes have been revealed to play an important role in tumorigenesis, invasion and metastasis (2). MicroRNA-27a (miR-27a), transcripted by miR-27a gene, has proved to implicate with many kinds of solid tumors, showing potential as a useful biomarker or drug target for clinical application. However, even though miR-27a has been reported in many cancers, the mechanism and signal pathways of miR-27 in oncogenesis, invasion, and metastasis are still obscure. Moreover, recent studies show that miR-27a pays an important role in epithelial-mesenchymal-transition, regulating tumor immune response, and chemoresistance. In this review, we summarize the current literature, demonstrate the established link between miR-27a and tumorigenesis, and focus on recently identified mechanisms. The review also aims to demonstrate the potential of miR-27a as a diagnostic and/or prognostic biomarker in solid tumors and to discuss the possibilities of targeted therapy and drug design.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
121
|
Ghia EM, Rassenti LZ, Neuberg DS, Blanco A, Yousif F, Smith EN, McPherson JD, Hudson TJ, Harismendy O, Frazer KA, Kipps TJ. Activation of hedgehog signaling associates with early disease progression in chronic lymphocytic leukemia. Blood 2019; 133:2651-2663. [PMID: 30923040 PMCID: PMC6587306 DOI: 10.1182/blood-2018-09-873695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Targeted sequencing of 103 leukemia-associated genes in leukemia cells from 841 treatment-naive patients with chronic lymphocytic leukemia (CLL) identified 89 (11%) patients as having CLL cells with mutations in genes encoding proteins that putatively are involved in hedgehog (Hh) signaling. Consistent with this finding, there was a significant association between the presence of these mutations and the expression of GLI1 (χ2 test, P < .0001), reflecting activation of the Hh pathway. However, we discovered that 38% of cases without identified mutations also were GLI1+ Patients with GLI1+ CLL cells had a shorter median treatment-free survival than patients with CLL cells lacking expression of GLI1 independent of IGHV mutation status. We found that GANT61, a small molecule that can inhibit GLI1, was highly cytotoxic for GLI1+ CLL cells relative to that of CLL cells without GLI1. Collectively, this study shows that a large proportion of patients have CLL cells with activated Hh signaling, which is associated with early disease progression and enhanced sensitivity to inhibition of GLI1.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Disease Progression
- Female
- Gene Expression Regulation, Leukemic/genetics
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Zinc Finger Protein GLI1/metabolism
Collapse
Affiliation(s)
- Emanuela M Ghia
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Donna S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Alejandro Blanco
- Programa de Genetica Humana, Universidad de Chile, Santiago, Chile
| | - Fouad Yousif
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Erin N Smith
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA; and
| | | | - Olivier Harismendy
- Moores Cancer Center, University of California San Diego, La Jolla, CA
- Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA
| | - Kelly A Frazer
- Moores Cancer Center, University of California San Diego, La Jolla, CA
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| |
Collapse
|
122
|
Strategies to Overcome Resistance Mechanisms in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20123021. [PMID: 31226848 PMCID: PMC6627878 DOI: 10.3390/ijms20123021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Chemoresistance is a major cause of recurrence and death from T-cell acute lymphoblastic leukemia (T-ALL), both in adult and pediatric patients. In the majority of cases, drug-resistant disease is treated by selecting a combination of other drugs, without understanding the molecular mechanisms by which malignant cells escape chemotherapeutic treatments, even though a more detailed genomic characterization and the identification of actionable disease targets may enable informed decision of new agents to improve patient outcomes. In this work, we describe pathways of resistance to common chemotherapeutic agents including glucocorticoids and review the resistance mechanisms to targeted therapy such as IL7R, PI3K-AKT-mTOR, NOTCH1, BRD4/MYC, Cyclin D3: CDK4/CDK6, BCL2 inhibitors, and selective inhibitors of nuclear export (SINE). Finally, to overcome the limitations of the current trial-and-error method, we summarize the experiences of anti-cancer drug sensitivity resistance profiling (DSRP) approaches as a rapid and relevant strategy to infer drug activity and provide functional information to assist clinical decision one patient at a time.
Collapse
|
123
|
Choi J, Busino L. E3 ubiquitin ligases in B-cell malignancies. Cell Immunol 2019; 340:103905. [PMID: 30827673 PMCID: PMC6584052 DOI: 10.1016/j.cellimm.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
Ubiquitylation is a post-translational modification (PTM) that controls various cellular signaling pathways. It is orchestrated by a three-step enzymatic cascade know as the ubiquitin proteasome system (UPS). E3 ligases dictate the specificity to the substrates, primarily leading to proteasome-dependent degradation. Deregulation of the UPS components by various mechanisms contributes to the pathogenesis of cancer. This review focuses on E3 ligase-substrates pairings that are implicated in B-cell malignancies. Understanding the molecular mechanism of specific E3 ubiquitin ligases will present potential opportunities for the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Jaewoo Choi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
124
|
Liu F, Zou Y, Wang F, Yang B, Zhang Z, Luo Y, Liang M, Zhou J, Huang O. FBXW7 Mutations Promote Cell Proliferation, Migration, and Invasion in Cervical Cancer. Genet Test Mol Biomarkers 2019; 23:409-417. [PMID: 31161818 DOI: 10.1089/gtmb.2018.0278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: Cervical cancer is the most common gynecological cancer. Recent studies have revealed that the F-box and WD repeat domain containing 7 (FBXW7) gene, which encodes a subunit of Skp1-Cul1-F-box protein (SCF) ubiquitin ligase, is frequently mutated in cervical squamous cell carcinomas. In this study, we investigated whether Chinese cervical cancer cells also harbor these mutations. Methods: Using PCR and sequencing assays, a total of 190 specimens from Han Chinese patients with cervical cancer were analyzed for FBXW7 mutations. Results: Two FBXW7 mutations (p.R479P and p.L443H), were identified from a study of 145 (1.4%) cervical squamous cell carcinomas. The p.L443H somatic mutation has not been previously reported. Functional assays showed that both of these FBXW7 mutations could promote cell proliferation, migration, and invasion. Conclusion: A low frequency (1.4%) of cervical squamous cell carcinomas were identified with FBXW7 mutations. We did, however, identify a novel FBXW7 mutation. Our results also demonstrated that the identified FBXW7 mutations could promote cell proliferation, migration, and invasion in cervical cancer cells.
