101
|
Sadowski K, Jażdżewska A, Kozłowski J, Zacny A, Lorenc T, Olejarz W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int J Mol Sci 2024; 25:5774. [PMID: 38891962 PMCID: PMC11172387 DOI: 10.3390/ijms25115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are no longer limited to the standard therapies due to rapid advancements in biotechnology. New methods enable a more precise approach by targeting individual cells and antigens to overcome cancer. For the treatment of glioblastoma, these are gamma knife therapy, proton beam therapy, tumor-treating fields, EGFR and VEGF inhibitors, multiple RTKs inhibitors, and PI3K pathway inhibitors. In addition, the increasing understanding of the role of the immune system in tumorigenesis and the ability to identify tumor-specific antigens helped to develop immunotherapies targeting GBM and immune cells, including CAR-T, CAR-NK cells, dendritic cells, and immune checkpoint inhibitors. Each of the described methods has its advantages and disadvantages and faces problems, such as the inefficient crossing of the blood-brain barrier, various neurological and systemic side effects, and the escape mechanism of the tumor. This work aims to present the current modern treatments of glioblastoma.
Collapse
Affiliation(s)
- Karol Sadowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adrianna Jażdżewska
- The Department of Anatomy and Neurobiology, Medical University of Gdansk, Dębinki 1, 80-211 Gdansk, Poland;
| | - Jan Kozłowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Aleksandra Zacny
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Tomasz Lorenc
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
102
|
Alorfi NM, Ashour AM, Alharbi AS, Alshehri FS. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine (Baltimore) 2024; 103:e38245. [PMID: 38788009 PMCID: PMC11124608 DOI: 10.1097/md.0000000000038245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant brain tumor with a dismal prognosis despite current treatment strategies. Inflammation plays an essential role in GBM pathophysiology, contributing to tumor growth, invasion, immunosuppression, and angiogenesis. As a result, pharmacological intervention with anti-inflammatory drugs has been used as a potential approach for the management of GBM. To provide an overview of the current understanding of GBM pathophysiology, potential therapeutic applications of anti-inflammatory drugs in GBM, conventional treatments of glioblastoma and emerging therapeutic approaches currently under investigation. A narrative review was carried out, scanning publications from 2000 to 2023 on PubMed and Google Scholar. The search was not guided by a set research question or a specific search method but rather focused on the area of interest. Conventional treatments such as surgery, radiotherapy, and chemotherapy have shown some benefits, but their effectiveness is limited by various factors such as tumor heterogeneity and resistance.
Collapse
Affiliation(s)
- Nasser M. Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adnan S. Alharbi
- Pharmacy Practice Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S. Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
103
|
Douglas C, Lomeli N, Vu T, Pham J, Bota DA. WITHDRAWN: LonP1 Drives Proneural Mesenchymal Transition in IDH1-R132H Diffuse Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536817. [PMID: 37131765 PMCID: PMC10153221 DOI: 10.1101/2023.04.13.536817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
104
|
Nusraty S, Boddeti U, Zaghloul KA, Brown DA. Microglia in Glioblastomas: Molecular Insight and Immunotherapeutic Potential. Cancers (Basel) 2024; 16:1972. [PMID: 38893093 PMCID: PMC11171200 DOI: 10.3390/cancers16111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and devastating primary brain tumors, with a median survival of 15 months following diagnosis. Despite the intense treatment regimen which routinely includes maximal safe neurosurgical resection followed by adjuvant radio- and chemotherapy, the disease remains uniformly fatal. The poor prognosis associated with GBM is multifactorial owing to factors such as increased proliferation, angiogenesis, and metabolic switching to glycolytic pathways. Critically, GBM-mediated local and systemic immunosuppression result in inadequate immune surveillance and ultimately, tumor-immune escape. Microglia-the resident macrophages of the central nervous system (CNS)-play crucial roles in mediating the local immune response in the brain. Depending on the specific pathological cues, microglia are activated into either a pro-inflammatory, neurotoxic phenotype, known as M1, or an anti-inflammatory, regenerative phenotype, known as M2. In either case, microglia secrete corresponding pro- or anti-inflammatory cytokines and chemokines that either promote or hinder tumor growth. Herein, we review the interplay between GBM cells and resident microglia with a focus on contemporary studies highlighting the effect of GBM on the subtypes of microglia expressed, the associated cytokines/chemokines secreted, and ultimately, their impact on tumor pathogenesis. Finally, we explore how understanding the intricacies of the tumor-immune landscape can inform novel immunotherapeutic strategies against this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Desmond A. Brown
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (S.N.); (U.B.); (K.A.Z.)
| |
Collapse
|
105
|
Bumbaca B, Birtwistle MR, Gallo JM. Network Analyses of Brain Tumor Patients' Multiomic Data Reveals Pharmacological Opportunities to Alter Cell State Transitions. RESEARCH SQUARE 2024:rs.3.rs-4391296. [PMID: 38826227 PMCID: PMC11142360 DOI: 10.21203/rs.3.rs-4391296/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e. phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte- like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC, USA
- Department of Bioengineering, Clemson University, Clemson SC, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| |
Collapse
|
106
|
Haley MJ, Bere L, Minshull J, Georgaka S, Garcia-Martin N, Howell G, Coope DJ, Roncaroli F, King A, Wedge DC, Allan SM, Pathmanaban ON, Brough D, Couper KN. Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival. SCIENCE ADVANCES 2024; 10:eadj3301. [PMID: 38758780 PMCID: PMC11100569 DOI: 10.1126/sciadv.adj3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.
Collapse
Affiliation(s)
- Michael J. Haley
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| | - Leoma Bere
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| | - James Minshull
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Sokratia Georgaka
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | | | - Gareth Howell
- Flow Cytometry Core Research Facility, University of Manchester, Manchester, UK
| | - David J. Coope
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Andrew King
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - David C. Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Omar N. Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Kevin N. Couper
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| |
Collapse
|
107
|
Bumbaca B, Birtwistle MR, Gallo JM. Network Analyses of Brain Tumor Patients' Multiomic Data Reveals Pharmacological Opportunities to Alter Cell State Transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593202. [PMID: 38766170 PMCID: PMC11100715 DOI: 10.1101/2024.05.08.593202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e. phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC, USA
- Department of Bioengineering, Clemson University, Clemson SC, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| |
Collapse
|
108
|
Sun C, Wang S, Ma Z, Zhou J, Ding Z, Yuan G, Pan Y. Neutrophils in glioma microenvironment: from immune function to immunotherapy. Front Immunol 2024; 15:1393173. [PMID: 38779679 PMCID: PMC11109384 DOI: 10.3389/fimmu.2024.1393173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Glioma is a malignant tumor of the central nervous system (CNS). Currently, effective treatment options for gliomas are still lacking. Neutrophils, as an important member of the tumor microenvironment (TME), are widely distributed in circulation. Recently, the discovery of cranial-meningeal channels and intracranial lymphatic vessels has provided new insights into the origins of neutrophils in the CNS. Neutrophils in the brain may originate more from the skull and adjacent vertebral bone marrow. They cross the blood-brain barrier (BBB) under the action of chemokines and enter the brain parenchyma, subsequently migrating to the glioma TME and undergoing phenotypic changes upon contact with tumor cells. Under glycolytic metabolism model, neutrophils show complex and dual functions in different stages of cancer progression, including participation in the malignant progression, immune suppression, and anti-tumor effects of gliomas. Additionally, neutrophils in the TME interact with other immune cells, playing a crucial role in cancer immunotherapy. Targeting neutrophils may be a novel generation of immunotherapy and improve the efficacy of cancer treatments. This article reviews the molecular mechanisms of neutrophils infiltrating the central nervous system from the external environment, detailing the origin, functions, classifications, and targeted therapies of neutrophils in the context of glioma.
