101
|
Henry CM, Martin SJ. Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory “FADDosome” Complex upon TRAIL Stimulation. Mol Cell 2017; 65:715-729.e5. [DOI: 10.1016/j.molcel.2017.01.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 01/31/2023]
|
102
|
Zhang Y, Dai J, Tang J, Zhou L, Zhou M. MicroRNA-649 promotes HSV-1 replication by directly targeting MALT1. J Med Virol 2016; 89:1069-1079. [DOI: 10.1002/jmv.24728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Zhang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering; Hubei University of Technology; Wuhan China
| | - Jun Dai
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering; Hubei University of Technology; Wuhan China
| | - Jinfeng Tang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering; Hubei University of Technology; Wuhan China
| | - Li Zhou
- ABSL-III Laboratory at Center for Animal Experiment, State Key Laboratory of Virology; Wuhan University School of Medicine; Wuhan China
| | - Mengzhou Zhou
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering; Hubei University of Technology; Wuhan China
| |
Collapse
|
103
|
B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma. Blood 2016; 129:333-346. [PMID: 27864294 DOI: 10.1182/blood-2016-05-718775] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 complex that links BCR signaling to the NF-κB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls an MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival because its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients.
Collapse
|
104
|
A role for MALT1 activity in Kaposi's sarcoma-associated herpes virus latency and growth of primary effusion lymphoma. Leukemia 2016; 31:614-624. [PMID: 27538487 PMCID: PMC5339436 DOI: 10.1038/leu.2016.239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Primary effusion lymphoma (PEL) is an incurable malignancy that develops in immunodeficient patients as a consequence of latent infection of B-cells with Kaposi's sarcoma-associated herpes virus (KSHV). Malignant growth of KSHV-infected B cells requires the activity of the transcription factor nuclear factor (NF)-κB, which controls maintenance of viral latency and suppression of the viral lytic program. Here we show that the KSHV proteins K13 and K15 promote NF-κB activation via the protease mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1), a key driver of NF-κB activation in lymphocytes. Inhibition of the MALT1 protease activity induced a switch from the latent to the lytic stage of viral infection, and led to reduced growth and survival of PEL cell lines in vitro and in a xenograft model. These results demonstrate a key role for the proteolytic activity of MALT1 in PEL, and provide a rationale for the pharmacological targeting of MALT1 in PEL therapy.
Collapse
|
105
|
Krappmann D, Vincendeau M. Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 2016; 39:3-14. [DOI: 10.1016/j.semcancer.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
|
106
|
Negative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation. Immunol Cell Biol 2016; 94:821-829. [PMID: 27121163 PMCID: PMC5073155 DOI: 10.1038/icb.2016.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) signaling pathway is crucial in B-cell physiology. One key molecule regulating this pathway is the serine/threonine kinase TAK1 (MAP3K7). TAK1 is responsible for positive feedback mechanisms in B-cell receptor signaling that serve as an NF-κB activation threshold. This study aimed to better understand the correlation between TAK1-mediated signaling and B-cell development and humoral immune responses. Here we showed that a B-cell conditional deletion of TAK1 using mb1-cre resulted in a dramatic elimination of the humoral immune response, consistent with the absence of the B-1 B-cell subset. When monitoring the self-reactive B-cell system (the immunoglobulin hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model), we found that TAK1-deficient B cells exhibited an enhanced susceptibility to cell death that might explain the disappearance of the B1 subset. In contrast, these mice gained numerous marginal zone (MZ) B cells. We consequently examined the basal and B-cell receptor-induced activity of NF-κB2 that is reported to regulate MZ B-cell development, and demonstrated that the activity of NF-κB2 increased in TAK1-deficient B cells. Thus, our results present a novel in vivo function, the negative role of TAK1 in MZ B-cell development that is likely associated with NF-κB2 activation.
