101
|
Epstein-Barr Virus-Positive Lymphomas Exploit Ectonucleotidase Activity To Limit Immune Responses and Prevent Cell Death. mBio 2023; 14:e0345922. [PMID: 36786572 PMCID: PMC10127690 DOI: 10.1128/mbio.03459-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Epstein-Barr virus (EBV) is a cancer-associated virus that infects more than 90% of adults. Unfortunately, many EBV-driven malignancies, including numerous B cell lymphomas, are highly aggressive and lack acceptable therapeutic outcomes. The concentrations of extracellular purines, namely, ATP and adenosine, are highly dysregulated in the tumor microenvironment and significantly impact the degree of immune responses to the tumor. Additionally, many tumor cells adapt to this dysregulation by overexpressing one or more ectonucleotidases, enzymes that degrade extracellular nucleotides to nucleosides. The degradation of immunostimulatory extracellular ATP to immunosuppressive adenosine through ectonucleotidase activity is one example of tumor cell exploitation of the purinergic signaling pathway. As such, preclinical studies targeting the purinergic signaling pathway have found it to be a promising immunotherapeutic target for the treatment of solid tumors; however, the extent to which purinergic signaling impacts the development and survival of EBV+ B cell lymphoma remains unstudied. Here, we demonstrate robust ectonucleotidase expression on multiple types of EBV-positive B cell non-Hodgkin lymphoma (NHL). Furthermore, the presence of high concentrations of extracellular ATP resulted in the expression of lytic viral proteins and exhibited cytotoxicity toward EBV+ B cell lines, particularly when CD39 was inhibited. Inhibition of CD39 also significantly prolonged survival in an aggressive cord blood humanized mouse model of EBV-driven lymphomagenesis and was correlated with an enhanced inflammatory immune response and reduced tumor burden. Taken together, these data suggest that EBV+ B cell lymphomas exploit ectonucleotidase activity to circumvent ATP-mediated inflammation and cell death. IMPORTANCE EBV is a ubiquitous pathogen responsible for significant global lymphoma burden, including Hodgkin lymphoma, numerous non-Hodgkin B, T, and NK cell lymphomas, and lymphoproliferative disorders. EBV is also associated with epithelial cancers and autoimmune diseases, such as multiple sclerosis. Many of these diseases are highly aggressive and exhibit poor outcomes. As such, new treatments for EBV-driven cancers have the potential to benefit a large number of patients. We use in vitro and in vivo models to demonstrate the therapeutic potential of targeting the purinergic signaling pathway in the context of EBV-driven B cell lymphoma. These findings lend credence to the manipulation of purinergic signaling as a viable therapeutic approach to EBV+ malignancies and support the feasibility of immunotherapeutic treatments for viral lymphoma.
Collapse
|
102
|
Inhibition of CD39 unleashes macrophage antibody-dependent cellular phagocytosis against B-cell lymphoma. Leukemia 2023; 37:379-387. [PMID: 36539557 DOI: 10.1038/s41375-022-01794-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Redirection of tumor-associated macrophages to eliminate tumor cells holds great promise for overcoming therapeutic resistance to rituximab and other antibody drugs. Here, we determined the expression of ectonucleotidases CD39 and CD73 in diffuse large B-cell lymphoma (DLBCL), and examined the impact of extracellular ATP (eATP) metabolism on macrophage-mediated anti-lymphoma immunity. Immunostaining of tissue microarray samples showed that CD39 (the ecto-enzyme for eATP hydrolysis) was highly expressed in tumors with the non-germinal center B-cell-like (non-GCB) subtype, and to a lesser extent tumors with the GCB subtype. By contrast, the expression of CD73 (the ecto-enzyme for adenosine generation) was undetectable in tumor cells. Pharmacological blockade of CD39 prevented eATP degradation and enhanced engulfment of antibody-coated lymphoma cells by macrophages in a P2X7 receptor-dependent manner, indicating that eATP fueled antibody-dependent cellular phagocytosis (ADCP) activity. Importantly, inhibition of CD39 augmented in vivo anti-lymphoma effects by therapeutic antibodies including rituximab and daratumumab. Furthermore, the addition of a CD39 inhibitor to anti-CD20 and anti-CD47 combination therapy significantly improved survival in a disseminated model of aggressive B-cell lymphoma, supporting the benefit of dual targeting CD39-mediated eATP hydrolysis and CD47-mediated "don't eat me" signal. Together, preventing eATP degradation may be a potential approach to unleash macrophage-mediated anti-lymphoma immunity.
Collapse
|
103
|
Vignali PDA, DePeaux K, Watson MJ, Ye C, Ford BR, Lontos K, McGaa NK, Scharping NE, Menk AV, Robson SC, Poholek AC, Rivadeneira DB, Delgoffe GM. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat Immunol 2023; 24:267-279. [PMID: 36543958 PMCID: PMC10402660 DOI: 10.1038/s41590-022-01379-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
CD8+ T cells are critical for elimination of cancer cells. Factors within the tumor microenvironment (TME) can drive these cells to a hypofunctional state known as exhaustion. The most terminally exhausted T (tTex) cells are resistant to checkpoint blockade immunotherapy and might instead limit immunotherapeutic efficacy. Here we show that intratumoral CD8+ tTex cells possess transcriptional features of CD4+Foxp3+ regulatory T cells and are similarly capable of directly suppressing T cell proliferation ex vivo. tTex cell suppression requires CD39, which generates immunosuppressive adenosine. Restricted deletion of CD39 in endogenous CD8+ T cells resulted in slowed tumor progression, improved immunotherapy responsiveness and enhanced infiltration of transferred tumor-specific T cells. CD39 is induced on tTex cells by tumor hypoxia, thus mitigation of hypoxia limits tTex suppression. Together, these data suggest tTex cells are an important regulatory population in cancer and strategies to limit their generation, reprogram their immunosuppressive state or remove them from the TME might potentiate immunotherapy.
Collapse
Affiliation(s)
- Paolo D A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kristin DePeaux
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - McLane J Watson
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chenxian Ye
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nicole K McGaa
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nicole E Scharping
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ashley V Menk
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
104
|
Jiang X, Wu X, Xiao Y, Wang P, Zheng J, Wu X, Jin Z. The ectonucleotidases CD39 and CD73 on T cells: The new pillar of hematological malignancy. Front Immunol 2023; 14:1110325. [PMID: 36776866 PMCID: PMC9911447 DOI: 10.3389/fimmu.2023.1110325] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Hematological malignancy develops and applies various mechanisms to induce immune escape, in part through an immunosuppressive microenvironment. Adenosine is an immunosuppressive metabolite produced at high levels within the tumor microenvironment (TME). Adenosine signaling through the A2A receptor expressed on immune cells, such as T cells, potently dampens immune responses. Extracellular adenosine generated by ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and ecto-5'-nucleotidase (CD73) molecules is a newly recognized 'immune checkpoint mediator' and leads to the identification of immunosuppressive adenosine as an essential regulator in hematological malignancies. In this Review, we provide an overview of the detailed distribution and function of CD39 and CD73 ectoenzymes in the TME and the effects of CD39 and CD73 inhibition on preclinical hematological malignancy data, which provides insights into the potential clinical applications for immunotherapy.
Collapse
Affiliation(s)
- Xuan Jiang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuxi Xiao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Penglin Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiamian Zheng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiuli Wu, ; Zhenyi Jin,
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiuli Wu, ; Zhenyi Jin,
| |
Collapse
|
105
|
Glasson Y, Chépeaux LA, Dumé AS, Jay P, Pirot N, Bonnefoy N, Michaud HA. A 31-plex panel for high-dimensional single-cell analysis of murine preclinical models of solid tumors by imaging mass cytometry. Front Immunol 2023; 13:1011617. [PMID: 36741363 PMCID: PMC9893499 DOI: 10.3389/fimmu.2022.1011617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Currently, the study of resistance mechanisms and disease progression in cancer relies on the capacity to analyze tumors as a complex ecosystem of healthy and malignant cells. Therefore, one of the current challenges is to decipher the intra-tumor heterogeneity and especially the spatial distribution and interactions of the different cellular actors within the tumor. Preclinical mouse models are widely used to extend our understanding of the tumor microenvironment (TME). Such models are becoming more sophisticated and allow investigating questions that cannot be addressed in clinical studies. Indeed, besides studying the tumor cell interactions within their environment, mouse models allow evaluating the efficacy of new drugs and delivery approaches, treatment posology, and toxicity. Spatially resolved analyses of the intra-tumor heterogeneity require global approaches to identify and localize a large number of different cell types. For this purpose, imaging mass cytometry (IMC) is a major asset in the field of human immuno-oncology. However, the paucity of validated IMC panels to study TME in pre-clinical mouse models remains a critical obstacle to translational or basic research in oncology. Here, we validated a panel of 31 markers for studying at the single-cell level the TME and the immune landscape for discovering/characterizing cells with complex phenotypes and the interactions shaping the tumor ecosystem in mouse models.
