101
|
Kaiser A, Schmidt M, Huber O, Frietsch JJ, Scholl S, Heidel FH, Hochhaus A, Müller JP, Ernst T. SIRT7: an influence factor in healthy aging and the development of age-dependent myeloid stem-cell disorders. Leukemia 2020; 34:2206-2216. [PMID: 32214204 PMCID: PMC8318878 DOI: 10.1038/s41375-020-0803-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
Molecular alterations within the hematopoietic system influence cellular longevity and development of age-related myeloid stem-cell disorders like acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). A reduced SIRT7-expression in aged murine hematopoietic stem cells (HSC) resulted in reduced longevity and increased proliferation. In this study we investigated age-related changes of SIRT7-expression in healthy humans and relevant pathomechanisms in AML and CML. SIRT7-expression in leukocytes of healthy people decreased in an age-dependent manner. Low SIRT7 mRNA levels were also detected in AML and CML patients. With positive treatment response, SIRT7-expression increased, but showed reduction when patients progressed or relapsed. Pharmacologic inhibition of driver mutations in AML (FLT3-ITD) or CML (BCR-ABL) also restored SIRT7 levels in cell lines and patient samples. Furthermore, SIRT7-expression increased with time during PMA-mediated monocyte differentiation of THP-1 cells. SIRT7-overexpression in THP-1 cells resulted in increased expression of differentiation markers. BCR-ABL, FLT3-ITD, and differentiation-associated SIRT7-expression in general were positively regulated by C/EBPα, -β, and -ε binding to two different C/EBP-binding sites within the SIRT7 promoter. SIRT7 is important in human hematopoietic cell aging and longevity. It might act as tumor suppressor and could potentially serve as general biomarker for monitoring treatment response in myeloid stem-cell disorders.
Collapse
MESH Headings
- Adult
- Age Factors
- Aged
- Aged, 80 and over
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Cell Differentiation
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Healthy Aging
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Middle Aged
- Mutation
- Sirtuins/genetics
- Sirtuins/physiology
- THP-1 Cells
- fms-Like Tyrosine Kinase 3/genetics
Collapse
Affiliation(s)
- Alexander Kaiser
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Martin Schmidt
- Institut für Biochemie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Otmar Huber
- Institut für Biochemie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Jochen J Frietsch
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Florian H Heidel
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
- Leibniz-Institute on Aging (Fritz-Lipmann-Institute), Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Jörg P Müller
- Institut für Molekulare Zellbiologie, CMB, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany.
| |
Collapse
|
102
|
Meyers AK, Zhu X. The NLRP3 Inflammasome: Metabolic Regulation and Contribution to Inflammaging. Cells 2020; 9:cells9081808. [PMID: 32751530 PMCID: PMC7463618 DOI: 10.3390/cells9081808] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
In response to inflammatory stimuli, immune cells reconfigure their metabolism and bioenergetics to generate energy and substrates for cell survival and to launch immune effector functions. As a critical component of the innate immune system, the nucleotide-binding and oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome can be activated by various endogenous and exogenous danger signals. Activation of this cytosolic multiprotein complex triggers the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and initiates pyroptosis, an inflammatory form of programmed cell death. The NLRP3 inflammasome fuels both chronic and acute inflammatory conditions and is critical in the emergence of inflammaging. Recent advances have highlighted that various metabolic pathways converge as potent regulators of the NLRP3 inflammasome. This review focuses on our current understanding of the metabolic regulation of the NLRP3 inflammasome activation, and the contribution of the NLRP3 inflammasome to inflammaging.