Collapse
|
107
|
Afonina IS, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, Beyaert R. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep 2016; 17:914-27. [PMID: 27113748 DOI: 10.15252/embr.201642109] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
Mutations in CARD14 have recently been linked to psoriasis susceptibility. CARD14 is an epidermal regulator of NF-κB activation. However, the ability of CARD14 to activate other signaling pathways as well as the biochemical mechanisms that mediate and regulate its function remain to be determined. Here, we report that in addition to NF-κB signaling, CARD14 activates p38 and JNK MAP kinase pathways, all of which are dependent on the paracaspase MALT1. Mechanistically, we demonstrate that CARD14 physically interacts with paracaspase MALT1 and activates MALT1 proteolytic activity and inflammatory gene expression, which are enhanced by psoriasis-associated CARD14 mutations. Moreover, we show that MALT1 deficiency or pharmacological inhibition of MALT1 catalytic activity inhibits pathogenic mutant CARD14-induced cytokine and chemokine expression in human primary keratinocytes. Collectively, our findings demonstrate a novel role for MALT1 in CARD14-induced signaling and indicate MALT1 as a valuable therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Baudelet
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
108
|
Alternative splicing of MALT1 controls signalling and activation of CD4(+) T cells. Nat Commun 2016; 7:11292. [PMID: 27068814 PMCID: PMC4832065 DOI: 10.1038/ncomms11292] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
Abstract
MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7 inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and activation, downregulation of hnRNP U enhances MALT1A expression and T-cell activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding to enhance downstream signalling and to promote optimal T-cell activation. MALT1 regulates NFκB signalling both as a scaffolding protein and as a protease. Here the authors show that during T cell activation the expression of MALT1 gene switches to an alternatively spliced variant, which increases TCR signal transduction due to enhanced TRAF6 binding.
Collapse
|
109
|
Juilland M, Gonzalez M, Erdmann T, Banz Y, Jevnikar Z, Hailfinger S, Tzankov A, Grau M, Lenz G, Novak U, Thome M. CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas. Blood 2016; 127:1780-9. [PMID: 26747248 PMCID: PMC4863344 DOI: 10.1182/blood-2015-07-655647] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 12/22/2022] Open
Abstract
A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) type, a molecular subtype characterized by adverse outcome, is constitutive activation of the transcription factor nuclear factor-κB (NF-κB), which controls expression of genes promoting cellular survival and proliferation. Much less, however, is known about the role of the transcription factor activator protein-1 (AP-1) in ABC DLBCL. Here, we show that AP-1, like NF-κB, was controlled by constitutive activation of the B-cell receptor signaling component caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) and/or the Toll-like receptor signaling component myeloid differentiation primary response gene 88 (MyD88) in ABC DLBCL cell lines. In contrast to germinal center (GC) B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 family members c-Jun, JunB, and JunD, which formed heterodimeric complexes with the AP-1 family members activating transcription factor (ATF) 2, ATF3, and ATF7. Inhibition of these complexes by a dominant-negative approach led to impaired growth of a majority of ABC DLBCL cell lines. Individual silencing of c-Jun, ATF2, or ATF3 decreased cellular survival and revealed c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, ATF3 expression was much higher in ABC vs GCB DLBCL cell lines. Samples derived from DLBCL patients showed a clear trend toward high and nuclear ATF3 expression in nodal DLBCL of the non-GC or ABC subtype. These findings identify the activation of AP-1 complexes of the Jun/ATF-type as an important element controlling the growth of ABC DLBCL.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Tabea Erdmann
- Translational Oncology, Department of Medicine A, University Hospital Münster, Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Zala Jevnikar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Stephan Hailfinger
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Michael Grau
- Department of Physics, Philipps-University Marburg, Marburg, Germany; and
| | - Georg Lenz
- Translational Oncology, Department of Medicine A, University Hospital Münster, Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
110
|
Jeltsch KM, Heissmeyer V. Regulation of T cell signaling and autoimmunity by RNA-binding proteins. Curr Opin Immunol 2016; 39:127-35. [DOI: 10.1016/j.coi.2016.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/15/2016] [Accepted: 01/24/2016] [Indexed: 01/14/2023]