Collapse
Affiliation(s)
- Yaël Glasson
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Laure-Agnès Chépeaux
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
| | - Anne-Sophie Dumé
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
| | - Philippe Jay
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre national de la recherche scientifique (CNRS), Inserm, Montpellier, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- BioCampus Montpellier, Univ Montpellier, Centre national de la recherche scientifique (CNRS), Inserm, Réseau d’Histologie Expérimentale de Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Henri-Alexandre Michaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
106
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
107
|
Khan F, Pang L, Dunterman M, Lesniak MS, Heimberger AB, Chen P. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J Clin Invest 2023; 133:163446. [PMID: 36594466 PMCID: PMC9797335 DOI: 10.1172/jci163446] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor in the central nervous system and contains a highly immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages and microglia (TAMs) are a dominant population of immune cells in the GBM TME that contribute to most GBM hallmarks, including immunosuppression. The understanding of TAMs in GBM has been limited by the lack of powerful tools to characterize them. However, recent progress on single-cell technologies offers an opportunity to precisely characterize TAMs at the single-cell level and identify new TAM subpopulations with specific tumor-modulatory functions in GBM. In this Review, we discuss TAM heterogeneity and plasticity in the TME and summarize current TAM-targeted therapeutic potential in GBM. We anticipate that the use of single-cell technologies followed by functional studies will accelerate the development of novel and effective TAM-targeted therapeutics for GBM patients.
Collapse
|
108
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
109
|
Petrova V, Groth C, Bitsch R, Arkhypov I, Simon SCS, Hetjens S, Müller V, Utikal J, Umansky V. Immunosuppressive capacity of circulating MDSC predicts response to immune checkpoint inhibitors in melanoma patients. Front Immunol 2023; 14:1065767. [PMID: 36860876 PMCID: PMC9968744 DOI: 10.3389/fimmu.2023.1065767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Purpose Although the treatment of advanced melanoma patients with immune checkpoint inhibitors (ICI) significantly increased the therapeutic efficiency, many patients remain resistant to ICI that could be due to immunosuppression mediated by myeloid-derived suppressor cells (MDSC). These cells are enriched and activated in melanoma patients and could be considered as therapeutic targets. Here we studied dynamic changes in immunosuppressive pattern and activity of circulating MDSC from melanoma patients treated with ICI. Experimental design MDSC frequency, immunosuppressive markers and function were evaluated in freshly isolated peripheral blood mononuclear cells (PBMC) from 29 melanoma patients receiving ICI. Blood samples were taken prior and during the treatment and analyzed by flow cytometry and bio-plex assay. Results MDSC frequency was significantly increased before the therapy and through three months of treatment in non-responders as compared to responders. Prior to the ICI therapy, MDSC from non-responders displayed high levels of immunosuppression measured by the inhibition of T cell proliferation assay, whereas MDSC from responding patients failed to inhibit T cells. Patients without visible metastasis were characterized by the absence of MDSC immunosuppressive activity during the ICI treatment. Moreover, non-responders showed significantly higher IL-6 and IL-8 concentrations before therapy and after the first ICI application as compared to responders. Conclusions Our findings highlight the role of MDSC during melanoma progression and suggest that frequency and immunosuppressive activity of circulating MDSC before and during the ICI treatment of melanoma patients could be used as biomarkers of response to ICI therapy.
Collapse
Affiliation(s)
- Vera Petrova
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebekka Bitsch
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sonja C S Simon
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Verena Müller
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
110
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
111
|
Pan-cancer analysis of LINC02535 as a potential biomarker and its oncogenic role in lung adenocarcinoma. Heliyon 2022; 8:e12108. [PMID: 36544816 PMCID: PMC9761721 DOI: 10.1016/j.heliyon.2022.e12108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/06/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background LINC02535 has gained much attention for its oncogenicity across several cancers, but the systematic pan-cancer analysis of LINC02535 has not been carried out before. Methods Herein, we explored the expression level, prognostic value, and hallmark pathways of LINC02535 across multiple cancers using the Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) databases. Moreover, the expression and biological features of LINC02535 in lung adenocarcinoma (LUAD) were confirmed by qRT-PCR, in vitro and in vivo experiments. Results LINC02535 is differentially expressed in 10 of 17 human cancers and serves as a favorable or unfavorable biomarker in distinct cancer types. Gene set enrichment analysis (GSEA) indicated that key oncogenic pathways/phenotypes were remarkably activated in most cancers with intratumoral increased LINC02535, whereas these pathways/phenotypes were suppressed in other cancer types (colon adenocarcinoma, kidney renal clear cell carcinoma, rectal adenocarcinoma) with intratumoral decreased LINC02535. Of note, the epithelial-mesenchymal transition (EMT) phenotype was greatly enriched in LUAD patients with elevated LINC02535. Based on the TCGA and CCLE datasets, LINC02535 was positively correlated with the EMT-related gene CD73 (also named as NT5E, an immunosuppressive gene) in almost all cancer types (Spearman R > 0.5, P < 0.001) including LUAD. Most importantly, qRT-PCR confirmed that LINC02535 was upregulated in lung cancer cells or tissues as opposed to human bronchial epithelial cells or paratumor tissues. Knockdown of LINC02535 inhibited proliferation, migration of LUAD cells and retarded xenografted tumor growth. Moreover, silencing of LINC02535 induced apoptosis and cell cycle arrest at G1 phase. Conclusions The findings from our pan-cancer analysis provide a relatively comprehensive understanding of the potential value of LINC02535 across multiple cancers, and the oncogenic role of LINC02535 in LUAD has been confirmed.
Collapse
|
112
|
Miller RA, Luke JJ, Hu S, Mahabhashyam S, Jones WB, Marron T, Merchan JR, Hughes BGM, Willingham SB. Anti-CD73 antibody activates human B cells, enhances humoral responses and induces redistribution of B cells in patients with cancer. J Immunother Cancer 2022; 10:jitc-2022-005802. [PMID: 36600561 PMCID: PMC9723961 DOI: 10.1136/jitc-2022-005802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CD73 is widely expressed on immune cells playing a critical role in immunomodulatory functions including cell adhesion and migration, as a costimulatory molecule for T cells and in production of adenosine. The function of CD73 expressed on B cells has not been fully characterized. Mupadolimab is an anti-human CD73 antibody that activates B cells. We evaluated the characteristics of this antibody and its effects on immune cells in vitro and in vivo. METHODS Mupadolimab binding to CD73, inhibition of CD73 enzymatic activity, and effects on lymphocyte activation were evaluated in vitro by measuring changes in immunophenotype by flow cytometry. Cryogenic-transmission electron microscopy was used to determine epitope binding. Effects on human B cells in vivo were evaluated in immunodeficient NSG-SGM3 mice immunized with SARS-CoV-2 and influenza viral antigens. Safety and immune effects were evaluated in the completed dose escalation portion of a phase 1 trial conducted in patients with cancer. RESULTS Mupadolimab binds to a unique epitope on CD73POS B cells resulting in their activation and differentiation through B cell receptor signaling pathways. Mupadolimab induces expression of CD69, CD83, CD86 and MHC class II on B cells along with morphological transformation into plasmablasts and expression of CD27, CD38 and CD138. These effects are independent of adenosine. Mupadolimab binds to the N-terminal of CD73 in the closed position and competitively inhibits substrate binding. Mupadolimab enhanced antigen specific antibody response to SARS-CoV-2 spike protein and influenza hemagglutinin in humanized mouse models. Mupadolimab was evaluated as a monotherapy in a phase 1 trial (NCT03454451) in 34 patients with advanced cancer and demonstrated binding to CD73POS circulating cells and transient reduction in the number of B cells, with return of CD73NEG B cells with memory phenotype. No dose-limiting toxicities or changes in serum immunoglobulins were seen. CONCLUSIONS Mupadolimab activates B cells and stimulates the production of antigen specific antibodies. The effects in patients with cancer suggest that activated, CD69POS B cells redistribute to lymphoid tissues. Minor tumor regression was observed in several patients. These results support further investigation of mupadolimab as an immunotherapy for cancer and its potential use as a vaccine adjuvant. TRIAL REGISTRATION NUMBER NCT03454451.
