101
|
Tian WH, Cai WY, Zhu CQ, Kong YL, Cao XC, Zhu LF, Ye JY, Zhang JH, Zheng SJ. STOP1 regulates CCX1-mediated Ca 2+ homeostasis for plant adaptation to Ca 2+ deprivation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2126-2139. [PMID: 39092784 DOI: 10.1111/jipb.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Calcium (Ca) is essential for plant growth and stress adaptation, yet its availability is often limited in acidic soils, posing a major threat to crop production. Understanding the intricate mechanisms orchestrating plant adaptation to Ca deficiency remains elusive. Here, we show that the Ca deficiency-enhanced nuclear accumulation of the transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) in Arabidopsis thaliana confers tolerance to Ca deprivation, with the global transcriptional responses triggered by Ca deprivation largely impaired in the stop1 mutant. Notably, STOP1 activates the Ca deprivation-induced expression of CATION/Ca2+ EXCHANGER 1 (CCX1) by directly binding to its promoter region, which facilitates Ca2+ efflux from endoplasmic reticulum to cytosol to maintain Ca homeostasis. Consequently, the constitutive expression of CCX1 in the stop1 mutant partially rescues the Ca deficiency phenotype by increasing Ca content in the shoots. These findings uncover the pivotal role of the STOP1-CCX1 axis in plant adaptation to low Ca, offering alternative manipulating strategies to improve plant Ca nutrition in acidic soils and extending our understanding of the multifaceted role of STOP1.
Collapse
Affiliation(s)
- Wen Hao Tian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wen Yan Cai
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chun Quan Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ya Li Kong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiao Chuang Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lian Feng Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jia Yuan Ye
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jun Hua Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
102
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. VIP1 and its close homologs confer mechanical stress tolerance in Arabidopsis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109021. [PMID: 39137679 DOI: 10.1016/j.plaphy.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
VIP1, an Arabidopsis thaliana basic leucine zipper transcription factor, and its close homologs are imported from the cytoplasm to the nucleus when cells are exposed to mechanical stress. They bind to AGCTG (G/T) and regulate mechanical stress responses in roots. However, their role in leaves is unclear. To clarify this, mutant lines (QM1 and QM2) that lack the functions of VIP1 and its close homologs (bZIP29, bZIP30 and PosF21) were generated. Brushing more severely damaged QM1 and QM2 leaves than wild-type leaves. Genes regulating stress responses and cell wall properties were downregulated in brushed QM2 leaves and upregulated in brushed VIP1-GFP-overexpressing (VIP1-GFPox) leaves compared to wild-type leaves in a transcriptome analysis. The VIP1-binding sequence AGCTG (G/T) was enriched in the promoters of genes downregulated in brushed QM2 leaves compared to wild-type leaves and in those upregulated in brushed VIP1-GFPox leaves. Calmodulin-binding transcription activators (CAMTAs) are known regulators of mechanical stress responses, and the CAMTA-binding sequence CGCGT was enriched in the promoters of genes upregulated in the brushed QM2 leaves and in those downregulated in the brushed VIP1-GFPox leaves. These findings suggest that VIP1 and its homologs upregulate genes via AGCTG (G/T) and influence CAMTA-dependent gene expression to enhance mechanical stress tolerance in leaves.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, 060-8589, Japan.
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, PR China.
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
103
|
Qazi M, Gupta SK, Takano T, Tsugama D. Overexpression of a pearl millet WRKY transcription factor gene, PgWRKY74, in Arabidopsis retards shoot growth under dehydration and salinity-stressed conditions. Biotechnol Lett 2024; 46:851-860. [PMID: 38717664 DOI: 10.1007/s10529-024-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 04/14/2024] [Indexed: 09/21/2024]
Abstract
Pearl millet (Cenchrus americanus) is a cereal crop that can tolerate high temperatures, drought, and low-fertility conditions where other crops lose productivity. However, genes regulating this ability are largely unknown. Transcription factors (TFs) regulate transcription of their target genes, regulate downstream biological processes, and thus are candidates for regulators of such tolerance of pearl millet. PgWRKY74 encodes a group IIc WRKY TF in pearl millet and is downregulated by drought. PgWRKY74 may have a role in drought tolerance. The objective of this study was to gain insights into the physiological and biochemical functions of PgWRKY74. Yeast one-hybrid and gel shift assays were performed to examine transcriptional activation potential and deoxyribonucleic acid (DNA)-binding ability, respectively. Transgenic Arabidopsis thaliana plants overexpressing PgWRKY74-green fluorescent protein (GFP) fusion gene were generated and tested for growth and stress-responsive gene expression under mannitol and NaCl-stressed conditions. A construct with PgWRKY74 enabled yeast reporter cells to survive on test media in the yeast one-hybrid assays. The electrophoretic mobility of DNA with putative WRKY TF-binding motifs was lower in the presence of a recombinant PgWRKY74 protein than its absence. The PgWRKY74-GFP-overexpressing Arabidopsis plants exhibited smaller rosette areas than did wild-type plants under mannitol-stressed and NaCl-stressed conditions, and exhibited weaker expression of RD29B, which is induced by the stress-related phytohormone abscisic acid (ABA), under the mannitol-stressed condition. PgWRKY74 have transcriptional activation potential and DNA-binding ability, and can negatively regulate plant responses to mannitol and NaCl stresses, possibly by decreasing ABA levels or ABA sensitivity.
Collapse
Affiliation(s)
- Maimuna Qazi
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-Cho, Nishi-Tokyo-Shi, Tokyo, 188-0002, Japan
| | - Shashi Kumar Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-Cho, Nishi-Tokyo-Shi, Tokyo, 188-0002, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-Cho, Nishi-Tokyo-Shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
104
|
Frost JM, Rhee JH, Choi Y. Dynamics of DNA methylation and its impact on plant embryogenesis. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102593. [PMID: 38941722 DOI: 10.1016/j.pbi.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.
Collapse
Affiliation(s)
- Jennifer M Frost
- Medical and Molecular Genetics, King's College London, St Thomas' Street, London SE1 9RT, UK.
| | - Ji Hoon Rhee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea.
| |
Collapse
|
105
|
Voichek Y, Hristova G, Mollá-Morales A, Weigel D, Nordborg M. Widespread position-dependent transcriptional regulatory sequences in plants. Nat Genet 2024; 56:2238-2246. [PMID: 39266765 PMCID: PMC11525189 DOI: 10.1038/s41588-024-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Much of what we know about eukaryotic transcription stems from animals and yeast; however, plants evolved separately for over a billion years, leaving ample time for divergence in transcriptional regulation. Here we set out to elucidate fundamental properties of cis-regulatory sequences in plants. Using massively parallel reporter assays across four plant species, we demonstrate the central role of sequences downstream of the transcription start site (TSS) in transcriptional regulation. Unlike animal enhancers that are position independent, plant regulatory elements depend on their position, as altering their location relative to the TSS significantly affects transcription. We highlight the importance of the region downstream of the TSS in regulating transcription by identifying a DNA motif that is conserved across vascular plants and is sufficient to enhance gene expression in a dose-dependent manner. The identification of a large number of position-dependent enhancers points to fundamental differences in gene regulation between plants and animals.
Collapse
Affiliation(s)
- Yoav Voichek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| | - Gabriela Hristova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Almudena Mollá-Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
106
|
Li X, Huo L, Li X, Zhang C, Gu M, Fan J, Xu C, Gong J, Hu X, Zheng Y, Sun X. Genomes of diverse Actinidia species provide insights into cis-regulatory motifs and genes associated with critical traits. BMC Biol 2024; 22:200. [PMID: 39256695 PMCID: PMC11389309 DOI: 10.1186/s12915-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Kiwifruit, belonging to the genus Actinidia, represents a unique fruit crop characterized by its modern cultivars being genetically diverse and exhibiting remarkable variations in morphological traits and adaptability to harsh environments. However, the genetic mechanisms underlying such morphological diversity remain largely elusive. RESULTS We report the high-quality genomes of five Actinidia species, including Actinidia longicarpa, A. macrosperma, A. polygama, A. reticulata, and A. rufa. Through comparative genomics analyses, we identified three whole genome duplication events shared by the Actinidia genus and uncovered rapidly evolving gene families implicated in the development of characteristic kiwifruit traits, including vitamin C (VC) content and fruit hairiness. A range of structural variations were identified, potentially contributing to the phenotypic diversity in kiwifruit. Notably, phylogenomic analyses revealed 76 cis-regulatory elements within the Actinidia genus, predominantly associated with stress responses, metabolic processes, and development. Among these, five motifs did not exhibit similarity to known plant motifs, suggesting the presence of possible novel cis-regulatory elements in kiwifruit. Construction of a pan-genome encompassing the nine Actinidia species facilitated the identification of gene DTZ79_23g14810 specific to species exhibiting extraordinarily high VC content. Expression of DTZ79_23g14810 is significantly correlated with the dynamics of VC concentration, and its overexpression in the transgenic roots of kiwifruit plants resulted in increased VC content. CONCLUSIONS Collectively, the genomes and pan-genome of diverse Actinidia species not only enhance our understanding of fruit development but also provide a valuable genomic resource for facilitating the genome-based breeding of kiwifruit.