|
111
|
Schmitt A, Grondona P, Maier T, Brändle M, Schönfeld C, Jäger G, Kosnopfel C, Eberle FC, Schittek B, Schulze-Osthoff K, Yazdi AS, Hailfinger S. MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation. J Invest Dermatol 2016; 136:788-797. [DOI: 10.1016/j.jid.2015.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/24/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
|
112
|
Roquin recognizes a non-canonical hexaloop structure in the 3'-UTR of Ox40. Nat Commun 2016; 7:11032. [PMID: 27010430 PMCID: PMC5603727 DOI: 10.1038/ncomms11032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/15/2016] [Indexed: 02/07/2023] Open
Abstract
The RNA-binding protein Roquin is required to prevent autoimmunity. Roquin controls T-helper cell activation and differentiation by limiting the induced expression of costimulatory receptors such as tumor necrosis factor receptor superfamily 4 (Tnfrs4 or Ox40). A constitutive decay element (CDE) with a characteristic triloop hairpin was previously shown to be recognized by Roquin. Here we use SELEX assays to identify a novel U-rich hexaloop motif, representing an alternative decay element (ADE). Crystal structures and NMR data show that the Roquin-1 ROQ domain recognizes hexaloops in the SELEX-derived ADE and in an ADE-like variant present in the Ox40 3'-UTR with identical binding modes. In cells, ADE-like and CDE-like motifs cooperate in the repression of Ox40 by Roquin. Our data reveal an unexpected recognition of hexaloop cis elements for the posttranscriptional regulation of target messenger RNAs by Roquin.
Collapse
|
113
|
Schlundt A, Niessing D, Heissmeyer V, Sattler M. RNA recognition by Roquin in posttranscriptional gene regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:455-69. [PMID: 26844532 DOI: 10.1002/wrna.1333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 11/08/2022]
Abstract
Posttranscriptional regulation of gene expression plays a central role in the initiation of innate and adaptive immune responses. This is exemplified by the protein Roquin, which has attracted great interest during the past decade owing to its ability to prevent autoimmunity. Roquin controls T-cell activation and T helper cell differentiation by limiting the induced expression of costimulatory receptors on the surface of T cells. It does so by recognizing cis regulatory RNA-hairpin elements in the 3' UTR of target transcripts via its ROQ domain-a novel RNA-binding fold-and triggering their degradation through recruitment of factors that mediate deadenylation and decapping. Recent structural studies have revealed molecular details of the recognition of RNA hairpin structures by the ROQ domain. Surprisingly, it was found that Roquin mainly relies on shape-specific recognition of the RNA. This observation implies that a much broader range of RNA motifs could interact with the protein, but it also complicates systematic searches for novel mRNA targets of Roquin. Thus, large-scale approaches, such as crosslinking and immunoprecipitation or systematic evolution of ligands by exponential enrichment experiments coupled with next-generation sequencing, will be required to identify the complete spectrum of its target RNAs. Together with structural analyses of their binding modes, this will enable us to unravel the intricate complexity of 3' UTR regulation by Roquin and other trans-acting factors. Here, we review our current understanding of Roquin-RNA interactions and their role for Roquin function. WIREs RNA 2016, 7:455-469. doi: 10.1002/wrna.1333 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andreas Schlundt
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Cell Biology, Biomedical Center of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute of Molecular Immunology, Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany.,Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
114
|
Jaworski M, Thome M. The paracaspase MALT1: biological function and potential for therapeutic inhibition. Cell Mol Life Sci 2016; 73:459-73. [PMID: 26507244 PMCID: PMC4713714 DOI: 10.1007/s00018-015-2059-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023]
Abstract
The paracaspase MALT1 has a central role in the activation of lymphocytes and other immune cells including myeloid cells, mast cells and NK cells. MALT1 activity is required not only for the immune response, but also for the development of natural Treg cells that keep the immune response in check. Exaggerated MALT1 activity has been associated with the development of lymphoid malignancies, and recently developed MALT1 inhibitors show promising anti-tumor effects in xenograft models of diffuse large B cell lymphoma. In this review, we provide an overview of the present understanding of MALT1's function, and discuss possibilities for its therapeutic targeting based on recently developed inhibitors and animal models.