Collapse
Affiliation(s)
- Chao Sun
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Siwen Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhen Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jinghuan Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zilin Ding
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Yuan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yawen Pan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
109
|
Yabo YA, Heiland DH. Understanding glioblastoma at the single-cell level: Recent advances and future challenges. PLoS Biol 2024; 22:e3002640. [PMID: 38814900 PMCID: PMC11139343 DOI: 10.1371/journal.pbio.3002640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Glioblastoma, the most aggressive and prevalent form of primary brain tumor, is characterized by rapid growth, diffuse infiltration, and resistance to therapies. Intrinsic heterogeneity and cellular plasticity contribute to its rapid progression under therapy; therefore, there is a need to fully understand these tumors at a single-cell level. Over the past decade, single-cell transcriptomics has enabled the molecular characterization of individual cells within glioblastomas, providing previously unattainable insights into the genetic and molecular features that drive tumorigenesis, disease progression, and therapy resistance. However, despite advances in single-cell technologies, challenges such as high costs, complex data analysis and interpretation, and difficulties in translating findings into clinical practice persist. As single-cell technologies are developed further, more insights into the cellular and molecular heterogeneity of glioblastomas are expected, which will help guide the development of personalized and effective therapies, thereby improving prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Yahaya A Yabo
- Translational Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Microenvironment and Immunology Research Laboratory, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dieter Henrik Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Microenvironment and Immunology Research Laboratory, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
| |
Collapse
|
110
|
Junior MGV, Côrtes AMDA, Carneiro FRG, Carels N, da Silva FAB. Unveiling the Dynamics behind Glioblastoma Multiforme Single-Cell Data Heterogeneity. Int J Mol Sci 2024; 25:4894. [PMID: 38732140 PMCID: PMC11084314 DOI: 10.3390/ijms25094894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma Multiforme is a brain tumor distinguished by its aggressiveness. We suggested that this aggressiveness leads single-cell RNA-sequence data (scRNA-seq) to span a representative portion of the cancer attractors domain. This conjecture allowed us to interpret the scRNA-seq heterogeneity as reflecting a representative trajectory within the attractor's domain. We considered factors such as genomic instability to characterize the cancer dynamics through stochastic fixed points. The fixed points were derived from centroids obtained through various clustering methods to verify our method sensitivity. This methodological foundation is based upon sample and time average equivalence, assigning an interpretative value to the data cluster centroids and supporting parameters estimation. We used stochastic simulations to reproduce the dynamics, and our results showed an alignment between experimental and simulated dataset centroids. We also computed the Waddington landscape, which provided a visual framework for validating the centroids and standard deviations as characterizations of cancer attractors. Additionally, we examined the stability and transitions between attractors and revealed a potential interplay between subtypes. These transitions might be related to cancer recurrence and progression, connecting the molecular mechanisms of cancer heterogeneity with statistical properties of gene expression dynamics. Our work advances the modeling of gene expression dynamics and paves the way for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Marcos Guilherme Vieira Junior
- Graduate Program in Computational and Systems Biology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Adriano Maurício de Almeida Côrtes
- Department of Applied Mathematics, Institute of Mathematics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
- Systems Engineering and Computer Science Program, Coordination of Postgraduate Programs in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, Brazil
| | - Flávia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-361, Brazil;
- Laboratório Interdisciplinar de Pesquisas Médicas, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-361, Brazil
| | | |
Collapse
|
111
|
Licón-Muñoz Y, Avalos V, Subramanian S, Granger B, Martinez F, Varela S, Moore D, Perkins E, Kogan M, Berto S, Chohan M, Bowers C, Piccirillo S. Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590852. [PMID: 38712234 PMCID: PMC11071523 DOI: 10.1101/2024.04.24.590852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and emergence of recurrence. Here, we built a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass (T_Mass) and the SVZ (T_SVZ) of 15 GBM patients and 2 histologically normal SVZ (N_SVZ) samples as controls. We identified a mesenchymal signature in the T_SVZ of GBM patients: tumor cells from the T_SVZ relied on the ZEB1 regulatory network, whereas tumor cells in the T_Mass relied on the TEAD1 regulatory network. Moreover, the T_SVZ microenvironment was predominantly characterized by tumor-supportive microglia, which spatially co-exist and establish heterotypic interactions with tumor cells. Lastly, differential gene expression analyses, predictions of ligand-receptor and incoming/outgoing interactions, and functional assays revealed that the IL-1β/IL-1RAcP and Wnt-5a/Frizzled-3 pathways are therapeutic targets in the T_SVZ microenvironment. Our data provide insights into the biology of the SVZ in GBM patients and identify specific targets of this microenvironment.
Collapse
Affiliation(s)
- Y. Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - V. Avalos
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - S. Subramanian
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - B. Granger
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - F. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - S. Varela
- University of New Mexico School of Medicine, Albuquerque, NM
| | - D. Moore
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - E. Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS
| | - M. Kogan
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM
| | - S. Berto
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - M.O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS
| | - C.A. Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM
| | - S.G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| |
Collapse
|
112
|
Choi SH, Jang J, Kim Y, Park CG, Lee SY, Kim H, Kim H. ID1 high/activin A high glioblastoma cells contribute to resistance to anti-angiogenesis therapy through malformed vasculature. Cell Death Dis 2024; 15:292. [PMID: 38658527 PMCID: PMC11043395 DOI: 10.1038/s41419-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cheol Gyu Park
- MEDIFIC Inc, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
113
|
Smith CM, Catchpoole D, Hutvagner G. MiRNAs from the Dlk1-Dio3 locus and miR-224/452 cluster contribute to glioblastoma tumor heterogeneity. Sci Rep 2024; 14:8570. [PMID: 38609422 PMCID: PMC11014907 DOI: 10.1038/s41598-024-58870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Glioblastoma is one of the most common and aggressive brain tumors and has seen few improvements in patient outcomes. Inter-tumor heterogeneity between tumors of different patients as well as intra-tumor heterogeneity of cells within the same tumor challenge the development of effective drugs. MiRNAs play an essential role throughout the developing brain and regulate many key genes involved in oncogenesis, yet their role in driving many of the processes underlying tumor heterogeneity remains unclear. In this study, we highlight miRNAs from the Dlk1-Dio3 and miR-224/452 clusters which may be expressed cell autonomously and have expression that is associated with cell state genes in glioblastoma, most prominently in neural progenitor-like and mesenchymal-like states respectively. These findings implicate these miRNA clusters as potential regulators of glioblastoma intra-tumoral heterogeneity and may serve as valuable biomarkers for cell state identification.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel Catchpoole
- School of Computer Sciences, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
- The Tumour Bank, The Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
114
|
Pallarés-Moratalla C, Bergers G. The ins and outs of microglial cells in brain health and disease. Front Immunol 2024; 15:1305087. [PMID: 38665919 PMCID: PMC11043497 DOI: 10.3389/fimmu.2024.1305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.