Collapse
Affiliation(s)
- Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xinyi Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Chaofan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Miaofeng Gu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jialu Fan
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Changbin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoli Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yi Zheng
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
107
|
Zhu C, Lin Z, Liu Y, Li H, Di X, Li T, Wang J, Gao Z. A Bamboo HD-Zip Transcription Factor PeHDZ72 Conferred Drought Tolerance by Promoting Sugar and Water Transport. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253960 DOI: 10.1111/pce.15105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
Drought drastically affects plant growth, development and productivity. Plants respond to drought stress by enhancing sugar accumulation and water transport. Homeodomain-leucine zipper (HD-Zip) transcription factors (TFs) participate in various aspects of plant growth and stress response. However, the internal regulatory mechanism of HD-Zips in moso bamboo (Phyllostachys edulis) remains largely unknown. In this study, we identified an HD-Zip member, PeHDZ72, which was highly expressed in bamboo shoots and roots and was induced by drought. Furthermore, PeSTP_46019, PeSWEET_23178 and PeTIP4-3 were identified as downstream genes of PeHDZ72 in moso bamboo by DAP-seq. The expressions of these three genes were all induced by drought stress. Y1H, DLR and GUS activity assays demonstrated that PeHDZ72 could bind to three types of HD-motifs in the promoters of these three genes. Overexpression of PeHDZ72 led to a remarkable enhancement in drought tolerance in transgenic rice, with significantly improved soluble sugar and sucrose contents. Meanwhile, the expressions of OsSTPs, OsSWEETs and OsTIP were all upregulated in transgenic rice under drought stress. Overall, our results indicate that drought stress might induce the expression of PeHDZ72, which in turn activated downstream genes PeSTP_46019, PeSWEET_23178 and PeTIP4-3, contributing to the improvement of cellular osmotic potential in moso bamboo in response to drought stress.
Collapse
Affiliation(s)
- Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Zeming Lin
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Tiankuo Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Jiangfei Wang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| |
Collapse
|
108
|
Wang X, Chen Z, Guo J, Han X, Ji X, Ke M, Yu F, Yang P. OsMBF1a Facilitates Seed Germination by Regulating Biosynthesis of Gibberellic Acid and Abscisic Acid in Rice. Int J Mol Sci 2024; 25:9762. [PMID: 39337250 PMCID: PMC11432016 DOI: 10.3390/ijms25189762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Seed germination is a pivotal stage in the plant life cycle, orchestrated by a myriad of internal and external factors, notably plant hormones. The underlying molecular mechanisms governing rice seed germination remain largely unelucidated. Herein, we uncover OsMBF1a as a crucial regulatory factor that employs a dual strategy to promote seed germination: positively activating genes involved in gibberellin (GA) biosynthesis pathways, while negatively regulating key genes responsible for abscisic acid (ABA) synthesis. Furthermore, OsMBF1a modulates the endogenous levels of ABA and GA in rice seeds, reinforcing its central role in the germination process. The expression of ZmMBF1a and ZmMBF1b, the homologous genes in maize, in rice seeds similarly affects germination, indicating the conserved functionality of MBF1 family genes in regulating seed germination. This study provides novel insights into the molecular mechanisms underlying rice seed germination and underscores the significance of MBF1 family genes in plant growth and development.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ziyun Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jinghua Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xujian Ji
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meicheng Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
109
|
Frangedakis E, Yelina NE, Billakurthi K, Hua L, Schreier T, Dickinson PJ, Tomaselli M, Haseloff J, Hibberd JM. MYB-related transcription factors control chloroplast biogenesis. Cell 2024; 187:4859-4876.e22. [PMID: 39047726 DOI: 10.1016/j.cell.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Chloroplast biogenesis is dependent on master regulators from the GOLDEN2-LIKE (GLK) family of transcription factors. However, glk mutants contain residual chlorophyll, indicating that other proteins must be involved. Here, we identify MYB-related transcription factors as regulators of chloroplast biogenesis in the liverwort Marchantia polymorpha and angiosperm Arabidopsis thaliana. In both species, double-mutant alleles in MYB-related genes show very limited chloroplast development, and photosynthesis gene expression is perturbed to a greater extent than in GLK mutants. Genes encoding enzymes of chlorophyll biosynthesis are controlled by MYB-related and GLK proteins, whereas those allowing CO2 fixation, photorespiration, and photosystem assembly and repair require MYB-related proteins. Regulation between the MYB-related and GLK transcription factors appears more extensive in A. thaliana than in M. polymorpha. Thus, MYB-related and GLK genes have overlapping as well as distinct targets. We conclude that MYB-related and GLK transcription factors orchestrate chloroplast development in land plants.
Collapse
Affiliation(s)
| | - Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Kumari Billakurthi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Tina Schreier
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
110
|
Chu YH, Lee YS, Gomez-Cano F, Gomez-Cano L, Zhou P, Doseff AI, Springer N, Grotewold E. Molecular mechanisms underlying gene regulatory variation of maize metabolic traits. THE PLANT CELL 2024; 36:3709-3728. [PMID: 38922302 PMCID: PMC11371180 DOI: 10.1093/plcell/koae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Variation in gene expression levels is pervasive among individuals and races or varieties, and has substantial agronomic consequences, for example, by contributing to hybrid vigor. Gene expression level variation results from mutations in regulatory sequences (cis) and/or transcription factor (TF) activity (trans), but the mechanisms underlying cis- and/or trans-regulatory variation of complex phenotypes remain largely unknown. Here, we investigated gene expression variation mechanisms underlying the differential accumulation of the insecticidal compounds maysin and chlorogenic acid in silks of widely used maize (Zea mays) inbreds, B73 and A632. By combining transcriptomics and cistromics, we identified 1,338 silk direct targets of the maize R2R3-MYB TF Pericarp color1 (P1), consistent with it being a regulator of maysin and chlorogenic acid biosynthesis. Among these P1 targets, 464 showed allele-specific expression (ASE) between B73 and A632 silks. Allelic DNA-affinity purification sequencing identified 34 examples in which P1 allelic specific binding (ASB) correlated with cis-expression variation. From previous yeast one-hybrid studies, we identified 9 TFs potentially implicated in the control of P1 targets, with ASB to 83 out of 464 ASE genes (cis) and differential expression of 4 out of 9 TFs between B73 and A632 silks (trans). These results provide a molecular framework for understanding universal mechanisms underlying natural variation of gene expression levels, and how the regulation of metabolic diversity is established.
Collapse
Affiliation(s)
- Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Nathan Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
111
|
Aerts N, Hickman R, Van Dijken AJH, Kaufmann M, Snoek BL, Pieterse CMJ, Van Wees SCM. Architecture and dynamics of the abscisic acid gene regulatory network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2538-2563. [PMID: 38949092 DOI: 10.1111/tpj.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.
Collapse
Affiliation(s)
- Niels Aerts
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Anja J H Van Dijken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Michael Kaufmann
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
112
|
Liew LC, You Y, Auroux L, Oliva M, Peirats-Llobet M, Ng S, Tamiru-Oli M, Berkowitz O, Hong UVT, Haslem A, Stuart T, Ritchie ME, Bassel GW, Lister R, Whelan J, Gouil Q, Lewsey MG. Establishment of single-cell transcriptional states during seed germination. NATURE PLANTS 2024; 10:1418-1434. [PMID: 39256563 PMCID: PMC11410669 DOI: 10.1038/s41477-024-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2024] [Indexed: 09/12/2024]
Abstract
Germination involves highly dynamic transcriptional programs as the cells of seeds reactivate and express the functions necessary for establishment in the environment. Individual cell types have distinct roles within the embryo, so must therefore have cell type-specific gene expression and gene regulatory networks. We can better understand how the functions of different cell types are established and contribute to the embryo by determining how cell type-specific transcription begins and changes through germination. Here we describe a temporal analysis of the germinating Arabidopsis thaliana embryo at single-cell resolution. We define the highly dynamic cell type-specific patterns of gene expression and how these relate to changing cellular function as germination progresses. Underlying these are unique gene regulatory networks and transcription factor activity. We unexpectedly discover that most embryo cells transition through the same initial transcriptional state early in germination, even though cell identity has already been established during embryogenesis. Cells later transition to cell type-specific gene expression patterns. Furthermore, our analyses support previous findings that the earliest events leading to the induction of seed germination take place in the vasculature. Overall, our study constitutes a general framework with which to characterize Arabidopsis cell transcriptional states through seed germination, allowing investigation of different genotypes and other plant species whose seed strategies may differ.