Collapse
Affiliation(s)
- Maike Jaworski
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland.
| |
Collapse
|
115
|
Demeyer A, Staal J, Beyaert R. Targeting MALT1 Proteolytic Activity in Immunity, Inflammation and Disease: Good or Bad? Trends Mol Med 2016; 22:135-150. [PMID: 26787500 DOI: 10.1016/j.molmed.2015.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
Abstract
MALT1 is a signaling protein that plays a key role in immunity, inflammation, and lymphoid malignancies. For a long time MALT1 was believed to function as a scaffold protein, providing an assembly platform for other signaling proteins. This view changed dramatically when MALT1 was also found to have proteolytic activity and a capacity to fine-tune immune responses. Preclinical studies have fostered the belief that MALT1 is a promising therapeutic target in autoimmunity and B cell lymphomas. However, recent studies have shown that mice expressing catalytically-inactive MALT1 develop multi-organ inflammation and autoimmunity, and thus have tempered this initial enthusiasm. We discuss recent findings, highlighting the urgent need for a better mechanistic and functional understanding of MALT1 in host defense and disease.
Collapse
Affiliation(s)
- Annelies Demeyer
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jens Staal
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
116
|
Douanne T, Gavard J, Bidère N. The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling. J Cell Sci 2016; 129:1775-80. [DOI: 10.1242/jcs.185025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Antigen receptor-mediated activation of lymphocytes relies on a signalosome comprising CARMA1, BCL10 and MALT1 (CBM complex). The CBM activates NF-κB transcription factors by recruiting the “linear ubiquitin assembly complex” (LUBAC), and unleashes MALT1 paracaspase activity. Although MALT1 enzyme shapes NF-κB signaling, lymphocyte activation and contributes to lymphoma growth, the identity of its substrates continues to be elucidated. Here, we report that the LUBAC subunit HOIL1 is cleaved by MALT1 following antigen receptor engagement. HOIL1 is also constitutively processed in the “Activated B-Cell like” (ABC) subtype of diffuse large B-Cell Lymphoma (DLBCL), which exhibits aberrant MALT1 activity. We further show that the overexpression of MALT1-insensitive HOIL1 mitigates T-cell receptor-mediated NF-κB activation and subsequent cytokine production in lymphocytes. Thus, our results unveil HOIL1 as a negative regulator of lymphocyte activation cleaved by MALT1. This cleavage could therefore constitute an appealing therapeutic target for modulating immune responses.
Collapse
Affiliation(s)
- Tiphaine Douanne
- INSERM U892, Cancer Research Center Nantes-Angers, Nantes, France
- CNRS UMR6299, Cancer Research Center Nantes-Angers, Nantes, France
- University of Nantes, Nantes, France
- Team SOAP: “Signaling in Oncogenesis, Angiogenesis, and Permeability”, Cancer Research Center Nantes-Angers, IRS-UN blg, Room 416, 8 quai Moncousu, 44007 Nantes, France
| | - Julie Gavard
- INSERM U892, Cancer Research Center Nantes-Angers, Nantes, France
- CNRS UMR6299, Cancer Research Center Nantes-Angers, Nantes, France
- University of Nantes, Nantes, France
- Team SOAP: “Signaling in Oncogenesis, Angiogenesis, and Permeability”, Cancer Research Center Nantes-Angers, IRS-UN blg, Room 416, 8 quai Moncousu, 44007 Nantes, France
| | - Nicolas Bidère
- INSERM U892, Cancer Research Center Nantes-Angers, Nantes, France
- CNRS UMR6299, Cancer Research Center Nantes-Angers, Nantes, France
- University of Nantes, Nantes, France
- Team SOAP: “Signaling in Oncogenesis, Angiogenesis, and Permeability”, Cancer Research Center Nantes-Angers, IRS-UN blg, Room 416, 8 quai Moncousu, 44007 Nantes, France
| |
Collapse
|
117
|
Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation. Proc Natl Acad Sci U S A 2015; 112:E7230-8. [PMID: 26668357 DOI: 10.1073/pnas.1507459112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL.