Collapse
Affiliation(s)
- Faying Liu
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- 2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yang Zou
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- 2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Feng Wang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- 2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Bicheng Yang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ziyu Zhang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- 2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yong Luo
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- 2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Meirong Liang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- 3 Department of Oncology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Jiangyan Zhou
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- 4 Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ouping Huang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- 4 Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| |
Collapse
|
125
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, Liao WT, Ding YQ, Liang L. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 2019; 18:91. [PMID: 31064356 PMCID: PMC6503554 DOI: 10.1186/s12943-019-1019-x] [Citation(s) in RCA: 537] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer associated fibroblasts (CAFs) are key stroma cells that play dominant roles in tumor progression. However, the CAFs-derived molecular determinants that regulate colorectal cancer (CRC) metastasis and chemoresistance have not been fully characterized. METHODS CAFs and NFs were obtained from fresh CRC and adjacent normal tissues. Exosomes were isolated from conditioned medium and serum of CRC patients using ultracentrifugation method and ExoQuick Exosome Precipitation Solution kit, and characterized by transmission electronic microscopy, nanosight and western blot. MicroRNA microarray was employed to identify differentially expressed miRNAs in exosomes secreted by CAFs or NFs. The internalization of exosomes, transfer of miR-92a-3p was observed by immunofluorescence. Boyden chamber migration and invasion, cell counting kit-8, flow cytometry, plate colony formation, sphere formation assays, tail vein injection and primary colon cancer liver metastasis assays were employed to explore the effect of NFs, CAFs and exosomes secreted by them on epithelial-mesenchymal transition, stemness, metastasis and chemotherapy resistance of CRC. Luciferase report assay, real-time qPCR, western blot, immunofluorescence, and immunohistochemistry staining were employed to explore the regulation of CRC metastasis and chemotherapy resistance by miR-92a-3p, FBXW7 and MOAP1. RESULTS CAFs promote the stemness, epithelial-mesenchymal transition (EMT), metastasis and chemotherapy resistance of CRC cells. Importantly, CAFs exert their roles by directly transferring exosomes to CRC cells, leading to a significant increase of miR-92a-3p level in CRC cells. Mechanically, increased expression of miR-92a-3p activates Wnt/β-catenin pathway and inhibits mitochondrial apoptosis by directly inhibiting FBXW7 and MOAP1, contributing to cell stemness, EMT, metastasis and 5-FU/L-OHP resistance in CRC. Clinically, miR-92a-3p expression is significantly increased in CRC tissues and negatively correlated with the levels of FBXW7 and MOAP1 in CRC specimens, and high expression of exosomal miR-92a-3p in serum was highly linked with metastasis and chemotherapy resistance in CRC patients. CONCLUSIONS CAFs secreted exosomes promote metastasis and chemotherapy resistance of CRC. Inhibiting exosomal miR-92a-3p provides an alternative modality for the prediction and treatment of metastasis and chemotherapy resistance in CRC.
Collapse
Affiliation(s)
- J L Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - W Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - X L Lan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - Z C Zeng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - Y S Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - Y R Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - F Y Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - F F Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - X H Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - W J Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - W T Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - Y Q Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - L Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China.
| |
Collapse
|
126
|
Song Y, Lin M, Liu Y, Wang ZW, Zhu X. Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther 2019; 10:124. [PMID: 30999935 PMCID: PMC6472071 DOI: 10.1186/s13287-019-1222-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence shows that epithelial-mesenchymal transition (EMT) plays a crucial role in tumor invasion, metastasis, cancer stem cells, and drug resistance. Data obtained thus far have revealed that F-box proteins are critically involved in the regulation of the EMT process and stem cell differentiation in human cancers. In this review, we will briefly describe the role of EMT and stem cells in cell metastasis and drug resistance. We will also highlight how numerous F-box proteins govern the EMT process and stem cell survival by controlling their downstream targets. Additionally, we will discuss whether F-box proteins involved in drug resistance are associated with EMT and cancer stem cells. Targeting these F-box proteins might be a potential therapeutic strategy to reverse EMT and inhibit cancer stem cells and thus overcome drug resistance in human cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
127
|
Zia S, Shahid R. Mutagenic players in ALL progression and their associated signaling pathways. Cancer Genet 2019; 233-234:7-20. [DOI: 10.1016/j.cancergen.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
|
128
|
Milani G, Matthijssens F, Van Loocke W, Durinck K, Roels J, Peirs S, Thénoz M, Pieters T, Reunes L, Lintermans B, Vandamme N, Lammens T, Van Roy N, Van Nieuwerburgh F, Deforce D, Schwab C, Raimondi S, Dalla Pozza L, Carroll AJ, De Moerloose B, Benoit Y, Goossens S, Berx G, Harrison CJ, Basso G, Cavé H, Sutton R, Asnafi V, Meijerink J, Mullighan C, Loh M, Van Vlierberghe P. Genetic characterization and therapeutic targeting of MYC-rearranged T cell acute lymphoblastic leukaemia. Br J Haematol 2019; 185:169-174. [PMID: 29938777 PMCID: PMC7081658 DOI: 10.1111/bjh.15425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gloria Milani
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Filip Matthijssens
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kaat Durinck
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Juliette Roels
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sofie Peirs