Collapse
Affiliation(s)
- Lim Chee Liew
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Yue You
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lucas Auroux
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Marina Oliva
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marta Peirats-Llobet
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Sophia Ng
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Muluneh Tamiru-Oli
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Oliver Berkowitz
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Uyen Vu Thuy Hong
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Asha Haslem
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Tim Stuart
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - James Whelan
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia.
- College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Quentin Gouil
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Mathew G Lewsey
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Plants for Space, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
113
|
Li Y, Cao J, Zhang Y, Liu Y, Gao S, Zhang P, Xia W, Zhang K, Yang X, Wang Y, Zhang L, Li B, Li T, Xiao Y, Chen J, Chen W. The methyl jasmonate-responsive transcription factor SmERF106 promotes tanshinone accumulation in Salvia miltiorrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108932. [PMID: 39018777 DOI: 10.1016/j.plaphy.2024.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Understanding the regulatory biosynthesis mechanisms of active compounds in herbs is vital for the preservation and sustainable use of natural medicine resources. Diterpenoids, which play a key role in plant growth and resistance, also serve as practical products for humans. Tanshinone, a class of abietane-type diterpenes unique to the Salvia genus, such as Salvia miltiorrhiza, is an excellent model for studying diterpenoids. In this study, we discovered that a transcription factor, SmERF106, responds to MeJA induction and is located in the nucleus. It exhibits a positive correlation with the expression of SmKSL1 and SmIDI1, which are associated with tanshinone biosynthesis. We performed DNA affinity purification sequencing (DAP-seq) to predict genes that may be transcriptionally regulated by SmERF106. Our cis-elements analysis suggested that SmERF106 might bind to GCC-boxes in the promoters of SmKSL1 and SmIDI1. This indicates that SmKSL1 and SmIDI1 could be potential target genes regulated by SmERF106 in the tanshinone biosynthesis pathway. Their interaction was then demonstrated through a series of in vitro and in vivo binding experiments, including Y1H, EMSA, and Dual-LUC. Overexpression of SmERF106 in the hairy root of S. miltiorrhiza led to a significant increase in tanshinone content and the transcriptional levels of SmKSL1 and SmIDI1. In summary, we found that SmERF106 can activate the transcription of SmKSL1 and SmIDI1 in response to MeJA induction, thereby promoting tanshinone biosynthesis. This discovery provides new insights into the regulatory mechanisms of tanshinones in response to JA and offers a potential gene tool for tanshinone metabolic engineering strategy.
Collapse
Affiliation(s)
- Yajing Li
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajia Cao
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Zhang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Liu
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pan Zhang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwen Xia
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zhang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Yang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, 201203, China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, 201203, China.
| | - Ying Xiao
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Junfeng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wansheng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
114
|
Schlegel L, Bhardwaj R, Shahryary Y, Demirtürk D, Marand A, Schmitz R, Johannes F. GenomicLinks: deep learning predictions of 3D chromatin interactions in the maize genome. NAR Genom Bioinform 2024; 6:lqae123. [PMID: 39318505 PMCID: PMC11420838 DOI: 10.1093/nargab/lqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Gene regulation in eukaryotes is partly shaped by the 3D organization of chromatin within the cell nucleus. Distal interactions between cis-regulatory elements and their target genes are widespread, and many causal loci underlying heritable agricultural traits have been mapped to distal non-coding elements. The biology underlying chromatin loop formation in plants is poorly understood. Dissecting the sequence features that mediate distal interactions is an important step toward identifying putative molecular mechanisms. Here, we trained GenomicLinks, a deep learning model, to identify DNA sequence features predictive of 3D chromatin interactions in maize. We found that the presence of binding motifs of specific transcription factor classes, especially bHLH, is predictive of chromatin interaction specificities. Using an in silico mutagenesis approach we show the removal of these motifs from loop anchors leads to reduced interaction probabilities. We were able to validate these predictions with single-cell co-accessibility data from different maize genotypes that harbor natural substitutions in these TF binding motifs. GenomicLinks is currently implemented as an open-source web tool, which should facilitate its wider use in the plant research community.
Collapse
Affiliation(s)
- Luca Schlegel
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Rohan Bhardwaj
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Yadollah Shahryary
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Defne Demirtürk
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Alexandre P Marand
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Frank Johannes
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
115
|
Wang H, Bi Y, Yan Y, Yuan X, Gao Y, Noman M, Li D, Song F. A NAC transcription factor MNAC3-centered regulatory network negatively modulates rice immunity against blast disease. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2017-2041. [PMID: 38953747 DOI: 10.1111/jipb.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/02/2024] [Indexed: 07/04/2024]
Abstract
NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
116
|
Zheng D, Lin K, Yang X, Zhang W, Cheng X. Functional Characterization of Accessible Chromatin in Common Wheat. Int J Mol Sci 2024; 25:9384. [PMID: 39273331 PMCID: PMC11395023 DOI: 10.3390/ijms25179384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Eukaryotic gene transcription is fine-tuned by precise spatiotemporal interactions between cis-regulatory elements (CREs) and trans-acting factors. However, how CREs individually or coordinated with epigenetic marks function in regulating homoeolog bias expression is still largely unknown in wheat. In this study, through comprehensively characterizing open chromatin coupled with DNA methylation in the seedling and spikelet of common wheat, we observed that differential chromatin openness occurred between the seedling and spikelet, which plays important roles in tissue development through regulating the expression of related genes or through the transcription factor (TF)-centered regulatory network. Moreover, we found that CHH methylation may act as a key determinant affecting the differential binding of TFs, thereby resulting in differential expression of target genes. In addition, we found that sequence variations in MNase hypersensitive sites (MHSs) result in the differential expression of key genes responsible for important agronomic traits. Thus, our study provides new insights into the roles of CREs in regulating tissue or homoeolog bias expression, and controlling important agronomic traits in common wheat. It also provides potential CREs for genetic and epigenetic manipulation toward improving desirable traits for wheat molecule breeding.
Collapse
Affiliation(s)
- Dongyang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Kande Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Xueming Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| |
Collapse
|
117
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
118
|
Zhang X, Ekwealor JTB, Mishler BD, Silva AT, Yu L, Jones AK, Nelson ADL, Oliver MJ. Syntrichia ruralis: emerging model moss genome reveals a conserved and previously unknown regulator of desiccation in flowering plants. THE NEW PHYTOLOGIST 2024; 243:981-996. [PMID: 38415863 DOI: 10.1111/nph.19620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syntrichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of water-limited conditions. We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relative S. caninervis. We took a genetic approach to characterize the role of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana. The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation-associated gene families, and highlighted genome-level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a negative regulator of an ABA-dependent stress response in Arabidopsis. The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.
Collapse
Affiliation(s)
- Xiaodan Zhang
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Jenna T B Ekwealor
- Department of Biology, Utah State University, Logan, UT, 84322, USA
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Brent D Mishler
- University and Jepson Herbaria, Berkeley, CA, 94720-2465, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720-2465, USA
| | | | - Li'ang Yu
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea K Jones
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew D L Nelson
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Melvin J Oliver
- Division of Plant Sciences and Technology and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
119
|
Morffy N, Van den Broeck L, Miller C, Emenecker RJ, Bryant JA, Lee TM, Sageman-Furnas K, Wilkinson EG, Pathak S, Kotha SR, Lam A, Mahatma S, Pande V, Waoo A, Wright RC, Holehouse AS, Staller MV, Sozzani R, Strader LC. Identification of plant transcriptional activation domains. Nature 2024; 632:166-173. [PMID: 39020176 PMCID: PMC11589624 DOI: 10.1038/s41586-024-07707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs1. To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.