Collapse
|
115
|
Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Nosirov B, Scafidi A, Ermini L, Lipsa A, Oudin A, Kyriakis D, Grzyb K, Poovathingal SK, Poli A, Muller A, Toth R, Klink B, Berchem G, Berthold C, Hertel F, Mittelbronn M, Heiland DH, Skupin A, Nazarov PV, Niclou SP, Michelucci A, Golebiewska A. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. Genome Med 2024; 16:51. [PMID: 38566128 PMCID: PMC10988817 DOI: 10.1186/s13073-024-01321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Pilar M Moreno-Sanchez
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Yolanda Pires-Afonso
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Andrea Scafidi
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Dimitrios Kyriakis
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Single Cell Analytics & Microfluidics Core, Vlaams Instituut Voor Biotechnologie-KU Leuven, 3000, Louvain, Belgium
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Arnaud Muller
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Reka Toth
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- German Cancer Consortium (DKTK): Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Cancer Consortium (DKTK) Partner Site Dresden, and German Cancer Research Center (DKFZ), Dresden, Heidelberg, 01307, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Guy Berchem
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- Centre Hospitalier Luxembourg, L-1210, Luxembourg, Luxembourg
| | | | - Frank Hertel
- Centre Hospitalier Luxembourg, L-1210, Luxembourg, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
| | - Dieter H Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Neurosurgery, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106, Freiburg, Germany
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University Luxembourg, L-4367, Belvaux, Luxembourg
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Petr V Nazarov
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg.
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg.
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg.
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
116
|
Zhou Z, Zhang J, Zheng X, Pan Z, Zhao F, Gao Y. CIRI-Deep Enables Single-Cell and Spatial Transcriptomic Analysis of Circular RNAs with Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308115. [PMID: 38308181 PMCID: PMC11005702 DOI: 10.1002/advs.202308115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Circular RNAs (circRNAs) are a crucial yet relatively unexplored class of transcripts known for their tissue- and cell-type-specific expression patterns. Despite the advances in single-cell and spatial transcriptomics, these technologies face difficulties in effectively profiling circRNAs due to inherent limitations in circRNA sequencing efficiency. To address this gap, a deep learning model, CIRI-deep, is presented for comprehensive prediction of circRNA regulation on diverse types of RNA-seq data. CIRI-deep is trained on an extensive dataset of 25 million high-confidence circRNA regulation events and achieved high performances on both test and leave-out data, ensuring its accuracy in inferring differential events from RNA-seq data. It is demonstrated that CIRI-deep and its adapted version enable various circRNA analyses, including cluster- or region-specific circRNA detection, BSJ ratio map visualization, and trans and cis feature importance evaluation. Collectively, CIRI-deep's adaptability extends to all major types of RNA-seq datasets including single-cell and spatial transcriptomic data, which will undoubtedly broaden the horizons of circRNA research.
Collapse
Affiliation(s)
- Zihan Zhou
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Jinyang Zhang
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Xin Zheng
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Zhicheng Pan
- Center for Computational Biology Flatiron InstituteNew York10010USA
| | - Fangqing Zhao
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Yuan Gao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| |
Collapse
|
117
|
Ji Q, Guo Y, Li Z, Zhang X. WTAP regulates the production of reactive oxygen species, promotes malignant progression, and is closely related to the tumor microenvironment in glioblastoma. Aging (Albany NY) 2024; 16:5601-5617. [PMID: 38535989 PMCID: PMC11006471 DOI: 10.18632/aging.205666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
RNA modifications have been substantiated to regulate the majority of physiological activities in the organism, including the metabolism of reactive oxygen species (ROS), which plays an important role in cells. As for the effect of RNA modification genes on ROS metabolism in glioblastoma (GBM), it has not been studied yet. Therefore, this study aims to screen the RNA modification genes that are most related to ROS metabolism and explore their effects on the biological behavior of GBM in vitro. Here, an association between WTAP and ROS metabolism was identified by bioinformatics analysis, and WTAP was highly expressed in GBM tissue compared with normal brain tissue, which was confirmed by western blotting and immunohistochemical staining. When using a ROS inducer to stimulate GBM cells in the WTAP overexpression group, the ROS level increased more significantly and the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) also increased. Next, colony formation assay, wound healing assay, and transwell assay were performed to investigate the proliferation, migration, and invasion of GBM cells. The results showed that WTAP, as an oncogene, promoted the malignant progression of GBM cells. Functional enrichment analysis predicted that WTAP was involved in the regulation of tumor/immune-related functional pathways. Western blotting was used to identify that WTAP had a regulatory effect on the phosphorylation of PI3K/Akt signaling. Finally, based on functional enrichment analysis, we further performed immune-related analysis on WTAP. In conclusion, this study analyzed WTAP from three aspects, which provided new ideas for the treatment of GBM.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Yazhou Guo
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Zibo Li
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Xiaoyang Zhang
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| |
Collapse
|
118
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
119
|
Fan Q, Wang H, Gu T, Liu H, Deng P, Li B, Yang H, Mao Y, Shao Z. Modeling the precise interaction of glioblastoma with human brain region-specific organoids. iScience 2024; 27:109111. [PMID: 38390494 PMCID: PMC10882168 DOI: 10.1016/j.isci.2024.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Glioblastoma is a highly aggressive malignant tumor of the central nervous system, but the interaction between glioblastoma and different types of neurons remains unclear. Here, we established a co-culture model in vitro using 3D printed molds with microchannels, in which glioblastoma organoids (GB), dorsal forebrain organoids (DO, mainly composed of excitatory neurons), and ventral forebrain organoids (VO, mainly composed of inhibitory neurons) were assembled. Our results indicate that DO has a greater impact on altered gene expression profiles of GB, resulting in increased invasive potential. GB cells preferentially invaded DO along axons, whereas this phenomenon was not observed in VO. Furthermore, GB cells selectively inhibited neurite outgrowth in DOs and reduced the expression of the vesicular GABA transporter (VGAT), leading to neuronal hyperexcitability. By revealing how glioblastoma interacts with brain cells, our study provides a more comprehensive understanding of this disease.
Collapse
Affiliation(s)
- Qi Fan
- Institutes for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Hanze Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Tianyi Gu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| | - Huihui Liu
- Institutes for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Peng Deng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhicheng Shao
- Institutes for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
120
|
Liu Y, Zhu R, Xu T, Chen Y, Ding Y, Zuo S, Xu L, Xie HQ, Zhao B. Potential AhR-independent mechanisms of 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibition of human glioblastoma A172 cells migration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116172. [PMID: 38458072 DOI: 10.1016/j.ecoenv.2024.116172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
The toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is generally believed to be mediated by aryl hydrocarbon receptor (AhR), but some evidence suggests that the effects of TCDD can also be produced through AhR-independent mechanisms. In previous experiments, we found that mainly AhR-dependent mechanism was involved in the migration inhibition of glioblastoma U87 cells by TCDD. Due to the heterogeneity of glioblastomas, not all tumor cells have significant AhR expression. The effects and mechanisms of TCDD on the migration of glioblastomas with low AhR expression are still unclear. We employed a glioblastoma cell line A172 with low AhR expression as a model, using wound healing and Transwell® assay to detect the effect of TCDD on cell migration. We found that TCDD can inhibit the migration of A172 cells without activating AhR signaling pathway. Further, after being pre-treated with AhR antagonist CH223191, the inhibition of TCDD on A172 cells migration was not changed, indicating that the effect of TCDD on A172 cells is not dependent on AhR activation. By transcriptome sequencing analysis, we propose dysregulation of the expression of certain migration-related genes, such as IL6, IL1B, CXCL8, FOS, SYK, and PTGS2 involved in cytokines, MAPK, NF-κB, and IL-17 signaling pathways, as potential AhR-independent mechanisms that mediate the inhibition of TCDD migration in A172 cells.