Collapse
Affiliation(s)
| | - Jason John Luke
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Shenshen Hu
- Corvus Pharmaceuticals Inc, Burlingame, California, USA
| | | | | | - Thomas Marron
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Brett G M Hughes
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia,The University of Queensland Faculty of Medicine, Herston, Queensland, Australia
| | | |
Collapse
|
113
|
Slaats J, Wagena E, Smits D, Berends AA, Peters E, Bakker GJ, van Erp M, Weigelin B, Adema GJ, Friedl P. Adenosine A2a Receptor Antagonism Restores Additive Cytotoxicity by Cytotoxic T Cells in Metabolically Perturbed Tumors. Cancer Immunol Res 2022; 10:1462-1474. [PMID: 36162129 PMCID: PMC9716258 DOI: 10.1158/2326-6066.cir-22-0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/30/2022] [Accepted: 09/21/2022] [Indexed: 01/10/2023]
Abstract
Cytotoxic T lymphocytes (CTL) are antigen-specific effector cells with the ability to eradicate cancer cells in a contact-dependent manner. Metabolic perturbation compromises the CTL effector response in tumor subregions, resulting in failed cancer cell elimination despite the infiltration of tumor-specific CTLs. Restoring the functionality of these tumor-infiltrating CTLs is key to improve immunotherapy. Extracellular adenosine is an immunosuppressive metabolite produced within the tumor microenvironment. Here, by applying single-cell reporter strategies in 3D collagen cocultures in vitro and progressing tumors in vivo, we show that adenosine weakens one-to-one pairing of activated effector CTLs with target cells, thereby dampening serial cytotoxic hit delivery and cumulative death induction. Adenosine also severely compromised CTL effector restimulation and expansion. Antagonization of adenosine A2a receptor (ADORA2a) signaling stabilized and prolonged CTL-target cell conjugation and accelerated lethal hit delivery by both individual contacts and CTL swarms. Because adenosine signaling is a near-constitutive confounding parameter in metabolically perturbed tumors, ADORA2a targeting represents an orthogonal adjuvant strategy to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Jeroen Slaats
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther Wagena
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daan Smits
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annemarie A. Berends
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ella Peters
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gert-Jan Bakker
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merijn van Erp
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bettina Weigelin
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies,” University of Tübingen, Tübingen, Germany
| | - Gosse J. Adema
- Radiotherapy and Onco-Immunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Genitourinary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
114
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
115
|
Gonçalves-Machado L, Verçoza BRF, Nogueira FCS, Melani RD, Domont GB, Rodrigues SP, Rodrigues JCF, Zingali RB. Extracellular Vesicles from Bothrops jararaca Venom Are Diverse in Structure and Protein Composition and Interact with Mammalian Cells. Toxins (Basel) 2022; 14:toxins14110806. [PMID: 36422980 PMCID: PMC9698812 DOI: 10.3390/toxins14110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Snake venoms are complex cocktails of non-toxic and toxic molecules that work synergistically for the envenoming outcome. Alongside the immediate consequences, chronic manifestations and long-term sequelae can occur. Recently, extracellular vesicles (EVs) were found in snake venom. EVs mediate cellular communication through long distances, delivering proteins and nucleic acids that modulate the recipient cell's function. However, the biological roles of snake venom EVs, including possible cross-organism communication, are still unknown. This knowledge may expand the understanding of envenoming mechanisms. In the present study, we isolated and characterized the EVs from Bothrops jararaca venom (Bj-EVs), giving insights into their biological roles. Fresh venom was submitted to differential centrifugation, resulting in two EV populations with typical morphology and size range. Several conserved EV markers and a subset of venom related EV markers, represented mainly by processing enzymes, were identified by proteomic analysis. The most abundant protein family observed in Bj-EVs was 5'-nucleotidase, known to be immunosuppressive and a low abundant and ubiquitous toxin in snake venoms. Additionally, we demonstrated that mammalian cells efficiently internalize Bj-EVs. The commercial antibothropic antivenom partially recognizes Bj-EVs and inhibits cellular EV uptake. Based on the proteomic results and the in vitro interaction assays using macrophages and muscle cells, we propose that Bj-EVs may be involved not only in venom production and processing but also in host immune modulation and long-term effects of envenoming.
Collapse
Affiliation(s)
- Larissa Gonçalves-Machado
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Vital Brazil, Gerência de Desenvolvimento Tecnológico, Niterói 24230-410, Brazil
| | - Brunno Renato Farias Verçoza
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Fábio César Sousa Nogueira
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratório de Proteômica (LabProt)—LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Rafael Donadélli Melani
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Gilberto Barbosa Domont
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Silas Pessini Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-2139386782
| |
Collapse
|
116
|
Immunoregulatory signal networks and tumor immune evasion mechanisms: insights into therapeutic targets and agents in clinical development. Biochem J 2022; 479:2219-2260. [DOI: 10.1042/bcj20210233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Through activation of immune cells, the immune system is responsible for identifying and destroying infected or otherwise damaged cells including tumorigenic cells that can be recognized as foreign, thus maintaining homeostasis. However, tumor cells have evolved several mechanisms to avoid immune cell detection and killing, resulting in tumor growth and progression. In the tumor microenvironment, tumor infiltrating immune cells are inactivated by soluble factors or tumor promoting conditions and lose their effects on tumor cells. Analysis of signaling and crosstalk between immune cells and tumor cells have helped us to understand in more detail the mechanisms of tumor immune evasion and this forms basis for drug development strategies in the area of cancer immunotherapy. In this review, we will summarize the dominant signaling networks involved in immune escape and describe the status of development of therapeutic strategies to target tumor immune evasion mechanisms with focus on how the tumor microenvironment interacts with T cells.
Collapse
|
117
|
Demeules M, Scarpitta A, Hardet R, Gondé H, Abad C, Blandin M, Menzel S, Duan Y, Rissiek B, Magnus T, Mann AM, Koch-Nolte F, Adriouch S. Evaluation of nanobody-based biologics targeting purinergic checkpoints in tumor models in vivo. Front Immunol 2022; 13:1012534. [PMID: 36341324 PMCID: PMC9626963 DOI: 10.3389/fimmu.2022.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. ATP promotes tumor growth but also anti-tumor immune responses notably via the P2X7 receptor. ATP can also be catabolized by CD39 and CD73 ecto-enzymes into immunosuppressive adenosine. P2X7, CD39 and CD73 have attracted much interest in cancer as targets offering the potential to unleash anti-tumor immune responses. These membrane proteins represent novel purinergic checkpoints that can be targeted by small drugs or biologics. Here, we investigated nanobody-based biologics targeting mainly P2X7, but also CD73, alone or in combination therapies. Blocking P2X7 inhibited tumor growth and improved survival of mice in cancer models that express P2X7. P2X7-potentiation by a nanobody-based biologic was not effective alone to control tumor growth but enhanced tumor control and immune responses when used in combination with oxaliplatin chemotherapy. We also evaluated a bi-specific nanobody-based biologic that targets PD-L1 and CD73. This novel nanobody-based biologic exerted a potent anti-tumor effect, promoting tumor rejection and improving survival of mice in two tumor models. Hence, this study highlights the importance of purinergic checkpoints in tumor control and open new avenues for nanobody-based biologics that may be further exploited in the treatment of cancer.
Collapse
Affiliation(s)
- Mélanie Demeules
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Allan Scarpitta
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Romain Hardet
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Henri Gondé
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Catalina Abad
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Marine Blandin
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
- *Correspondence: Sahil Adriouch,
| |
Collapse
|
118
|
Sun T, Li Y, Yang Y, Liu B, Cao Y, Yang W. Enhanced radiation-induced immunogenic cell death activates chimeric antigen receptor T cells by targeting CD39 against glioblastoma. Cell Death Dis 2022; 13:875. [PMID: 36245000 PMCID: PMC9573869 DOI: 10.1038/s41419-022-05319-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 01/23/2023]
Abstract
Chimeric antigen receptor (CAR)-T cells directed to solid tumors have been less effective, due in part to the low or lost expression of specific tumor antigens. Herein, we developed a different strategy to enhance CAR-T cell persistence and efficacy by producing a multispecific CAR-T or vaccine based on immunogenic cell death (ICD). We demonstrated that ionizing radiation activates STAT1-IRF1-CD39 axis to upregulate CD39 expression to form an immunosuppressive tumor microenvironment (TME) to enhance radioresistance. CD39 blockade accumulates extracellular ATP, which activates NLRP3 inflammasome in dendritic cells via P2X7 receptor, thereby promoting radiation-induced ICD. Multispecific CAR-T cells in vitro prepared by elevated ICD suppress the growth of xenografts in nude mice. Radiation and CD39 inhibition-induced ICD of glioma stem cells as a vaccine enhance CAR-T expansion in peripheral blood, multifunctionality in the TME, and antitumor effect in a glioma model. The multispecificity of CAR-T cells, targeting CAR and tumor antigens, vastly enhances the function of conventional CAR-T cells, stimulates a native immune response, and overcomes obstacles of specific antigen loss or low expression of target cells in antitumor therapy.