Collapse
Affiliation(s)
- Allison K. Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Xuewei Zhu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Correspondence: ; Tel.: +1-336-713-1445
| |
Collapse
|
103
|
Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 2020; 6:36. [PMID: 32550001 PMCID: PMC7280307 DOI: 10.1038/s41421-020-0167-x] [Citation(s) in RCA: 614] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/05/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are cytoplasmic multiprotein complexes comprising a sensor protein, inflammatory caspases, and in some but not all cases an adapter protein connecting the two. They can be activated by a repertoire of endogenous and exogenous stimuli, leading to enzymatic activation of canonical caspase-1, noncanonical caspase-11 (or the equivalent caspase-4 and caspase-5 in humans) or caspase-8, resulting in secretion of IL-1β and IL-18, as well as apoptotic and pyroptotic cell death. Appropriate inflammasome activation is vital for the host to cope with foreign pathogens or tissue damage, while aberrant inflammasome activation can cause uncontrolled tissue responses that may contribute to various diseases, including autoinflammatory disorders, cardiometabolic diseases, cancer and neurodegenerative diseases. Therefore, it is imperative to maintain a fine balance between inflammasome activation and inhibition, which requires a fine-tuned regulation of inflammasome assembly and effector function. Recently, a growing body of studies have been focusing on delineating the structural and molecular mechanisms underlying the regulation of inflammasome signaling. In the present review, we summarize the most recent advances and remaining challenges in understanding the ordered inflammasome assembly and activation upon sensing of diverse stimuli, as well as the tight regulations of these processes. Furthermore, we review recent progress and challenges in translating inflammasome research into therapeutic tools, aimed at modifying inflammasome-regulated human diseases.
Collapse
Affiliation(s)
- Danping Zheng
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001 Israel
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Timur Liwinski
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001 Israel
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001 Israel
- Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
104
|
Mu WC, Ohkubo R, Widjaja A, Chen D. The mitochondrial metabolic checkpoint in stem cell aging and rejuvenation. Mech Ageing Dev 2020; 188:111254. [PMID: 32343979 DOI: 10.1016/j.mad.2020.111254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/08/2023]
Abstract
Stem cell aging contributes to aging-associated tissue degeneration and dysfunction. Recent studies reveal a mitochondrial metabolic checkpoint that regulates stem cell quiescence and maintenance, and dysregulation of the checkpoint leads to functional deterioration of aged stem cells. Here, we present the evidence supporting the mitochondrial metabolic checkpoint regulating stem cell aging and demonstrating the feasibility to target this checkpoint to reverse stem cell aging. We discuss the mechanisms by which mitochondrial stress leads to stem cell deterioration. We speculate the therapeutic potential of targeting the mitochondrial metabolic checkpoint for rejuvenating aged stem cells and improving aging tissue functions.
Collapse
Affiliation(s)
- Wei-Chieh Mu
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Andrew Widjaja
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
105
|
Varlamov O, Bucher M, Myatt L, Newman N, Grant KA. Daily Ethanol Drinking Followed by an Abstinence Period Impairs Bone Marrow Niche and Mitochondrial Function of Hematopoietic Stem/Progenitor Cells in Rhesus Macaques. Alcohol Clin Exp Res 2020; 44:1088-1098. [PMID: 32220015 DOI: 10.1111/acer.14328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Unhealthy consumption of alcohol is a major public health crisis with strong associations between immunological dysfunctions, high vulnerability to infectious disease, anemia, and an increase in the risk of hematological malignancies. However, there is a lack of studies addressing alcohol-induced changes in bone marrow (BM) and hematopoiesis as fundamental aspects of immune system function. METHODS To address the effect of chronic alcohol consumption on hematopoietic stem and progenitor cells (HSPCs) and the BM niche, we used an established rhesus macaque model of voluntary alcohol drinking. A cohort of young adult male rhesus macaques underwent a standard ethanol self-administration protocol that allowed a choice of drinking alcohol or water 22 hours/day with periods of forced abstinence that elevated subsequent intakes when alcohol availability resumed. Following the last month of forced abstinence, the monkeys were euthanized. HSPCs and bone samples were collected and analyzed in functional assays and by confocal microscopy. RESULTS HSPCs from alcohol animals exhibited reduced ability to form granulocyte-monocyte and erythroid colonies in vitro. HSPCs also displayed a decrease in mitochondrial oxygen consumption linked to ATP production and basal respiratory capacity. Chronic alcohol use led to vascular remodeling of the BM niche, a reduction in the number of primitive HSPCs, and a shift in localization of HSPCs from an adipose to a perivascular niche. CONCLUSIONS Our study demonstrates, for the first time, that chronic voluntary alcohol drinking in rhesus macaque monkeys leads to the long-term impairment of HSPC function, a reduction in mitochondrial respiratory activity, and alterations in the BM microenvironment. Further studies are needed to determine whether these changes in hematopoiesis are persistent or adaptive during the abstinent period and whether an initial imprinting to alcohol primes BM to become more vulnerable to future exposure to alcohol.