Collapse
Affiliation(s)
- Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; School of Public Health, Chongqing medical University, Chongqing, China
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Ding
- School of Public Health, Chongqing medical University, Chongqing, China
| | - Sijia Zuo
- School of Public Health, Chongqing medical University, Chongqing, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
121
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
122
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
123
|
Cho JW, Cao J, Hemberg M. Joint analysis of mutational and transcriptional landscapes in human cancer reveals key perturbations during cancer evolution. Genome Biol 2024; 25:65. [PMID: 38459554 PMCID: PMC10921788 DOI: 10.1186/s13059-024-03201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Tumors are able to acquire new capabilities, including traits such as drug resistance and metastasis that are associated with unfavorable clinical outcomes. Single-cell technologies have made it possible to study both mutational and transcriptomic profiles, but as most studies have been conducted on model systems, little is known about cancer evolution in human patients. Hence, a better understanding of cancer evolution could have important implications for treatment strategies. RESULTS Here, we analyze cancer evolution and clonal selection by jointly considering mutational and transcriptomic profiles of single cells acquired from tumor biopsies from 49 lung cancer samples and 51 samples with chronic myeloid leukemia. Comparing the two profiles, we find that each clone is associated with a preferred transcriptional state. For metastasis and drug resistance, we find that the number of mutations affecting related genes increases as the clone evolves, while changes in gene expression profiles are limited. Surprisingly, we find that mutations affecting ligand-receptor interactions with the tumor microenvironment frequently emerge as clones acquire drug resistance. CONCLUSIONS Our results show that lung cancer and chronic myeloid leukemia maintain a high clonal and transcriptional diversity, and we find little evidence in favor of clonal sweeps. This suggests that for these cancers selection based solely on growth rate is unlikely to be the dominating driving force during cancer evolution.
Collapse
Affiliation(s)
- Jae-Won Cho
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jingyi Cao
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Hemberg
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
124
|
Lan Z, Li X, Zhang X. Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. Int J Mol Sci 2024; 25:3040. [PMID: 38474286 PMCID: PMC10931698 DOI: 10.3390/ijms25053040] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant type of primary brain tumor in adults. Despite important advances in understanding the molecular pathogenesis and biology of this tumor in the past decade, the prognosis for GBM patients remains poor. GBM is characterized by aggressive biological behavior and high degrees of inter-tumor and intra-tumor heterogeneity. Increased understanding of the molecular and cellular heterogeneity of GBM may not only help more accurately define specific subgroups for precise diagnosis but also lay the groundwork for the successful implementation of targeted therapy. Herein, we systematically review the key achievements in the understanding of GBM molecular pathogenesis, mechanisms, and biomarkers in the past decade. We discuss the advances in the molecular pathology of GBM, including genetics, epigenetics, transcriptomics, and signaling pathways. We also review the molecular biomarkers that have potential clinical roles. Finally, new strategies, current challenges, and future directions for discovering new biomarkers and therapeutic targets for GBM will be discussed.
Collapse
Affiliation(s)
| | | | - Xiaoqin Zhang
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou 510006, China; (Z.L.); (X.L.)
| |
Collapse
|
125
|
Khan F, Lin Y, Ali H, Pang L, Dunterman M, Hsu WH, Frenis K, Grant Rowe R, Wainwright DA, McCortney K, Billingham LK, Miska J, Horbinski C, Lesniak MS, Chen P. Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression. Nat Commun 2024; 15:1987. [PMID: 38443336 PMCID: PMC10914854 DOI: 10.1038/s41467-024-46193-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Abundant macrophage infiltration and altered tumor metabolism are two key hallmarks of glioblastoma. By screening a cluster of metabolic small-molecule compounds, we show that inhibiting glioblastoma cell glycolysis impairs macrophage migration and lactate dehydrogenase inhibitor stiripentol emerges as the top hit. Combined profiling and functional studies demonstrate that lactate dehydrogenase A (LDHA)-directed extracellular signal-regulated kinase (ERK) pathway activates yes-associated protein 1 (YAP1)/ signal transducer and activator of transcription 3 (STAT3) transcriptional co-activators in glioblastoma cells to upregulate C-C motif chemokine ligand 2 (CCL2) and CCL7, which recruit macrophages into the tumor microenvironment. Reciprocally, infiltrating macrophages produce LDHA-containing extracellular vesicles to promote glioblastoma cell glycolysis, proliferation, and survival. Genetic and pharmacological inhibition of LDHA-mediated tumor-macrophage symbiosis markedly suppresses tumor progression and macrophage infiltration in glioblastoma mouse models. Analysis of tumor and plasma samples of glioblastoma patients confirms that LDHA and its downstream signals are potential biomarkers correlating positively with macrophage density. Thus, LDHA-mediated tumor-macrophage symbiosis provides therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Fatima Khan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heba Ali
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lizhi Pang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Madeline Dunterman
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wen-Hao Hsu
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Katie Frenis
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - R Grant Rowe
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
126
|
Sun Y, Mu G, Xue Z, Wang S, Li X, Ni S, Han M. Polyunsaturated fatty acid-binding protein FABP7, an attractive metabolic target for inhibition of glioblastoma stem cells. Neuro Oncol 2024; 26:587-589. [PMID: 38244234 PMCID: PMC10911995 DOI: 10.1093/neuonc/noad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Affiliation(s)
- Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Guangjing Mu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shuai Wang
- Departments of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
127
|
Liu RZ, Choi WS, Godbout R. Nuclear translocation matters: Role of FABP7 in driving glioblastoma stemness and invasion: Reply to Mu et al. Neuro Oncol 2024; 26:590-591. [PMID: 38244229 PMCID: PMC10911994 DOI: 10.1093/neuonc/noad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Won-Shik Choi
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
128
|
Sun C, Zhang Y, Wang Z, Chen J, Zhang J, Gu Y. TMED2 promotes glioma tumorigenesis by being involved in EGFR recycling transport. Int J Biol Macromol 2024; 262:130055. [PMID: 38354922 DOI: 10.1016/j.ijbiomac.2024.130055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Aberrant epidermal growth factor receptor (EGFR) signaling is the core signaling commonly activated in glioma. The transmembrane emp24 protein transport domain protein 2 (TMED2) interacts with cargo proteins involved in protein sorting and transport between endoplasmic reticulum (ER) and Golgi apparatus. In this study, we found the correlation between TMED2 with glioma progression and EGFR signaling through database analysis. Moreover, we demonstrated that TMED2 is essential for glioma cell proliferation, migration, and invasion at the cellular levels, as well as tumor formation in mouse models, underscoring its significance in the pathobiology of gliomas. Mechanistically, TMED2 was found to enhance EGFR-AKT signaling by facilitating EGFR recycling, thereby providing the initial evidence of TMED2's involvement in the membrane protein recycling process. In summary, our findings shed light on the roles and underlying mechanisms of TMED2 in the regulation of glioma tumorigenesis and EGFR signaling, suggesting that targeting TMED2 could emerge as a promising therapeutic strategy for gliomas and other tumors associated with aberrant EGFR signaling.
Collapse
Affiliation(s)
- Changning Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266200, China
| | - Yihan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266200, China
| | - Zhuangzhi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266200, China
| | - Jin Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junhua Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266200, China.
| |
Collapse
|
129
|
Li Y, Wang J, Song SR, Lv SQ, Qin JH, Yu SC. Models for evaluating glioblastoma invasion along white matter tracts. Trends Biotechnol 2024; 42:293-309. [PMID: 37806896 DOI: 10.1016/j.tibtech.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
White matter tracts (WMs) are one of the main invasion paths of glioblastoma multiforme (GBM). The lack of ideal research models hinders our understanding of the details and mechanisms of GBM invasion along WMs. To date, many potential in vitro models have been reported; nerve fiber culture models and nanomaterial models are biocompatible, and the former have electrically active neurons. Brain slice culture models, organoid models, and microfluidic chip models can simulate the real brain and tumor microenvironment (TME), which contains a variety of cell types. These models are closer to the real in vivo environment and are helpful for further studying not only invasion along WMs by GBM, but also perineural invasion and brain metastasis by solid tumors.