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Morgan Thénoz
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tim Pieters
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular and Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Lindy Reunes
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Beatrice Lintermans
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Niels Vandamme
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular and Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Nadine Van Roy
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Susana Raimondi
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Luciano Dalla Pozza
- The Cancer Centre for Children, The Children’s Hospital, Westmead, Australia
| | | | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Yves Benoit
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Steven Goossens
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular and Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular and Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppe Basso
- Women and Child Health Department, Hematology-Oncology Laboratory Istituto di Ricerca Pediatrica (IRP), University of Padova, Padova, Italy
| | - Hélène Cavé
- Department of Genetics, University Hospital of Robert Debré and Paris-Diderot University, Paris, France
| | - Rosemary Sutton
- Children’s Cancer Institute, Lowy Cancer Research Centre UNSW, Sydney, New South Wales, Australia
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Institut Necker Enfants-Malades, INSERM U1151, Paris, France
| | - Jules Meijerink
- The Máxima Center for Pediatric Oncology/Hematology, Utrecht, the Netherlands
| | - Charles Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mignon Loh
- Department of Pediatrics, UCSF Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Pieter Van Vlierberghe
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
129
|
Qin Y, Hu Q, Ji S, Xu J, Dai W, Liu W, Xu W, Sun Q, Zhang Z, Ni Q, Yu X, Zhang B, Xu X. Homeodomain-interacting protein kinase 2 suppresses proliferation and aerobic glycolysis via ERK/cMyc axis in pancreatic cancer. Cell Prolif 2019; 52:e12603. [PMID: 30932257 DOI: 10.1111/cpr.12603] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigate the roles of the homeodomain-interacting protein kinase (HIPK) family of proteins in pancreatic cancer prognosis and the possible molecular mechanism. MATERIALS AND METHODS The expression of HIPK family genes and their roles in pancreatic cancer prognosis were analysed by using The Cancer Genome Atlas (TCGA). The roles of HIPK2 in pancreatic cancer proliferation and glycolysis were tested by overexpression of HIPK2 in pancreatic cancer cells, followed by cell proliferation assay, glucose uptake analysis and Seahorse extracellular flux analysis. The mechanism of action of HIPK2 in pancreatic cancer proliferation and glycolysis was explored by examining its effect on the ERK/cMyc axis. RESULTS Decreased HIPK2 expression indicated worse prognosis of pancreatic cancer. Overexpression of HIPK2 in pancreatic cancer cells decreased cell proliferation and attenuated aerobic glycolysis, which sustained proliferation of cancer cells. HIPK2 decreased cMyc protein levels and expression of cMyc-targeted glycolytic genes. cMyc was a mediator that regulated HIPK2-induced decrease in aerobic glycolysis. HIPK2 regulated cMyc protein stability via ERK activation, which phosphorylated and controlled cMyc protein stability. CONCLUSIONS HIPK2 suppressed proliferation of pancreatic cancer in part through inhibiting the ERK/cMyc axis and related aerobic glycolysis.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Weixing Dai
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
130
|
Abstract
Cancer is fueled by the aberrant activity of oncogenic and tumor suppressive pathways. Transcriptional dysregulation of these pathways play a major role both in the genesis and development of cancer. Dysregulation of transcriptional programs can be mediated by genetic and epigenetic alterations targeting both protein coding genes and non-coding regulatory elements like enhancers and super-enhancers. Super-enhancers, characterized as large clusters of enhancers in close proximity, have been identified as essential oncogenic drivers required for the maintenance of cancer cell identity. As a result, cancer cells are often addicted to the super-enhancer driven transcriptional programs. Furthermore, pharmacological inhibitors targeting key components of super-enhancer assembly and activation have shown great promise in reducing tumor growth and proliferation in several pre-clinical tumor models. This article reviews the current understanding of super-enhancer assembly and activation, the different mechanisms by which cancer cells acquire oncogenic super-enhancers and, finally, the potential of targeting super-enhancers as future therapeutics.
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
131
|
Cooper JM, Patel AJ, Chen Z, Liao CP, Chen K, Mo J, Wang Y, Le LQ. Overcoming BET Inhibitor Resistance in Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res 2019; 25:3404-3416. [PMID: 30796033 DOI: 10.1158/1078-0432.ccr-18-2437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE BET bromodomain inhibitors have emerged as a promising therapy for numerous cancer types in preclinical studies, including neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumor (MPNST). However, potential mechanisms underlying resistance to these inhibitors in different cancers are not completely understood. In this study, we explore new strategy to overcome BET inhibitor resistance in MPNST.Experimental Design: Through modeling tumor evolution by studying genetic changes underlying the development of MPNST, a lethal sarcoma with no effective medical treatment, we identified a targetable addiction to BET bromodomain family member BRD4 in MPNST. This served as a controlled model system to delineate mechanisms of sensitivity and resistance to BET bromodomain inhibitors in this disease. RESULTS Here, we show that a malignant progression-associated increase in BRD4 protein levels corresponds to partial sensitivity to BET inhibition in MPNST. Strikingly, genetic depletion of BRD4 protein levels synergistically sensitized MPNST cells to diverse BET inhibitors in culture and in vivo. CONCLUSIONS Collectively, MPNST sensitivity to combination genetic and pharmacologic inhibition of BRD4 revealed the presence of a unique addiction to BRD4 in MPNST. Our discovery that a synthetic lethality exists between BET inhibition and reduced BRD4 protein levels nominates MPNST for the investigation of emerging therapeutic interventions such as proteolysis-targeting chimeras (PROTACs) that simultaneously target bromodomain activity and BET protein abundance.
