101
|
Wang Y, Yang M, Ge F, Jiang B, Hu R, Zhou X, Yang Y, Liu M. Lysine Succinylation of VBS Contributes to Sclerotia Development and Aflatoxin Biosynthesis in Aspergillus flavus. Mol Cell Proteomics 2023; 22:100490. [PMID: 36566904 PMCID: PMC9879794 DOI: 10.1016/j.mcpro.2022.100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Feng Ge
- University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
102
|
Chou KY, Lee JY, Kim KB, Kim E, Lee HS, Ryu HY. Histone modification in Saccharomyces cerevisiae: A review of the current status. Comput Struct Biotechnol J 2023; 21:1843-1850. [PMID: 36915383 PMCID: PMC10006725 DOI: 10.1016/j.csbj.2023.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a well-characterized and popular model system for investigating histone modifications and the inheritance of chromatin states. The data obtained from this model organism have provided essential and critical information for understanding the complexity of epigenetic interactions and regulation in eukaryotes. Recent advances in biotechnology have facilitated the detection and quantitation of protein post-translational modification (PTM), including acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, and acylation, and led to the identification of several novel modification sites in histones. Determining the cellular function of these new histone markers is essential for understanding epigenetic mechanisms and their impact on various biological processes. In this review, we describe recent advances and current views on histone modifications and their effects on chromatin dynamics in S. cerevisiae.
Collapse
Key Words
- AdoMet, S-adenosylmethionine
- CAF-1, chromatin assembly factor-1
- CTD, C-terminal domain
- DSB, double-strand break
- E Glu, glutamic acid
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- Histone acetylation
- Histone acylation
- Histone methylation
- Histone phosphorylation
- Histone sumoylation
- Histone ubiquitylation
- JMJC, Jumonji C
- K Lys, lysine
- PTM, post-translational modification
- R Arg, arginine
- S, serine
- SAGA, Spt-Ada-Gcn5 acetyltransferase
- STUbL, SUMO-targeted ubiquitin ligase
- SUMO, small ubiquitin-like modifier
- T, threonine
- Y, tyrosine
Collapse
Affiliation(s)
- Kwon Young Chou
- School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Yeong Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunjeong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Shik Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong-Yeoul Ryu
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
103
|
Oliveira CAB, Isaakova E, Beli P, Xirodimas DP. A Mass Spectrometry-Based Strategy for Mapping Modification Sites for the Ubiquitin-Like Modifier NEDD8. Methods Mol Biol 2023; 2602:137-149. [PMID: 36446972 DOI: 10.1007/978-1-0716-2859-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The identification of modification sites for ubiquitin and ubiquitin-like modifiers is an essential step in the elucidation of controlled processes. The ubiquitin-like modifier NEDD8 is an important regulator of plethora of biological processes both under homeostatic and proteotoxic stress conditions. Here, we describe a detailed protocol for proteome-wide identification of NEDDylation sites. The approach is based on the use of cell lines stably expressing the NEDD8R74K mutant. Digestion of samples with Lysyl endopeptidase generates peptides with a di-glycine remnant only from proteins modified with NEDD8R74K but not with ubiquitin or ISG15. The isolation of these peptides with anti-di-glycine antibodies (K-ε-GG) allows the identification of NEDDylation sites by liquid chromatography tandem mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
| | | | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany.
| | | |
Collapse
|
104
|
Chen X, Lei W, Meng H, Jiang Y, Zhang S, Chen H, Du M, Xue X. Succinylation modification provides new insights for the treatment of immunocompromised individuals with drug-resistant Aspergillus fumigatus infection. Front Immunol 2023; 14:1161642. [PMID: 37138872 PMCID: PMC10150703 DOI: 10.3389/fimmu.2023.1161642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Invasive Aspergillus fumigatus infection poses a serious threat to global human health, especially to immunocompromised individuals. Currently, triazole drugs are the most commonly used antifungals for aspergillosis. However, owing to the emergence of drug-resistant strains, the effect of triazole drugs is greatly restricted, resulting in a mortality rate as high as 80%. Succinylation, a novel post-translational modification, is attracting increasing interest, although its biological function in triazole resistance remains unclear. In this study, we initiated the screening of lysine succinylation in A. fumigatus. We discovered that some of the succinylation sites differed significantly among strains with unequal itraconazole (ITR) resistance. Bioinformatics analysis showed that the succinylated proteins are involved in a broad range of cellular functions with diverse subcellular localizations, the most notable of which is cell metabolism. Further antifungal sensitivity tests confirmed the synergistic fungicidal effects of dessuccinylase inhibitor nicotinamide (NAM) on ITR-resistant A. fumigatus. In vivo experiments revealed that treatment with NAM alone or in combination with ITR significantly increased the survival of neutropenic mice infected with A. fumigatus. In vitro experiments showed that NAM enhanced the killing effect of THP-1 macrophages on A. fumigatus conidia. Our results suggest that lysine succinylation plays an indispensable role in ITR resistance of A. fumigatus. Dessuccinylase inhibitor NAM alone or in combination with ITR exerted good effects against A. fumigatus infection in terms of synergistic fungicidal effect and enhancing macrophage killing effect. These results provide mechanistic insights that will aid in the treatment of ITR-resistant fungal infections.
Collapse
Affiliation(s)
- Xianzhen Chen
- Institute of Dermatology, Naval Medical University, Shanghai, China
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenzhi Lei
- Institute of Dermatology, Naval Medical University, Shanghai, China
| | - Hui Meng
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
| | - Yi Jiang
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
| | - Sanli Zhang
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| | - Mingwei Du
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| | - Xiaochun Xue
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| |
Collapse
|
105
|
Lozano-Terol G, Gallego-Jara J, Sola-Martínez RA, Ortega Á, Martínez Vivancos A, Cánovas Díaz M, de Diego Puente T. Regulation of the pyrimidine biosynthetic pathway by lysine acetylation of E. coli OPRTase. FEBS J 2023; 290:442-464. [PMID: 35989594 PMCID: PMC10087573 DOI: 10.1111/febs.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023]
Abstract
The de novo pyrimidine biosynthesis pathway is an important route due to the relevance of its products, its implications in health and its conservation among organisms. Here, we investigated the regulation by lysine acetylation of this pathway. To this aim, intracellular and extracellular metabolites of the route were quantified, revealing a possible blockage of the pathway by acetylation of the OPRTase enzyme (orotate phosphoribosyltransferase). Chemical acetylation of OPRTase by acetyl-P involved a decrease in enzymatic activity. To test the effect of acetylation in this enzyme, K26 and K103 residues were selected to generate site-specific acetylated proteins. Several differences were observed in kinetic parameters, emphasizing that the kcat of these mutants showed a strong decrease of 300 and 150-fold for OPRTase-103AcK and 19 and 6.3-fold for OPRTase-26AcK, for forward and reverse reactions. In vivo studies suggested acetylation of this enzyme by a nonenzymatic acetyl-P-dependent mechanism and a reversion of this process by the CobB deacetylase. A complementation assay of a deficient strain in the pyrE gene with OPRTase-26AcK and OPRTase-103AcK was performed, and curli formation, stoichiometric parameters and orotate excretion were measured. Complementation with acetylated enzymes entailed a profile very similar to that of the ∆pyrE strain, especially in the case of complementation with OPRTase-103AcK. These results suggest regulation of the de novo pyrimidine biosynthesis pathway by lysine acetylation of OPRTase in Escherichia coli. This finding is of great relevance due to the essential role of this route and the OPRTase enzyme as a target for antimicrobial, antiviral and cancer treatments.