Collapse
Affiliation(s)
- Ting Sun
- grid.429222.d0000 0004 1798 0228Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yanyan Li
- grid.429222.d0000 0004 1798 0228Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| | - Ying Yang
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu China
| | - Bin Liu
- grid.429222.d0000 0004 1798 0228Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yufei Cao
- grid.429222.d0000 0004 1798 0228Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| | - Wei Yang
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
119
|
Du Y, Wu T. Heart failure and cancer: From active exposure to passive adaption. Front Cardiovasc Med 2022; 9:992011. [PMID: 36304546 PMCID: PMC9592839 DOI: 10.3389/fcvm.2022.992011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
The human body seems like a "balance integrator." On the one hand, the body constantly actively receives various outside stimuli and signals to induce changes. On the other hand, several internal regulations would be initiated to adapt to these changes. In most cases, the body could keep the balance in vitro and in vivo to reach a healthy body. However, in some cases, the body can only get to a pathological balance. Actively exposed to unhealthy lifestyles and passively adapting to individual primary diseases lead to a similarly inner environment for both heart failure and cancer. To cope with these stimuli, the body must activate the system regulation mechanism and face the mutual interference. This review summarized the association between heart failure and cancer from active exposure to passive adaption. Moreover, we hope to inspire researchers to contemplate these two diseases from the angle of overall body consideration.
Collapse
Affiliation(s)
- Yantao Du
- Ningbo Institute of Medical Science, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Tao Wu
- Department of Cardiovascular Center, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
120
|
Nagasaki J, Ishino T, Togashi Y. Mechanisms of resistance to immune checkpoint inhibitors. Cancer Sci 2022; 113:3303-3312. [PMID: 35848888 PMCID: PMC9530865 DOI: 10.1111/cas.15497] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are effective for various types of cancer, and their application has led to paradigm shifts in cancer treatment. While many patients can obtain clinical benefits from ICI treatment, a large number of patients are primarily resistant to such treatment or acquire resistance after an initial response. Thus, elucidating the resistance mechanisms is warranted to improve the clinical outcomes of ICI treatment. ICIs exert their antitumor effects by activating T cells in the tumor microenvironment. There are various resistance mechanisms, such as insufficient antigen recognition by T cells, impaired T-cell migration and/or infiltration, and reduced T-cell cytotoxicity, most of which are related to the T-cell activation process. Thus, we classify them into three main mechanisms: resistance mechanisms related to antigen recognition, T-cell migration and/or infiltration, and effector functions of T cells. In this review, we summarize these mechanisms of resistance to ICIs related to the T-cell activation process and progress in the development of novel therapies that can overcome resistance.
Collapse
Affiliation(s)
- Joji Nagasaki
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Hematology, Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | - Takamasa Ishino
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
121
|
Abstract
Natural killer (NK) cells comprise a unique population of innate lymphoid cells endowed with intrinsic abilities to identify and eliminate virally infected cells and tumour cells. Possessing multiple cytotoxicity mechanisms and the ability to modulate the immune response through cytokine production, NK cells play a pivotal role in anticancer immunity. This role was elucidated nearly two decades ago, when NK cells, used as immunotherapeutic agents, showed safety and efficacy in the treatment of patients with advanced-stage leukaemia. In recent years, following the paradigm-shifting successes of chimeric antigen receptor (CAR)-engineered adoptive T cell therapy and the advancement in technologies that can turn cells into powerful antitumour weapons, the interest in NK cells as a candidate for immunotherapy has grown exponentially. Strategies for the development of NK cell-based therapies focus on enhancing NK cell potency and persistence through co-stimulatory signalling, checkpoint inhibition and cytokine armouring, and aim to redirect NK cell specificity to the tumour through expression of CAR or the use of engager molecules. In the clinic, the first generation of NK cell therapies have delivered promising results, showing encouraging efficacy and remarkable safety, thus driving great enthusiasm for continued innovation. In this Review, we describe the various approaches to augment NK cell cytotoxicity and longevity, evaluate challenges and opportunities, and reflect on how lessons learned from the clinic will guide the design of next-generation NK cell products that will address the unique complexities of each cancer.
Collapse
Affiliation(s)
- Tamara J Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
122
|
Ping Y, Shen C, Huang B, Zhang Y. Reprogramming T-Cell Metabolism for Better Anti-Tumor Immunity. Cells 2022; 11:3103. [PMID: 36231064 PMCID: PMC9562038 DOI: 10.3390/cells11193103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
T cells play central roles in the anti-tumor immunity, whose activation and differentiation are profoundly regulated by intrinsic metabolic reprogramming. Emerging evidence has revealed that metabolic processes of T cells are generally altered by tumor cells or tumor released factors, leading to crippled anti-tumor immunity. Therefore, better understanding of T cell metabolic mechanism is crucial in developing the next generation of T cell-based anti-tumor immunotherapeutics. In this review, we discuss how metabolic pathways affect T cells to exert their anti-tumor effects and how to remodel the metabolic programs to improve T cell-mediated anti-tumor immune responses. We emphasize that glycolysis, carboxylic acid cycle, fatty acid oxidation, cholesterol metabolism, amino acid metabolism, and nucleotide metabolism work together to tune tumor-reactive T-cell activation and proliferation.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunyi Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100005, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
123
|
Zanoni M, Pegoraro A, Adinolfi E, De Marchi E. Emerging roles of purinergic signaling in anti-cancer therapy resistance. Front Cell Dev Biol 2022; 10:1006384. [PMID: 36200041 PMCID: PMC9527280 DOI: 10.3389/fcell.2022.1006384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer is a complex disease with a rapid growing incidence and often characterized by a poor prognosis. Although impressive advances have been made in cancer treatments, resistance to therapy remains a critical obstacle for the improvement of patients outcome. Current treatment approaches as chemo-, radio-, and immuno-therapy deeply affect the tumor microenvironment (TME), inducing an extensive selective pressure on cancer cells through the activation of the immune system, the induction of cell death and the release of inflammatory and damage-associated molecular patterns (DAMPS), including nucleosides (adenosine) and nucleotides (ATP and ADP). To survive in this hostile environment, resistant cells engage a variety of mitigation pathways related to metabolism, DNA repair, stemness, inflammation and resistance to apoptosis. In this context, purinergic signaling exerts a pivotal role being involved in mitochondrial function, stemness, inflammation and cancer development. The activity of ATP and adenosine released in the TME depend upon the repertoire of purinergic P2 and adenosine receptors engaged, as well as, by the expression of ectonucleotidases (CD39 and CD73) on tumor, immune and stromal cells. Besides its well established role in the pathogenesis of several tumors and in host–tumor interaction, purinergic signaling has been recently shown to be profoundly involved in the development of therapy resistance. In this review we summarize the current advances on the role of purinergic signaling in response and resistance to anti-cancer therapies, also describing the translational applications of combining conventional anticancer interventions with therapies targeting purinergic signaling.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Michele Zanoni,
| | - Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
124
|
Wang J, Du L, Chen X. Adenosine signaling: Optimal target for gastric cancer immunotherapy. Front Immunol 2022; 13:1027838. [PMID: 36189223 PMCID: PMC9523428 DOI: 10.3389/fimmu.2022.1027838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancy and leading cause of cancer-related deaths worldwide. Due to asymptomatic or only nonspecific early symptoms, GC patients are usually in the advanced stage at first diagnosis and miss the best opportunity of treatment. Immunotherapies, especially immune checkpoint inhibitors (ICIs), have dramatically changed the landscape of available treatment options for advanced-stage cancer patients. However, with regards to existing ICIs, the clinical benefit of monotherapy for advanced gastric cancer (AGC) is quite limited. Therefore, it is urgent to explore an optimal target for the treatment of GC. In this review, we summarize the expression profiles and prognostic value of 20 common immune checkpoint-related genes in GC from Gene Expression Profiling Interactive Analysis (GEPIA) database, and then find that the adenosinergic pathway plays an indispensable role in the occurrence and development of GC. Moreover, we discuss the pathophysiological function of adenosinergic pathway in cancers. The accumulation of extracellular adenosine inhibits the normal function of immune effector cells and facilitate the effect of immunosuppressive cells to foster GC cells proliferation and migration. Finally, we provide insights into potential clinical application of adenosinergic-targeting therapies for GC patients.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
125
|
Shropshire DB, Acosta FM, Fang K, Benavides J, Sun LZ, Jin VX, Jiang JX. Association of adenosine signaling gene signature with estrogen receptor-positive breast and prostate cancer bone metastasis. Front Med (Lausanne) 2022; 9:965429. [PMID: 36186774 PMCID: PMC9520286 DOI: 10.3389/fmed.2022.965429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Bone metastasis is a common and devastating consequence of several major cancer types, including breast and prostate. Osteocytes are the predominant bone cell, and through connexin (Cx) 43 hemichannels release ATP to the bone microenvironment that can be hydrolyzed to adenosine. Here, we investigated how genes related to ATP paracrine signaling are involved in two common bone-metastasizing malignancies, estrogen receptor positive (ER+) breast and prostate cancers. Compared to other sites, bone metastases of both cancer types expressed higher levels of ENTPD1 and NT5E, which encode CD39 and CD73, respectively, and hydrolyze ATP to adenosine. ADORA3, encoding the adenosine A3 receptor, had a similar expression pattern. In primary ER+ breast cancer, high levels of the triplet ENTPD1/NT5E/ADORA3 expression signature was correlated with lower overall, distant metastasis-free, and progression-free survival. In ER+ bone metastasis biopsies, this expression signature is associated with lower survival. This expression signature was also higher in bone-metastasizing primary prostate cancers than in those that caused other tumor events or did not lead to progressive disease. In 3D culture, a non-hydrolyzable ATP analog inhibited the growth of breast and prostate cancer cell lines more than ATP did. A3 inhibition also reduced spheroid growth. Large-scale screens by the Drug Repurposing Hub found ER+ breast cancer cell lines were uniquely sensitive to adenosine receptor antagonists. Together, these data suggest a vital role for extracellular ATP degradation and adenosine receptor signaling in cancer bone metastasis, and this study provides potential diagnostic means for bone metastasis and specific targets for treatment and prevention.