Collapse
Affiliation(s)
- Jonathan M Cooper
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Amish J Patel
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Kun Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Yong Wang
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. .,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
132
|
FBXW7 in Cancer: What Has Been Unraveled Thus Far? Cancers (Basel) 2019; 11:cancers11020246. [PMID: 30791487 PMCID: PMC6406609 DOI: 10.3390/cancers11020246] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
: The FBXW7 (F-box with 7 tandem WD40) protein encoded by the gene FBXW7 is one of the crucial components of ubiquitin ligase called Skp1-Cullin1-F-box (SCF) complex that aids in the degradation of many oncoproteins via the ubiquitin-proteasome system (UPS) thus regulating cellular growth. FBXW7 is considered as a potent tumor suppressor as most of its target substrates can function as potential growth promoters, including c-Myc, Notch, cyclin E, c-JUN, and KLF5. Its regulators include p53, C/EBP-δ, Numb, microRNAs, Pin 1, Hes-5, BMI1, Ebp2. Mounting evidence has indicated the involvement of aberrant expression of FBXW7 for tumorigenesis. Moreover, numerous studies have also shown its role in cancer cell chemosensitization, thereby demonstrating the importance of FBXW7 in the development of curative cancer therapy. This comprehensive review emphasizes on the targets, functions, regulators and expression of FBXW7 in different cancers and its involvement in sensitizing cancer cells to chemotherapeutic drugs.
Collapse
|
133
|
Downregulation of specific FBXW7 isoforms with differential effects in T-cell lymphoblastic lymphoma. Oncogene 2019; 38:4620-4636. [DOI: 10.1038/s41388-019-0746-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/26/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
|
134
|
Jin Q, Martinez CA, Arcipowski KM, Zhu Y, Gutierrez-Diaz BT, Wang KK, Johnson MR, Volk AG, Wang F, Wu J, Grove C, Wang H, Sokirniy I, Thomas PM, Goo YA, Abshiru NA, Hijiya N, Peirs S, Vandamme N, Berx G, Goosens S, Marshall SA, Rendleman EJ, Takahashi YH, Wang L, Rawat R, Bartom ET, Collings CK, Van Vlierberghe P, Strikoudis A, Kelly S, Ueberheide B, Mantis C, Kandela I, Bourquin JP, Bornhauser B, Serafin V, Bresolin S, Paganin M, Accordi B, Basso G, Kelleher NL, Weinstock J, Kumar S, Crispino JD, Shilatifard A, Ntziachristos P. USP7 Cooperates with NOTCH1 to Drive the Oncogenic Transcriptional Program in T-Cell Leukemia. Clin Cancer Res 2019; 25:222-239. [PMID: 30224337 PMCID: PMC6320313 DOI: 10.1158/1078-0432.ccr-18-1740] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease, affecting children and adults. Chemotherapy treatments show high response rates but have debilitating effects and carry risk of relapse. Previous work implicated NOTCH1 and other oncogenes. However, direct inhibition of these pathways affects healthy tissues and cancer alike. Our goal in this work has been to identify enzymes active in T-ALL whose activity could be targeted for therapeutic purposes. EXPERIMENTAL DESIGN To identify and characterize new NOTCH1 druggable partners in T-ALL, we coupled studies of the NOTCH1 interactome to expression analysis and a series of functional analyses in cell lines, patient samples, and xenograft models. RESULTS We demonstrate that ubiquitin-specific protease 7 (USP7) interacts with NOTCH1 and controls leukemia growth by stabilizing the levels of NOTCH1 and JMJD3 histone demethylase. USP7 is highly expressed in T-ALL and is transcriptionally regulated by NOTCH1. In turn, USP7 controls NOTCH1 levels through deubiquitination. USP7 binds oncogenic targets and controls gene expression through stabilization of NOTCH1 and JMJD3 and ultimately H3K27me3 changes. We also show that USP7 and NOTCH1 bind T-ALL superenhancers, and inhibition of USP7 leads to a decrease of the transcriptional levels of NOTCH1 targets and significantly blocks T-ALL cell growth in vitro and in vivo. CONCLUSIONS These results provide a new model for USP7 deubiquitinase activity through recruitment to oncogenic chromatin loci and regulation of both oncogenic transcription factors and chromatin marks to promote leukemia. Our studies also show that targeting USP7 inhibition could be a therapeutic strategy in aggressive leukemia.
Collapse
Affiliation(s)
- Qi Jin
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Carlos A Martinez
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Kelly M Arcipowski
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Yixing Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Blanca T Gutierrez-Diaz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Kenneth K Wang
- Master of Science in Biotechnology Graduate Program, Northwestern University, Evanston, Illinois
| | - Megan R Johnson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Andrew G Volk
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Feng Wang
- Progenra Inc., Malvern, Pennsylvania
| | - Jian Wu
- Progenra Inc., Malvern, Pennsylvania
| | | | - Hui Wang
- Progenra Inc., Malvern, Pennsylvania
| | | | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Nebiyu A Abshiru
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Nobuko Hijiya
- Ann & Robert H. Lurie Children's Hospital, Northwestern University, Chicago, Illinois
| | - Sofie Peirs
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Niels Vandamme
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Goosens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Radhika Rawat
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Pieter Van Vlierberghe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Stephen Kelly
- Department of Pathology, New York University, New York, New York
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University, New York, New York
| | - Christine Mantis
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Jean-Pierre Bourquin
- University Children's Hospital, Division of Pediatric Oncology, University of Zurich, Switzerland
| | - Beat Bornhauser
- University Children's Hospital, Division of Pediatric Oncology, University of Zurich, Switzerland
| | - Valentina Serafin
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Silvia Bresolin
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Maddalena Paganin
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Benedetta Accordi
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Neil L Kelleher
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
- Department of Chemistry, Northwestern University, Chicago, Illinois
| | | | | | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
135
|
aPKC controls endothelial growth by modulating c-Myc via FoxO1 DNA-binding ability. Nat Commun 2018; 9:5357. [PMID: 30559384 PMCID: PMC6297234 DOI: 10.1038/s41467-018-07739-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Strict regulation of proliferation is vital for development, whereas unregulated cell proliferation is a fundamental characteristic of cancer. The polarity protein atypical protein kinase C lambda/iota (aPKCλ) is associated with cell proliferation through unknown mechanisms. In endothelial cells, suppression of aPKCλ impairs proliferation despite hyperactivated mitogenic signaling. Here we show that aPKCλ phosphorylates the DNA binding domain of forkhead box O1 (FoxO1) transcription factor, a gatekeeper of endothelial growth. Although mitogenic signaling excludes FoxO1 from the nucleus, consequently increasing c-Myc abundance and proliferation, aPKCλ controls c-Myc expression via FoxO1/miR-34c signaling without affecting its localization. We find this pathway is strongly activated in the malignant vascular sarcoma, angiosarcoma, and aPKC inhibition reduces c-Myc expression and proliferation of angiosarcoma cells. Moreover, FoxO1 phosphorylation at Ser218 and aPKC expression correlates with poor patient prognosis. Our findings may provide a potential therapeutic strategy for treatment of malignant cancers, like angiosarcoma. The cell polarity regulator aPKC is associated with cell proliferation but the precise mechanism are unknown. Here, the authors find that aPKC lambda phosphorylates the FoxO1 transcription factor, a gatekeeper of endothelial growth, during both angiogenesis and angiosarcomas.