Collapse
Affiliation(s)
- Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Rosa Alba Sola-Martínez
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Adrián Martínez Vivancos
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| |
Collapse
|
106
|
Zhang Y, Zhang H, Wang H, Wang C, Yang P, Lu C, Liu Y, Xu Z, Xie Y, Hu J. Tandem mass tag-based quantitative proteomic analysis identification of succinylation related proteins in pathogenesis of thoracic aortic aneurysm and aortic dissection. PeerJ 2023; 11:e15258. [PMID: 37193023 PMCID: PMC10183161 DOI: 10.7717/peerj.15258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Background Thoracic aortic aneurysm and dissection (TAAD) are devastating cardiovascular diseases with a high rate of disability and mortality. Lysine succinylation, a newly found post-translational modification, has been reported to play an important role in cardiovascular diseases. However, how succinylation modification influences TAAD remains obscure. Methods Ascending aortic tissues were obtained from patients with thoracic aortic aneurysm (TAA, n = 6), thoracic aortic dissection (TAD) with pre-existing aortic aneurysm (n = 6), and healthy subjects (n = 6). Global lysine succinylation level was analyzed by Western blotting. The differentially expressed proteins (DEPs) were analyzed by tandem mass tag (TMT) labeling and mass spectrometry. Succinylation-related proteins selected from the literature review and AmiGO database were set as a reference inventory for further analysis. Then, the pathological aortic sections were chosen to verify the proteomic results by Western blotting and qRT-PCR. Results The level of global lysine succinylation significantly increased in TAA and TAD patients compared with healthy subjects. Of all proteins identified by proteomic analysis, 197 common DEPs were screened both in TAA and TAD group compared with the control group, of which 93 proteins were significantly upregulated while 104 were downregulated. Among these 197 DEPs, OXCT1 overlapped with the succinylation-related proteins and was selected as the target protein involved in thoracic aortic pathogenesis. OXCT1 was further verified by Western blotting and qRT-PCR, and the results showed that OXCT1 in TAA and TAD patients was significantly lower than that in healthy donors (p < 0.001), which was consistent with the proteomic results. Conclusions OXCT1 represents novel biomarkers for lysine succinylation of TAAD and might be a therapeutic target in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Cardiovascular Surgery, Guang’an Hospital of West China Hospital of Sichuan University, Guang’an, China
| | - Haiyue Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chenhao Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenyuan Xu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Hu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Cardiovascular Surgery, Guang’an Hospital of West China Hospital of Sichuan University, Guang’an, China
- Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
107
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
108
|
Sivananthan S, Gosse JT, Huard S, Baetz K. Pab1 acetylation at K131 decreases stress granule formation in Saccharomyces cerevisiae. J Biol Chem 2022; 299:102834. [PMID: 36572187 PMCID: PMC9867979 DOI: 10.1016/j.jbc.2022.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Under environmental stress, such as glucose deprivation, cells form stress granules-the accumulation of cytoplasmic aggregates of repressed translational initiation complexes, proteins, and stalled mRNAs. Recent research implicates stress granules in various diseases, such as neurodegenerative diseases, but the exact regulators responsible for the assembly and disassembly of stress granules are unknown. An important aspect of stress granule formation is the presence of posttranslational modifications on core proteins. One of those modifications is lysine acetylation, which is regulated by either a lysine acetyltransferase or a lysine deacetylase enzyme. This work deciphers the impact of lysine acetylation on an essential protein found in Saccharomyces cerevisiae stress granules, poly(A)-binding protein (Pab1). We demonstrated that an acetylation mimic of the lysine residue in position 131 reduces stress granule formation upon glucose deprivation and other stressors such as ethanol, raffinose, and vanillin. We present genetic evidence that the enzyme Rpd3 is the primary candidate for the deacetylation of Pab1-K131. Further, our electromobility shift assay studies suggest that the acetylation of Pab1-K131 negatively impacts poly(A) RNA binding. Due to the conserved nature of stress granules, therapeutics targeting the activity of lysine acetyltransferases and lysine deacetylase enzymes may be a promising route to modulate stress granule dynamics in the disease state.
Collapse
Affiliation(s)
- Sangavi Sivananthan
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica T. Gosse
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvain Huard
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
109
|
Woodhouse RM, Frolows N, Wang G, Hawdon A, Wong EHK, Dansereau LC, Su Y, Adair LD, New EJ, Philp AM, Tan WK, Philp A, Ashe A. Mitochondrial succinate dehydrogenase function is essential for sperm motility and male fertility. iScience 2022; 25:105573. [PMID: 36465130 PMCID: PMC9709242 DOI: 10.1016/j.isci.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial health is crucial to sperm quality and male fertility, but the precise role of mitochondria in sperm function remains unclear. SDHA is a component of the succinate dehydrogenase (SDH) complex and plays a critical role in mitochondria. In humans, SDH activity is positively correlated with sperm quality, and mutations in SDHA are associated with Leigh Syndrome. Here we report that the C. elegans SDHA orthologue SDHA-2 is essential for male fertility: sdha-2 mutants produce dramatically fewer offspring due to defective sperm activation and motility, have hyperfused sperm mitochondria, and disrupted redox balance. Similar sperm motility defects in sdha-1 and icl-1 mutant animals suggest an imbalance in metabolites may underlie the fertility defect. Our results demonstrate a role for SDHA-2 in sperm motility and male reproductive health and establish an animal model of SDH deficiency-associated infertility.
Collapse
Affiliation(s)
- Rachel M. Woodhouse
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Natalya Frolows
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- CSIRO Health and Biosecurity, Sydney, NSW 2113, Australia
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Azelle Hawdon
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Edmund Heng Kin Wong
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Linda C. Dansereau
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, UNSW Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Yingying Su
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D. Adair
- The University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- The University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ashleigh M. Philp
- St Vincent’s Clinical School, UNSW Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Wei Kang Tan
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW 2050, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Alyson Ashe
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| |
Collapse
|
110
|
Tan L, Yang Y, Shang W, Hu Z, Peng H, Li S, Hu X, Rao X. Identification of Lysine Succinylome and Acetylome in the Vancomycin-Intermediate Staphylococcus aureus XN108. Microbiol Spectr 2022; 10:e0348122. [PMID: 36374118 PMCID: PMC9769639 DOI: 10.1128/spectrum.03481-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein posttranslational modifications (PTMs) play important roles in regulating numerous biological functions of prokaryotic and eukaryotic organisms. Lysine succinylation (Ksucc) and acetylation (Kac) are two important PTMs that have been identified in various bacterial species. However, the biological functions of Ksucc and Kac in vancomycin-intermediate S. aureus (VISA) remain unclear. In this study, we systematically identified 3,260 Ksucc sites in 799 proteins and 7,935 Kac sites across 1,710 proteins in the VISA strain XN108. Functional analyses revealed that both Ksucc and Kac sites were highly enriched in several critical metabolic pathways, including ribosomal metabolism, tricarboxylic acid cycle, and glycolysis. Furthermore, a remarkable cross talk between Ksucc and Kac modifications was observed that almost 75% of the succinylated sites were also frequently acetylated. In addition, we identified SaCobB, a Sirtuin 2-like lysine deacetylase, as a bifunctional enzyme with both deacetylation and desuccinylation activities in S. aureus. We demonstrated the first lysine succinylome and acetylome in a VISA and identified SaCobB, a functional enzyme taking part in the regulation of Ksucc and Kac in S. aureus. Our findings provide valuable information for further study on the regulatory mechanisms of PTMs in S. aureus. IMPORTANCE Lysine succinylation (Ksucc) and acetylation (Kac) are two important protein posttranslational modifications (PTMs) that regulate numerous biological functions in prokaryotes and eukaryotes. However, the functions of Ksucc and Kac in Staphylococcus aureus are seldom described. Understanding of Ksucc and Kac modifications in S. aureus will facilitate the development of new strategies to control infections. Herein, we quantified both Ksucc and Kac in a vancomycin-intermediate S. aureus (VISA) strain XN108, analyzed the interaction between these two PTMs, and identified SaCobB as a bifunctional enzyme with both deacetylation and desuccinylation activities. This study is the first description of dual PTMs, Ksucc and Kac profiles, in the VISA. The findings could provide valuable information for the following researches on the regulatory roles of PTMs in S. aureus.
Collapse
Affiliation(s)
- Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
111
|
Dai X, Zhou Y, Han F, Li J. Succinylation and redox status in cancer cells. Front Oncol 2022; 12:1081712. [PMID: 36605449 PMCID: PMC9807787 DOI: 10.3389/fonc.2022.1081712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Succinylation is a post-translational modification (PTM) event that associates metabolic reprogramming with various pathological disorders including cancers via transferring a succinyl group to a residue of the target protein in an enzymic or non-enzymic manner. With our incremental knowledge on the roles of PTM played in tumor initiation and progression, relatively little has been focused on succinylation and its clinical implications. By delineating the associations of succinylation with cancer hallmarks, we identify the, in general, promotive roles of succinylation in manifesting cancer hallmarks, and conceptualize two working modes of succinylation in driving oncogenic signaling, i.e., via altering the structure and charge of target proteins towards enhanced stability and activity. We also characterize succinylation as a reflection of cellular redox homeostatic status and metabolic state, and bring forth the possible use of hyper-succinylated genome for early cancer diagnosis or disease progression indication. In addition, we propose redox modulation tools such as cold atmospheric plasma as a promising intervention approach against tumor cells and cancer stemness via targeting the redox homeostatic environment cells established under a pathological condition such as hypoxia. Taken together, we emphasize the central role of succinylation in bridging the gap between cellular metabolism and redox status, and its clinical relevance as a mark for cancer diagnosis as well as a target in onco-therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,*Correspondence: Xiaofeng Dai, ; Jitian Li,
| | - Yanyan Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fei Han
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China,*Correspondence: Xiaofeng Dai, ; Jitian Li,
| |
Collapse
|
112
|
Xia Q, Gao S, Han T, Mao M, Zhan G, Wang Y, Li X. Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1. J Neuroinflammation 2022; 19:301. [PMID: 36517900 PMCID: PMC9753274 DOI: 10.1186/s12974-022-02665-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microglia-induced excessive neuroinflammation plays a crucial role in the pathophysiology of multiple neurological diseases, such as ischaemic stroke. Controlling inflammatory responses is considered a promising therapeutic approach. Sirtuin 5 (SIRT5) mediates lysine desuccinylation, which is involved in various critical biological processes, but its role in ischaemic stroke remains poorly understood. This research systematically explored the function and potential mechanism of SIRT5 in microglia-induced neuroinflammation in ischaemic stroke. METHODS Mice subjected to middle cerebral artery occlusion were established as the animal model, and primary cultured microglia treated with oxygen-glucose deprivation and reperfusion were established as the cell model of ischaemic stroke. SIRT5 short hairpin RNA, adenovirus and adeno-associated virus techniques were employed to modulate SIRT5 expression in microglia both in vitro and in vivo. Coimmunoprecipitation, western blot and quantitative real-time PCR assays were performed to reveal the molecular mechanism. RESULTS In the current study, we showed that SIRT5 expression in microglia was increased in the early phase of ischaemic stroke. SIRT5 interacts with and desuccinylates Annexin A1 (ANXA1) at K166, which in turn decreases its SUMOylation level. Notably, the desuccinylation of ANXA1 blocks its membrane recruitment and extracellular secretion, resulting in the hyperactivation of microglia and excessive expression of proinflammatory cytokines and chemokines, ultimately leading to neuronal cell damage after ischaemic stroke. Further investigation showed that microglia-specific forced overexpression of SIRT5 worsened ischaemic brain injury, whereas downregulation of SIRT5 exhibited neuroprotective and cognitive-preserving effects against ischaemic brain injury, as proven by the decreased infarct area, reduced neurological deficit scores, and improved cognitive function. CONCLUSIONS Collectively, these data identify SIRT5 as a novel regulator of microglia-induced neuroinflammation and neuronal damage after cerebral ischaemia. Interventions targeting SIRT5 expression may represent a potential therapeutic target for ischaemic stroke.