Collapse
Affiliation(s)
- Oleg Varlamov
- From the, Division of Cardiometabolic Health, (OV), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| | - Matthew Bucher
- Division of Obstetrics and Gynecology, (MB, LM), Oregon Health & Science University, Portland, Oregon
| | - Leslie Myatt
- Division of Obstetrics and Gynecology, (MB, LM), Oregon Health & Science University, Portland, Oregon
| | - Natali Newman
- Division of Neuroscience, (NN, KAG), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| | - Kathleen A Grant
- Division of Neuroscience, (NN, KAG), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
106
|
He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, Tan M, Ohkubo R, Mu WC, Zhao S, Wu H, Chen D. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metab 2020; 31:580-591.e5. [PMID: 32032542 PMCID: PMC7104778 DOI: 10.1016/j.cmet.2020.01.009] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/13/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
It is well documented that the rate of aging can be slowed, but it remains unclear to which extent aging-associated conditions can be reversed. How the interface of immunity and metabolism impinges upon the diabetes pandemic is largely unknown. Here, we show that NLRP3, a pattern recognition receptor, is modified by acetylation in macrophages and is deacetylated by SIRT2, an NAD+-dependent deacetylase and a metabolic sensor. We have developed a cell-based system that models aging-associated inflammation, a defined co-culture system that simulates the effects of inflammatory milieu on insulin resistance in metabolic tissues during aging, and aging mouse models; and demonstrate that SIRT2 and NLRP3 deacetylation prevent, and can be targeted to reverse, aging-associated inflammation and insulin resistance. These results establish the dysregulation of the acetylation switch of the NLRP3 inflammasome as an origin of aging-associated chronic inflammation and highlight the reversibility of aging-associated chronic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ming He
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hou-Hsien Chiang
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Zhifang Zheng
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Qi Qiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Li Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mingdian Tan
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Shimin Zhao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
107
|
Adams RCM, Smith C. In utero Exposure to Maternal Chronic Inflammation Transfers a Pro-Inflammatory Profile to Generation F2 via Sex-Specific Mechanisms. Front Immunol 2020; 11:48. [PMID: 32117231 PMCID: PMC7031653 DOI: 10.3389/fimmu.2020.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022] Open
Abstract
Generational transfer of maladaptations in offspring have been reported to persist for multiple generations in conditions of chronic inflammation, metabolic and psychological stress. Thus, the current study aimed to expand our understanding of the nature, potential sex specificity, and transgenerational plasticity of inflammatory maladaptations resulting from maternal chronic inflammation. Briefly, F1 and F2 generations of offspring from C57/BL/6 dams exposed to a modified maternal periconception systemic inflammation (MSPI) protocol were profiled in terms of leukocyte and splenocyte counts and cytokine responses, as well as glucocorticoid sensitivity. Overall, F1 male and female LPS groups presented with glucocorticoid hypersensitivity (with elevated corticosterone and increased leukocyte glucocorticoid receptor levels) along with a pro-inflammatory phenotype, which carried over to the F2 generation. The transfer of inflammatory and glucocorticoid responsiveness from F1 to F2 is evident, with heritability of this phenotype in F2. The findings suggest that maternal (F0) perinatal chronic inflammation resulted in glucocorticoid dysregulation and a resultant pro-inflammatory phenotype, which is transferred in the maternal lineage but seems to affect male offspring to a greater extent. Of further interest, upregulation of IL-1β cytokine responses is reported in female offspring only. The cumulative maladaptation reported in F2 offspring when both F1 parents were affected by maternal LPS exposure is suggestive of immune senescence. Given the potential impact of current results and the lack of sex-specific investigations, more research in this context is urgently required.