Collapse
|
136
|
Gill H, Ip HW, Yim R, Tang WF, Pang HH, Lee P, Leung GMK, Li J, Tang K, So JCC, Leung RYY, Li J, Panagioutou G, Lam CCK, Kwong YL. Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis. Ann Hematol 2018; 98:869-879. [PMID: 30515541 DOI: 10.1007/s00277-018-3563-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Current prognostication in myelofibrosis (MF) is based on clinicopathological features and mutations in a limited number of driver genes. The impact of other genetic mutations remains unclear. We evaluated for mutations in a myeloid panel of 54 genes using next-generation sequencing. Multivariate Cox regression analysis was used to determine prognostic factors for overall survival (OS) and leukaemia-free survival (LFS), based on mutations of these genes and relevant clinical and haematological features. One hundred and one patients (primary MF, N = 70; secondary MF, N = 31) with a median follow-up of 49 (1-256) months were studied. For the entire cohort, inferior OS was associated with male gender (P = 0.04), age > 65 years (P = 0.04), haemoglobin < 10 g/dL (P = 0.001), CUX1 mutation (P = 0.003) and TP53 mutation (P = 0.049); and inferior LFS was associated with male gender (P = 0.03), haemoglobin < 10 g/dL (P = 0.04) and SRSF2 mutations (P = 0.008). In primary MF, inferior OS was associated with male gender (P = 0.03), haemoglobin < 10 g/dL (P = 0.002), platelet count < 100 × 109/L (P = 0.02), TET2 mutation (P = 0.01) and CUX1 mutation (P = 0.01); and inferior LFS was associated with haemoglobin < 10 g/dL (P = 0.02), platelet count < 100 × 109/L (P = 0.02), TET2 mutations (P = 0.01) and CUX1 mutations (P = 0.04). These results showed that clinical and haematological features and genetic mutations should be considered in MF prognostication.
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ho-Wan Ip
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Rita Yim
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Fai Tang
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Herbert H Pang
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Paul Lee
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Garret M K Leung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jamilla Li
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen Tang
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jason C C So
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Rock Y Y Leung
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Jun Li
- The Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Gianni Panagioutou
- Systems Biology Group, School of Biological Sciences, The University of Hong Kong, Hong Kong, China.,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Yok-Lam Kwong
- Department of Medicine, The University of Hong Kong, Hong Kong, China. .,Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
137
|
Lancho O, Herranz D. The MYC Enhancer-ome: Long-Range Transcriptional Regulation of MYC in Cancer. Trends Cancer 2018; 4:810-822. [PMID: 30470303 DOI: 10.1016/j.trecan.2018.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
MYC is one of the most important oncogenes in cancer. Indeed, MYC is upregulated in 50-60% of all tumors. MYC overexpression can be achieved through a variety of mechanisms, including gene duplications, chromosomal translocations, or somatic mutations leading to increased MYC stability. However, recent studies have identified numerous tissue-specific noncoding enhancers of MYC that play major roles in cancer, highlighting long-range transcriptional regulation of MYC as a critical novel mechanism leading to MYC hyperactivation and as a potential target for new therapeutic strategies in the near future. Here we summarize the regions and mechanisms involved in the long-range transcriptional regulation of MYC, underscoring the relevance of MYC enhancers both in normal physiological development and in MYC-driven cancer initiation and progression.
Collapse
Affiliation(s)
- Olga Lancho
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
138
|
Gastric Cancer Cell Lines Have Different MYC-Regulated Expression Patterns but Share a Common Core of Altered Genes. Can J Gastroenterol Hepatol 2018; 2018:5804376. [PMID: 30410872 PMCID: PMC6206580 DOI: 10.1155/2018/5804376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022] Open
Abstract
MYC is an oncogene responsible for excessive cell growth in cancer, enabling transcriptional activation of genes involved in cell cycle regulation, metabolism, and apoptosis, and is usually overexpressed in gastric cancer (GC). By using siRNA and Next-Generation Sequencing (NGS), we identified MYC-regulated differentially expressed Genes (DEGs) in three Brazilian gastric cancer cell lines representing the histological subtypes of GC (diffuse, intestinal, and metastasis). The DEGs were picked using Sailfish software, followed by Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using KEGG. We found 11 significantly enriched gene sets by using enrichment score (ES), False Discovery Rate (FDR), and nominal P-values. We identified a total of 5.471 DEGs with correlation over (80%). In diffuse-type and in metastatic GC cell lines, MYC-silencing caused DEGs downregulation, while the intestinal-type GC cells presented overall DEGs upregulation after MYC siRNA depletion. We were able to detect 11 significant gene sets when comparing our samples to the hallmark collection of gene expression, enriched mostly for the following hallmarks: proliferation, pathway, signaling, metabolic, and DNA damage response. When we analyzed our DEGs considering KEGG metabolic pathways, we found 12 common branches covering a wide range of biological functions, and three of them were common to all three cell lines: ubiquitin-mediated proteolysis, ribosomes, and system and epithelial cell signaling in Helicobacter pylori infection. The GC cell lines used in this study share 14 MYC-regulated genes, but their gene expression profile is different for each histological subtype of GC. Our results present a computational analysis of MYC-related signatures in GC, and we present evidence that GC cell lines representing distinct histological subtypes of this disease have different MYC-regulated expression profiles but share a common core of altered genes. This is an important step towards the understanding of MYC's role in gastric carcinogenesis and an indication of probable new drug targets in stomach cancer.