Collapse
Affiliation(s)
- Yao Li
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Chongqing 400037, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China
| | - Si-Rong Song
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Chongqing 400037, China
| | - Jian-Hua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Niaoning 116023, China.
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
130
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
131
|
Du ZS, Xie XH, Hu JJ, Fang Y, Ye L. Ultrasound for monitoring different stages of post-transplant lymphoproliferative disorder in a transplanted kidney: A case report and review of the literature. Medicine (Baltimore) 2024; 103:e36206. [PMID: 38394510 PMCID: PMC11309683 DOI: 10.1097/md.0000000000036206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/30/2023] [Indexed: 02/25/2024] Open
Abstract
RATIONALE Post-transplant lymphoproliferative disorder (PTLD) is a well-recognized, but uncommon complication in patients with kidney transplantation, which poses challenges in diagnosis and poor prognosis due to its low incidence and nonspecific clinical manifestations. As a routine follow-up examination method for kidney transplant patients, ultrasound (US) plays a significant role in the diagnosis of PTLD. Therefore, it is critical to evaluate the ultrasonic characteristics of PTLD in transplanted kidney patients for early detection and diagnosis. PATIENT CONCERNS A 59-year-old female patient was unexpectedly found with a mass in the hilum of the transplanted kidney 12th month after transplantation, which gradually grew up in the following 4 months. The latest US examination found hydronephrosis. Contrast-enhanced ultrasound (CEUS) demonstrated a hypo-enhancement pattern in arterial and parenchymal phases and showed a new irregular area lacking perceivable intensification within the mass, which was considered necrosis. Meanwhile, the patient developed an acute increase in serum creatinine from 122 to 195 μmol/L. DIAGNOSIS A US-guided biopsy was conducted with the final pathological diagnosis of PTLD (polymorphic). INTERVENTIONS After receiving 3 times of rituximab and symptomatic treatment, blood creatinine returned to normal but the mass was still progressing in the patient. Therefore, the treatment approach was modified to immune-chemotherapy. OUTCOMES The patient was in a stable condition to date. LESSONS PTLD is a rare complication in a transplanted kidney. US and CEUS are the preferred imaging methods in renal transplant patients due to their good repeatability and no nephrotoxicity. This case demonstrates that continuous dynamic monitoring by using US and CEUS has significant value in the detection and diagnosis of PTLD in a transplanted kidney, suggesting early clinical intervention to avoid further progression.
Collapse
Affiliation(s)
- Zu-Sheng Du
- Department of Ultrasound, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Xiao-Hong Xie
- Department of Ultrasound, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Jin-Jiao Hu
- Department of Ultrasound, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Ye Fang
- Department of Ultrasound, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Lu Ye
- Department of Ultrasound, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| |
Collapse
|
132
|
Ezzati S, Salib S, Balasubramaniam M, Aboud O. Epidermal Growth Factor Receptor Inhibitors in Glioblastoma: Current Status and Future Possibilities. Int J Mol Sci 2024; 25:2316. [PMID: 38396993 PMCID: PMC10889328 DOI: 10.3390/ijms25042316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma, a grade 4 glioma as per the World Health Organization, poses a challenge in adult primary brain tumor management despite advanced surgical techniques and multimodal therapies. This review delves into the potential of targeting epidermal growth factor receptor (EGFR) with small-molecule inhibitors and antibodies as a treatment strategy. EGFR, a mutationally active receptor tyrosine kinase in over 50% of glioblastoma cases, features variants like EGFRvIII, EGFRvII and missense mutations, necessitating a deep understanding of their structures and signaling pathways. Although EGFR inhibitors have demonstrated efficacy in other cancers, their application in glioblastoma is hindered by blood-brain barrier penetration and intrinsic resistance. The evolving realm of nanodrugs and convection-enhanced delivery offers promise in ensuring precise drug delivery to the brain. Critical to success is the identification of glioblastoma patient populations that benefit from EGFR inhibitors. Tools like radiolabeled anti-EGFR antibody 806i facilitate the visualization of EGFR conformations, aiding in tailored treatment selection. Recognizing the synergistic potential of combination therapies with downstream targets like mTOR, PI3k, and HDACs is pivotal for enhancing EGFR inhibitor efficacy. In conclusion, the era of precision oncology holds promise for targeting EGFR in glioblastoma, contingent on tailored treatments, effective blood-brain barrier navigation, and the exploration of synergistic therapies.
Collapse
Affiliation(s)
- Shawyon Ezzati
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA; (S.E.); (S.S.)
| | - Samuel Salib
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA; (S.E.); (S.S.)
| | | | - Orwa Aboud
- Department of Neurology, Department of Neurological Surgery, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
133
|
Boccacino JM, Dos Santos Peixoto R, Fernandes CFDL, Cangiano G, Sola PR, Coelho BP, Prado MB, Melo-Escobar MI, de Sousa BP, Ayyadhury S, Bader GD, Shinjo SMO, Marie SKN, da Rocha EL, Lopes MH. Integrated transcriptomics uncovers an enhanced association between the prion protein gene expression and vesicle dynamics signatures in glioblastomas. BMC Cancer 2024; 24:199. [PMID: 38347462 PMCID: PMC10863147 DOI: 10.1186/s12885-024-11914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.
Collapse
Affiliation(s)
- Jacqueline Marcia Boccacino
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Rafael Dos Santos Peixoto
- Department of Automation and Systems, Technological Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Camila Felix de Lima Fernandes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Giovanni Cangiano
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Paula Rodrigues Sola
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Bárbara Paranhos Coelho
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Mariana Brandão Prado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Maria Isabel Melo-Escobar
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Breno Pereira de Sousa
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Shamini Ayyadhury
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Sueli Mieko Oba Shinjo
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil.
| |
Collapse
|
134
|
He Y, Døssing KBV, Rossing M, Bagger FO, Kjaer A. uPAR (PLAUR) Marks Two Intra-Tumoral Subtypes of Glioblastoma: Insights from Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:1998. [PMID: 38396677 PMCID: PMC10889167 DOI: 10.3390/ijms25041998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) encoded by the PLAUR gene is known as a clinical marker for cell invasiveness in glioblastoma multiforme (GBM). It is additionally implicated in various processes, including angiogenesis and inflammation within the tumor microenvironment. However, there has not been a comprehensive study that depicts the overall functions and molecular cooperators of PLAUR with respect to intra-tumoral subtypes of GBM. Using single-cell RNA sequencing data from 37 GBM patients, we identified PLAUR as a marker gene for two distinct subtypes in GBM. One subtype is featured by inflammatory activities and the other subtype is marked by ECM remodeling processes. Using the whole-transcriptome data from single cells, we are able to uncover the molecular cooperators of PLAUR for both subtypes without presuming biological pathways. Two protein networks comprise the molecular context of PLAUR, with each of the two subtypes characterized by a different dominant network. We concluded that targeting PLAUR directly influences the mechanisms represented by these two protein networks, regardless of the subtype of the targeted cell.