Collapse
Affiliation(s)
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
108
|
Li C, Zhou Y, Rychahou P, Weiss HL, Lee EY, Perry CL, Barrett TA, Wang Q, Evers BM. SIRT2 Contributes to the Regulation of Intestinal Cell Proliferation and Differentiation. Cell Mol Gastroenterol Hepatol 2020; 10:43-57. [PMID: 31954883 PMCID: PMC7210478 DOI: 10.1016/j.jcmgh.2020.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. Disruption of this homeostasis is associated with disorders such as inflammatory bowel disease (IBD). We investigated the role of Sirtuin 2 (SIRT2), a NAD-dependent protein deacetylase, in intestinal epithelial cell (IEC) proliferation and differentiation and the mechanism by which SIRT2 contributes to maintenance of intestinal cell homeostasis. METHODS IECs were collected from SIRT2-deficient mice and patients with IBD. Expression of SIRT2, differentiation markers (mucin2, intestinal alkaline phosphatase, villin, Na,K-ATPase, and lysozyme) and Wnt target genes (EPHB2, AXIN2, and cyclin D1) was determined by western blot, real-time RT-PCR, or immunohistochemical (IHC) staining. IECs were treated with TNF or transfected with siRNA targeting SIRT2. Proliferation was determined by villus height and crypt depth, and Ki67 and cyclin D1 IHC staining. For studies using organoids, intestinal crypts were isolated. RESULTS Increased SIRT2 expression was localized to the more differentiated region of the intestine. In contrast, SIRT2 deficiency impaired proliferation and differentiation and altered stemness in the small intestinal epithelium ex vivo and in vivo. SIRT2-deficient mice showed decreased intestinal enterocyte and goblet cell differentiation but increased the Paneth cell lineage and increased proliferation of IECs. Moreover, we found that SIRT2 inhibits Wnt/β-catenin signaling, which critically regulates IEC proliferation and differentiation. Consistent with a distinct role for SIRT2 in maintenance of gut homeostasis, intestinal mucosa from IBD patients exhibited decreased SIRT2 expression. CONCLUSION We demonstrate that SIRT2, which is decreased in intestinal tissues from IBD patients, regulates Wnt-β-catenin signaling and is important for maintenance of IEC proliferation and differentiation.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Eun Y. Lee
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Courtney L. Perry
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Terrence A. Barrett
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky,Qingding Wang, PhD, Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536-0293. fax: (859) 323-2074.
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky,Correspondence Address correspondence to: B. Mark Evers, MD, Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536-0293. fax: (859) 323-2074.
| |
Collapse
|
109
|
Bakula D, Ablasser A, Aguzzi A, Antebi A, Barzilai N, Bittner MI, Jensen MB, Calkhoven CF, Chen D, de Grey AD, Feige JN, Georgievskaya A, Gladyshev VN, Golato T, Gudkov AV, Hoppe T, Kaeberlein M, Katajisto P, Kennedy BK, Lal U, Martin-Villalba A, Moskalev AA, Ozerov I, Petr MA, Reason, Rubinsztein DC, Tyshkovskiy A, Vanhaelen Q, Zhavoronkov A, Scheibye-Knudsen M. Latest advances in aging research and drug discovery. Aging (Albany NY) 2019; 11:9971-9981. [PMID: 31770722 PMCID: PMC6914421 DOI: 10.18632/aging.102487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
An increasing aging population poses a significant challenge to societies worldwide. A better understanding of the molecular, cellular, organ, tissue, physiological, psychological, and even sociological changes that occur with aging is needed in order to treat age-associated diseases. The field of aging research is rapidly expanding with multiple advances transpiring in many previously disconnected areas. Several major pharmaceutical, biotechnology, and consumer companies made aging research a priority and are building internal expertise, integrating aging research into traditional business models and exploring new go-to-market strategies. Many of these efforts are spearheaded by the latest advances in artificial intelligence, namely deep learning, including generative and reinforcement learning. To facilitate these trends, the Center for Healthy Aging at the University of Copenhagen and Insilico Medicine are building a community of Key Opinion Leaders (KOLs) in these areas and launched the annual conference series titled "Aging Research and Drug Discovery (ARDD)" held in the capital of the pharmaceutical industry, Basel, Switzerland (www.agingpharma.org). This ARDD collection contains summaries from the 6th annual meeting that explored aging mechanisms and new interventions in age-associated diseases. The 7th annual ARDD exhibition will transpire 2nd-4th of September, 2020, in Basel.