Collapse
|
139
|
SCF FBW7-mediated degradation of Brg1 suppresses gastric cancer metastasis. Nat Commun 2018; 9:3569. [PMID: 30177679 PMCID: PMC6120942 DOI: 10.1038/s41467-018-06038-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Brg1/SMARCA4 serves as the ATPase and the helicase catalytic subunit for the multi-component SWI/SNF chromatin remodeling complex, which plays a pivotal role in governing chromatin structure and gene transcription. However, the upstream signaling pathways regulating Brg1 protein stability and its physiological contribution to carcinogenesis remain largely elusive. Here we report that Brg1 is a bona fide ubiquitin substrate of SCFFBW7. We reveal that CK1δ phosphorylates Brg1 at Ser31/Ser35 residues to facilitate the binding of Brg1 to FBW7, leading to ubiquitination-mediated degradation. In keeping with a tumor suppressive role of FBW7 in human gastric cancer, we find an inverse correlation between FBW7 and Brg1 expression in human gastric cancer clinical samples. Mechanistically, we find that stabilization of Brg1 in gastric cancer cells suppresses E-cadherin expression, subsequently promoting gastric cancer metastasis. Hence, this previously unknown FBW7/Brg1 signaling axis provides the molecular basis and the rationale to target Brg1 in FBW7-compromised human gastric cancers.
Collapse
|
140
|
Nakagawa M, Shaffer AL, Ceribelli M, Zhang M, Wright G, Huang DW, Xiao W, Powell J, Petrus MN, Yang Y, Phelan JD, Kohlhammer H, Dubois SP, Yoo HM, Bachy E, Webster DE, Yang Y, Xu W, Yu X, Zhao H, Bryant BR, Shimono J, Ishio T, Maeda M, Green PL, Waldmann TA, Staudt LM. Targeting the HTLV-I-Regulated BATF3/IRF4 Transcriptional Network in Adult T Cell Leukemia/Lymphoma. Cancer Cell 2018; 34:286-297.e10. [PMID: 30057145 PMCID: PMC8078141 DOI: 10.1016/j.ccell.2018.06.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
Adult T cell leukemia/lymphoma (ATLL) is a frequently incurable disease associated with the human lymphotropic virus type I (HTLV-I). RNAi screening of ATLL lines revealed that their proliferation depends on BATF3 and IRF4, which cooperatively drive ATLL-specific gene expression. HBZ, the only HTLV-I encoded transcription factor that is expressed in all ATLL cases, binds to an ATLL-specific BATF3 super-enhancer and thereby regulates the expression of BATF3 and its downstream targets, including MYC. Inhibitors of bromodomain-and-extra-terminal-domain (BET) chromatin proteins collapsed the transcriptional network directed by HBZ and BATF3, and were consequently toxic for ATLL cell lines, patient samples, and xenografts. Our study demonstrates that the HTLV-I oncogenic retrovirus exploits a regulatory module that can be attacked therapeutically with BET inhibitors.
Collapse
Affiliation(s)
- Masao Nakagawa
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Pre-Clinical Innovation, NCATS, NIH, Bethesda, MD 20892, USA
| | - Meili Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - George Wright
- Biometric Research Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Wenming Xiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Bioinformatics and Biostatistics, NCTR/FDA, Jefferson, AR 72079, USA
| | - John Powell
- Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael N Petrus
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yibin Yang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Holger Kohlhammer
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sigrid P Dubois
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hee Min Yoo
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Emmanuel Bachy
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daniel E Webster
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bonita R Bryant
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Joji Shimono
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Takashi Ishio
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Michiyuki Maeda
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
141
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
142
|
Kourtis N, Lazaris C, Hockemeyer K, Balandrán JC, Jimenez AR, Mullenders J, Gong Y, Trimarchi T, Bhatt K, Hu H, Shrestha L, Ambesi-Impiombato A, Kelliher M, Paietta E, Chiosis G, Guzman ML, Ferrando AA, Tsirigos A, Aifantis I. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 2018; 24:1157-1166. [PMID: 30038221 PMCID: PMC6082694 DOI: 10.1038/s41591-018-0105-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
Cellular transformation is accompanied by extensive rewiring of many biological processes leading to augmented levels of distinct types of cellular stress, including proteotoxic stress. Cancer cells critically depend on stress-relief pathways for their survival. However, the mechanisms underlying the transcriptional initiation and maintenance of the oncogenic stress response remain elusive. Here, we show that the expression of heat shock transcription factor 1 (HSF1) and the downstream mediators of the heat shock response is transcriptionally upregulated in T cell acute lymphoblastic leukemia (T-ALL). Hsf1 ablation suppresses the growth of human T-ALL and eradicates leukemia in mouse models of T-ALL, while sparing normal hematopoiesis. HSF1 drives a compact transcriptional program and among the direct HSF1 targets, specific chaperones and co-chaperones mediate its critical role in T-ALL. Notably, we demonstrate that the central T-ALL oncogene NOTCH1 hijacks the cellular stress response machinery by inducing the expression of HSF1 and its downstream effectors. The NOTCH1 signaling status controls the levels of chaperone/co-chaperone complexes and predicts the response of T-ALL patient samples to HSP90 inhibition. Our data demonstrate an integral crosstalk between mediators of oncogene and non-oncogene addiction and reveal critical nodes of the heat shock response pathway that can be targeted therapeutically.