Collapse
Affiliation(s)
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Caelan Miller
- Department of Biology, Duke University, Durham, NC, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - John A Bryant
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tyler M Lee
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Sunita Pathak
- Department of Biology, Duke University, Durham, NC, USA
| | - Sanjana R Kotha
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Angelica Lam
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Saloni Mahatma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Vikram Pande
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Aman Waoo
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - R Clay Wright
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Max V Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
120
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
121
|
Borowsky AT, Bailey-Serres J. Rewiring gene circuitry for plant improvement. Nat Genet 2024; 56:1574-1582. [PMID: 39075207 DOI: 10.1038/s41588-024-01806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Aspirations for high crop growth and yield, nutritional quality and bioproduction of materials are challenged by climate change and limited adoption of new technologies. Here, we review recent advances in approaches to profile and model gene regulatory activity over developmental and response time in specific cells, which have revealed the basis of variation in plant phenotypes: both redeployment of key regulators to new contexts and their repurposing to control different slates of genes. New synthetic biology tools allow tunable, spatiotemporal regulation of transgenes, while recent gene-editing technologies enable manipulation of the regulation of native genes. Ultimately, understanding how gene circuitry is wired to control form and function across varied plant species, combined with advanced technology to rewire that circuitry, will unlock solutions to our greatest challenges in agriculture, energy and the environment.
Collapse
Affiliation(s)
- Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
122
|
Zhu PK, Lin MX, Zeng MY, Tang Y, Li XR, He TY, Zheng YS, Chen LY. Expression of Iron Metabolism Genes Is Potentially Regulated by DOF Transcription Factors in Dendrocalamus latiflorus Leaves. Int J Mol Sci 2024; 25:8114. [PMID: 39125685 PMCID: PMC11311721 DOI: 10.3390/ijms25158114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Transcription factors (TFs) are crucial pre-transcriptional regulatory mechanisms that can modulate the expression of downstream genes by binding to their promoter regions. DOF (DNA binding with One Finger) proteins are a unique class of TFs with extensive roles in plant growth and development. Our previous research indicated that iron content varies among bamboo leaves of different colors. However, to our knowledge, genes related to iron metabolism pathways in bamboo species have not yet been studied. Therefore, in the current study, we identified iron metabolism related (IMR) genes in bamboo and determined the TFs that significantly influence them. Among these, DOFs were found to have widespread effects and potentially significant impacts on their expression. We identified specific DOF members in Dendrocalamus latiflorus with binding abilities through homology with Arabidopsis DOF proteins, and established connections between some of these members and IMR genes using RNA-seq data. Additionally, molecular docking confirmed the binding interactions between these DlDOFs and the DOF binding sites in the promoter regions of IMR genes. The co-expression relationship between the two gene sets was further validated using q-PCR experiments. This study paves the way for research into iron metabolism pathways in bamboo and lays the foundation for understanding the role of DOF TFs in D. latiflorus.
Collapse
Affiliation(s)
- Peng-Kai Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei-Xia Lin
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei-Yin Zeng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin-Rui Li
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tian-You He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Shan Zheng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling-Yan Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
123
|
Gomez-Cano F, Rodriguez J, Zhou P, Chu YH, Magnusson E, Gomez-Cano L, Krishnan A, Springer NM, de Leon N, Grotewold E. Prioritizing Maize Metabolic Gene Regulators through Multi-Omic Network Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582075. [PMID: 38464086 PMCID: PMC10925184 DOI: 10.1101/2024.02.26.582075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elucidating gene regulatory networks is a major area of study within plant systems biology. Phenotypic traits are intricately linked to specific gene expression profiles. These expression patterns arise primarily from regulatory connections between sets of transcription factors (TFs) and their target genes. Here, we integrated 46 co-expression networks, 283 protein-DNA interaction (PDI) assays, and 16 million SNPs used to identify expression quantitative trait loci (eQTL) to construct TF-target networks. In total, we analyzed ∼4.6M interactions to generate four distinct types of TF-target networks: co-expression, PDI, trans -eQTL, and cis -eQTL combined with PDIs. To functionally annotate TFs based on their target genes, we implemented three different network integration strategies. We evaluated the effectiveness of each strategy through TF loss-of function mutant inspection and random network analyses. The multi-network integration allowed us to identify transcriptional regulators of several biological processes. Using the topological properties of the fully integrated network, we identified potential functionally redundant TF paralogs. Our findings retrieved functions previously documented for numerous TFs and revealed novel functions that are crucial for informing the design of future experiments. The approach here-described lays the foundation for the integration of multi-omic datasets in maize and other plant systems. GRAPHICAL ABSTRACT
Collapse
|
124
|
Vo NNT, Yang A, Leesutthiphonchai W, Liu Y, Hughes TR, Judelson HS. Transcription factor binding specificities of the oomycete Phytophthora infestans reflect conserved and divergent evolutionary patterns and predict function. BMC Genomics 2024; 25:710. [PMID: 39044130 PMCID: PMC11267843 DOI: 10.1186/s12864-024-10630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.
Collapse
Affiliation(s)
- Nguyen N T Vo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Ally Yang
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wiphawee Leesutthiphonchai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
- Current address: Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Yulong Liu
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
125
|
Krishnamoorthi S, Tan GZH, Dong Y, Leong R, Wu TY, Urano D. Hyperspectral imaging of liverwort Marchantia polymorpha identifies MpWRKY10 as a key regulator defining Foliar pigmentation patterns. Cell Rep 2024; 43:114463. [PMID: 38985675 DOI: 10.1016/j.celrep.2024.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Foliar pigmentation patterns vary among plant species and growth conditions. In this study, we utilize hyperspectral imaging to assess foliar pigmentation in the bryophyte Marchantia polymorpha under nutrient stress and identify associated genetic factors. Using singular value decomposition (SVD) for feature selection, we quantitate color variations induced by deficiencies in phosphate, nitrate, magnesium, calcium, and iron. Pseudo-colored thallus images show that disrupting MpWRKY10 causes irregular pigmentation with auronidin accumulation. Transcriptomic profiling shows that MpWRKY10 regulates phenylpropanoid pathway enzymes and R2R3-MYB transcription factors during phosphate deficiency, with MpMYB14 upregulation preceding pigment accumulation. MpWRKY10 is downregulated in older, pigmented thalli under phosphate deficiency but maintained in young thalli, where it suppresses pigmentation genes. This downregulation is absent in pigmented thalli due to aging. Comparative transcriptome analysis suggests similar WRKY and MYB roles in nutrient response and pigmentation in red-leaf lettuce, alluding to conserved genetic factors controlling foliar pigmentation patterns under nutrient deficiency.
Collapse
Affiliation(s)
| | | | - Yating Dong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Richalynn Leong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
126
|
Liu W, Yang Z, Cai G, Li B, Liu S, Willemsen V, Xu L. MpANT regulates meristem development in Marchantia polymorpha. Cell Rep 2024; 43:114466. [PMID: 38985681 DOI: 10.1016/j.celrep.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Meristems are crucial for organ formation, but our knowledge of their molecular evolution is limited. Here, we show that AINTEGUMENTA (MpANT) in the euANT branch of the APETALA2-like transcription factor family is essential for meristem development in the nonvascular plant Marchantia polymorpha. MpANT is expressed in the thallus meristem. Mpant mutants show defects to maintain meristem identity and undergo meristem duplication, while MpANT overexpressers show ectopic thallus growth. MpANT directly upregulates MpGRAS9 in the SHORT-ROOT (SHR) branch of the GRAS family. In the vascular plant Arabidopsis thaliana, the euANT-branch genes PLETHORAs (AtPLTs) and AtANT are involved in the formation and maintenance of root/shoot apical meristems and lateral organ primordia, and AtPLTs directly target SHR-branch genes. In addition, euANTs bind through a similar DNA-binding motif to many conserved homologous genes in M. polymorpha and A. thaliana. Overall, the euANT pathway has an evolutionarily conserved role in meristem development.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Zhengfei Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Gui Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bingyu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shujing Liu
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China.
| |
Collapse
|
127
|
Hummel NFC, Markel K, Stefani J, Staller MV, Shih PM. Systematic identification of transcriptional activation domains from non-transcription factor proteins in plants and yeast. Cell Syst 2024; 15:662-672.e4. [PMID: 38866009 DOI: 10.1016/j.cels.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Transcription factors can promote gene expression through activation domains. Whole-genome screens have systematically mapped activation domains in transcription factors but not in non-transcription factor proteins (e.g., chromatin regulators and coactivators). To fill this knowledge gap, we employed the activation domain predictor PADDLE to analyze the proteomes of Arabidopsis thaliana and Saccharomyces cerevisiae. We screened 18,000 predicted activation domains from >800 non-transcription factor genes in both species, confirming that 89% of candidate proteins contain active fragments. Our work enables the annotation of hundreds of nuclear proteins as putative coactivators, many of which have never been ascribed any function in plants. Analysis of peptide sequence compositions reveals how the distribution of key amino acids dictates activity. Finally, we validated short, "universal" activation domains with comparable performance to state-of-the-art activation domains used for genome engineering. Our approach enables the genome-wide discovery and annotation of activation domains that can function across diverse eukaryotes.
Collapse
Affiliation(s)
- Niklas F C Hummel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jordan Stefani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Max V Staller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 9415, USA.