Collapse
Affiliation(s)
- Daniel Brian Shropshire
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Kun Fang
- Division of Biostatistics and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jaime Benavides
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor X. Jin
- Division of Biostatistics and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- *Correspondence: Jean X. Jiang,
| |
Collapse
|
126
|
Liu Z, Liu X, Shen H, Xu X, Zhao X, Fu R. Adenosinergic axis and immune checkpoint combination therapy in tumor: A new perspective for immunotherapy strategy. Front Immunol 2022; 13:978377. [PMID: 36159861 PMCID: PMC9493240 DOI: 10.3389/fimmu.2022.978377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
There are two figures and one table in this review, the review consists of 5823 words, without the description of figures and table, but including references. Tumor cells escape anti-tumor immune responses in various ways, including functionally shaping the microenvironment through the secretion of various chemokines and, cytokines. Adenosine is a powerful immunosuppressive metabolite, that is frequently elevated in the extracellular tumor microenvironment (TME). Thus, it has recently been proposed as a novel antitumor immunoassay for targeting adenosine- generating enzymes, such as CD39, CD73, and adenosine receptors. In recent years, the discovery of the immune checkpoints, such as programmed cell death 1(PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), has also greatly changed treatment methods and ideas for malignant tumors. Malignant tumor immunotherapy has been developed from point-to-point therapy targeting immune checkpoints, combining different points of different pathways to create a therapy based on the macroscopic immune regulatory system network. This article reviews the theoretical basis of the adenosine energy axis and immune checkpoint combined therapy for malignant tumors and the latest advances in malignant tumors.
Collapse
|
127
|
Faraoni EY, Strickland LN, O’Brien BJ, Barraza JF, Thosani NC, Wray CJ, Mills TW, Bailey-Lundberg JM. Radiofrequency ablation in combination with CD73 inhibitor AB680 reduces tumor growth and enhances anti-tumor immunity in a syngeneic model of pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:995027. [PMID: 36147911 PMCID: PMC9486545 DOI: 10.3389/fonc.2022.995027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma presents a 5-year overall survival rate of 11%, placing an imperative need for the discovery and application of innovative treatments. Radiofrequency ablation represents a promising therapy for PDA, as studies show it induces coagulative necrosis and a host adaptive immune response. In this work we evaluated the effects of RFA treatment in vivo by establishing a syngeneic mouse model of PDA and performing tumor ablation in one flank. Our studies revealed RFA acutely impaired PDA tumor growth; however, such effects were not sustained one week after treatment. Adenosine (ADO) pathway represents a strong immunosuppressive mechanism that was shown to play a role in PDA progression and preliminary data from ongoing clinical studies suggest ADO pathway inhibition may improve therapeutic outcomes. Thus, to investigate whether ADO generation may be involved in tumor growth relapse after RFA, we evaluated adenosine-monophosphate (AMP), ADO and inosine (INO) levels by HPLC and found they were acutely increased after treatment. Thus, we evaluated an in vivo CD73 inhibition in combination with RFA to study ADO pathway implication in RFA response. Results showed combination therapy of RFA and a CD73 small molecule inhibitor (AB680) in vivo promoted sustained tumor growth impairment up to 10 days after treatment as evidenced by increased necrosis and anti-tumor immunity, suggesting RFA in combination with CD73 inhibitors may improve PDA patient response.
Collapse
Affiliation(s)
- Erika Y. Faraoni
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Lincoln N. Strickland
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baylee J. O’Brien
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joseph F. Barraza
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nirav C. Thosani
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Curtis J. Wray
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting W. Mills
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
128
|
Pedrosa L, Foguet C, Oliveres H, Archilla I, de Herreros MG, Rodríguez A, Postigo A, Benítez-Ribas D, Camps J, Cuatrecasas M, Castells A, Prat A, Thomson TM, Maurel J, Cascante M. A novel gene signature unveils three distinct immune-metabolic rewiring patterns conserved across diverse tumor types and associated with outcomes. Front Immunol 2022; 13:926304. [PMID: 36119118 PMCID: PMC9479210 DOI: 10.3389/fimmu.2022.926304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/β-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.
Collapse
Affiliation(s)
- Leire Pedrosa
- Medical Oncology Department, Hospital Clínic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Carles Foguet
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Helena Oliveres
- Medical Oncology Department, Hospital Clínic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Iván Archilla
- Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta García de Herreros
- Medical Oncology Department, Hospital Clínic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Adela Rodríguez
- Medical Oncology Department, Hospital Clínic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Antonio Postigo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Group of Transcriptional Regulation of Gene Expression, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institución Catalana de Investigación y Estudios Avanzados (ICREA) and Department of Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | | | - Jordi Camps
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Gastrointestinal Oncology Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Cuatrecasas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antoni Castells
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Gastrointestinal Oncology Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Aleix Prat
- Medical Oncology Department, Hospital Clínic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Timothy M. Thomson
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Molecular Biology Institute, National Research Council (IBMB-CSIC), Barcelona, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
- *Correspondence: Timothy M. Thomson, ; Joan Maurel, ; Marta Cascante,
| | - Joan Maurel
- Medical Oncology Department, Hospital Clínic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Gastrointestinal Oncology Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- *Correspondence: Timothy M. Thomson, ; Joan Maurel, ; Marta Cascante,
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Timothy M. Thomson, ; Joan Maurel, ; Marta Cascante,
| |
Collapse
|
129
|
Liu J, Tao H, Yuan T, Li J, Li J, Liang H, Huang Z, Zhang E. Immunomodulatory effects of regorafenib: Enhancing the efficacy of anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:992611. [PMID: 36119072 PMCID: PMC9479218 DOI: 10.3389/fimmu.2022.992611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
Anti-PD-1/PD-L1 therapy has shown significant benefits in the treatment of a variety of malignancies. However, not all cancer patients can benefit from this strategy due to drug resistance. Therefore, there is an urgent need for methods that can effectively improve the efficacy of anti-PD-1/PD-L1 therapy. Combining anti-PD-1/PD-L1 therapy with regorafenib has been demonstrated as an effective method to enhance its therapeutic effect in several clinical studies. In this review, we describe common mechanisms of resistance to anti-PD-1/PD-L1 therapy, including lack of tumor immunogenicity, T cell dysfunction, and abnormal expression of PD-L1. Then, we illustrate the role of regorafenib in modifying the tumor microenvironment (TME) from multiple aspects, which is different from other tyrosine kinase inhibitors. Regorafenib not only has immunomodulatory effects on various immune cells, but can also regulate PD-L1 and MHC-I on tumor cells and promote normalization of abnormal blood vessels. Therefore, studies on the synergetic mechanism of the combination therapy may usher in a new era for cancer treatment and help us identify the most appropriate individuals for more precise treatment.
Collapse
Affiliation(s)
- Junjie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haisu Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| |
Collapse
|
130
|
Gammelgaard OL, Terp MG, Renn C, Labrijn AF, Hamaker O, Nielsen AY, Vever H, Hansen SW, Gjerstorff MF, Müller CE, Parren PW, Ditzel HJ. Targeting two distinct epitopes on human CD73 with a bispecific antibody improves anticancer activity. J Immunother Cancer 2022; 10:jitc-2022-004554. [PMID: 36096528 PMCID: PMC9472124 DOI: 10.1136/jitc-2022-004554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Immunosuppressive extracellular adenosine is generated by the enzymatic activity of CD73. In preclinical models, antibodies (Abs) targeting different epitopes on CD73 exert anticancer activity through distinct mechanisms such as inhibition of enzymatic activity, engagement of Fc receptors, and spatial redistribution of CD73. Methods Using controlled Fab arm exchange, we generated biparatopic bispecific antibodies (bsAbs) from parental anti-CD73 Abs with distinct anticancer activities. The resulting anticancer activity was evaluated using in vitro and in vivo models. Results We demonstrate that different anticancer activities can be combined in a biparatopic bsAb. Remarkably, the bsAb significantly improved the enzyme inhibitory activity compared with the parental Abs, which led to neutralization of adenosine-mediated T-cell suppression as demonstrated by proliferation and interferon gamma (IFN-γ) production and prolonged survival of tumor-bearing mice. Additionally, the bsAb caused more efficient internalization of cell surface CD73 and stimulated potent Fc-mediated engagement of human immune effector cells in vitro and in vivo. Conclusions Our data collectively demonstrate that complementary anticancer mechanisms of action of distinct anti-CD73 Abs can be combined and enhanced in a biparatopic bsAb. The multiple mechanisms of action and superior activity compared with the monospecific parental Abs make the bsAb a promising candidate for therapeutic targeting of CD73 in cancer. This concept may greatly improve future Ab design.