Collapse
Affiliation(s)
- Qian Xia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuai Gao
- grid.263452.40000 0004 1798 4018Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Tangrui Han
- grid.263452.40000 0004 1798 4018Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Meng Mao
- grid.460080.aDepartment of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 China
| | - Gaofeng Zhan
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yonghong Wang
- grid.263452.40000 0004 1798 4018Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Xing Li
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
113
|
Li S, Zhou Y, Xu Y, Ran S, Hou M, Li Q, Zhong X, Zhong F. The analysis of lysine succinylation modification reveals the mechanism of oxybenzone damaging of pakchoi ( Brassica rapa L. ssp. chinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1001935. [PMID: 36570927 PMCID: PMC9772522 DOI: 10.3389/fpls.2022.1001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Oxybenzone (OBZ), one of a broad spectrum of ultraviolet (UV) absorbents, has been proven to be harmful to both plants and animals, while omics analysis of big data at the molecular level is still lacking. Lysine succinylation (Ksuc) is an important posttranslational modification of proteins that plays a crucial role in regulating the metabolic network in organisms under stress. Here, we report the changes in intracellular Ksuc modification in plants under OBZ stress. A total of 1276 succinylated sites on 507 proteins were identified. Among these sites, 181 modified proteins were hypersulfinylated/succinylated in OBZ-stressed pakchoi leaves. Differentially succinylated proteins (DSPs) are distributed mainly in the chloroplast, cytoplasm, and mitochondria and are distributed mainly in primary metabolic pathways, such as reactive oxygen species (ROS) scavenging, stress resistance, energy generation and transfer, photosynthetic carbon fixation, glycolysis, and the tricarboxylic acid (TCA) cycle. Comprehensive analysis shows that Ksuc mainly changes the carbon flow distribution, enhances the activity of the antioxidant system, affects the biosynthesis of amino acids, and increases the modification of histones. The results of this study first showed the profiling of the Kusc map under OBZ treatment and proposed the adaptive mechanism of pakchoi in response to pollutants and other abiotic stresses at the posttranslational level, which revealed the importance of Ksuc in the regulation of various life activities and provides a reference dataset for future research on molecular function.
Collapse
Affiliation(s)
- Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fu’zhou, China
| | - Yuqi Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu’zhou, China
| | - Yang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fu’zhou, China
| | - Shengxiang Ran
- College of Horticulture, Fujian Agriculture and Forestry University, Fu’zhou, China
| | - Maomao Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu’zhou, China
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Cheng’du, China
| | - Xin Zhong
- Institute of Marine Science and Technology, Shandong University, Qing’dao, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fu’zhou, China
| |
Collapse
|
114
|
Umezawa K, Tsumoto H, Kawakami K, Miura Y. A chemical probe for proteomic analysis and visualization of intracellular localization of lysine-succinylated proteins. Analyst 2022; 148:95-104. [PMID: 36468704 DOI: 10.1039/d2an01370c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein acylation is a vital post-translational modification that regulates various protein functions. In particular, protein succinylation has attracted significant attention because of its potential relationship with various biological events and diseases. In this report, we establish a new method for the comprehensive detection and analysis of potentially succinylated proteins using a chemical tagging technology. The newly synthesized alkyne-containing succinyl substrate successfully labeled lysine residues of proteins through intracellular metabolic labeling independent of other acylation pathways such as protein malonylation. Furthermore, reporter molecules such as biotin moieties and fluorescent dyes were conjugated to alkyne-tagged succinylated proteins via Click reactions, permitting enrichment for proteomic analysis and fluorescence imaging of the labeled proteins. We successfully analyzed and identified numerous potential succinylated proteins associated with various biological processes using gel electrophoresis, proteomic and bioinformatic analyses, and their visualization in cells.
Collapse
Affiliation(s)
- Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
115
|
Luo X, Huang S, Liang M, Xue Q, Rehman SU, Ren X, Li Y, Yang T, Shi D, Li X. The freezability of Mediterranean buffalo sperm is associated with lysine succinylation and lipid metabolism. FASEB J 2022; 36:e22635. [PMID: 36333987 DOI: 10.1096/fj.202201254r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Semen cryopreservation is used for the propagation of variety among species and domestic breeding. Mitochondria are implicated in sperm freezability, and their proteins are prone to succinylation, but the relationship between sperm freezability and mitochondrial protein succinylation is unclear. In this study, six bulls were classified as having good or poor freezability ejaculates (GFE or PFE, each 3 bulls). The fresh sperm mitochondrial membrane potential (MMP) and pan succinylation level of the two groups were first detected. Then the lysine succinylome and fatty acid content of the two groups were analyzed using label-free LC-MS/MS and GC-MS/MS in multiple reaction monitoring (MRM) modes, respectively. The results indicated that the GFE sperm had significantly higher MMPs than the PFE group (p < 0.05). A total of 1393 succinylation sites corresponding to 426 proteins were assessed and 5 succinylated peptides of the GFE group were markedly upregulated, while 3 were significantly downregulated (FC > 2.0 - < 0.5 and p-value < 0.05) when compared to the PFE group. Forty-six succinylated proteins were identified to have consistent presence/absence expression. The upregulated succinylated proteins in the GFE sperm were enriched in lipid metabolic processes. A total of 31 fatty acids were further subjected to quantitative analysis of which 23 including arachidic (C20:0), linolenic (C18:3n3), and docosahexaenoic acids (C22:6n3) were decreased in GFE sperm when compared with PFE (p < 0.05). These results suggest that lysine succinylation can potentially influence the sperm freezability of Mediterranean buffaloes through mitochondrial lipid metabolism. This novel study provides our understanding of sperm succinylation and the molecular basis for the mechanism of sperm freezability.
Collapse
Affiliation(s)
- Xi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Mingming Liang
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Qingsong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Saif Ur Rehman
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xuan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Yanfang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
116
|
Fu Y, Yu J, Li F, Ge S. Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. J Exp Clin Cancer Res 2022; 41:144. [PMID: 35428309 PMCID: PMC9013066 DOI: 10.1186/s13046-022-02338-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
AbstractMetabolites are intermediate products of cellular metabolism catalysed by various enzymes. Metabolic remodelling, as a biochemical fingerprint of cancer cells, causes abnormal metabolite accumulation. These metabolites mainly generate energy or serve as signal transduction mediators via noncovalent interactions. After the development of highly sensitive mass spectrometry technology, various metabolites were shown to covalently modify proteins via forms of lysine acylation, including lysine acetylation, crotonylation, lactylation, succinylation, propionylation, butyrylation, malonylation, glutarylation, 2-hydroxyisobutyrylation and β-hydroxybutyrylation. These modifications can regulate gene expression and intracellular signalling pathways, highlighting the extensive roles of metabolites. Lysine acetylation is not discussed in detail in this review since it has been broadly investigated. We focus on the nine aforementioned novel lysine acylations beyond acetylation, which can be classified into two categories: histone acylations and nonhistone acylations. We summarize the characteristics and common functions of these acylation types and, most importantly, provide a glimpse into their fine-tuned control of tumorigenesis and potential value in tumour diagnosis, monitoring and therapy.
Collapse
|
117
|
Milazzotto MP, Ispada J, de Lima CB. Metabolism-epigenetic interactions on in vitro produced embryos. Reprod Fertil Dev 2022; 35:84-97. [PMID: 36592974 DOI: 10.1071/rd22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolism and epigenetics, which reciprocally regulate each other in different cell types, are fundamental aspects of cellular adaptation to the environment. Evidence in cancer and stem cells has shown that the metabolic status modifies the epigenome while epigenetic mechanisms regulate the expression of genes involved in metabolic processes, thereby altering the metabolome. This crosstalk occurs as many metabolites serve as substrates or cofactors of chromatin-modifying enzymes. If we consider the intense metabolic dynamic and the epigenetic remodelling of the embryo, the comprehension of these regulatory networks will be important not only for understanding early embryonic development, but also to determine in vitro culture conditions that support embryo development and may insert positive regulatory marks that may persist until adult life. In this review, we focus on how metabolism may affect epigenetic reprogramming of the early stages of development, in particular acetylation and methylation of histone and DNA. We also present other metabolic modifications in bovine embryos, such as lactylation, highlighting the promising epigenetic and metabolic targets to improve conditions for in vitro embryo development.