Collapse
Affiliation(s)
- Yue He
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristina B. V. Døssing
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (F.O.B.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (F.O.B.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
135
|
Jamalzadeh S, Dai J, Lavikka K, Li Y, Jiang J, Huhtinen K, Virtanen A, Oikkonen J, Hietanen S, Hynninen J, Vähärautio A, Häkkinen A, Hautaniemi S. Genome-wide quantification of copy-number aberration impact on gene expression in ovarian high-grade serous carcinoma. BMC Cancer 2024; 24:173. [PMID: 38317080 PMCID: PMC10840274 DOI: 10.1186/s12885-024-11895-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Copy-number alterations (CNAs) are a hallmark of cancer and can regulate cancer cell states via altered gene expression values. Herein, we have developed a copy-number impact (CNI) analysis method that quantifies the degree to which a gene expression value is impacted by CNAs and leveraged this analysis at the pathway level. Our results show that a high CNA is not necessarily reflected at the gene expression level, and our method is capable of detecting genes and pathways whose activity is strongly influenced by CNAs. Furthermore, the CNI analysis enables unbiased categorization of CNA categories, such as deletions and amplifications. We identified six CNI-driven pathways associated with poor treatment response in ovarian high-grade serous carcinoma (HGSC), which we found to be the most CNA-driven cancer across 14 cancer types. The key driver in most of these pathways was amplified wild-type KRAS, which we validated functionally using CRISPR modulation. Our results suggest that wild-type KRAS amplification is a driver of chemotherapy resistance in HGSC and may serve as a potential treatment target.
Collapse
Affiliation(s)
- Sanaz Jamalzadeh
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jun Dai
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kari Lavikka
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jing Jiang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Antti Häkkinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
136
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. Clin Immunol 2024:109921. [PMID: 38316202 DOI: 10.1016/j.clim.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles in normal brain development, neurodegeneration, and brain cancers. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
137
|
Zhang L, Qu X, Xu Y. Molecular and immunological features of TREM1 and its emergence as a prognostic indicator in glioma. Front Immunol 2024; 15:1324010. [PMID: 38370418 PMCID: PMC10869492 DOI: 10.3389/fimmu.2024.1324010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1), which belongs to the Ig-like superfamily expressed on myeloid cells, is reportedly involved in various diseases but has rarely been studied in glioma. In this study, the prognostic value and functional roles of TREM2 in glioma were analyzed. TERM1 was observed to be significantly upregulated in GBM compared to in other grade gliomas and was associated with poor prognosis. Increased TREM1 accompanied distinct mutation and amplification of driver oncogenes. Moreover, gene ontology and KEGG analyses showed that TREM1 might play a role in immunologic biological processes in glioma. TREM1 was also found to be tightly correlated with immune checkpoint molecules. xCell research revealed a link between TREM1 expression and multiple immune cell types, especially monocytes and macrophages. Single-cell analysis and immunofluorescence results showed that macrophages expressed TREM1. In vitro, inhibition of TREM1 signaling could result in a decrease in tumor-promoting effects of monocytes/TAMs. In summary, TREM1 may be a potential independent prognostic factor and immune target, which might provide new avenues to improve the efficacy of immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
138
|
Dinevska M, Widodo SS, Cook L, Stylli SS, Ramsay RG, Mantamadiotis T. CREB: A multifaceted transcriptional regulator of neural and immune function in CNS tumors. Brain Behav Immun 2024; 116:140-149. [PMID: 38070619 DOI: 10.1016/j.bbi.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
Cancers of the central nervous system (CNS) are unique with respect to their tumor microenvironment. Such a status is due to immune-privilege and the cellular behaviors within a highly networked, neural-rich milieu. During tumor development in the CNS, neural, immune and cancer cells establish complex cell-to-cell communication networks which mimic physiological functions, including paracrine signaling and synapse-like formations. This crosstalk regulates diverse pathological functions contributing to tumor progression. In the CNS, regulation of physiological and pathological functions relies on various cell signaling and transcription programs. At the core of these events lies the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a master transcriptional regulator in the CNS. CREB is a kinase inducible transcription factor which regulates many CNS functions, including neurogenesis, neuronal survival, neuronal activation and long-term memory. Here, we discuss how CREB-regulated mechanisms operating in diverse cell types, which control development and function of the CNS, are co-opted in CNS tumors.
Collapse
Affiliation(s)
- Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Laura Cook
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Robert G Ramsay
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology and the Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia; Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
139
|
Chohan MO, Flores RA, Wertz C, Jung RE. "Non-Eloquent" brain regions predict neuropsychological outcome in tumor patients undergoing awake craniotomy. PLoS One 2024; 19:e0284261. [PMID: 38300915 PMCID: PMC10833519 DOI: 10.1371/journal.pone.0284261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2023] [Indexed: 02/03/2024] Open
Abstract
Supratotal resection of primary brain tumors is being advocated especially when involving "non-eloquent" tissue. However, there is extensive neuropsychological data implicating functions critical to higher cognition in areas considered "non-eloquent" by most surgeons. The goal of the study was to determine pre-surgical brain regions that would be predictive of cognitive outcome at 4-6 months post-surgery. Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer-v6.0 image analysis suite. Linear regression models were used to regress cortical volumes from both hemispheres, against the total cognitive z-score to determine the relationship between brain structure and broad cognitive functioning while controlling for age, sex, and total segmented brain volume. We identified 62 consecutive patients who underwent planned awake resections of primary (n = 55, 88%) and metastatic at the University of New Mexico Hospital between 2015 and 2019. Of those, 42 (23 males, 25 left hemispheric lesions) had complete pre and post-op neuropsychological data available and were included in this study. Overall, total neuropsychological functioning was somewhat worse (p = 0.09) at post-operative neuropsychological outcome (Mean = -.20) than at baseline (Mean = .00). Patients with radiation following resection (n = 32) performed marginally worse (p = .036). We found that several discrete brain volumes obtained pre-surgery predicted neuropsychological outcome post-resection. For the total sample, these volumes included: left fusiform, right lateral orbital frontal, right post central, and right paracentral regions. Regardless of lesion lateralization, volumes within the right frontal lobe, and specifically right orbitofrontal cortex, predicted neuropsychological difference scores. The current study highlights the gaps in our current understanding of brain eloquence. We hypothesize that the volume of tissue within the right lateral orbital frontal lobe represents important cognitive reserve capacity in patients undergoing tumor surgery. Our data also cautions the neurosurgeon when considering supratotal resections of tumors that do not extend into areas considered "non-eloquent" by current standards.
Collapse
Affiliation(s)
- Muhammad Omar Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Ranee Ann Flores
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Christopher Wertz
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rex Eugene Jung
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
140
|
Hourani T, Eivazitork M, Balendran T, Mc Lee K, Hamilton JA, Zhu HJ, Iaria J, Morokoff AP, Luwor RB, Achuthan AA. Signaling pathways underlying TGF-β mediated suppression of IL-12A gene expression in monocytes. Mol Immunol 2024; 166:101-109. [PMID: 38278031 DOI: 10.1016/j.molimm.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-β is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited. This study investigates the molecular regulation of IL-12A by TGF-β-activated signaling pathways in THP-1 monocytes. Our study identifies a complex regulation of IL-12A gene expression by TGF-β, which involves multiple cellular signaling pathways, such as Smad2/3, NF-κB, p38 and JNK1/2. Pharmacological inhibition of NF-κB signaling decreased IL-12A expression, while blocking the Smad2/3 signaling pathway by overexpression of Smad7 and inhibiting JNK1/2 signaling with a pharmacological inhibitor, SP600125, increased its expression. The elucidated signaling pathways that regulate IL-12A gene expression potentially provide new therapeutic targets to increase IL-12 levels in the tumor microenvironment.