Collapse
Affiliation(s)
- Nikos Kourtis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| | - Charalampos Lazaris
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kathryn Hockemeyer
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Juan Carlos Balandrán
- Molecular Biomedicine Program, CINVESTAV IPN, Mexico City, Mexico
- CONACYT-Centro de Investigacion Biomedica de Oriente, IMSS Delegacion Puebla, Atlixco, Mexico
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alejandra R Jimenez
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jasper Mullenders
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC), Utrecht, the Netherlands
| | - Yixiao Gong
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Thomas Trimarchi
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kamala Bhatt
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Liza Shrestha
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Alberto Ambesi-Impiombato
- Institute for Cancer Genetics, Department of Pathology and Department of Pediatrics, Columbia University, New York, NY, USA
- PsychoGenics Inc., Tarrytown, New York, NY, USA
| | - Michelle Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Monica L Guzman
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Department of Pathology and Department of Pediatrics, Columbia University, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
143
|
Artemisitene suppresses tumorigenesis by inducing DNA damage through deregulating c-Myc-topoisomerase pathway. Oncogene 2018; 37:5079-5087. [DOI: 10.1038/s41388-018-0331-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
|
144
|
Wang E, Aifantis I. Targeting the Noncoding Genome: Superenhancers Meet Their Kryptonite. Cancer Discov 2018; 7:1065-1066. [PMID: 28974530 DOI: 10.1158/2159-8290.cd-17-0860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
<b/> In this study, McKeown and colleagues carried out a genome-wide characterization and stratification of the enhancer landscape in acute myeloid leukemia (AML). The authors' analysis led to the discovery of a novel RARA superenhancer found in a subset of patients with AML, rendering these leukemia cells highly sensitive to SY-1425, a highly potent RARA agonist able to induce myeloid differentiation in these high-expressing RARA AML subtypes. Cancer Discov; 7(10); 1065-6. ©2017 AACR.See related article by McKeown et al., p. 1136.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, New York.
| | - Ioannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, New York.
| |
Collapse
|
145
|
Mixed Mesonephric Adenocarcinoma and High-grade Neuroendocrine Carcinoma of the Uterine Cervix: Case Description of a Previously Unreported Entity With Insights Into Its Molecular Pathogenesis. Int J Gynecol Pathol 2018; 36:76-89. [PMID: 27532149 DOI: 10.1097/pgp.0000000000000306] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human papillomavirus (HPV)-negative cervical carcinomas are uncommon and typically encompass unusual histologic subtypes. Mesonephric adenocarcinoma is one such subtype. Mesonephric tumors in the female genital tract are thought to arise from Wolffian remnants, and are extremely rare tumors with widely variable morphology. Sarcomatoid dedifferentiation has been previously described in a few cases, but other forms of dedifferentiation have not been reported. Neuroendocrine carcinoma of the cervix (e.g. small cell carcinoma) is associated with HPV infection, typically HPV 18. These tumors often arise in association with a conventional epithelial component such as squamous cell carcinoma or usual-type endocervical adenocarcinoma. We describe a case of mesonephric adenocarcinoma of the uterine cervix associated with an HPV-negative high-grade neuroendocrine carcinoma at the morphologic and immunophenotypic level, for which we performed targeted massively parallel sequencing analysis of the 2 elements. Both components shared identical mutations in U2AF1 p.R156H (c.467G>A) and GATA3 p.M422fs (c.1263dupG), as well as MYCN amplification. In addition, the neuroendocrine carcinoma harbored TP53 and MST1R mutations not present in the mesonephric carcinoma. Our data suggest a clonal origin of the 2 components of this rare entity, rather than a collision tumor.
Collapse
|
146
|
Pan-cancer transcriptional signatures predictive of oncogenic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism. Proc Natl Acad Sci U S A 2018; 115:5462-5467. [PMID: 29735700 DOI: 10.1073/pnas.1718338115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Fbw7 (F-box/WD repeat-containing protein 7) ubiquitin ligase targets multiple oncoproteins for degradation and is commonly mutated in cancers. Like other pleiotropic tumor suppressors, Fbw7's complex biology has impeded our understanding of how Fbw7 mutations promote tumorigenesis and hindered the development of targeted therapies. To address these needs, we employed a transfer learning approach to derive gene-expression signatures from The Cancer Gene Atlas datasets that predict Fbw7 mutational status across tumor types and identified the pathways enriched within these signatures. Genes involved in mitochondrial function were highly enriched in pan-cancer signatures that predict Fbw7 mutations. Studies in isogenic colorectal cancer cell lines that differed in Fbw7 mutational status confirmed that Fbw7 mutations increase mitochondrial gene expression. Surprisingly, Fbw7 mutations shifted cellular metabolism toward oxidative phosphorylation and caused context-specific metabolic vulnerabilities. Our approach revealed unexpected metabolic reprogramming and possible therapeutic targets in Fbw7-mutant cancers and provides a framework to study other complex, oncogenic mutations.