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
128
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
129
|
Pérez-Zavala FG, Ojeda-Rivera JO, Herrera-Estrella L, López-Arredondo D. Beneficial Effects of Phosphite in Arabidopsis thaliana Mediated by Activation of ABA, SA, and JA Biosynthesis and Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1873. [PMID: 38999712 PMCID: PMC11244317 DOI: 10.3390/plants13131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Phosphite (Phi) has gained attention in agriculture due to its biostimulant effect on crops. This molecule has been found to benefit plant performance by providing protection against pathogens, improving yield and fruit quality as well as nutrient and water use efficiency. It is still unclear how Phi enhances plant growth and protects against multiple stresses. It has been hypothesized that Phi acts by directly affecting the pathogens and interacting with the plant cellular components and molecular machinery to elicit defense responses. This study elucidates the mechanisms underlying Phi's beneficial effects on plants, revealing their complex interplay with fundamental signaling pathways. An RNA-seq study of Arabidopsis seedlings under optimal and limiting phosphate conditions helped us unveil Phi's role in promoting plant growth by activating the expression of the genes involved in the biosynthesis and signaling pathways associated with abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA). The expression of ABA-related genes, known for their involvement in stress response and development regulation, is triggered by Phi treatment, contributing to enhanced resilience and growth. Simultaneously, the activation of the SA pathway, associated with defense responses, suggests Phi's potential in bolstering plant immunity. Moreover, Phi influences JA biosynthesis and signaling, which are crucial for defense against herbivores and pathogens, thereby strengthening plants' defenses. Our findings reveal a multifaceted mechanism through which Phi benefits Arabidopsis development. Understanding its intricate interplay with key signaling pathways opens avenues for leveraging Phi as a strategic tool to enhance plant resilience, immunity, and growth in agricultural and ecological contexts.
Collapse
Affiliation(s)
- Francisco Gabriel Pérez-Zavala
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (F.G.P.-Z.); (J.O.O.-R.); (L.H.-E.)
| | - Jonathan Odilón Ojeda-Rivera
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (F.G.P.-Z.); (J.O.O.-R.); (L.H.-E.)
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (F.G.P.-Z.); (J.O.O.-R.); (L.H.-E.)
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato 36821, Mexico
| | - Damar López-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (F.G.P.-Z.); (J.O.O.-R.); (L.H.-E.)
| |
Collapse
|
130
|
Zhang H, Xiong X, Guo K, Zheng M, Cao T, Yang Y, Song J, Cen J, Zhang J, Jiang Y, Feng S, Tian L, Li X. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light. Nat Commun 2024; 15:5578. [PMID: 38956103 PMCID: PMC11219949 DOI: 10.1038/s41467-024-49991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Diatoms often outnumber other eukaryotic algae in the oceans, especially in coastal environments characterized by frequent fluctuations in light intensity. The identities and operational mechanisms of regulatory factors governing diatom acclimation to high light stress remain largely elusive. Here, we identified the AUREO1c protein from the coastal diatom Phaeodactylum tricornutum as a crucial regulator of non-photochemical quenching (NPQ), a photoprotective mechanism that dissipates excess energy as heat. AUREO1c detects light stress using a light-oxygen-voltage (LOV) domain and directly activates the expression of target genes, including LI818 genes that encode NPQ effector proteins, via its bZIP DNA-binding domain. In comparison to a kinase-mediated pathway reported in the freshwater green alga Chlamydomonas reinhardtii, the AUREO1c pathway exhibits a faster response and enables accumulation of LI818 transcript and protein levels to comparable degrees between continuous high-light and fluctuating-light treatments. We propose that the AUREO1c-LI818 pathway contributes to the resilience of diatoms under dynamic light conditions.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofeng Xiong
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Kangning Guo
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiaojiao Song
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie Cen
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiahuan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
131
|
Saballos AI, Brooks MD, Tranel PJ, Williams MM. Mapping of flumioxazin tolerance in a snap bean diversity panel leads to the discovery of a master genomic region controlling multiple stress resistance genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1404889. [PMID: 39015289 PMCID: PMC11250381 DOI: 10.3389/fpls.2024.1404889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
Introduction Effective weed management tools are crucial for maintaining the profitable production of snap bean (Phaseolus vulgaris L.). Preemergence herbicides help the crop to gain a size advantage over the weeds, but the few preemergence herbicides registered in snap bean have poor waterhemp (Amaranthus tuberculatus) control, a major pest in snap bean production. Waterhemp and other difficult-to-control weeds can be managed by flumioxazin, an herbicide that inhibits protoporphyrinogen oxidase (PPO). However, there is limited knowledge about crop tolerance to this herbicide. We aimed to quantify the degree of snap bean tolerance to flumioxazin and explore the underlying mechanisms. Methods We investigated the genetic basis of herbicide tolerance using genome-wide association mapping approach utilizing field-collected data from a snap bean diversity panel, combined with gene expression data of cultivars with contrasting response. The response to a preemergence application of flumioxazin was measured by assessing plant population density and shoot biomass variables. Results Snap bean tolerance to flumioxazin is associated with a single genomic location in chromosome 02. Tolerance is influenced by several factors, including those that are indirectly affected by seed size/weight and those that directly impact the herbicide's metabolism and protect the cell from reactive oxygen species-induced damage. Transcriptional profiling and co-expression network analysis identified biological pathways likely involved in flumioxazin tolerance, including oxidoreductase processes and programmed cell death. Transcriptional regulation of genes involved in those processes is possibly orchestrated by a transcription factor located in the region identified in the GWAS analysis. Several entries belonging to the Romano class, including Bush Romano 350, Roma II, and Romano Purpiat presented high levels of tolerance in this study. The alleles identified in the diversity panel that condition snap bean tolerance to flumioxazin shed light on a novel mechanism of herbicide tolerance and can be used in crop improvement.
Collapse
Affiliation(s)
- Ana I. Saballos
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| | - Matthew D. Brooks
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| | - Patrick J. Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Martin M. Williams
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| |
Collapse
|
132
|
Jores T, Tonnies J, Mueth NA, Romanowski A, Fields S, Cuperus JT, Queitsch C. Plant enhancers exhibit both cooperative and additive interactions among their functional elements. THE PLANT CELL 2024; 36:2570-2586. [PMID: 38513612 PMCID: PMC11218779 DOI: 10.1093/plcell/koae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Enhancers are cis-regulatory elements that shape gene expression in response to numerous developmental and environmental cues. In animals, several models have been proposed to explain how enhancers integrate the activity of multiple transcription factors. However, it remains largely unclear how plant enhancers integrate transcription factor activity. Here, we use Plant STARR-seq to characterize 3 light-responsive plant enhancers-AB80, Cab-1, and rbcS-E9-derived from genes associated with photosynthesis. Saturation mutagenesis revealed mutations, many of which clustered in short regions, that strongly reduced enhancer activity in the light, in the dark, or in both conditions. When tested in the light, these mutation-sensitive regions did not function on their own; rather, cooperative interactions with other such regions were required for full activity. Epistatic interactions occurred between mutations in adjacent mutation-sensitive regions, and the spacing and order of mutation-sensitive regions in synthetic enhancers affected enhancer activity. In contrast, when tested in the dark, mutation-sensitive regions acted independently and additively in conferring enhancer activity. Taken together, this work demonstrates that plant enhancers show evidence for both cooperative and additive interactions among their functional elements. This knowledge can be harnessed to design strong, condition-specific synthetic enhancers.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Biology, University of Washington, Seattle, WA 98195, USA
| | - Nicholas A Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andrés Romanowski
- Molecular Biology Group, Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
133
|
Chandler JO, Wilhelmsson PKI, Fernandez-Pozo N, Graeber K, Arshad W, Pérez M, Steinbrecher T, Ullrich KK, Nguyen TP, Mérai Z, Mummenhoff K, Theißen G, Strnad M, Scheid OM, Schranz ME, Petřík I, Tarkowská D, Novák O, Rensing SA, Leubner-Metzger G. The dimorphic diaspore model Aethionema arabicum (Brassicaceae): Distinct molecular and morphological control of responses to parental and germination temperatures. THE PLANT CELL 2024; 36:2465-2490. [PMID: 38513609 PMCID: PMC11218780 DOI: 10.1093/plcell/koae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.