Collapse
Affiliation(s)
- Marcella Pecora Milazzotto
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Jessica Ispada
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Camila Bruna de Lima
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
118
|
Targeting hypoxia-related metabolism molecules: How to improve tumour immune and clinical treatment? Biomed Pharmacother 2022; 156:113917. [DOI: 10.1016/j.biopha.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
|
119
|
Li D, Zhang L, He Y, Zhou T, Cheng X, Huang W, Xu Y. Novel histone post-translational modifications in diabetes and complications of diabetes: The underlying mechanisms and implications. Biomed Pharmacother 2022; 156:113984. [DOI: 10.1016/j.biopha.2022.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
120
|
Pouikli A, Maleszewska M, Parekh S, Yang M, Nikopoulou C, Bonfiglio JJ, Mylonas C, Sandoval T, Schumacher A, Hinze Y, Matic I, Frezza C, Tessarz P. Hypoxia promotes osteogenesis by facilitating acetyl-CoA-mediated mitochondrial-nuclear communication. EMBO J 2022; 41:e111239. [PMID: 36278281 PMCID: PMC9713713 DOI: 10.15252/embj.2022111239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
Bone-derived mesenchymal stem cells (MSCs) reside in a hypoxic niche that maintains their differentiation potential. While hypoxia (low oxygen concentration) was reported to critically support stem cell function and osteogenesis, the molecular events triggering changes in stem cell fate decisions in response to normoxia (high oxygen concentration) remain elusive. Here, we study the impact of normoxia on mitochondrial-nuclear communication during stem cell differentiation. We show that normoxia-cultured murine MSCs undergo profound transcriptional alterations which cause irreversible osteogenesis defects. Mechanistically, high oxygen promotes chromatin compaction and histone hypo-acetylation, particularly on promoters and enhancers of osteogenic genes. Although normoxia induces metabolic rewiring resulting in elevated acetyl-CoA levels, histone hypo-acetylation occurs due to the trapping of acetyl-CoA inside mitochondria owing to decreased citrate carrier (CiC) activity. Restoring the cytosolic acetyl-CoA pool remodels the chromatin landscape and rescues the osteogenic defects. Collectively, our results demonstrate that the metabolism-chromatin-osteogenesis axis is perturbed upon exposure to high oxygen levels and identifies CiC as a novel, oxygen-sensitive regulator of the MSC function.
Collapse
Affiliation(s)
- Andromachi Pouikli
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
| | - Monika Maleszewska
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
- Present address:
CareDx, Inc.San FranciscoCAUSA
| | - Swati Parekh
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
| | - Ming Yang
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
| | - Chrysa Nikopoulou
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
| | - Juan Jose Bonfiglio
- Research Group “Proteomics and ADP‐Ribosylation Signaling”Max Planck Institute for Biology of AgeingCologneGermany
- Present address:
Roche Pharma Research and Early DevelopmentMunichGermany
| | - Constantine Mylonas
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
- Present address:
Novartis Institutes for BioMedical ResearchCambridgeMAUSA
| | - Tonantzi Sandoval
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
| | - Anna‐Lena Schumacher
- FACS & Imaging Core FacilityMax Planck Institute for Biology of AgeingCologneGermany
| | - Yvonne Hinze
- Metabolomics Core Facility, Max Planck Institute for Biology of AgeingCologneGermany
| | - Ivan Matic
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
- Research Group “Proteomics and ADP‐Ribosylation Signaling”Max Planck Institute for Biology of AgeingCologneGermany
| | - Christian Frezza
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
| | - Peter Tessarz
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
| |
Collapse
|
121
|
Hou N, Zhao X, Han Z, Jiang X, Fang Y, Chen Y, Li D. Dodecenylsuccinic anhydride-modified oxalate decarboxylase loaded with magnetic nano-Fe 3O 4@SiO 2 for demulsification of oil-in-water emulsions. CHEMOSPHERE 2022; 308:136595. [PMID: 36167213 DOI: 10.1016/j.chemosphere.2022.136595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The inability to demulsify oil-in-water emulsions via green and efficient processes is a challenging problem in many industrial processes. As a novel biodemulsifier, protein demulsifiers display excellent dispersibility and stability, but their demulsification mechanisms are not clear, which severely restricts their large-scale production and application. In this study, the demulsification mechanism of the high-efficiency protein biodemulsifier oxalate decarboxylase (Bacm OxdC), which is secreted by the Bacillus mojavensis XH1 strain, for an oil-in-water emulsion was analyzed. The results showed that Bacm OxdC was spontaneously adsorbed at the oil-water interface and turned its hydrophobic amino acids outward to increase its hydrophobicity and break the emulsified system. Furthermore, it effectively reduced the oil-water interfacial tension and interfacial film strength, thereby reducing the oil-water interfacial energy and finally enabling demulsification. To further improve the demulsification efficiency and reusability, Fe3O4@SiO2@OxdC-DDSA was prepared. This method provided a magnetic response for Bacm OxdC and enabled efficient demulsification. The demulsification rate of Fe3O4@SiO2@OxdC-DDSA reached 98.1% at 24 h, which was 30.7% higher than that of the original Bacm OxdC. After three cycles, the demulsification rate still reached 89.3%, proving it has excellent recyclability. This work is the first study on the demulsification mechanism of protein biodemulsifiers and provides useful insights into the demulsification mechanism of biodemulsifiers for oil-in-water emulsions. In addition, a promising high-efficiency modification technique for protein biodemulsifiers was proposed, which provided information for the development of biodemulsifiers for oil-water separation.
Collapse
Affiliation(s)
- Ning Hou
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Xin Zhao
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Ziyi Han
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Xinxin Jiang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Yongping Fang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Yun Chen
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China.
| |
Collapse
|
122
|
Zhang ZD, Li RR, Chen JY, Huang HX, Cheng YW, Xu LY, Li EM. The post-translational modification of Fascin: impact on cell biology and its associations with inhibiting tumor metastasis. Amino Acids 2022; 54:1541-1552. [PMID: 35939077 DOI: 10.1007/s00726-022-03193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
The post-translational modifications (PTMs), which are crucial in the regulation of protein functions, have great potential as biomarkers of cancer status. Fascin (Fascin actin-bundling protein 1, FSCN1), a key protein in the formation of filopodia that is structurally based on actin filaments (F-actin), is significantly associated with tumor invasion and metastasis. Studies have revealed various regulatory mechanisms of human Fascin, including PTMs. Although a number of Fascin PTM sites have been identified, their exact functions and clinical significance are much less explored. This review explores studies on the functions of Fascin and briefly discusses the regulatory mechanisms of Fascin. Next, to review the role of Fascin PTMs in cell biology and their associations with metastatic disease, we discuss the advances in the characterization of Fascin PTMs, including phosphorylation, ubiquitination, sumoylation, and acetylation, and the main regulatory mechanisms are discussed. Fascin PTMs may be potential targets for therapy for metastatic disease.
Collapse
Affiliation(s)
- Zhi-Da Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Rong-Rong Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Jia-You Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Hong-Xin Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Yin-Wei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| |
Collapse
|
123
|
Su T, Zhang Z, Han X, Yang F, Wang Z, Cheng Y, Liu H. Systematic Insight of Resveratrol Activated SIRT1 Interactome through Proximity Labeling Strategy. Antioxidants (Basel) 2022; 11:antiox11122330. [PMID: 36552538 PMCID: PMC9774693 DOI: 10.3390/antiox11122330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
SIRT1 functions by regulating the modification of proteins or interacting with other proteins to form complexes. It has been widely studied and found to play significant roles in various biological processes and diseases. However, systematic studies on activated-SIRT1 interactions remain limited. Here, we present a comprehensive SIRT1 interactome under resveratrol stimulation through proximity labeling methods. Our results demonstrated that RanGap1 interacted with SIRT1 in HEK 293T cells and MCF-7 cells. SIRT1 regulated the protein level of RanGap1 and had no obvious effect on RanGap1 transcription. Moreover, the overexpression of Rangap1 increased the ROS level in MCF-7 cells, which sensitized cells to resveratrol and reduced the cell viability. These findings provide evidence that RanGap1 interacts with SIRT1 and influences intracellular ROS, critical signals for mitochondrial functions, cell proliferation and transcription. Additionally, we identified that the SIRT1-RanGap1 interaction affects downstream signals induced by ROS. Overall, our study provides an essential resource for future studies on the interactions of resveratrol-activated SIRT1. There are conflicts about the relationship between resveratrol and ROS in previous reports. However, our data identified the impact of the resveratrol-SIRT1-RanGap1 axis on intracellular ROS.
Collapse
Affiliation(s)
- Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiao Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fei Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (Y.C.); (H.L.)