Collapse
|
118
|
Shi JH, Sun SC. TCR signaling to NF-κB and mTORC1: Expanding roles of the CARMA1 complex. Mol Immunol 2015; 68:546-57. [PMID: 26260210 PMCID: PMC4679546 DOI: 10.1016/j.molimm.2015.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 07/19/2015] [Indexed: 12/25/2022]
Abstract
Naïve T-cell activation requires signals from both the T-cell receptor (TCR) and the costimulatory molecule CD28. A central mediator of the TCR and CD28 signals is the scaffold protein CARMA1, which functions by forming a complex with partner proteins, Bcl10 and MALT1. A well-known function of the CARMA1 signaling complex is to mediate activation of IκB kinase (IKK) and its target transcription factor NF-κB, thereby promoting T-cell activation and survival. Recent evidence suggests that CARMA1 also mediates TCR/CD28-stimulated activation of the IKK-related kinase TBK1, which plays a role in regulating the homeostasis and migration of T cells. Moreover, the CARMA1 complex connects the TCR/CD28 signals to the activation of mTORC1, a metabolic kinase regulating various aspects of T-cell functions. This review will discuss the mechanism underlying the activation of the CARMA1-dependent signaling pathways and their roles in regulating T-cell functions.
Collapse
Affiliation(s)
- Jian-hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding 071000, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
119
|
Elton L, Carpentier I, Staal J, Driege Y, Haegman M, Beyaert R. MALT1 cleaves the E3 ubiquitin ligase HOIL-1 in activated T cells, generating a dominant negative inhibitor of LUBAC-induced NF-κB signaling. FEBS J 2015; 283:403-12. [DOI: 10.1111/febs.13597] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Lynn Elton
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Jens Staal
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Yasmine Driege
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Mira Haegman
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology; Ghent University; Belgium
| |
Collapse
|
120
|
Klein T, Fung SY, Renner F, Blank MA, Dufour A, Kang S, Bolger-Munro M, Scurll JM, Priatel JJ, Schweigler P, Melkko S, Gold MR, Viner RI, Régnier CH, Turvey SE, Overall CM. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling. Nat Commun 2015; 6:8777. [PMID: 26525107 PMCID: PMC4659944 DOI: 10.1038/ncomms9777] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1(mut/mut) patient with healthy MALT1(+/mut) family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway-first promoting activation via the CBM--then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.
Collapse
Affiliation(s)
- Theo Klein
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Oral Biological and Medical Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Shan-Yu Fung
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Child &Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada V6T 1Z3
| | - Florian Renner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Michael A Blank
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, 95134 California, USA
| | - Antoine Dufour
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Oral Biological and Medical Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sohyeong Kang
- Child &Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Madison Bolger-Munro
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Joshua M Scurll
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - John J Priatel
- Child &Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Patrick Schweigler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Samu Melkko
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Michael R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Rosa I Viner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, 95134 California, USA
| | - Catherine H Régnier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Child &Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada V6T 1Z3
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Department of Oral Biological and Medical Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.,Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
121
|
MALT1 is an intrinsic regulator of regulatory T cells. Cell Death Differ 2015; 24:1214-1223. [PMID: 26405015 PMCID: PMC5584480 DOI: 10.1038/cdd.2015.104] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/25/2015] [Accepted: 06/07/2015] [Indexed: 01/02/2023] Open
Abstract
Regulatory T cells (Tregs) are crucial for the maintenance of immunological self-tolerance and their absence or dysfunction can lead to autoimmunity. However, the molecular pathways that govern Treg biology remain obscure. In this study, we show that the nuclear factor-κB signalling mediator mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is an important novel regulator of both Tregs originating in the thymus (‘natural’ or nTregs) and Tregs induced to differentiate from naive thymocyte helper (Th) cells in the periphery (‘induced’ or iTregs). Our examination of mice deficient for MALT1 revealed that these mutants have a reduced number of total Tregs. In young Malt1−/− mice, nTregs are totally absent and iTreg are diminished in the periphery. Interestingly, total Treg numbers increase in older Malt1−/− mice as well as in Malt1−/− mice subjected to experimentally induced inflammation. iTregs isolated from WT and Malt1−/− mice were indistinguishable with respect to their ability to suppress the activities of effector T cells, but Malt1−/− iTregs expressed higher levels of Toll-like receptor (TLR) 2. Treatment of WT and Malt1−/− Th cells in vitro with the TLR2 ligand Pam3Cys strongly enhanced the induction and proliferation of Malt1−/− iTregs. Our data suggest that MALT1 supports nTreg development in the thymus but suppresses iTreg induction in the periphery during inflammation. Our data position MALT1 as a key molecule that contributes to immune tolerance at steady-state while facilitating immune reactivity under stress conditions.