Collapse
Affiliation(s)
- Jake O Chandler
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Per K I Wilhelmsson
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), Málaga 29010, Spain
| | - Kai Graeber
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Waheed Arshad
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
| | - Thu-Phuong Nguyen
- Biosystematics Group, Wageningen University, PB Wageningen 6708, The Netherlands
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Osnabrück 49076, Germany
| | - Günter Theißen
- Matthias Schleiden Institute/Department of Genetics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, PB Wageningen 6708, The Netherlands
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg 79104, Germany
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| |
Collapse
|
134
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
135
|
Xu Y, Tian W, Yin M, Cai Z, Zhang L, Yuan D, Yi H, Wu J. The miR159a-DUO1 module regulates pollen development by modulating auxin biosynthesis and starch metabolism in citrus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1351-1369. [PMID: 38578168 DOI: 10.1111/jipb.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding. Male sterility associated with abnormal pollen development is an important factor in seedlessness. However, our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited. Here, we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus, which further indirectly modulated seed development and fruit size. Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat (Fortunella hindsii) resulted in small and seedless fruit phenotypes. Moreover, pollen was severely aborted in both transgenic lines, with arrested pollen mitotic I and abnormal pollen starch metabolism. Through additional cross-pollination experiments, DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus. Based on DNA affinity purification sequencing (DAP-seq), RNA-seq, and verified interaction assays, YUC2/YUC6, SS4 and STP8 were identified as downstream target genes of DUO1, those were all positively regulated by DUO1. In transgenic F. hindsii lines, the miR159a-DUO1 module down-regulated the expression of YUC2/YUC6, which decreased indoleacetic acid (IAA) levels and modulated auxin signaling to repress pollen mitotic I. The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen. Overall, this work reveals a new mechanism by which the miR159a-DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.
Collapse
Affiliation(s)
- Yanhui Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxiu Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minqiang Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenmei Cai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
136
|
Evans C, Mogg SL, Soraru C, Wallington E, Coates J, Borrill P. Wheat NAC transcription factor NAC5-1 is a positive regulator of senescence. PLANT DIRECT 2024; 8:e620. [PMID: 38962173 PMCID: PMC11217990 DOI: 10.1002/pld3.620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Wheat (Triticum aestivum L.) is an important source of both calories and protein in global diets, but there is a trade-off between grain yield and protein content. The timing of leaf senescence could mediate this trade-off as it is associated with both declines in photosynthesis and nitrogen remobilization from leaves to grain. NAC transcription factors play key roles in regulating senescence timing. In rice, OsNAC5 expression is correlated with increased protein content and upregulated in senescing leaves, but the role of the wheat ortholog in senescence had not been characterized. We verified that NAC5-1 is the ortholog of OsNAC5 and that it is expressed in senescing flag leaves in wheat. To characterize NAC5-1, we combined missense mutations in NAC5-A1 and NAC5-B1 from a TILLING mutant population and overexpressed NAC5-A1 in wheat. Mutation in NAC5-1 was associated with delayed onset of flag leaf senescence, while overexpression of NAC5-A1 was associated with slightly earlier onset of leaf senescence. DAP-seq was performed to locate transcription factor binding sites of NAC5-1. Analysis of DAP-seq and comparison with other studies identified putative downstream target genes of NAC5-1 which could be associated with senescence. This work showed that NAC5-1 is a positive transcriptional regulator of leaf senescence in wheat. Further research is needed to test the effect of NAC5-1 on yield and protein content in field trials, to assess the potential to exploit this senescence regulator to develop high-yielding wheat while maintaining grain protein content.
Collapse
Affiliation(s)
- Catherine Evans
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | | | | | | - Juliet Coates
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
137
|
Cassan O, Lecellier CH, Martin A, Bréhélin L, Lèbre S. Optimizing data integration improves gene regulatory network inference in Arabidopsis thaliana. Bioinformatics 2024; 40:btae415. [PMID: 38913855 PMCID: PMC11227367 DOI: 10.1093/bioinformatics/btae415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
MOTIVATIONS Gene regulatory networks (GRNs) are traditionally inferred from gene expression profiles monitoring a specific condition or treatment. In the last decade, integrative strategies have successfully emerged to guide GRN inference from gene expression with complementary prior data. However, datasets used as prior information and validation gold standards are often related and limited to a subset of genes. This lack of complete and independent evaluation calls for new criteria to robustly estimate the optimal intensity of prior data integration in the inference process. RESULTS We address this issue for two regression-based GRN inference models, a weighted random forest (weigthedRF) and a generalized linear model estimated under a weighted LASSO penalty with stability selection (weightedLASSO). These approaches are applied to data from the root response to nitrate induction in Arabidopsis thaliana. For each gene, we measure how the integration of transcription factor binding motifs influences model prediction. We propose a new approach, DIOgene, that uses model prediction error and a simulated null hypothesis in order to optimize data integration strength in a hypothesis-driven, gene-specific manner. This integration scheme reveals a strong diversity of optimal integration intensities between genes, and offers good performance in minimizing prediction error as well as retrieving experimental interactions. Experimental results show that DIOgene compares favorably against state-of-the-art approaches and allows to recover master regulators of nitrate induction. AVAILABILITY AND IMPLEMENTATION The R code and notebooks demonstrating the use of the proposed approaches are available in the repository https://github.com/OceaneCsn/integrative_GRN_N_induction.
Collapse
Affiliation(s)
- Océane Cassan
- LIRMM, Univ Montpellier, CNRS, Montpellier, 34095, France
| | - Charles-Henri Lecellier
- LIRMM, Univ Montpellier, CNRS, Montpellier, 34095, France
- IGMM, Univ Montpellier, CNRS, Montpellier, 34090, France
| | - Antoine Martin
- IPSIM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | | | - Sophie Lèbre
- LIRMM, Univ Montpellier, CNRS, Montpellier, 34095, France
- IMAG, Univ Montpellier, CNRS, Montpellier, 34090, France
- Université Paul-Valéry-Montpellier 3, Montpellier, 34090, France
| |
Collapse
|
138
|
Vong GYW, McCarthy K, Claydon W, Davis SJ, Redmond EJ, Ezer D. AraLeTA: An Arabidopsis leaf expression atlas across diurnal and developmental scales. PLANT PHYSIOLOGY 2024; 195:1941-1953. [PMID: 38428997 PMCID: PMC11213249 DOI: 10.1093/plphys/kiae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024]
Abstract
Mature plant leaves are a composite of distinct cell types, including epidermal, mesophyll, and vascular cells. Notably, the proportion of these cells and the relative transcript concentrations within different cell types may change over time. While gene expression data at a single-cell level can provide cell-type-specific expression values, it is often too expensive to obtain these data for high-resolution time series. Although bulk RNA-seq can be performed in a high-resolution time series, RNA-seq using whole leaves measures average gene expression values across all cell types in each sample. In this study, we combined single-cell RNA-seq data with time-series data from whole leaves to assemble an atlas of cell-type-specific changes in gene expression over time for Arabidopsis (Arabidopsis thaliana). We inferred how the relative transcript concentrations of different cell types vary across diurnal and developmental timescales. Importantly, this analysis revealed 3 subgroups of mesophyll cells with distinct temporal profiles of expression. Finally, we developed tissue-specific gene networks that form a community resource: an Arabidopsis Leaf Time-dependent Atlas (AraLeTa). This allows users to extract gene networks that are confirmed by transcription factor-binding data and specific to certain cell types at certain times of day and at certain developmental stages. AraLeTa is available at https://regulatorynet.shinyapps.io/araleta/.
Collapse
Affiliation(s)
- Gina Y W Vong
- Department of Biology, University of York, York YO10 5DD, UK
| | - Kayla McCarthy
- Department of Biology, University of York, York YO10 5DD, UK
| | - Will Claydon
- Department of Biology, University of York, York YO10 5DD, UK
| | - Seth J Davis
- Department of Biology, University of York, York YO10 5DD, UK
| | - Ethan J Redmond
- Department of Biology, University of York, York YO10 5DD, UK
| | - Daphne Ezer
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
139
|
Hu ZL, Wilson-Sánchez D, Bhatia N, Rast-Somssich MI, Wu A, Vlad D, McGuire L, Nikolov LA, Laufs P, Gan X, Laurent S, Runions A, Tsiantis M. A CUC1/auxin genetic module links cell polarity to patterned tissue growth and leaf shape diversity in crucifer plants. Proc Natl Acad Sci U S A 2024; 121:e2321877121. [PMID: 38905239 PMCID: PMC11214078 DOI: 10.1073/pnas.2321877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
How tissue-level information encoded by fields of regulatory gene activity is translated into the patterns of cell polarity and growth that generate the diverse shapes of different species remains poorly understood. Here, we investigate this problem in the case of leaf shape differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta that has complex leaves divided into leaflets. We show that patterned expression of the transcription factor CUP-SHAPED COTYLEDON1 in C. hirsuta (ChCUC1) is a key determinant of leaf shape differences between the two species. Through inducible genetic perturbations, time-lapse imaging of growth, and computational modeling, we find that ChCUC1 provides instructive input into auxin-based leaf margin patterning. This input arises via transcriptional regulation of multiple auxin homeostasis components, including direct activation of WAG kinases that are known to regulate the polarity of PIN-FORMED auxin transporters. Thus, we have uncovered a mechanism that bridges biological scales by linking spatially distributed and species-specific transcription factor expression to cell-level polarity and growth, to shape diverse leaf forms.