Collapse
Affiliation(s)
- Tetiana Hourani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kevin Mc Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Josephine Iaria
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia; Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; Federation University, Ballarat, VIC 3350, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
141
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
142
|
Losurdo A, Di Muzio A, Cianciotti BC, Dipasquale A, Persico P, Barigazzi C, Bono B, Feno S, Pessina F, Santoro A, Simonelli M. T Cell Features in Glioblastoma May Guide Therapeutic Strategies to Overcome Microenvironment Immunosuppression. Cancers (Basel) 2024; 16:603. [PMID: 38339353 PMCID: PMC10854506 DOI: 10.3390/cancers16030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor, bearing a survival estimate below 10% at five years, despite standard chemoradiation treatment. At recurrence, systemic treatment options are limited and the standard of care is not well defined, with inclusion in clinical trials being highly encouraged. So far, the use of immunotherapeutic strategies in GBM has not proved to significantly improve patients' prognosis in the treatment of newly diagnosed GBM, nor in the recurrent setting. Probably this has to do with the unique immune environment of the central nervous system, which harbors several immunosuppressive/pro-tumorigenic factors, both soluble (e.g., TGF-β, IL-10, STAT3, prostaglandin E2, and VEGF) and cellular (e.g., Tregs, M2 phenotype TAMs, and MDSC). Here we review the immune composition of the GBMs microenvironment, specifically focusing on the phenotype and function of the T cell compartment. Moreover, we give hints on the therapeutic strategies, such as immune checkpoint blockade, vaccinations, and adoptive cell therapy, that, interacting with tumor-infiltrating lymphocytes, might both target in different ways the tumor microenvironment and potentiate the activity of standard therapies. The path to be followed in advancing clinical research on immunotherapy for GBM treatment relies on a twofold strategy: testing combinatorial treatments, aiming to restore active immune anti-tumor responses, tackling immunosuppression, and additionally, designing more phase 0 and window opportunity trials with solid translational analyses to gain deeper insight into the on-treatment shaping of the GBM microenvironment.
Collapse
Affiliation(s)
- Agnese Losurdo
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Antonio Di Muzio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Beatrice Claudia Cianciotti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (B.C.C.); (S.F.)
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
| | - Pasquale Persico
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Chiara Barigazzi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Beatrice Bono
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Simona Feno
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (B.C.C.); (S.F.)
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Matteo Simonelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| |
Collapse
|
143
|
Fu RZ, Cottrell O, Cutillo L, Rowntree A, Zador Z, Wurdak H, Papalopulu N, Marinopoulou E. Identification of genes with oscillatory expression in glioblastoma: the paradigm of SOX2. Sci Rep 2024; 14:2123. [PMID: 38267500 PMCID: PMC10808450 DOI: 10.1038/s41598-024-51340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Quiescence, a reversible state of cell-cycle arrest, is an important state during both normal development and cancer progression. For example, in glioblastoma (GBM) quiescent glioblastoma stem cells (GSCs) play an important role in re-establishing the tumour, leading to relapse. While most studies have focused on identifying differentially expressed genes between proliferative and quiescent cells as potential drivers of this transition, recent studies have shown the importance of protein oscillations in controlling the exit from quiescence of neural stem cells. Here, we have undertaken a genome-wide bioinformatic inference approach to identify genes whose expression oscillates and which may be good candidates for controlling the transition to and from the quiescent cell state in GBM. Our analysis identified, among others, a list of important transcription regulators as potential oscillators, including the stemness gene SOX2, which we verified to oscillate in quiescent GSCs. These findings expand on the way we think about gene regulation and introduce new candidate genes as key regulators of quiescence.
Collapse
Affiliation(s)
- Richard Zhiming Fu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, M13 9PL, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford, M6 8HD, UK
| | - Oliver Cottrell
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Luisa Cutillo
- School of Mathematics, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Andrew Rowntree
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Zsolt Zador
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, 36 Queen St E, Toronto, ON, M5B 1W8, Canada
- Department of Surgery, McMaster University, 1280 Mains St W, Hamilton, ON, L8S 4L8, Canada
- Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Heiko Wurdak
- Stem Cell and Brain Tumour Group, Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, LS9 7TF, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Elli Marinopoulou
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
144
|
Abstract
Gliomas are a diverse group of primary central nervous system tumors that affect both children and adults. Recent studies have revealed a dynamic cross talk that occurs between glioma cells and components of their microenvironment, including neurons, astrocytes, immune cells, and the extracellular matrix. This cross talk regulates fundamental aspects of glioma development and growth. In this review, we discuss recent discoveries about the impact of these interactions on gliomas and highlight how tumor cells actively remodel their microenvironment to promote disease. These studies provide a better understanding of the interactions in the microenvironment that are important in gliomas, offer insight into the cross talk that occurs, and identify potential therapeutic vulnerabilities that can be utilized to improve clinical outcomes.
Collapse
Affiliation(s)
- Maya Anjali Jayaram
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, California, USA;
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, California, USA;
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
145
|
Xue Z, Zhang Y, Zhao R, Liu X, Grützmann K, Klink B, Zhang X, Wang S, Zhao W, Sun Y, Han M, Wang X, Hu Y, Liu X, Yang N, Qiu C, Li W, Huang B, Li X, Bjerkvig R, Wang J, Zhou W. The dopamine receptor D1 inhibitor, SKF83566, suppresses GBM stemness and invasion through the DRD1-c-Myc-UHRF1 interactions. J Exp Clin Cancer Res 2024; 43:25. [PMID: 38246990 PMCID: PMC10801958 DOI: 10.1186/s13046-024-02947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Brain
- CCAAT-Enhancer-Binding Proteins/drug effects
- CCAAT-Enhancer-Binding Proteins/metabolism
- Dopamine
- Dopamine Antagonists/metabolism
- Dopamine Antagonists/pharmacology
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioma
- Mice, Nude
- Multigene Family
- Proto-Oncogene Proteins c-myc/drug effects
- Proto-Oncogene Proteins c-myc/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Ubiquitin-Protein Ligases/drug effects
- Ubiquitin-Protein Ligases/metabolism
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
Collapse
Affiliation(s)
- Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ruiqi Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Konrad Grützmann
- Core Unit for Molecular Tumour Diagnostics (CMTD), National Center for Tumour Diseases (NCT) Dresden, Dresden, Germany
- Institute for Medical Informatics and Biometry, Medical Faculty, TU Dresden, Dresden, Germany
| | - Barbara Klink
- Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Xun Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Wenbo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaotian Hu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chen Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rolf Bjerkvig
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway.