Collapse
|
122
|
Abstract
The human paracaspase MALT1 is a caspase homolog that plays a central role in NF-κB signaling. Over the past few years it has become clear that this is due to a combination of its scaffolding and proteolytic function. Knockout mice and mice expressing a catalytically dead variant of the protease have provided valuable information. This review aims to provide an overview of recent developments regarding the enzymatic mechanism and specificity of MALT1, its substrates discovered to date, different mouse models, as well as the role of MALT1 in NF-κB signaling downstream of a variety of different receptors.
Collapse
|
123
|
Garg AV, Amatya N, Chen K, Cruz JA, Grover P, Whibley N, Conti HR, Hernandez Mir G, Sirakova T, Childs EC, Smithgall TE, Biswas PS, Kolls JK, McGeachy MJ, Kolattukudy PE, Gaffen SL. MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity 2015; 43:475-87. [PMID: 26320658 DOI: 10.1016/j.immuni.2015.07.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 01/13/2023]
Abstract
Interleukin-17 (IL-17) induces pathology in autoimmunity and infections; therefore, constraint of this pathway is an essential component of its regulation. We demonstrate that the signaling intermediate MCPIP1 (also termed Regnase-1, encoded by Zc3h12a) is a feedback inhibitor of IL-17 receptor signal transduction. MCPIP1 knockdown enhanced IL-17-mediated signaling, requiring MCPIP1's endoribonuclease but not deubiquitinase domain. MCPIP1 haploinsufficient mice showed enhanced resistance to disseminated Candida albicans infection, which was reversed in an Il17ra(-/-) background. Conversely, IL-17-dependent pathology in Zc3h12a(+/-) mice was exacerbated in both EAE and pulmonary inflammation. MCPIP1 degraded Il6 mRNA directly but only modestly downregulated the IL-6 promoter. However, MCPIP1 strongly inhibited the Lcn2 promoter by regulating the mRNA stability of Nfkbiz, encoding the IκBζ transcription factor. Unexpectedly, MCPIP1 degraded Il17ra and Il17rc mRNA, independently of the 3' UTR. The cumulative impact of MCPIP1 on IL-6, IκBζ, and possibly IL-17R subunits results in a biologically relevant inhibition of IL-17 signaling.
Collapse
Affiliation(s)
- Abhishek V Garg
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nilesh Amatya
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kong Chen
- Department of Pediatrics & Immunology, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - J Agustin Cruz
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prerna Grover
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Natasha Whibley
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heather R Conti
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gerard Hernandez Mir
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Erin C Childs
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thomas E Smithgall
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Department of Pediatrics & Immunology, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Mandy J McGeachy
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pappachan E Kolattukudy
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
124
|
Afonina IS, Elton L, Carpentier I, Beyaert R. MALT1--a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS J 2015; 282:3286-97. [PMID: 25996250 DOI: 10.1111/febs.13325] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/19/2015] [Indexed: 12/27/2022]
Abstract
The paracaspase MALT1 (mucosa associated lymphoid tissue lymphoma translocation gene 1) is an intracellular signaling protein that plays a key role in innate and adaptive immunity. It is essential for nuclear factor κB (NF-κB) activation and proinflammatory gene expression downstream of several cell surface receptors. MALT1 has been most studied in the context of T-cell receptor-induced NF-κB signaling, supporting T-cell activation and proliferation. In addition, MALT1 hyperactivation is associated with specific subtypes of B-cell lymphoma, where it controls tumor cell proliferation and survival. For a long time, MALT1 was believed to function solely as a scaffold protein, providing a platform for the assembly of other NF-κB signaling proteins. However, this view changed dramatically when MALT1 was found to have proteolytic activity that further fine-tunes signaling. MALT1 proteolytic activity is essential for T-cell activation and lymphomagenesis, suggesting that MALT1 is a promising therapeutic target for the treatment of autoimmune diseases and distinct lymphoma entities. However, interference with MALT1 activity may pose a dangerous threat to the normal functioning of the immune system and should be evaluated with great care. Here we discuss the current knowledge on the scaffold and protease functions of MALT1, including an overview of its substrates and the functional implications of their cleavage.