Collapse
Affiliation(s)
- Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | | | - Oliver Hamaker
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Aaraby Y Nielsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henriette Vever
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Soren Wk Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Paul Whi Parren
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark .,Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
131
|
Rocconi RP, Stanbery L, Tang M, Madeira da Silva L, Walter A, Monk BJ, Herzog TJ, Coleman RL, Manning L, Wallraven G, Horvath S, Bognar E, Senzer N, Brun S, Nemunaitis J. ENTPD1/CD39 as a predictive marker of treatment response to gemogenovatucel-T as maintenance therapy in newly diagnosed ovarian cancer. COMMUNICATIONS MEDICINE 2022; 2:106. [PMID: 36051466 PMCID: PMC9424215 DOI: 10.1038/s43856-022-00163-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Background Broadened use of predictive molecular and phenotypic profiling amongst oncologists has facilitated optimal integration of targeted- and immuno-therapeutics into clinical care. However, the use of predictive immunomarkers in ovarian cancer (OC) has not consistently translated into clinical benefit. Vigil (gemogenovatucel-T) is a novel plasmid engineered autologous tumor cell immunotherapy designed to knock down the tumor suppressor cytokines, TGFβ1 and TGFβ2, augment local immune function via increased GMCSF expression and enhance presentation of clonal neoantigen epitopes. Methods: All patients enrolled in the VITAL trial (NCT02346747) of maintenance Vigil vs. placebo as front-line therapy with homologous recombination proficient (HRP) stage IIIB-IV newly diagnosed ovarian cancer underwent NanoString gene expression analysis. Tissue was obtained from surgically resected ovarian tumor tissue following surgical debulking. A statistical algorithm was used to analyze the NanoString gene expression data. Results Using the NanoString Statistical Algorithm (NSA), we identify high expression of ENTPD1/CD39 (which functions as the rate-limiting step in the production of the immune suppressor adenosine from ATP to ADP) as a presumptive predictor of response to Vigil versus placebo regardless of HRP status on the basis of relapse free survival (median not achieved vs 8.1 months, p = 0.00007) and overall survival (median not achieved vs 41.4 months, p = 0.013) extension. Conclusion NSA should be considered for application to investigational targeted therapies in order to identify populations most likely to benefit from treatment, in preparation for efficacy conclusive trials.
Collapse
Affiliation(s)
- Rodney P. Rocconi
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Mobile, USA
| | | | - Min Tang
- Stat-Beyond Consulting, Irvine, USA
| | - Luciana Madeira da Silva
- Mitchell Cancer Institute, Division of Gynecologic Oncology, University of South Alabama, Mobile, USA
| | - Adam Walter
- Gradalis, Inc, Carrollton, USA
- Promedica, Toledo, USA
| | - Bradley J. Monk
- Arizona Oncology, (US Oncology Network), University of Arizona, Creighton University, Phoenix, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol 2022; 15:118. [PMID: 36031601 PMCID: PMC9420297 DOI: 10.1186/s13045-022-01335-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1, programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 provide deep and durable treatment responses which have revolutionized oncology. However, despite over 40% of cancer patients being eligible to receive immunotherapy, only 12% of patients gain benefit. A key to understanding what differentiates treatment response from non-response is better defining the role of the innate immune system in anti-tumor immunity and immune tolerance. Teleologically, myeloid cells, including macrophages, dendritic cells, monocytes, and neutrophils, initiate a response to invading pathogens and tissue repair after pathogen clearance is successfully accomplished. However, in the tumor microenvironment (TME), these innate cells are hijacked by the tumor cells and are imprinted to furthering tumor propagation and dissemination. Major advancements have been made in the field, especially related to the heterogeneity of myeloid cells and their function in the TME at the single cell level, a topic that has been highlighted by several recent international meetings including the 2021 China Cancer Immunotherapy workshop in Beijing. Here, we provide an up-to-date summary of the mechanisms by which major myeloid cells in the TME facilitate immunosuppression, enable tumor growth, foster tumor plasticity, and confer therapeutic resistance. We discuss ongoing strategies targeting the myeloid compartment in the preclinical and clinical settings which include: (1) altering myeloid cell composition within the TME; (2) functional blockade of immune-suppressive myeloid cells; (3) reprogramming myeloid cells to acquire pro-inflammatory properties; (4) modulating myeloid cells via cytokines; (5) myeloid cell therapies; and (6) emerging targets such as Siglec-15, TREM2, MARCO, LILRB2, and CLEVER-1. There is a significant promise that myeloid cell-based immunotherapy will help advance immuno-oncology in years to come.
Collapse
Affiliation(s)
- Yi Wang
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Margaret E Gatti-Mays
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.
| | - Zihai Li
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
133
|
Haanen JBAG, Peters S. Minus Times Minus Equals Plus. J Clin Oncol 2022; 40:3453-3455. [PMID: 35981269 DOI: 10.1200/jco.22.01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- John B A G Haanen
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Solange Peters
- Chair Medical Oncology, Oncology Department-CHUV, Lausanne, Switzerland
| |
Collapse
|
134
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022; 15:111. [PMID: 35978433 PMCID: PMC9386972 DOI: 10.1186/s13045-022-01325-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
135
|
Immune Checkpoint Inhibitors for Vaccine Improvements: Current Status and New Approaches. Pharmaceutics 2022; 14:pharmaceutics14081721. [PMID: 36015348 PMCID: PMC9415890 DOI: 10.3390/pharmaceutics14081721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, the use of immune checkpoint inhibitors (ICIs) in combination with approved or experimental vaccines has proven to be a promising approach to improve vaccine immunogenicity and efficacy. This strategy seeks to overcome the immunosuppressive mechanisms associated with the vaccine response, thereby achieving increased immunogenicity and efficacy. Most of the information on the use of ICIs combined with vaccines derives from studies on certain anti-tumor vaccines combined with monoclonal antibodies (mAbs) against either cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or programmed death-ligand 1 (PD-L1). However, over the past few years, emerging strategies to use new-generation ICIs as molecular adjuvants are paving the way for future advances in vaccine research. Here, we review the current state and future directions of the use of ICIs in experimental and clinical settings, including mAbs and alternative new approaches using antisense oligonucleotides (ASOs), small non-coding RNAs, aptamers, peptides, and other small molecules for improving vaccine efficacy. The scope of this review mainly includes the use of ICIs in therapeutic antitumor vaccines, although recent research on anti-infective vaccines will also be addressed.
Collapse
|
136
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022. [PMID: 35978433 DOI: 10.1186/s13045-022-01325-0.pmid:35978433;pmcid:pmc9386972.[125]robertc.adecadeofimmune-checkpointinhibitorsincancertherapy.natcommun.2020jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.pmid:32732879;pmcid:pmc7393098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
137
|
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat Commun 2022; 13:4495. [PMID: 35918337 PMCID: PMC9345862 DOI: 10.1038/s41467-022-32066-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
While hypoxia promotes carcinogenesis, tumour aggressiveness, metastasis, and resistance to oncological treatments, the impacts of hyperoxia on tumours are rarely explored because providing a long-lasting oxygen supply in vivo is a major challenge. Herein, we construct micro oxygen factories, namely, photosynthesis microcapsules (PMCs), by encapsulation of acquired cyanobacteria and upconversion nanoparticles in alginate microcapsules. This system enables a long-lasting oxygen supply through the conversion of external radiation into red-wavelength emissions for photosynthesis in cyanobacteria. PMC treatment suppresses the NF-kB pathway, HIF-1α production and cancer cell proliferation. Hyperoxic microenvironment created by an in vivo PMC implant inhibits hepatocarcinoma growth and metastasis and has synergistic effects together with anti-PD-1 in breast cancer. The engineering oxygen factories offer potential for tumour biology studies in hyperoxic microenvironments and inspire the exploration of oncological treatments.
Collapse
|
138
|
Dizaji Asl K, Mazloumi Z, Majidi G, Kalarestaghi H, Sabetkam S, Rafat A. NK cell dysfunction is linked with disease severity in SARS-CoV-2 patients. Cell Biochem Funct 2022; 40:559-568. [PMID: 35833321 PMCID: PMC9350078 DOI: 10.1002/cbf.3725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 first raised from Wuhan City, Hubei Province in November 2019. The respiratory disorder, cough, weakness, fever are the main clinical symptoms of coronavirus disease 2019 (COVID-19) patients. Natural Killer (NK) cells as a first defense barrier of innate immune system have an essential role in early defense against pulmonary virus. They kill the infected cells by inducing apoptosis or the degranulation of perforin and granzymes. Collectively, NK cells function are coordinated by the transmitted signals from activating and inhibitory receptors. It is clear that the cytotoxic function of NK cells is disrupted in COVID-19 patients due to the dysregulation of activating and inhibitory receptors. Therefore, better understanding of the activating and inhibitory receptors mechanism could facilitate the treatment strategy in clinic. To improve the efficacy of immunotherapy in COVID-19 patients, the functional detail of NK cell and manipulation of their key checkpoints are gathered in current review.