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Correspondence: (Y.C.); (H.L.)
| |
Collapse
|
124
|
Abstract
Lysine succinylation is a novel, broad-spectrum, dynamic, non-enzymatic protein post-translational modification (PTM). Succinylation is essential for the regulation of protein function and control of various signaling and regulatory pathways. It is involved in several life activities, including glucose metabolism, amino acid metabolism, fatty acid metabolism, ketone body synthesis, and reactive oxygen species clearance, by regulating protease activity and gene expression. The level of succinylation is mainly regulated by succinyl donor, succinyltransferase, and desuccinylase. Many studies have confirmed that succinylation plays a role in tumorigenesis by creating tissue heterogeneity, and can promote or inhibit various cancers via the regulation of different substrate targets or signaling pathways. The mechanism of action of some antineoplastic drugs is related to succinylation. To better understand the role of succinylation modification in cancer development and treatment, the present study reviewed the current research content and latest progress of succinylation modification in cancer, which might provide a new direction and target for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Keer Lu
- Department of Prescription Science, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Dongwei Han
- Department of Prescription Science, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Dongwei Han, Department of Prescription Science, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang 150040, China (e-mail: )
| |
Collapse
|
125
|
Hu M, Zhu Y, Mo Y, Gao X, Miao M, Yu W. Acetylation of citrate synthase inhibits Bombyx mori nucleopolyhedrovirus propagation by affecting energy metabolism. Microb Pathog 2022; 173:105890. [DOI: 10.1016/j.micpath.2022.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
|
126
|
Ahmed S, Rahman A, Hasan MAM, Rahman J, Islam MKB, Ahmad S. predML-Site: Predicting Multiple Lysine PTM Sites With Optimal Feature Representation and Data Imbalance Minimization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3624-3634. [PMID: 34546927 DOI: 10.1109/tcbb.2021.3114349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identifying of post-translational modifications (PTM) is crucial in the study of computational proteomics, cell biology, pathogenesis, and drug development due to its role in many bio-molecular mechanisms. Computational methods for predicting multiple PTM at the same lysine residues, often referred to as K-PTM, is still evolving. This paper presents a novel computational tool, abbreviated as predML-Site, for predicting KPTM, such as acetylation, crotonylation, methylation, succinylation from an uncategorized peptide sample involving single, multiple, or no modification. For informative feature representation, multiple sequence encoding schemes, such as the sequence-coupling, binary encoding, k-spaced amino acid pairs, amino acid factor have been used with ANOVA and incremental feature selection. As a core predictor, a cost-sensitive SVM classifier has been adopted which effectively mitigates the effect of class-label imbalance in the dataset. predML-Site predicts multi-label PTM sites with 84.18% accuracy using the top 91 features. It has also achieved 85.34% aiming and 86.58% coverage rate which are much better than the existing state-of-the-art predictors on the same rigorous validation test. This performance indicates that predML-Site can be used as a supportive tool for further K-PTM study. For the convenience of the experimental scientists, predML-Site has been deployed as a user-friendly web-server at http://103.99.176.239/predML-Site.
Collapse
|
127
|
Xiang T, Zhao S, Wu Y, Li L, Fu P, Ma L. Novel post-translational modifications in the kidneys for human health and diseases. Life Sci 2022; 311:121188. [DOI: 10.1016/j.lfs.2022.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
128
|
Zhang B, Chen Z, Sun Q, Liu J. Proteome-wide analyses reveal diverse functions of protein acetylation and succinylation modifications in fast growing stolons of bermudagrass (Cynodon dactylon L.). BMC PLANT BIOLOGY 2022; 22:503. [PMID: 36289454 PMCID: PMC9608919 DOI: 10.1186/s12870-022-03885-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bermudagrass (Cynodon dactylon L.) is an important warm-season turfgrass species with well-developed stolons, which lay the foundation for the fast propagation of bermudagrass plants through asexual clonal growth. However, the growth and development of bermudagrass stolons are still poorly understood at the molecular level. RESULTS In this study, we comprehensively analyzed the acetylation and succinylation modifications of proteins in fast-growing stolons of the bermudagrass cultivar Yangjiang. A total of 4657 lysine acetylation sites on 1914 proteins and 226 lysine succinylation sites on 128 proteins were successfully identified using liquid chromatography coupled to tandem mass spectrometry, respectively. Furthermore, 78 proteins and 81 lysine sites were found to be both acetylated and succinylated. Functional enrichment analysis revealed that acetylated proteins regulate diverse reactions of carbohydrate metabolism and protein turnover, whereas succinylated proteins mainly regulate the citrate cycle. These results partly explained the different growth disturbances of bermudagrass stolons under treatment with sodium butyrate and sodium malonate, which interfere with protein acetylation and succinylation, respectively. Moreover, 140 acetylated proteins and 42 succinylated proteins were further characterized having similarly modified orthologs in other grass species. Site-specific mutations combined with enzymatic activity assays indicated that the conserved acetylation of catalase and succinylation of malate dehydrogenase both inhibited their activities, further implying important regulatory roles of the two modifications. CONCLUSION In summary, our study implied that lysine acetylation and succinylation of proteins possibly play important regulatory roles in the fast growth of bermudagrass stolons. The results not only provide new insights into clonal growth of bermudagrass but also offer a rich resource for functional analyses of protein lysine acetylation and succinylation in plants.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Zhuoting Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qixue Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
129
|
Hansen GE, Gibson GE. The α-Ketoglutarate Dehydrogenase Complex as a Hub of Plasticity in Neurodegeneration and Regeneration. Int J Mol Sci 2022; 23:12403. [PMID: 36293260 PMCID: PMC9603878 DOI: 10.3390/ijms232012403] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 07/30/2023] Open
Abstract
Abnormal glucose metabolism is central to neurodegeneration, and considerable evidence suggests that abnormalities in key enzymes of the tricarboxylic acid (TCA) cycle underlie the metabolic deficits. Significant recent advances in the role of metabolism in cancer provide new insight that facilitates our understanding of the role of metabolism in neurodegeneration. Research indicates that the rate-limiting step of the TCA cycle, the α-ketoglutarate dehydrogenase complex (KGDHC) and its substrate alpha ketoglutarate (KG), serve as a signaling hub that regulates multiple cellular processes: (1) is the rate-limiting step of the TCA cycle, (2) is sensitive to reactive oxygen species (ROS) and produces ROS, (3) determines whether KG is used for energy or synthesis of compounds to support growth, (4) regulates the cellular responses to hypoxia, (5) controls the post-translational modification of hundreds of cell proteins in the mitochondria, cytosol, and nucleus through succinylation, (6) controls critical aspects of transcription, (7) modulates protein signaling within cells, and (8) modulates cellular calcium. The primary focus of this review is to understand how reductions in KGDHC are translated to pathologically important changes that underlie both neurodegeneration and cancer. An understanding of each role is necessary to develop new therapeutic strategies to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Grace E. Hansen
- Department of Biology, University of Massachusetts, Lowell, MA 01852, USA
| | - Gary E. Gibson
- Weill Cornell Medicine, Brain and Mind Research Institute, Burke Neurological Institute, White Plains, NY 10605, USA
| |
Collapse
|
130
|
Sun M, Ge S, Li Z. The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in Mycobacterium tuberculosis. Biomedicines 2022; 10:biomedicines10102592. [PMID: 36289854 PMCID: PMC9599588 DOI: 10.3390/biomedicines10102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis is a chronic and lethal infectious disease caused by Mycobacterium tuberculosis. In previous decades, most studies in this area focused on the pathogenesis and drug targets for disease treatments. However, the emergence of drug-resistant strains has increased the difficulty of clinical trials over time. Now, more post-translational modified proteins in Mycobacterium tuberculosis have been discovered. Evidence suggests that these proteins have the ability to influence tuberculosis drug resistance. Hence, this paper systematically summarizes updated research on the impacts of protein acylation and phosphorylation on the acquisition of drug resistance in Mycobacterium tuberculosis through acylation and phosphorylation protein regulating processes. This provides us with a better understanding of the mechanism of antituberculosis drugs and may contribute to a reduction the harm that tuberculosis brings to society, as well as aiding in the discovery of new drug targets and therapeutic regimen adjustments in the future.
Collapse
Affiliation(s)
- Manluan Sun
- School of Medicine, Shanxi Datong University, Datong 037009, China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence:
| | - Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China
| | - Zhaoyang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
131
|
Improving protein succinylation sites prediction using embeddings from protein language model. Sci Rep 2022; 12:16933. [PMID: 36209286 PMCID: PMC9547369 DOI: 10.1038/s41598-022-21366-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Protein succinylation is an important post-translational modification (PTM) responsible for many vital metabolic activities in cells, including cellular respiration, regulation, and repair. Here, we present a novel approach that combines features from supervised word embedding with embedding from a protein language model called ProtT5-XL-UniRef50 (hereafter termed, ProtT5) in a deep learning framework to predict protein succinylation sites. To our knowledge, this is one of the first attempts to employ embedding from a pre-trained protein language model to predict protein succinylation sites. The proposed model, dubbed LMSuccSite, achieves state-of-the-art results compared to existing methods, with performance scores of 0.36, 0.79, 0.79 for MCC, sensitivity, and specificity, respectively. LMSuccSite is likely to serve as a valuable resource for exploration of succinylation and its role in cellular physiology and disease.
Collapse
|
132
|
Okoth DA, Hug JJ, Garcia R, Müller R. Discovery, Biosynthesis and Biological Activity of a Succinylated Myxochelin from the Myxobacterial Strain MSr12020. Microorganisms 2022; 10:microorganisms10101959. [PMID: 36296235 PMCID: PMC9611931 DOI: 10.3390/microorganisms10101959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Myxobacteria feature unique biological characteristics, including their capability to glide on the surface, undergo different multicellular developmental stages and produce structurally unique natural products such as the catecholate-type siderophores myxochelins A and B. Herein, we report the isolation, structure elucidation and a proposed biosynthesis of the new congener myxochelin B-succinate from the terrestrial myxobacterial strain MSr12020, featuring a succinyl decoration at its primary amine group. Myxochelin-B-succinate exhibited antibacterial growth inhibition and moderate cytotoxic activity against selected human cancer cell lines. This unique chemical modification of myxochelin B might provide interesting insights for future microbiological studies to understand the biological function and biosynthesis of secondary metabolite succinylation.