Collapse
Affiliation(s)
- Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Ablasser
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Cornelis F. Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, AD Groningen, The Netherlands
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | - Jerome N. Feige
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Andrei V. Gudkov
- Roswell Park Comprehensive Cancer Center and Genome Protection, Inc., Buffalo, NY 14203, USA
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Brian K. Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Centre for Healthy Ageing, National University Healthy System, Singapore
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Unmesh Lal
- Frost and Sullivan, Frankfurt am Main, Germany
| | | | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Ozerov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Michael A. Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Reason
- Repair Biotechnologies, Inc., Syracuse, NY 13210, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge CB2 0XY, UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Quentin Vanhaelen
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
110
|
Shi L, Zhao Y, Fei C, Guo J, Jia Y, Wu D, Wu L, Chang C. Cellular senescence induced by S100A9 in mesenchymal stromal cells through NLRP3 inflammasome activation. Aging (Albany NY) 2019; 11:9626-9642. [PMID: 31727865 PMCID: PMC6874461 DOI: 10.18632/aging.102409] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/26/2019] [Indexed: 04/12/2023]
Abstract
Bone marrow stromal cells from patients with myelodysplastic syndrome (MDS) display a senescence phenotype, but the underlying mechanism has not been elucidated. Pro-inflammatory signaling within the malignant clone and the bone marrow microenvironment has been identified as a key pathogenetic driver of MDS. Our study revealed that S100A9 is highly-expressed in lower-risk MDS. Moreover, normal primary mesenchymal stromal cells (MSCs) and the human stromal cell line HS-27a co-cultured with lower-risk MDS bone marrow mononuclear cells acquired a senescence phenotype. Exogenous supplemented S100A9 also induced cellular senescence in MSCs and HS-27a cells. Importantly, Toll-like receptor 4 (TLR4) inhibition or knockdown attenuated the cellular senescence induced by S100A9. Furthermore, we showed that S100A9 induces NLRP3 inflammasome formation, and IL-1β secretion; findings in samples from MDS patients further confirmed these thoughts. Moreover, ROS and IL-1β inhibition suppressed the cellular senescence induced by S100A9, whereas NLRP3 overexpression and exogenous IL-1β supplementation induces cellular senescence. Our study demonstrated that S100A9 promotes cellular senescence of bone marrow stromal cells via TLR4, NLRP3 inflammasome formation, and IL-1β secretion for its effects. Our findings deepen the understanding of the molecular mechanisms involved in MDS reprogramming of MSCs and indicated the essential role of S100A9 in tumor-environment interactions in bone marrow.
Collapse
Affiliation(s)
- Lei Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chengming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yan Jia
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Lingyun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
111
|
Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019; 55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that was under studied compared to other sirtuin family members. SIRT2 is the only sirtuin protein which is predominantly found in the cytoplasm but is also found in the mitochondria and in the nucleus. Recently, accumulating evidence has uncovered a growing number of substrates and additional detailed functions of SIRT2 in a wide range of biological processes, marking its crucial role. Here, we give a comprehensive profile of the crucial physiological functions of SIRT2 and its role in neurological diseases, cancers, and other diseases. This review summarizes the functions of SIRT2 in the nervous system, mitosis regulation, genome integrity, cell differentiation, cell homeostasis, aging, infection, inflammation, oxidative stress, and autophagy. SIRT2 inhibition rescues neurodegenerative disease symptoms and hence SIRT2 is a potential therapeutic target for neurodegenerative disease. SIRT2 is undoubtedly dysfunctional in cancers and plays a dual-faced role in different types of cancers, and although its mechanism is unresolved, SIRT2 remains a promising therapeutic target for certain cancers. In future, the continued rapid growth in SIRT2 research will help clarify its role in human health and disease, and promote the progress of this target in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
112
|
Coller HA. The paradox of metabolism in quiescent stem cells. FEBS Lett 2019; 593:2817-2839. [PMID: 31531979 DOI: 10.1002/1873-3468.13608] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