Collapse
|
147
|
Zhao J, Xiong X, Li Y, Liu X, Wang T, Zhang H, Jiao Y, Jiang J, Zhang H, Tang Q, Gao X, Li X, Lu Y, Liu B, Hu C, Li X. Hepatic F-Box Protein FBXW7 Maintains Glucose Homeostasis Through Degradation of Fetuin-A. Diabetes 2018; 67:818-830. [PMID: 29475832 DOI: 10.2337/db17-1348] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most serious and long-term threats to human health. However, the molecular mechanism that links obesity to insulin resistance remains largely unknown. Here, we show that F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin protein ligase, is markedly downregulated in the liver of two obese mouse models and obese human subjects. We further identify a functional low-frequency human FBXW7 coding variant (p.Ala204Thr) in the Chinese population, which is associated with elevated blood glucose and T2DM risk. Notably, mice with liver-specific knockout of FBXW7 develop hyperglycemia, glucose intolerance, and insulin resistance even on a normal chow diet. Conversely, overexpression of FBXW7 in the liver not only prevents the development of high-fat diet-induced insulin resistance but also attenuates the disease signature of obese mice. Mechanistically, FBXW7 directly binds to hepatokine fetuin-A to induce its ubiquitination and subsequent proteasomal degradation, comprising an important mechanism maintaining glucose homeostasis. Thus, we provide evidence showing a beneficial role of FBXW7 in glucose homeostasis.
Collapse
Affiliation(s)
- Jiejie Zhao
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelian Xiong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Liu
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, and Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Hong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, and Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Yang Jiao
- Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Jiang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiqun Tang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuejun Li
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yan Lu
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Liu
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, and Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, China
- Fengxian Central Hospital, Affiliated Hospital of Southern Medical University, Shanghai, China
| | - Xiaoying Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
148
|
Fbxw11 promotes the proliferation of lymphocytic leukemia cells through the concomitant activation of NF-κB and β-catenin/TCF signaling pathways. Cell Death Dis 2018; 9:427. [PMID: 29555946 PMCID: PMC5859049 DOI: 10.1038/s41419-018-0440-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
The ubiquitin–proteasome system (UPS) participates in both physiological and pathological processes through the posttranslational regulation of intracellular signal transduction pathways. F-box and WD-40 domain protein 11 (Fbxw11) is a component of the SCF (Skp1–Cul1–F-box) E3 ubiquitin ligase complex. Fbxw11 regulates various signal transduction pathways, and it may have pathological roles in tumorigenesis. However, the role of Fbxw11 in the development of leukemia and the underlying mechanisms remain largely unknown. In this study, Fbxw11 expression was aberrantly upregulated in patients with lymphocytic leukemia. Its expression was dramatically decreased in patients who achieved complete remission (CR) after chemotherapy. The high level of Fbxw11 expression in L1210 lymphocytic leukemia cells stimulated cell proliferation in vitro and tumor formation in vivo. The effects were mediated by the stimulation of cell cycle progression rather than the induction of apoptosis. Furthermore, a bioinformatics analysis suggested concomitant activation of the NF-κB and β-catenin/TCF signaling pathways, which were confirmed by reporter gene assays. Moreover, blocking experiments suggested the involvement of both pathways in the growth-promoting effects of Fbxw11. Our results reveal the role of Fbxw11 in lymphocytic leukemia cells and imply that Fbxw11 may serve as a potential molecular target for the treatment of lymphocytic leukemia.
Collapse
|
149
|
Khan OM, Carvalho J, Spencer-Dene B, Mitter R, Frith D, Snijders AP, Wood SA, Behrens A. The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. J Clin Invest 2018; 128:1326-1337. [PMID: 29346117 PMCID: PMC5873885 DOI: 10.1172/jci97325] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 01/03/2023] Open
Abstract
The tumor suppressor FBW7 targets oncoproteins such as c-MYC for ubiquitylation and is mutated in several human cancers. We noted that in a substantial percentage of colon cancers, FBW7 protein is undetectable despite the presence of FBW7 mRNA. To understand the molecular mechanism of FBW7 regulation in these cancers, we employed proteomics and identified the deubiquitinase (DUB) USP9X as an FBW7 interactor. USP9X antagonized FBW7 ubiquitylation, and Usp9x deletion caused Fbw7 destabilization. Mice lacking Usp9x in the gut showed reduced secretory cell differentiation and increased progenitor proliferation, phenocopying Fbw7 loss. In addition, Usp9x inactivation impaired intestinal regeneration and increased tumor burden in colitis-associated intestinal cancer. c-Myc heterozygosity abrogated increased progenitor proliferation and tumor burden in Usp9x-deficient mice, suggesting that Usp9x suppresses tumor formation by regulating Fbw7 protein stability and thereby reducing c-Myc. Thus, we identify a tumor suppressor mechanism in the mammalian intestine that arises from the posttranslational regulation of FBW7 by USP9X independent of somatic FBW7 mutations.
Collapse
Affiliation(s)
| | | | | | | | - David Frith
- Proteomics, The Francis Crick Institute, London, United Kingdom
| | | | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Axel Behrens
- Adult Stem Cell Laboratory.,King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, United Kingdom
| |
Collapse
|
150
|
Physiological functions of FBW7 in cancer and metabolism. Cell Signal 2018; 46:15-22. [PMID: 29474981 DOI: 10.1016/j.cellsig.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/11/2022]
Abstract
FBW7 is one of the most well characterized F-box proteins that serve as substrate recognition subunits of SCF (Skp1-Cullin 1-F-box proteins) E3 ubiquitin ligase complexes. SCFFBW7 plays key roles in regulating cell cycle progression, differentiation, and stem cell maintenance largely through targeting a broad range of oncogenic substrates for proteasome-dependent degradation. The identification of an increasing number of FBW7 substrates for ubiquitination, and intensive in vitro and in vivo studies have revealed a network of signaling components controlled by FBW7 that contributes to metabolic regulation as well as its tumor suppressor role. Here we mainly focus on recent findings that highlight a critical role for FBW7 in cancer and metabolism.
Collapse
|