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
146
|
Xu X, Zhang Y, Liao C, Zhou H, Wu Y, Zhang W. Impact of ferroptosis-related risk genes on macrophage M1/M2 polarization and prognosis in glioblastoma. Front Cell Neurosci 2024; 17:1294029. [PMID: 38283752 PMCID: PMC10817728 DOI: 10.3389/fncel.2023.1294029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Objective To explore the effect impact of ferroptosis on macrophage polarization and patient prognosis in glioblastoma. Methods We screened ferroptosis-related risk from the public datasets of primary and recurrent glioblastoma, combined with reported ferroptosis genes, calculated the risk genes among the ferroptosis-related genes using the LASSO Cox regression model, and investigated the relationship between these ferroptosis-related risk genes in the tumor and the spectrum of infiltrating M1/M2 macrophages. Macrophages were analyzed using the CIBERSORTx deconvolution algorithm. Samples from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and a single-cell RNA sequencing dataset (GSE84465) were included. The expression levels of ferroptosis-related risk genes and molecular markers of M1 and M2 macrophages were detected by qPCR and western blot. Results A total of fourteen ferroptosis-related risk genes were obtained and the patients' risk scores were calculated. Compared with patients in the low-risk group, patients in the high-risk group had worse prognosis. The M1/M2 macrophage ratio and risk score were negatively correlated, indicating that the tumor microenvironment of glioblastoma in the high-risk group contained more M2 than M1 macrophages. In the single-cell RNA sequencing dataset, the risk score of ferroptosis-related genes in tumor cells was positively correlated with the proportion of high M2 macrophages. The expression of eight ferroptosis-related risk genes was increased in glioblastoma cell, which promoted the polarization of M1 macrophages to M2. Conclusion We investigated the fourteen ferroptosis-related risk genes in glioblastoma for the first time, and clarified the impact of ferroptosis-related risk genes on M1/M2 macrophage polarization and patient prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Yiwei Wu
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
147
|
Chen M, Huang M, Chen X, Lin X, Chen X. Multiomics blueprint of PANoptosis in deciphering immune characteristics and prognosis stratification of glioma patients. J Gene Med 2024; 26:e3621. [PMID: 37997255 DOI: 10.1002/jgm.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND As the most prevalent primary brain tumor in adults, glioma accounts for the majority of all central nervous system malignant tumors. The concept of PANoptosis is a relatively new, underlining the interconnection and synergy among three distinct pathways: pyroptosis, apoptosis and necroptosis. METHODS We performed single-cell annotations of glioma cells and determined crucial signaling pathways through cell chat analysis. Using least absolute shrinkage and selection operator (LASSO) and Cox analyses, we identified a gene set with prognostic values. Our model was validated using independent external cohort. In addition, we employed single-sample gene set enrichment analysis and xCell analyses to describe the detailed profile of infiltrated immune cells and depicted the gene mutation landscape in the two groups. RESULTS We identified seven distinct cell clusters in glioma samples, including oligodendrocyte precursor cells (OPCs), myeloid cells, tumor cells, oligodendrocytes, astrocytes, vascular cells and neuronal cells. We found that myeloid cells showed the highest PANoptosis activity. An intense mutual cell communication pattern between the tumor cells and OPCs and oligodendrocytes was observed. Differentially expressed genes between the high-PANoptosis and low-PANoptosis cell groups were obtained, which were enriched to actin cytoskeleton, cell adhesion molecules and gamma R-mediated phagocytosis pathways. We determined a set of five genes of prognostic significance: SAA1, SLPI, DCX, S100A8 and TNR. The prognostic differences between the two groups in the internal and external sets were found to be statistically significant. We found a marked correlation between S100A8 and activated dendritic cell, macrophage, mast cell, myeloid derived suppressor cell and Treg infiltration. Moreover, we have observed a significant increase of PTEN mutation in the high risk (HR) group of glioma patients. CONCLUSIONS In the present study, we have constructed a prognostic model that is based on the PANoptosis, and we have demonstrated its significant efficacy in stratifying patients with glioma. This innovative prognostic model offers novel insights into precision immune treatments that could be used to combat this disease and improve patient outcomes, thereby providing a new avenue for personalized treatment options.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Min Huang
- Department of Obstetrics and Gynecology, E Gang Hospital, Hubei, China
| | - Xiaoxiang Chen
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Xiaoyu Lin
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Xianglin Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| |
Collapse
|
148
|
Patel KS, Tessema KK, Kawaguchi R, Dudley L, Alvarado AG, Muthukrishnan SD, Perryman T, Hagiwara A, Swarup V, Liau LM, Wang AC, Yong W, Geschwind DH, Nakano I, Goldman SA, Everson RG, Ellingson BM, Kornblum HI. Single-nucleus expression characterization of non-enhancing region of recurrent high-grade glioma. Neurooncol Adv 2024; 6:vdae005. [PMID: 38616896 PMCID: PMC11012612 DOI: 10.1093/noajnl/vdae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Background Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma. Methods We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas (n = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings. Results Tumor cells in NE regions are enriched in neural progenitor cell-like cellular states, while CE regions are enriched in mesenchymal-like states. NE glioma cells have similar proportions of proliferative and putative glioma stem cells relative to CE regions, without significant differences in % Ki-67 staining. Tumor cells in NE regions exhibit upregulation of genes previously associated with lower grade gliomas. Our findings in recurrent GBM paralleled some of the findings in a re-analysis of a dataset from primary GBM. Cell-, gene-, and pathway-level analyses of the tumor microenvironment in the NE region reveal relative downregulation of tumor-mediated neovascularization and cell-mediated immune response, but increased glioma-to-nonpathological cell interactions. Conclusions This comprehensive analysis illustrates differing tumor and nontumor landscapes of CE and NE regions in high-grade gliomas, highlighting the NE region as an area harboring likely initiators of recurrence in a pro-tumor microenvironment and identifying possible targets for future design of NE-specific adjuvant therapy. These findings also support the aggressive approach to resection of tumor-bearing NE regions.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kaleab K Tessema
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lindsey Dudley
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Alvaro G Alvarado
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sree Deepthi Muthukrishnan
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Travis Perryman
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, UCI School of Biological Sciences, Irvine, California, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anthony C Wang
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - William Yong
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Hokuto Social Medical Corporation, Hokuto Hospital, Hokuto, Japan
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
- Faculty of Health and Medical Sciences, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Richard G Everson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Benjamin M Ellingson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Harley I Kornblum
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Departments of Pediatrics, Psychiatry, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
149
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
150
|
Sankowski R, Süß P, Benkendorff A, Böttcher C, Fernandez-Zapata C, Chhatbar C, Cahueau J, Monaco G, Gasull AD, Khavaran A, Grauvogel J, Scheiwe C, Shah MJ, Heiland DH, Schnell O, Markfeld-Erol F, Kunze M, Zeiser R, Priller J, Prinz M. Multiomic spatial landscape of innate immune cells at human central nervous system borders. Nat Med 2024; 30:186-198. [PMID: 38123840 PMCID: PMC10803260 DOI: 10.1038/s41591-023-02673-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
The innate immune compartment of the human central nervous system (CNS) is highly diverse and includes several immune-cell populations such as macrophages that are frequent in the brain parenchyma (microglia) and less numerous at the brain interfaces as CNS-associated macrophages (CAMs). Due to their scantiness and particular location, little is known about the presence of temporally and spatially restricted CAM subclasses during development, health and perturbation. Here we combined single-cell RNA sequencing, time-of-flight mass cytometry and single-cell spatial transcriptomics with fate mapping and advanced immunohistochemistry to comprehensively characterize the immune system at human CNS interfaces with over 356,000 analyzed transcriptomes from 102 individuals. We also provide a comprehensive analysis of resident and engrafted myeloid cells in the brains of 15 individuals with peripheral blood stem cell transplantation, revealing compartment-specific engraftment rates across different CNS interfaces. Integrated multiomic and high-resolution spatial transcriptome analysis of anatomically dissected glioblastoma samples shows regionally distinct myeloid cell-type distributions driven by hypoxia. Notably, the glioblastoma-associated hypoxia response was distinct from the physiological hypoxia response in fetal microglia and CAMs. Our results highlight myeloid diversity at the interfaces of the human CNS with the periphery and provide insights into the complexities of the human brain's immune system.
Collapse
Affiliation(s)
- Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Patrick Süß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Molecular Neurology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Benkendorff
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chotima Böttcher
- Neuropsychiatry Unit and Laboratory of Molecular Psychiatry, Charité, Universitätsmedizin Berlin and DZNE, Berlin, Germany
| | - Camila Fernandez-Zapata
- Neuropsychiatry Unit and Laboratory of Molecular Psychiatry, Charité, Universitätsmedizin Berlin and DZNE, Berlin, Germany
| | - Chintan Chhatbar
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonathan Cahueau
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Adrià Dalmau Gasull
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ashkan Khavaran
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Grauvogel
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Scheiwe
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mukesch Johannes Shah
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Filiz Markfeld-Erol
- Department of Gynecology, Obstetrics, and Perinatology, Faculty of Medicine, University Hospital, Freiburg, Germany
| | - Mirjam Kunze
- Department of Gynecology, Obstetrics, and Perinatology, Faculty of Medicine, University Hospital, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Josef Priller
- Neuropsychiatry Unit and Laboratory of Molecular Psychiatry, Charité, Universitätsmedizin Berlin and DZNE, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|