Collapse
Affiliation(s)
- Khadijeh Dizaji Asl
- Clinical Research Development Unit of Tabriz Valiasr HospitalTabriz University of Medical SciencesTabrizIran
- Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz BranchIslamic Azad UniversityTabrizIran
| | - Zeinab Mazloumi
- Department of Medical Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Ghazal Majidi
- Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of MedicineArdabil University of Medical SciencesArdabilIran
| | - Shahnaz Sabetkam
- Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz BranchIslamic Azad UniversityTabrizIran
| | - Ali Rafat
- Department of Anatomical SciencesTabriz University of Medical SciencesTabrizIran
- Anatomical Sciences Research CenterKashan University of Medical SciencesKashanIran
| |
Collapse
|
139
|
Martinez-Gomez C, Michelas M, Scarlata CM, Salvioni A, Gomez-Roca C, Sarradin V, Lauzéral-Vizcaino F, Féliu V, Dupret-Bories A, Ferron G, Sarini J, Devaud C, Delord JP, Balança CC, Martinez A, Ayyoub M. Circulating Exhausted PD-1+CD39+ Helper CD4 T Cells Are Tumor-Antigen-Specific and Predict Response to PD-1/PD-L1 Axis Blockade. Cancers (Basel) 2022; 14:cancers14153679. [PMID: 35954341 PMCID: PMC9367599 DOI: 10.3390/cancers14153679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Not all cancer patients receiving immunotherapy by immune checkpoint blockade experience a clinical benefit. Our study was aimed at identifying biomarkers that could guide the selection of immunotherapy-responsive patients. Immunotherapy targets two major populations of lymphocytes: CD8 T cells, which directly kill tumor cells, and CD4 T cells, which provide help to CD8 T cells, the role of which in clinical responsiveness to immunotherapy has been less explored. We identified, in the blood of cancer patients, a population of CD4 T cells expressing inhibitory receptors targeted by immunotherapy. We showed that these cells were activated and proliferating, indicating their potential involvement in ongoing immune responses. Accordingly, we showed that they were specific for tumor antigens. In a prospective cohort, we showed that high proportions of these cells prior to therapy were associated with a response to immunotherapy. Abstract Tumor-infiltrating exhausted PD-1hiCD39+ tumor-antigen (Ag)-specific CD4 T cells contribute to the response to immune checkpoint blockade (ICB), but their circulating counterparts, which could represent accessible biomarkers, have not been assessed. Here, we analyzed circulating PD-1+CD39+ CD4 T cells and show that this population was present at higher proportions in cancer patients than in healthy individuals and was enriched in activated HLA-DR+ and ICOS+ and proliferating KI67+ cells, indicative of their involvement in ongoing immune responses. Among memory CD4 T cells, this population contained the lowest proportions of cells producing effector cytokines, suggesting they were exhausted. In patients with HPV-induced malignancies, the PD-1+CD39+ population contained high proportions of HPV Ag-specific T cells. In patients treated by ICB for HPV-induced tumors, the proportion of circulating PD-1+CD39+ CD4 T cells was predictive of the clinical response. Our results identify CD39 expression as a surrogate marker of circulating helper tumor-Ag-specific CD4 T cells.
Collapse
Affiliation(s)
- Carlos Martinez-Gomez
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Marie Michelas
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Clara-Maria Scarlata
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Immune Monitoring Core Facility, IUCT-Oncopole, 31059 Toulouse, France
| | - Anna Salvioni
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Carlos Gomez-Roca
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Medical Oncology, IUCT-Oncopole, 31059 Toulouse, France
| | - Victor Sarradin
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Medical Oncology, IUCT-Oncopole, 31059 Toulouse, France
| | - Françoise Lauzéral-Vizcaino
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Virginie Féliu
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Agnès Dupret-Bories
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Gwénaël Ferron
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Jérôme Sarini
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Christel Devaud
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Jean-Pierre Delord
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Medical Oncology, IUCT-Oncopole, 31059 Toulouse, France
| | - Camille-Charlotte Balança
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
| | - Alejandra Martinez
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Department of Surgery, IUCT-Oncopole, 31059 Toulouse, France; (A.D.-B.); (G.F.); (J.S.)
| | - Maha Ayyoub
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Université de Toulouse, 31037 Toulouse, France; (C.M.-G.); (M.M.); (C.-M.S.); (A.S.); (C.G.-R.); (V.S.); (F.L.-V.); (V.F.); (C.D.); (J.-P.D.); (C.-C.B.); (A.M.)
- Immune Monitoring Core Facility, IUCT-Oncopole, 31059 Toulouse, France
- Correspondence: ; Tel.: +33-(0)582741687
| |
Collapse
|
140
|
Bauer A, Gebauer N, Knief J, Tharun L, Arnold N, Riecke A, Steinestel K, Witte HM. The expression of the adenosine pathway markers CD39 and CD73 in salivary gland carcinomas harbors the potential for novel immune checkpoint inhibition. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04211-x. [PMID: 35902382 DOI: 10.1007/s00432-022-04211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND In salivary gland carcinomas (SGC), there is only a small fraction of entities that appears to profit from immune checkpoint inhibition (ICI). Recent findings connected the activation of adenosine-signaling with a tolerogenic microenvironment. Therefore, the inhibition of adenosine pathway markers (CD39 and/or CD73) can augment ICI and/or display a novel immunotherapeutic strategy beyond ICI. Here, we assessed the immuno-histochemical expression of CD39 and CD73 across a wide spectrum of SGCs. METHODS In total, 114 patients with SGCs consecutively diagnosed between 2001 and 2021 were assessed for clinicopathological baseline characteristics and underwent confirmatory histopathological review. Immunohistochemical expression levels of CD39 and CD73 were assessed by applying the tumor proportion score (TPS) and the immune proportional score (IPS) comparable to PD-L1 expression analysis in routine clinical practice. Additionally, findings were correlated with PD-L1 expression levels. RESULTS The median age was 60.6 and 51.8% patients were female. The cohort covered a spectrum of eight distinct entities. Advanced-stage disease (UICC/AJCC III/IVA-IVC) at initial diagnosis was present in the majority of patients (64/114). Immunohistochemical staining revealed positivity for CD39 and CD73 in 48.2% and 21.1% on tumor cells (TPS ≥ 1%) as well as 46.4% and 42.9% within the immune cell infiltrate (IPS ≥ 1%), respectively. Further comparative analyses revealed immune-cold entities such adenoid cystic carcinoma (AdCC), immune-hot tumors such as adenocarcinoma, not otherwise specified (AC (NOS)) and entities with intermediate immunologic features such as acinic cell carcinoma (ACC). CONCLUSION Current results indicate entity-specific adenosine signaling signatures. These findings suggest that the adenosine pathway plays a decisive role in tumor immunity among the major spectrum of SGCs. Targeting the adenosine pathway might pose a promising therapeutic option for selected entities.
Collapse
Affiliation(s)
- Arthur Bauer
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany.,Institute of Pathology and Molecular Pathology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Juliana Knief
- Institute of Pathology, Marienkrankenhaus Hamburg, Alfredstraße 9, 22087, Hamburg, Germany
| | - Lars Tharun
- Institute of Pathology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Nele Arnold
- Department of ENT, Federal Armed Forces Hospital Hamburg, Lesserstraße 180, 22049, Hamburg, Germany
| | - Armin Riecke
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| | - Hanno M Witte
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany. .,Institute of Pathology and Molecular Pathology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany. .,Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
141
|
Identification of CD73 as the Antigen of an Antigen-Unknown Monoclonal Antibody Established by Exosome Immunization, and Its Antibody-Drug Conjugate Exerts an Antitumor Effect on Glioblastoma Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15070837. [PMID: 35890137 PMCID: PMC9322095 DOI: 10.3390/ph15070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Development of antibodies against the native structure of membrane proteins with multiple transmembrane domains is challenging because it is difficult to prepare antigens with native structures. Previously, we successfully developed a monoclonal antibody against multi-pass membrane protein TMEM180 by exosome immunization in rats. This approach yielded antibodies that recognized cancer-specific antigens on the exosome. In this study, we performed immunoprecipitation using magnetic beads to identify the antigen of one of the rat antibody clones, 0614, as CD73. We then converted antibody 0614 to human chimeric antibody 0614-5. Glioblastoma (GB) was the cancer type with the highest expression of CD73 in the tumor relative to healthy tissue. An antibody-drug conjugate (ADC) of 0614-5 exerted an antitumor effect on GB cell lines according to expression of CD73. The 0614-5-ADC has potential to be used to treat cancers with high CD73 expression. In addition, our strategy could be used to determine the antigen of any antibody produced by exosome immunization, which may allow the antibody to advance to new antibody therapies.