Collapse
Affiliation(s)
- Inna S Afonina
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lynn Elton
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
125
|
Yu JW, Hoffman S, Beal AM, Dykon A, Ringenberg MA, Hughes AC, Dare L, Anderson AD, Finger J, Kasparcova V, Rickard D, Berger SB, Ramanjulu J, Emery JG, Gough PJ, Bertin J, Foley KP. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses. PLoS One 2015; 10:e0127083. [PMID: 25965667 PMCID: PMC4428694 DOI: 10.1371/journal.pone.0127083] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/11/2015] [Indexed: 11/26/2022] Open
Abstract
CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo.
Collapse
Affiliation(s)
- Jong W. Yu
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Sandy Hoffman
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Allison M. Beal
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Angela Dykon
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Michael A. Ringenberg
- Department of Safety Assessment, GlaxoSmithKline, King of Prussia, United States of America
| | - Anna C. Hughes
- Department of Safety Assessment, GlaxoSmithKline, King of Prussia, United States of America
| | - Lauren Dare
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Amber D. Anderson
- Quantitative Sciences, GlaxoSmithKline, Collegeville, United States of America
| | - Joshua Finger
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Viera Kasparcova
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - David Rickard
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Scott B. Berger
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Joshi Ramanjulu
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - John G. Emery
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - Peter J. Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
- * E-mail:
| | - Kevin P. Foley
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, United States of America
| |
Collapse
|
126
|
Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, Rush JS, Smith PA, Bigaud M, Junker-Walker U, Burkhart C, Dawson J, Niwa S, Katopodis A, Nuesslein-Hildesheim B, Weckbecker G, Zenke G, Kinzel B, Traggiai E, Brenner D, Brüstle A, St. Paul M, Zamurovic N, McCoy KD, Rolink A, Régnier CH, Mak TW, Ohashi PS, Patel DD, Calzascia T. Deficiency of MALT1 Paracaspase Activity Results in Unbalanced Regulatory and Effector T and B Cell Responses Leading to Multiorgan Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:3723-34. [DOI: 10.4049/jimmunol.1402254] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
|
127
|
Sasaki Y, Iwai K. Roles of the NF-κB Pathway in B-Lymphocyte Biology. Curr Top Microbiol Immunol 2015; 393:177-209. [PMID: 26275874 DOI: 10.1007/82_2015_479] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NF-κB was originally identified as a family of transcription factors that bind the enhancer of the immunoglobulin κ light-chain gene. Although its function in the regulation of immunoglobulin κ light-chain gene remains unclear, NF-κB plays critical roles in development, survival, and activation of B lymphocytes. In B cells, many receptors, including B-cell antigen receptor (BCR), activate NF-κB pathway, and the molecular mechanism of receptor-mediated activation of IκB kinase (IKK) complex has been partially revealed. In addition to normal B lymphocytes, NF-κB is also involved in the growth of some types of B-cell lymphomas, and many oncogenic mutations involved in constitutive activation of the NF-κB pathway were recently identified in such cancers. In this review, we first summarize the function of NF-κB in B-cell development and activation, and then describe recent progress in understanding the molecular mechanism of receptor-mediated activation of the IKK complex, focusing on the roles of the ubiquitin system. In the last section, we describe oncogenic mutations that induce NF-κB activation in B-cell lymphoma.
Collapse
Affiliation(s)
- Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|