Collapse
Affiliation(s)
- Dorothy A. Okoth
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Chemistry, School of Physical and Biological Sciences, Main campus, Maseno University, Maseno P.O. Box 333-40105, Kenya
| | - Joachim J. Hug
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|
133
|
Xia J, Liu J, Xu F, Zhou H. Proteomic profiling of lysine acetylation and succinylation in Staphylococcus aureus. Clin Transl Med 2022; 12:e1058. [PMID: 36177763 PMCID: PMC9523452 DOI: 10.1002/ctm2.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jingyan Xia
- Department of Oncology RadiationSecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jinliang Liu
- Department of Infectious DiseasesSecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Feng Xu
- Department of Infectious DiseasesSecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| | - Hui Zhou
- Department of Infectious DiseasesSecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
134
|
Yu L, Dai Z, Zhang Y, Iqbal S, Lu S, Guo L, Yao X. Proteome-wide identification of S-sulfenylated cysteines reveals metabolic response to freezing stress after cold acclimation in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1014295. [PMID: 36275609 PMCID: PMC9580371 DOI: 10.3389/fpls.2022.1014295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Redox regulation plays a wide role in plant growth, development, and adaptation to stresses. Sulfenylation is one of the reversible oxidative post-transcriptional modifications. Here we performed an iodoTMT-based proteomic analysis to identify the redox sensitive proteins in vivo under freezing stress after cold acclimation in Brassica napus. Totally, we obtained 1,372 sulfenylated sites in 714 proteins. The overall sulfenylation level displayed an increased trend under freezing stress after cold acclimation. We identified 171 differentially sulfenylated proteins (DSPs) under freezing stress, which were predicted to be mainly localized in chloroplast and cytoplasm. The up-regulated DSPs were mainly enriched in photosynthesis and glycolytic processes and function of catalytic activity. Enzymes involved in various pathways such as glycolysis and Calvin-Benson-Bassham (CBB) cycle were generally sulfenylated and the metabolite levels in these pathways was significantly reduced under freezing stress after cold acclimation. Furthermore, enzyme activity assay confirmed that the activity of cytosolic pyruvate kinase and malate dehydrogenase 2 was significantly reduced under H2O2 treatment. Our study provides a landscape of redox sensitive proteins in B. napus in response to freezing stress after cold acclimation, which proposes a basis for understanding the redox regulation in plant metabolic response to freezing stress after cold acclimation.
Collapse
Affiliation(s)
- Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zezhang Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
135
|
Guo W, Han J, Li X, He Z, Zhang Y. Large-scale analysis of protein crotonylation reveals its diverse functions in Pinellia ternata. BMC PLANT BIOLOGY 2022; 22:457. [PMID: 36151520 PMCID: PMC9502611 DOI: 10.1186/s12870-022-03835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pinellia ternata is an important traditional medicine in China, and its growth is regulated by the transcriptome or proteome. Lysine crotonylation, a newly identified and important type of posttranslational modification, plays a key role in many aspects of cell metabolism. However, little is known about its functions in Pinellia ternata. RESULTS In this study, we generated a global crotonylome analysis of Pinellia ternata and examined its overlap with lysine succinylation. A total of 2106 crotonylated sites matched on 1006 proteins overlapping in three independent tests were identified, and we found three specific amino acids surrounding crotonylation sites in Pinellia ternata: KcrF, K***Y**Kcr and Kcr****R. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that two crucial alkaloid biosynthesis-related enzymes and many stress-related proteins were also highly crotonylated. Furthermore, several enzymes participating in carbohydrate metabolism pathways were found to exhibit both lysine crotonylation and succinylation modifications. CONCLUSIONS These results indicate that lysine crotonylation performs important functions in many biological processes in Pinellia ternata, especially in the biosynthesis of alkaloids, and some metabolic pathways are simultaneously regulated by lysine crotonylation and succinylation.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Jiayi Han
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Zihan He
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
136
|
Hou J, Wen X, Long P, Xiong S, Liu H, Cai L, Deng H, Zhang Z. The role of post-translational modifications in driving abnormal cardiovascular complications at high altitude. Front Cardiovasc Med 2022; 9:886300. [PMID: 36186970 PMCID: PMC9515308 DOI: 10.3389/fcvm.2022.886300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The high-altitude environment is characterized by hypobaric hypoxia, low temperatures, low humidity, and high radiation, which is a natural challenge for lowland residents entering. Previous studies have confirmed the acute and chronic effects of high altitude on the cardiovascular systems of lowlanders. Abnormal cardiovascular complications, including pulmonary edema, cardiac hypertrophy and pulmonary arterial hypertension were commonly explored. Effective evaluation of cardiovascular adaptive response in high altitude can provide a basis for early warning, prevention, diagnosis, and treatment of altitude diseases. At present, post-translational modifications (PTMs) of proteins are a key step to regulate their biological functions and dynamic interactions with other molecules. This process is regulated by countless enzymes called “writer, reader, and eraser,” and the performance is precisely controlled. Mutations and abnormal expression of these enzymes or their substrates have been implicated in the pathogenesis of cardiovascular diseases associated with high altitude. Although PTMs play an important regulatory role in key processes such as oxidative stress, apoptosis, proliferation, and hypoxia response, little attention has been paid to abnormal cardiovascular response at high altitude. Here, we reviewed the roles of PTMs in driving abnormal cardiovascular complications at high altitude.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
| | - Pan Long
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hanxiong Liu
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lin Cai
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- *Correspondence: Lin Cai,
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Center for Heart and Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Haoyu Deng,
| | - Zhen Zhang
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Zhen Zhang,
| |
Collapse
|
137
|
Kafkia E, Andres-Pons A, Ganter K, Seiler M, Smith TS, Andrejeva A, Jouhten P, Pereira F, Franco C, Kuroshchenkova A, Leone S, Sawarkar R, Boston R, Thaventhiran J, Zaugg JB, Lilley KS, Lancrin C, Beck M, Patil KR. Operation of a TCA cycle subnetwork in the mammalian nucleus. SCIENCE ADVANCES 2022; 8:eabq5206. [PMID: 36044572 PMCID: PMC9432838 DOI: 10.1126/sciadv.abq5206] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/14/2022] [Indexed: 05/23/2023]
Abstract
Nucleic acid and histone modifications critically depend on the tricarboxylic acid (TCA) cycle for substrates and cofactors. Although a few TCA cycle enzymes have been reported in the nucleus, the corresponding pathways are considered to operate in mitochondria. Here, we show that a part of the TCA cycle is operational also in the nucleus. Using 13C-tracer analysis, we identified activity of glutamine-to-fumarate, citrate-to-succinate, and glutamine-to-aspartate routes in the nuclei of HeLa cells. Proximity labeling mass spectrometry revealed a spatial vicinity of the involved enzymes with core nuclear proteins. We further show nuclear localization of aconitase 2 and 2-oxoglutarate dehydrogenase in mouse embryonic stem cells. Nuclear localization of the latter enzyme, which produces succinyl-CoA, changed from pluripotency to a differentiated state with accompanying changes in the nuclear protein succinylation. Together, our results demonstrate operation of an extended metabolic pathway in the nucleus, warranting a revision of the canonical view on metabolic compartmentalization.
Collapse
Affiliation(s)
- Eleni Kafkia
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Amparo Andres-Pons
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kerstin Ganter
- European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Markus Seiler
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Tom S. Smith
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paula Jouhten
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- VTT Technical Research Center of Finland, Helsinki, Finland
| | - Filipa Pereira
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Catarina Franco
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Kuroshchenkova
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sergio Leone
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ritwick Sawarkar
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rebecca Boston
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - James Thaventhiran
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Judith B. Zaugg
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | | - Martin Beck
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
138
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
139
|
Sun P, Ma Q, Zhang L. Comprehensive acetyl-proteomic analysis of Cytospora mali provides insight into its response to the biocontrol agent Bacillus velezensis L-1. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.999510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytospora mali is an important factor for apple valsa canker, and Bacillus veleznesis L-1 is an effective biocontrol agent against apple valsa canker. Quantitative acetyl-proteomics is known to regulate transcriptional activity in different organisms; limited knowledge is available for acetylation modification in C. mali, and its response to biocontrol agents. In this study, using Tandem Mass tag proteomic strategies, we identified 733 modification sites on 416 proteins in C. mali, functions of these proteins were analyzed using GO enrichment and KEGG pathway. Some lysine acetylated proteins are found to be important to the fungal pathogenicity of C. mali, and also the response of fungi to biostress. B. velezensis L-1 suppressed the C. mali QH2 by causing the energy shortage and reduced virulence. Correspondingly, the C. mali QH2 could alleviate the suppression of biostress by upregulation of autophagy, peroxidase, cytochrome P450, ABC transporter and Heat shock protein 70. In summary, our results provided the first lysine acetylome of C. mali and its response to B. velezensis L-1.