The shift between a proliferating and a nonproliferating state is associated with significant changes in metabolic needs. Proliferating cells tend to have higher metabolic rates, and their metabolic profiles facilitate biosynthesis, as compared to those of nondividing cells of the same sort. Recent studies have elucidated specific molecules that control metabolic changes while cells shift between proliferation and quiescence. Embryonic stem cells, which are rapidly proliferating, tend to have metabolic patterns that are similar to those of nonstem cells in a proliferative state. Moreover, although adult stem cells tend to be quiescent, their metabolic profiles have been reported in multiple organs to more closely resemble those of proliferating than those of nondividing cells in some respects. The findings raise questions about whether there are metabolic profiles that are required for stemness, and whether these profiles relate to the metabolic properties that may be required for quiescence. Here, we review the literature on how metabolism changes upon commitment to proliferation and compare the proliferating and nonproliferating metabolic states of differentiated cells and embryonic and adult stem cells.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.,Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
113
|
Buisman SC, de Haan G. Epigenetic Changes as a Target in Aging Haematopoietic Stem Cells and Age-Related Malignancies. Cells 2019; 8:E868. [PMID: 31405121 PMCID: PMC6721661 DOI: 10.3390/cells8080868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with multiple molecular and functional changes in haematopoietic cells. Most notably, the self-renewal and differentiation potential of hematopoietic stem cells (HSCs) are compromised, resulting in myeloid skewing, reduced output of red blood cells and decreased generation of immune cells. These changes result in anaemia, increased susceptibility for infections and higher prevalence of haematopoietic malignancies. In HSCs, age-associated global epigenetic changes have been identified. These epigenetic alterations in aged HSCs can occur randomly (epigenetic drift) or are the result of somatic mutations in genes encoding for epigenetic proteins. Mutations in loci that encode epigenetic modifiers occur frequently in patients with haematological malignancies, but also in healthy elderly individuals at risk to develop these. It may be possible to pharmacologically intervene in the aberrant epigenetic program of derailed HSCs to enforce normal haematopoiesis or treat age-related haematopoietic diseases. Over the past decade our molecular understanding of epigenetic regulation has rapidly increased and drugs targeting epigenetic modifications are increasingly part of treatment protocols. The reversibility of epigenetic modifications renders these targets for novel therapeutics. In this review we provide an overview of epigenetic changes that occur in aging HSCs and age-related malignancies and discuss related epigenetic drugs.
Collapse
Affiliation(s)
- Sonja C Buisman
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands.
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| |
Collapse
|
114
|
Verovskaya EV, Dellorusso PV, Passegué E. Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. Trends Mol Med 2019; 25:494-515. [PMID: 31109796 DOI: 10.1016/j.molmed.2019.04.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Aging leads to functional decline of the hematopoietic system, manifested by an increased incidence of hematological disease in the elderly. Deterioration of hematopoietic integrity with age originates in part from the degraded functionality of hematopoietic stem cells (HSCs). Here, we review recent findings identifying changes in metabolic programs and loss of epigenetic identity as major drivers of old HSC dysfunction and their role in promoting leukemia onset in the context of age-related clonal hematopoiesis (ARCH). We discuss how inflammatory and growth signals from the aged bone marrow (BM) microenvironment contribute to cell-intrinsic HSC aging phenotypes and favor leukemia development. Finally, we address how metabolic, epigenetic, and inflammatory pathways could be targeted to enhance old HSC fitness and prevent leukemic transformation.
Collapse
Affiliation(s)
- Evgenia V Verovskaya
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
115
|
Chen D, Kerr C. The Epigenetics of Stem Cell Aging Comes of Age. Trends Cell Biol 2019; 29:563-568. [PMID: 31030975 DOI: 10.1016/j.tcb.2019.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that epigenetic regulators are critically required for the maintenance of tissue-specific stem cells and that the epigenetic marks are altered in stem cells during physiological aging. Intriguingly, aging-associated stem cell functional decline can be reversed by manipulating epigenetic factors that become dysregulated during aging. These observations lend support to the stem cell theory of aging, which postulates that aging is the result of the inability of tissue-specific stem cells to replenish the tissues with functional differentiated cells that maintain the function of a tissue, and open a new era of research on the epigenetics of stem cell aging that may represent therapeutic potential. Recent advances in single cell technologies are revolutionizing our mechanistic understanding of rare populations of cells, such as stem cells, and offer an unprecedented opportunity to address this challenge.
Collapse
Affiliation(s)
- Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Candace Kerr
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|