Collapse
Affiliation(s)
- Zi-Liang Hu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - David Wilson-Sánchez
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Madlen I. Rast-Somssich
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Anhui Wu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Daniela Vlad
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Liam McGuire
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Lachezar A. Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Patrick Laufs
- Université Paris-Saclay, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles78000, France
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Adam Runions
- Department of Computer Science, University of Calgary, Calgary, ABT2N 1N4, Canada
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| |
Collapse
|
140
|
Basso MF, Girardin G, Vergata C, Buti M, Martinelli F. Genome-wide transcript expression analysis reveals major chickpea and lentil genes associated with plant branching. FRONTIERS IN PLANT SCIENCE 2024; 15:1384237. [PMID: 38962245 PMCID: PMC11220206 DOI: 10.3389/fpls.2024.1384237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.
Collapse
Affiliation(s)
| | | | - Chiara Vergata
- Department of Biology, University of Florence, Florence, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
141
|
Kerstens M, Galinha C, Hofhuis H, Nodine M, Pardal R, Scheres B, Willemsen V. PLETHORA transcription factors promote early embryo development through induction of meristematic potential. Development 2024; 151:dev202527. [PMID: 38884589 PMCID: PMC11234262 DOI: 10.1242/dev.202527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Plants are dependent on divisions of stem cells to establish cell lineages required for growth. During embryogenesis, early division products are considered to be stem cells, whereas during post-embryonic development, stem cells are present in meristems at the root and shoot apex. PLETHORA/AINTEGUMENTA-LIKE (PLT/AIL) transcription factors are regulators of post-embryonic meristem function and are required to maintain stem cell pools. Despite the parallels between embryonic and post-embryonic stem cells, the role of PLTs during early embryogenesis has not been thoroughly investigated. Here, we demonstrate that the PLT regulome in the zygote, and apical and basal cells is in strong congruence with that of post-embryonic meristematic cells. We reveal that out of all six PLTs, only PLT2 and PLT4/BABY BOOM (BBM) are expressed in the zygote, and that these two factors are essential for progression of embryogenesis beyond the zygote stage and first divisions. Finally, we show that other PLTs can rescue plt2 bbm defects when expressed from the PLT2 and BBM promoters, establishing upstream regulation as a key factor in early embryogenesis. Our data indicate that generic PLT factors facilitate early embryo development in Arabidopsis by induction of meristematic potential.
Collapse
Affiliation(s)
- Merijn Kerstens
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Carla Galinha
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hugo Hofhuis
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michael Nodine
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Renan Pardal
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
142
|
Humphreys JL, Beveridge CA, Tanurdžić M. Strigolactone induces D14-dependent large-scale changes in gene expression requiring SWI/SNF chromatin remodellers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858857 DOI: 10.1111/tpj.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Strigolactones (SL) function as plant hormones in control of multiple aspects of plant development, mostly via the regulation of gene expression. Immediate early-gene regulation by SL remains unexplored due to difficulty in dissecting early from late gene expression responses to SL. We used synthetic SL, rac-GR24 treatment of protoplasts and RNA-seq to explore early SL-induced changes in gene expression over time (5-180 minutes) and discovered rapid, dynamic and SL receptor D14-dependent regulation of gene expression in response to rac-GR24. Importantly, we discovered a significant dependence of SL signalling on chromatin remodelling processes, as the induction of a key SL-induced transcription factor BRANCHED1 requires the SWI/SNF chromatin remodelling ATPase SPLAYED (SYD) and leads to upregulation of a homologue SWI/SNF ATPase BRAHMA. ATAC-seq profiling of genome-wide changes in chromatin accessibility in response to rac-GR24 identified large-scale changes, with over 1400 differentially accessible regions. These changes in chromatin accessibility often precede transcriptional changes and are likely to harbour SL cis-regulatory elements. Importantly, we discovered that this early and extensive modification of the chromatin landscape also requires SYD. This study, therefore, provides evidence that SL signalling requires regulation of chromatin accessibility, and it identifies genomic locations harbouring likely SL cis-regulatory sequences.
Collapse
Affiliation(s)
- Jazmine L Humphreys
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
143
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
144
|
Wu X, Jia Y, Ma Q, Wang T, Xu J, Chen H, Wang M, Song H, Cao S. The transcription factor bZIP44 cooperates with MYB10 and MYB72 to regulate the response of Arabidopsis thaliana to iron deficiency stress. THE NEW PHYTOLOGIST 2024; 242:2586-2603. [PMID: 38523234 DOI: 10.1111/nph.19706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Nicotianamine (NA) plays a crucial role in transporting metal ions, including iron (Fe), in plants; therefore, NICOTIANAMINE SYNTHASE (NAS) genes, which control NA synthesis, are tightly regulated at the transcriptional level. However, the transcriptional regulatory mechanisms of NAS genes require further investigations. In this study, we determined the role of bZIP44 in mediating plant response to Fe deficiency stress by conducting transformation experiments and assays. bZIP44 positively regulated the response of Arabidopsis to Fe deficiency stress by interacting with MYB10 and MYB72 to enhance their abilities to bind at NAS2 and NAS4 promoters, thereby increasing NAS2 and NAS4 transcriptional levels and promote NA synthesis. In summary, the transcription activities of bZIP44, MYB10, and MYB72 were induced in response to Fe deficiency stress, which enhanced the interaction between bZIP44 and MYB10 or MYB72 proteins, synergistically activated the transcriptional activity of NAS2 and NAS4, promoted NA synthesis, and improved Fe transport, thereby enhancing plant tolerance to Fe deficiency stress.
Collapse
Affiliation(s)
- Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yafeng Jia
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qian Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiena Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongli Chen
- Anhui Society for Horticultural Science, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Mingxia Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
145
|
Ren Z, Zhang P, Su H, Xie X, Shao J, Ku L, Tian Z, Deng D, Wei L. Regulatory mechanisms used by ZmMYB39 to enhance drought tolerance in maize (Zea mays) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108696. [PMID: 38705046 DOI: 10.1016/j.plaphy.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Drought is a significant abiotic stressor that limits maize (Zea mays L.) growth and development. Thus, enhancing drought tolerance is critical for promoting maize production. Our findings demonstrated that ZmMYB39 is an MYB transcription factor with transcriptional activation activity. Drought stress experiments involving ZmMYB39 overexpression and knockout lines indicated that ZmMYB39 positively regulated drought stress tolerance in maize. DAP-Seq, EMSA, dual-LUC, and RT-qPCR provided initial insights into the molecular regulatory mechanisms by which ZmMYB39 enhances drought tolerance in maize. ZmMYB39 directly promoted the expression of ZmP5CS1, ZmPOX1, ZmSOD2, ZmRD22, ZmNAC49, and ZmDREB2A, which are involved in stress resistance. ZmMYB39 enhanced drought tolerance by interacting with and promoting the expression of ZmFNR1, ZmHSP20, and ZmDOF6. Our study offers a theoretical basis for understanding the molecular regulatory networks involved in maize drought stress response. Furthermore, ZmMYB39 serves as a valuable genetic resource for breeding drought-resistant maize.
Collapse
Affiliation(s)
- Zhenzhen Ren
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Pengyu Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, China
| | - Huihui Su
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiaowen Xie
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jing Shao
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lixia Ku
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhiqiang Tian
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| | | | - Li Wei
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
146
|
Qiao Q, Cao Q, Zhang R, Wu M, Zheng Y, Xue L, Lei J, Sun H, Liston A, Zhang T. Genomic analyses provide insights into sex differentiation of tetraploid strawberry (Fragaria moupinensis). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1552-1565. [PMID: 38184782 PMCID: PMC11123429 DOI: 10.1111/pbi.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
The strawberry genus, Fragaria, exhibits a wide range of sexual systems and natural ploidy variation. Nearly, all polyploid strawberry species exhibit separate sexes (dioecy). Research has identified the sex-determining sequences as roughly conserved but with repeatedly changed genomic locations across octoploid strawberries. However, it remains unclear whether tetraploid wild strawberries evolved dioecy independently or shared a common origin with octoploid strawberries. In this study, we investigated the sex determinants of F. moupinensis, a dioecious plant with heterogametic females (ZW). Utilizing a combination of haplotype-resolved genome sequencing of the female F. moupinensis, k-mer-based and coverage-based genome-wide association studies (GWAS), and transcriptomic analysis, we discovered a non-recombining, approximately 33.6 kb W-specific region on chromosome 2a. Within this region, only one candidate sex-determining gene (FmoAFT) was identified. Furthermore, an extensive resequencing of the entire Fragaria genus indicated that the W-specific region displays conservative female specificity across all tetraploid species. This observation suggests that dioecy evolved independently in tetraploid and octoploid strawberries. Moreover, employing virus-induced gene silencing (VIGS), we knocked down the expression of the FmoAFT homologue transcript in cultivated strawberries, revealing its potential role in promoting female functions during early carpel development. We also applied DNA affinity purification sequencing (DAP-seq) and yeast one-hybrid assays to identify potential direct targets of FmoAFT. These insights shed new light on the genetic basis and evolutionary history of sex determination in strawberries, thereby facilitating the formulation of strategies to manipulate sex determination in breeding programs.