Collapse
|
140
|
Ji Y, Chen Z, Cen Z, Ye Y, Li S, Lu X, Shao Q, Wang D, Ji J, Ji Q. A comprehensive mouse brain acetylome-the cellular-specific distribution of acetylated brain proteins. Front Cell Neurosci 2022; 16:980815. [PMID: 36111245 PMCID: PMC9468461 DOI: 10.3389/fncel.2022.980815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Nε-lysine acetylation is a reversible posttranslational modification (PTM) involved in multiple physiological functions. Genetic and animal studies have documented the critical roles of protein acetylation in brain development, functions, and various neurological disorders. However, the underlying cellular and molecular mechanism are still partially understood. Here, we profiled and characterized the mouse brain acetylome and investigated the cellular distribution of acetylated brain proteins. We identified 1,818 acetylated proteins, including 5,196 acetylation modification sites, using a modified workflow comprising filter-aided sample preparation (FSAP), acetylated peptides enrichment, and MS analysis without pre- or post-fraction. Bioinformatics analysis indicated these acetylated mouse brain proteins were mainly located in the myelin sheath, mitochondrial inner membrane, and synapse, as well as their involvement in multiple neurological disorders. Manual annotation revealed that a set of brain-specific proteins were acetylation-modified. The acetylation of three brain-specific proteins was verified, including neurofilament light polypeptide (NEFL), 2’,3’-cyclic-nucleotide 3’-phosphodiesterase (CNP), and neuromodulin (GAP43). Further immunofluorescence staining illustrated that acetylated proteins were mainly distributed in the nuclei of cortex neurons and axons of hippocampal neurons, sparsely distributed in the nuclei of microglia and astrocytes, and the lack of distribution in both cytoplasm and nuclei of cerebrovascular endothelial cells. Together, this study provided a comprehensive mouse brain acetylome and illustrated the cellular-specific distribution of acetylated proteins in the mouse brain. These data will contribute to understanding and deciphering the molecular and cellular mechanisms of protein acetylation in brain development and neurological disorders. Besides, we proposed some problems that need to be solved in future brain acetylome research.
Collapse
Affiliation(s)
- Yuhua Ji
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zixin Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziqi Cen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuting Ye
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shuyuan Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoshuang Lu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qian Shao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Donghao Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Juling Ji
- Department of Pathology, College of Medicine, Nantong University, Nantong, China
- *Correspondence: Juling Ji,
| | - Qiuhong Ji
- Department of Pathology, College of Medicine, Nantong University, Nantong, China
- Qiuhong Ji,
| |
Collapse
|
141
|
Smith BJ, Brandão-Teles C, Zuccoli GS, Reis-de-Oliveira G, Fioramonte M, Saia-Cereda VM, Martins-de-Souza D. Protein Succinylation and Malonylation as Potential Biomarkers in Schizophrenia. J Pers Med 2022; 12:jpm12091408. [PMID: 36143193 PMCID: PMC9500613 DOI: 10.3390/jpm12091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Two protein post-translational modifications, lysine succinylation and malonylation, are implicated in protein regulation, glycolysis, and energy metabolism. The precursors of these modifications, succinyl-CoA and malonyl-CoA, are key players in central metabolic processes. Both modification profiles have been proven to be responsive to metabolic stimuli, such as hypoxia. As mitochondrial dysfunction and metabolic dysregulation are implicated in schizophrenia and other psychiatric illnesses, these modification profiles have the potential to reveal yet another layer of protein regulation and can furthermore represent targets for biomarkers that are indicative of disease as well as its progression and treatment. In this work, data from shotgun mass spectrometry-based quantitative proteomics were compiled and analyzed to probe the succinylome and malonylome of postmortem brain tissue from patients with schizophrenia against controls and the human oligodendrocyte precursor cell line MO3.13 with the dizocilpine chemical model for schizophrenia, three antipsychotics, and co-treatments. Several changes in the succinylome and malonylome were seen in these comparisons, revealing these modifications to be a largely under-studied yet important form of protein regulation with broad potential applications.
Collapse
Affiliation(s)
- Bradley Joseph Smith
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
- Correspondence: (B.J.S.); (D.M.-d.-S.); Tel.: +55-(19)-3521-6129 (D.M.-d.-S.)
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Giuliana S. Zuccoli
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Verônica M. Saia-Cereda
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-000, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, Brazil
- D’Or Institute for Research and Education (IDOR), São Paulo 04501-000, Brazil
- Correspondence: (B.J.S.); (D.M.-d.-S.); Tel.: +55-(19)-3521-6129 (D.M.-d.-S.)
| |
Collapse
|
142
|
Zhou D, Wu Z, Park JG, Fiches GN, Li TW, Ma Q, Huang H, Biswas A, Martinez-Sobrido L, Santoso NG, Zhu J. FACT subunit SUPT16H associates with BRD4 and contributes to silencing of interferon signaling. Nucleic Acids Res 2022; 50:8700-8718. [PMID: 35904816 PMCID: PMC9410884 DOI: 10.1093/nar/gkac645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated in both epithelial and natural killer (NK) cells. The histone acetyltransferase TIP60 contributes to the acetylation of SUPT16H middle domain (MD) at lysine 674 (K674). Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H in both epithelial and NK cells. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (HDAC1, EZH2), and further regulates their activation status and/or promoter association as well as affects the relevant histone marks (H3ac, H3K9me3 and H3K27me3). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, depletion or inhibition of SUPT16H is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that depletion or inhibition of SUPT16H also causes the remarkable activation of IFN signaling in NK cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in coordinating with BRD4 and regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of the FACT inhibitor CBL0137 to treat viral infections.
Collapse
Affiliation(s)
- Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhenyu Wu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Guillaume N Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tai-Wei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Huachao Huang
- Department of Medicine, Columbia University Medical Center, NY, NY 10032, USA
| | - Ayan Biswas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Netty G Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
143
|
Martín-Marcos P, Gil-Hernández Á, Tamame M. Wide mutational analysis to ascertain the functional roles of eL33 in ribosome biogenesis and translation initiation. Curr Genet 2022; 68:619-644. [PMID: 35994100 DOI: 10.1007/s00294-022-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An extensive mutational analysis of RPL33A, encoding the yeast ribosomal protein L33A (eL33) allowed us to identify several novel rpl33a mutants with different translational phenotypes. Most of the rpl33a mutants are defective in the processing of 35S and 27S pre-rRNA precursors and the production of mature rRNAs, exhibiting reductions in the amounts of ribosomal subunits and altered polysome profiles. Some of the rpl33a mutants exhibit a Gcd- phenotype of constitutive derepression of GCN4 translation and strong slow growth phenotypes at several temperatures. Interestingly, some of the later mutants also show a detectable increase in the UUG/AUG translation initiation ratio that can be suppressed by eIF1 overexpression, suggesting a requirement for eL33 and a correct 60S/40S subunit ratio for the proper recognition of the AUG start codon. In addition to producing differential reductions in the rates of pre-rRNA maturation and perhaps in r-protein assembly, most of the point rpl33a mutations alter specific molecular interactions of eL33 with the rRNAs and other r-proteins in the 60S structure. Thus, rpl33a mutations cause distinctive effects on the abundance and/or functionality of 60S subunits, leading to more or less pronounced defects in the rates and fidelity of mRNA translation.
Collapse
Affiliation(s)
- Pilar Martín-Marcos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| | - Álvaro Gil-Hernández
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
144
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
145
|
Zuo Y, Hong Y, Zeng X, Zhang Q, Liu X. MLysPRED: graph-based multi-view clustering and multi-dimensional normal distribution resampling techniques to predict multiple lysine sites. Brief Bioinform 2022; 23:6661182. [PMID: 35953081 DOI: 10.1093/bib/bbac277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modification of lysine residues, K-PTM, is one of the most popular PTMs. Some lysine residues in proteins can be continuously or cascaded covalently modified, such as acetylation, crotonylation, methylation and succinylation modification. The covalent modification of lysine residues may have some special functions in basic research and drug development. Although many computational methods have been developed to predict lysine PTMs, up to now, the K-PTM prediction methods have been modeled and learned a single class of K-PTM modification. In view of this, this study aims to fill this gap by building a multi-label computational model that can be directly used to predict multiple K-PTMs in proteins. In this study, a multi-label prediction model, MLysPRED, is proposed to identify multiple lysine sites using features generated from human protein sequences. In MLysPRED, three kinds of multi-label sequence encoding algorithms (MLDBPB, MLPSDAAP, MLPSTAAP) are proposed and combined with three encoding strategies (CHHAA, DR and Kmer) to convert preprocessed lysine sequences into effective numerical features. A multidimensional normal distribution oversampling technique and graph-based multi-view clustering under-sampling algorithm were first proposed and incorporated to reduce the proportion of the original training samples, and multi-label nearest neighbor algorithm is used for classification. It is observed that MLysPRED achieved an Aiming of 92.21%, Coverage of 94.98%, Accuracy of 89.63%, Absolute-True of 81.46% and Absolute-False of 0.0682 on the independent datasets. Additionally, comparison of results with five existing predictors also indicated that MLysPRED is very promising and encouraging to predict multiple K-PTMs in proteins. For the convenience of the experimental scientists, 'MLysPRED' has been deployed as a user-friendly web-server at http://47.100.136.41:8181.