Collapse
Affiliation(s)
- Qin Qiao
- College of Horticulture and LandscapeYunnan Agricultural UniversityKunmingChina
| | - Qiang Cao
- College of Horticulture and LandscapeYunnan Agricultural UniversityKunmingChina
| | - Rengang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Mingzhao Wu
- School of AgricultureYunnan UniversityKunmingChina
| | | | - Li Xue
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Jiajun Lei
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Aaron Liston
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
| | - Ticao Zhang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
147
|
Pérez-Sancho J, Van den Broeck L, García-Caparros P, Sozzani R. Insights into multilevel spatial regulation within the root stem cell niche. Curr Opin Genet Dev 2024; 86:102200. [PMID: 38704928 DOI: 10.1016/j.gde.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
All differentiated root cells derive from stem cells spatially organized within the stem cell niche (SCN), a microenvironment located within the root tip. Here, we compiled recent advances in the understanding of how the SCN drives the establishment and maintenance of cell types. The quiescent center (QC) is widely recognized as the primary driver of cell fate determination, but it is recently considered a convergence center of multiple signals. Cell identity of the cortex endodermis initials is mainly driven by the regulatory feedback loops between transcription factors (TFs), acting as mobile signals between neighboring cells, including the QC. As exemplified in the vascular initials, the precise spatial expression of these regulatory TFs is connected with a dynamic hormonal interplay. Thus, stem cell maintenance and cell differentiation are regulated by a plethora of signals forming a complex, multilevel regulatory network. Integrating the transcriptional and post-translational regulations, protein-protein interactions, and mobile signals into models will be fundamental for the comprehensive understanding of SCN maintenance and differentiation.
Collapse
Affiliation(s)
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA. https://twitter.com/@LisaVandenBroec
| | | | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
148
|
Liu L, Zhao L, Liu Y, Zhu Y, Chen S, Yang L, Li X, Chen W, Xu Z, Xu P, Wang H, Yu D. Transcription factor OsWRKY72 controls rice leaf angle by regulating LAZY1-mediated shoot gravitropism. PLANT PHYSIOLOGY 2024; 195:1586-1600. [PMID: 38478430 DOI: 10.1093/plphys/kiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 06/02/2024]
Abstract
Leaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint. Phenotypic analyses showed that oswrky72 mutants had smaller leaf angles than the wild type, while OsWRKY72 overexpression lines exhibited an increased leaf angle. This observation suggests that OsWRKY72 functions as a positive regulator, promoting the enlargement of the leaf angle. Our bioinformatics analysis identified LAZY1 as the downstream gene of OsWRKY72. Electrophoretic mobility shift assays and dual-luciferase analysis revealed that OsWRKY72 directly inhibited LAZY1 by binding to its promoter. Moreover, knocking out OsWRKY72 enhanced shoot gravitropism, which contrasted with the phenotype of lazy1 plants. These results imply that OsWRKY72 regulates the leaf angle through gravitropism by reducing the expression of LAZY1. In addition, OsWRKY72 could directly regulate the expression of other leaf angle-related genes such as FLOWERING LOCUS T-LIKE 12 (OsFTL12) and WALL-ASSOCIATED KINASE 11 (OsWAK11). Our study indicates that OsWRKY72 contributes positively to the expansion of the leaf angle by interfering with shoot gravitropism in rice.
Collapse
Affiliation(s)
- Lei Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lirong Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunwei Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Yi Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| | - Lu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| |
Collapse
|
149
|
Yu Z, Chen X, Li Y, Shah SHA, Xiao D, Wang J, Hou X, Liu T, Li Y. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression. PLANT PHYSIOLOGY 2024; 195:986-1004. [PMID: 38269601 DOI: 10.1093/plphys/kiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
APETALA2/ethylene responsive factors respond to ethylene and participate in many biological and physiological processes, such as plant morphogenesis, stress resistance, and hormone signal transduction. Ethylene responsive factor 070 (BcERF070) is important in flowering. However, the underlying molecular mechanisms of BcERF070 in floral transition in response to ethylene signaling have not been fully characterized. Herein, we explored the function of BcERF070 in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Ethylene treatment induced BcERF070 expression and delayed flowering in Pak-choi. Silencing of BcERF070 induced flowering in Pak-choi. BcERF070 interacted with major latex protein-like 328 (BcMLP328), which forms a complex with helix-loop-helix protein 30 (BcbHLH30) to enhance the transcriptional activity of BcbHLH30 on LEAFY (BcLFY), ultimately promoting flowering. However, BcERF070 impaired the BcMLP328-BcbHLH30 complex activation of LEAFY (BcLFY), ultimately inhibiting flowering in Pak-choi. BcERF070 directly promoted the expression of the flowering inhibitor gene B-box 29 (BcBBX29) and delayed flowering by reducing FLOWERING LOCUS T (BcFT) expression. These results suggest that BcERF070 mediates ethylene-reduced flowering by impairing the BcMLP328-BcbHLH30 complex activation of BcLFY and by directly promoting the gene expression of the flowering inhibition factor BcBBX29 to repress BcFT expression. The findings contribute to understanding the molecular mechanisms underlying floral transition in response to ethylene in plants.
Collapse
Affiliation(s)
- Zhanghong Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoshan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sayyed Hamad Ahmad Shah
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
150
|
Dong J, Zhao X, Song X, Wang S, Zhao X, Liang B, Long Y, Xing Z. Identification of Eleutherococcus senticosus NAC transcription factors and their mechanisms in mediating DNA methylation of EsFPS, EsSS, and EsSE promoters to regulate saponin synthesis. BMC Genomics 2024; 25:536. [PMID: 38816704 PMCID: PMC11140872 DOI: 10.1186/s12864-024-10442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The formation of pharmacologically active components in medicinal plants is significantly impacted by DNA methylation. However, the exact mechanisms through which DNA methylation regulates secondary metabolism remain incompletely understood. Research in model species has demonstrated that DNA methylation at the transcription factor binding site within functional gene promoters can impact the binding of transcription factors to target DNA, subsequently influencing gene expression. These findings suggest that the interaction between transcription factors and target DNA could be a significant mechanism through which DNA methylation regulates secondary metabolism in medicinal plants. RESULTS This research conducted a comprehensive analysis of the NAC family in E. senticosus, encompassing genome-wide characterization and functional analysis. A total of 117 EsNAC genes were identified and phylogenetically divided into 15 subfamilies. Tandem duplications and chromosome segment duplications were found to be the primary replication modes of these genes. Motif 2 was identified as the core conserved motif of the genes, and the cis-acting elements, gene structures, and expression patterns of each EsNAC gene were different. EsJUB1, EsNAC047, EsNAC098, and EsNAC005 were significantly associated with the DNA methylation ratio in E. senticosus. These four genes were located in the nucleus or cytoplasm and exhibited transcriptional self-activation activity. DNA methylation in EsFPS, EsSS, and EsSE promoters significantly reduced their activity. The methyl groups added to cytosine directly hindered the binding of the promoters to EsJUB1, EsNAC047, EsNAC098, and EsNAC005 and altered the expression of EsFPS, EsSS, and EsSE genes, eventually leading to changes in saponin synthesis in E. senticosus. CONCLUSIONS NAC transcription factors that are hindered from binding by methylated DNA are found in E. senticosus. The incapacity of these NACs to bind to the promoter of the methylated saponin synthase gene leads to subsequent alterations in gene expression and saponin synthesis. This research is the initial evidence showcasing the involvement of EsNAC in governing the impact of DNA methylation on saponin production in E. senticosus.
Collapse
Affiliation(s)
- Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xuelei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xin Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xueying Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Baoxiang Liang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yuehong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Zhaobin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|