Collapse
Affiliation(s)
- Yun Zuo
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Yue Hong
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Changsha, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology (DLUT), China
| | - Xiangrong Liu
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
146
|
Zhang M, Lu J, Liang H, Zhang B, Liang B, Zou H. The succinylome of Pinctada fucata martensii implicates lysine succinylation in the allograft-induced stress response. FISH & SHELLFISH IMMUNOLOGY 2022; 127:585-593. [PMID: 35803507 DOI: 10.1016/j.fsi.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Lysine succinylation is a novel protein post-translational modification associated with the regulation of a variety of cellular processes. Post-translational modifications may regulate the immune response of Pinctada fucata martensii, a marine bivalve used to produce cultured pearls, in response to the surgical implantation of the seed pearl. This allograft-induced stress response may lead to transplant rejection or host death. However, the regulatory effects of post-translational modifications following nucleus insertion surgery in P.f. martensii remain largely unknown. Here, we used 4D label-free quantitative proteomics (4D-LFQ) with LC-MS/MS to explore the effects of nucleus implantation on lysine succinylation in P.f. martensii. We identified 4430 succinylated sites on 964 succinylated proteins in P.f. martensii after nucleus insertion surgery, and seven conserved motifs were identified upstream and downstream of these sites. In total, 269 succinylation sites were differentially expressed in response to implantation (|fold-change| > 1.5 and FDR <1%; 211 upregulation and 58 downregulation), corresponding to 163 differentially expressed succinylated proteins (DESPs; 124 upregulated and 39 downregulated). The terms over-enriched in the DESPs included "cellular processes", "metabolic pathways", and "binding activity", while the significantly enriched pathways included "ECM-receptor interaction", "PI3K-Akt signaling", and "focal adhesion". "EGF-like structural domains", "platelet-responsive protein type 1 structural domains", and "laminin EGF-like (domains III and V) domains" were overrepresented in the DESPs. Parallel reaction-monitoring (PRM) analysis validated 13 DESPs from the proteomics data. The succinylome of P.f. martensii (generated here for the first time) helps to clarify the biological role of large-scale succinylation in this bivalve after nucleus insertion surgery, providing a theoretical basis for further investigations of stress-induced post-translational modifications in other mollusks and extending our knowledge of the molluscan succinylated proteome.
Collapse
Affiliation(s)
- Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Jinzhao Lu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bidan Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hexin Zou
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
147
|
Wang T, Lu Z, Han T, Wang Y, Gan M, Wang JB. Deacetylation of Glutaminase by HDAC4 contributes to Lung Cancer Tumorigenesis. Int J Biol Sci 2022; 18:4452-4465. [PMID: 35864951 PMCID: PMC9295053 DOI: 10.7150/ijbs.69882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/21/2022] [Indexed: 12/11/2022] Open
Abstract
Inhibiting cancer metabolism via glutaminase (GAC) is a promising strategy to disrupt tumor progression. However, mechanism regarding GAC acetylation remains mostly unknown. In this study, we demonstrate that lysine acetylation is a vital post-translational modification that inhibits GAC activity in non-small cell lung cancer (NSCLC). We identify that Lys311 is the key acetylation site on GAC, which is deacetylated by HDAC4, a class II deacetylase. Lys311 acetylation stimulates the interaction between GAC and TRIM21, an E3 ubiquitin ligase of the tripartite motif (TRIM) family, therefore promoting GAC K63-linked ubiquitination and inhibiting GAC activity. Furthermore, GACK311Q mutation in A549 cells decreases cell proliferation and alleviates tumor malignancy. Our findings reveal a novel mechanism of GAC regulation by acetylation and ubiquitination that participates in non-small cell lung cancer tumorigenesis.
Collapse
Affiliation(s)
- Tao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhuo Lu
- School of Life Sciences, Nanchang University, Nanchang, 330031, P.R. China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. China
| | - Yanan Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, P.R. China
| | - Mingxi Gan
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China
| | - Jian-Bin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
148
|
James AM, Norman AAI, Houghton JW, Prag HA, Logan A, Antrobus R, Hartley RC, Murphy MP. Native chemical ligation approach to sensitively probe tissue acyl-CoA pools. Cell Chem Biol 2022; 29:1232-1244.e5. [PMID: 35868236 DOI: 10.1016/j.chembiol.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
During metabolism, carboxylic acids are often activated by conjugation to the thiol of coenzyme A (CoA). The resulting acyl-CoAs comprise a group of ∼100 thioester-containing metabolites that could modify protein behavior through non-enzymatic N-acylation of lysine residues. However, the importance of many potential acyl modifications remains unclear because antibody-based methods to detect them are unavailable and the in vivo concentrations of their respective acyl-CoAs are poorly characterized. Here, we develop cysteine-triphenylphosphonium (CysTPP), a mass spectrometry probe that uses "native chemical ligation" to sensitively detect the major acyl-CoAs present in vivo through irreversible modification of its amine via a thioester intermediate. Using CysTPP, we show that longer-chain (C13-C22) acyl-CoAs often constitute ∼60% of the acyl-CoA pool in rat tissues. These hydrophobic longer-chain fatty acyl-CoAs have the potential to non-enzymatically modify protein residues.
Collapse
Affiliation(s)
- Andrew M James
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| | - Abigail A I Norman
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Jack W Houghton
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hiran A Prag
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Angela Logan
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Robin Antrobus
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Richard C Hartley
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
149
|
Sanchez M, Hamel D, Bajon E, Duhamel F, Bhosle VK, Zhu T, Rivera JC, Dabouz R, Nadeau-Vallée M, Sitaras N, Tremblay DÉ, Omri S, Habelrih T, Rouget R, Hou X, Gobeil F, Joyal JS, Sapieha P, Mitchell G, Ribeiro-Da-Silva A, Mohammad Nezhady MA, Chemtob S. The Succinate Receptor SUCNR1 Resides at the Endoplasmic Reticulum and Relocates to the Plasma Membrane in Hypoxic Conditions. Cells 2022; 11:2185. [PMID: 35883628 PMCID: PMC9321536 DOI: 10.3390/cells11142185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
The GPCR SUCNR1/GPR91 exerts proangiogenesis upon stimulation with the Krebs cycle metabolite succinate. GPCR signaling depends on the surrounding environment and intracellular localization through location bias. Here, we show by microscopy and by cell fractionation that in neurons, SUCNR1 resides at the endoplasmic reticulum (ER), while being fully functional, as shown by calcium release and the induction of the expression of the proangiogenic gene for VEGFA. ER localization was found to depend upon N-glycosylation, particularly at position N8; the nonglycosylated mutant receptor localizes at the plasma membrane shuttled by RAB11. This SUCNR1 glycosylation is physiologically regulated, so that during hypoxic conditions, SUCNR1 is deglycosylated and relocates to the plasma membrane. Downstream signal transduction of SUCNR1 was found to activate the prostaglandin synthesis pathway through direct interaction with COX-2 at the ER; pharmacologic antagonism of the PGE2 EP4 receptor (localized at the nucleus) was found to prevent VEGFA expression. Concordantly, restoring the expression of SUCNR1 in the retina of SUCNR1-null mice renormalized vascularization; this effect is markedly diminished after transfection of the plasma membrane-localized SUCNR1 N8A mutant, emphasizing that ER localization of the succinate receptor is necessary for proper vascularization. These findings uncover an unprecedented physiologic process where GPCR resides at the ER for signaling function.
Collapse
Affiliation(s)
- Melanie Sanchez
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
| | - David Hamel
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Emmanuel Bajon
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
| | - François Duhamel
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Vikrant K. Bhosle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
- Cell Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | - Tang Zhu
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
| | - Jose Carlos Rivera
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
| | - Rabah Dabouz
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
| | - Mathieu Nadeau-Vallée
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Nicholas Sitaras
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - David-Étienne Tremblay
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Samy Omri
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
| | - Tiffany Habelrih
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Raphael Rouget
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
| | - Xin Hou
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
| | - Fernand Gobeil
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
| | - Grant Mitchell
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
| | - Alfredo Ribeiro-Da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
| | - Mohammad Ali Mohammad Nezhady
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
- Program of Molecular Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Research Center-CHU Ste-Justine, Departments of Pediatrics, Ophthalmology, and Pharmacology, Faculty of Medicine, Université de Montréal, 3175, Chemin Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
- Research Center-CHU Ste-Justine, Departments of Pediatrics, Ophthalmology, and Pharmacology, Faculty of Medicine, Université de Montréal, 3175, Chemin Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
150
|
Engineering of succinyl-CoA metabolism in view of succinylation regulation to improve the erythromycin production. Appl Microbiol Biotechnol 2022; 106:5153-5165. [PMID: 35821431 DOI: 10.1007/s00253-022-12060-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
As a novel protein post-translational modification (PTM), lysine succinylation is widely involved in metabolism regulation by altering the activity of catalytic enzymes. Inactivating succinyl-CoA synthetase in Saccharopolyspora erythraea HL3168 E3 was proved significantly inducing the global protein hypersuccinylation. To investigate the effects, succinylome of the mutant strain E3ΔsucC was identified by using a high-resolution mass spectrometry-based proteomics approach. PTMomics analyses suggested the important roles of succinylation on protein biosynthesis, carbon metabolism, and antibiotics biosynthesis in S. erythraea. Enzymatic experiments in vivo and in vitro were further conducted to determine the succinylation regulation in the TCA cycle. We found out that the activity of aconitase (SACE_3811) was significantly inhibited by succinylation in E3ΔsucC, which probably led to the extracellular accumulation of pyruvate and citrate during the fermentation. Enzyme structural analyses indicated that the succinylation of K278 and K373, conservative lysine residues locating around the protein binding pocket, possibly affects the activity of aconitase. To alleviate the metabolism changes caused by succinyl-CoA synthetase inactivation and protein hypersuccinylation, CRISPR interference (CRISPRi) was applied to mildly downregulate the transcription level of gene sucC in E3. The erythromycin titer of the CRISPRi mutant E3-sucC-sg1 was increased by 54.7% compared with E3, which was 1200.5 mg/L. Taken together, this work not only expands our knowledge of succinylation regulation in the TCA cycle, but also validates that CRISPRi is an efficient strategy on the metabolic engineering of S. erythraea. KEY POINTS: • We reported the first systematic profiling of the S. erythraea succinylome. • We found that the succinylation regulation on the activity of aconitase. • We enhanced the production of erythromycin by using CRISPRi to regulate the transcription of gene sucC.
Collapse
|