Collapse
|
142
|
Contreras-Kallens P, Gálvez-Jirón F, De Solminihac J, Elhusseiny A, González-Arriagada WA, Alcayaga-Miranda F, Noelle RJ, Pino-Lagos K. CD49b Targeting Inhibits Tumor Growth and Boosts Anti-tumor Immunity. Front Oncol 2022; 12:928498. [PMID: 35860556 PMCID: PMC9291404 DOI: 10.3389/fonc.2022.928498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The suppressive function of T-regulatory cells (Tregs) can have a detrimental effect on immune responses against tumor cells. Within the Treg cells subset, a new non-classical population has been reported, which expresses high levels of CD49b molecule and, depending on their activation status, can also express the canonical Tregs transcription factor Foxp3. In this report, we sought to characterize Tregs subsets in a murine melanoma model and disrupt the CD49b/CD29 axis by administering an anti-CD29 antibody in tumor-bearing mice. Our data shows that whereas in the draining lymph nodes, the Tr1 cells subset composes <5% of CD4+ T cells, in the tumor, they reach ∼30% of CD4+ T cells. Furthermore, Tr1 cells share the expression of suppressive molecules, such as Nrp-1, PD-1, and CD73, which are highly expressed on Tr1 cells found in tumor-infiltrating leukocytes (TILs). Regardless of the phenotypic similarities with cTreg cells, Tr1 cells display a low proliferative activity, as shown in the kinetics and the incorporation of 5-bromodeoxyuridine (BrdU) experiments. With the intent to impact on Tr1 cells, we administered anti-CD29 antibody into tumor mice, observing that the treatment effectively inhibits tumor growth. This effect is at least mediated by the enrichment of pro-inflammatory T cells, including IFN-γ+ cTreg and IFN-γ+ Tr1 cells (with reduced expression of IL-10), plus Th1 and Tc cells. In this study, we present Tr1 cell characterization in tumor-bearing animals and introduce CD29 as a target for tumor therapy, supported by a meta-analysis indicating that CD29 is present in human biopsies.
Collapse
Affiliation(s)
- Pamina Contreras-Kallens
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Felipe Gálvez-Jirón
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Javiera De Solminihac
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ahmed Elhusseiny
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | | | - Francisca Alcayaga-Miranda
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
- Consorcio Regenero, Chilean Consortium of Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Karina Pino-Lagos
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
143
|
Guo S, Han F, Zhu W. CD39 - A bright target for cancer immunotherapy. Biomed Pharmacother 2022; 151:113066. [PMID: 35550530 DOI: 10.1016/j.biopha.2022.113066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
The ATP-adenosine pathway functions as a key modulator of innate and adaptive immunity within the tumor microenvironment, and cancer immune evasion largely involves the generation of high amounts of immunosuppressive extracellular adenosine (eADO). Consequently, inhibition of eADO-generating enzymes and/or eADO receptors can effectively restore the antitumor immunity of multiple immune cells. With several clinical strategies currently being explored to modulating the eADO pathway in patients with cancer, recent clinical data with antagonists targeting CD73 and A2A receptor have demonstrated a promising therapeutic potential in cancer. Recent findings reveal that the ectonucleotidase CD39, the limiting enzyme been viewed as "immunological switch", converts ATP-driven pro-inflammatory milieu to an anti-inflammatory state mediated by adenosine. Owing to its superior feature of CD39 antagonism that rely not only on preventing the accumulation of adenosine but also on the stabilization of extracellular ATP to restore antitumor immunity, several inhibitors and clinical trials based on CD39 are being evaluated. Consequently, there is currently a focus on understanding the role of CD39 in governing immunity and how therapeutic strategies targeting this pathway alter the antitumor potential. We herein review the impact of CD39 on tumor microenvironment with a focus on treatment preference. Additionally, we also discuss the implication for rational combination therapies, molecular regulation, as well as potential limitations.
Collapse
Affiliation(s)
- Shuwei Guo
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengfeng Han
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
144
|
Zhang H, Feng L, de Andrade Mello P, Mao C, Near R, Csizmadia E, Chan LLY, Enjyoji K, Gao W, Zhao H, Robson SC. Glycoengineered anti-CD39 promotes anticancer responses by depleting suppressive cells and inhibiting angiogenesis in tumor models. J Clin Invest 2022; 132:e157431. [PMID: 35775486 PMCID: PMC9246388 DOI: 10.1172/jci157431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Immunosuppressive cells accumulating in the tumor microenvironment constitute a formidable barrier that interferes with current immunotherapeutic approaches. A unifying feature of these tumor-associated immune and vascular endothelial cells appears to be the elevated expression of ectonucleotidase CD39, which in tandem with ecto-5'-nucleotidase CD73, catalyzes the conversion of extracellular ATP into adenosine. We glycoengineered an afucosylated anti-CD39 IgG2c and tested this reagent in mouse melanoma and colorectal tumor models. We identified major biological effects of this approach on cancer growth, associated with depletion of immunosuppressive cells, mediated through enhanced Fcγ receptor-directed (FcγR-directed), antibody-dependent cellular cytotoxicity (ADCC). Furthermore, regulatory/exhausted T cells lost CD39 expression, as a consequence of antibody-mediated trogocytosis. Most strikingly, tumor-associated macrophages and endothelial cells with high CD39 expression were effectively depleted following antibody treatment, thereby blocking angiogenesis. Tumor site-specific cellular modulation and lack of angiogenesis synergized with chemotherapy and anti-PD-L1 immunotherapy in experimental tumor models. We conclude that depleting suppressive cells and targeting tumor vasculature, through administration of afucosylated anti-CD39 antibody and the activation of ADCC, comprises an improved, purinergic system-modulating strategy for cancer therapy.
Collapse
Affiliation(s)
- Haohai Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lili Feng
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Paola de Andrade Mello
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Changchuin Mao
- Antagen Institute for Biomedical Research, Boston, Massachusetts, USA
| | - Richard Near
- Antagen Institute for Biomedical Research, Boston, Massachusetts, USA
| | - Eva Csizmadia
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom from PerkinElmer, Lawrence, Massachusetts, USA
| | - Keiichi Enjyoji
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, Massachusetts, USA
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
145
|
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
146
|
Zhong ME, Huang ZP, Wang X, Cai D, Li CH, Gao F, Wu XJ, Wang W. A Transcription Factor Signature Can Identify the CMS4 Subtype and Stratify the Prognostic Risk of Colorectal Cancer. Front Oncol 2022; 12:902974. [PMID: 35847938 PMCID: PMC9280271 DOI: 10.3389/fonc.2022.902974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundColorectal cancer (CRC) is a heterogeneous disease, and current classification systems are insufficient for stratifying patients with different risks. This study aims to develop a generalized, individualized prognostic consensus molecular subtype (CMS)-transcription factors (TFs)-based signature that can predict the prognosis of CRC.MethodsWe obtained differentially expressed TF signature and target genes between the CMS4 and other CMS subtypes of CRC from The Cancer Genome Atlas (TCGA) database. A multi-dimensional network inference integrative analysis was conducted to identify the master genes and establish a CMS4-TFs-based signature. For validation, an in-house clinical cohort (n = 351) and another independent public CRC cohort (n = 565) were applied. Gene set enrichment analysis (GSEA) and prediction of immune cell infiltration were performed to interpret the biological significance of the model.ResultsA CMS4-TFs-based signature termed TF-9 that includes nine TF master genes was developed. Patients in the TF-9 high-risk group have significantly worse survival, regardless of clinical characteristics. The TF-9 achieved the highest mean C-index (0.65) compared to all other signatures reported (0.51 to 0.57). Immune infiltration revealed that the microenvironment in the high-risk group was highly immune suppressed, as evidenced by the overexpression of TIM3, CD39, and CD40, suggesting that high-risk patients may not directly benefit from the immune checkpoint inhibitors.ConclusionsThe TF-9 signature allows a more precise categorization of patients with relevant clinical and biological implications, which may be a valuable tool for improving the tailoring of therapeutic interventions in CRC patients.
Collapse
Affiliation(s)
- Min-Er Zhong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Ping Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xun Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Hang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Wang, ; Xiao-Jian Wu, ; Feng Gao,
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Wang, ; Xiao-Jian Wu, ; Feng Gao,
| | - Wei Wang
- Biomedical Big Data Centre, Department of Gynaecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
- *Correspondence: Wei Wang, ; Xiao-Jian Wu, ; Feng Gao,
| |
Collapse
|
147
|
Fang F, Cao W, Mu Y, Okuyama H, Li L, Qiu J, Weyand CM, Goronzy JJ. IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight 2022; 7:e157509. [PMID: 35730568 PMCID: PMC9309057 DOI: 10.1172/jci.insight.157509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The ectonucleotidase CD39 functions as a checkpoint in purinergic signaling on effector T cells. By depleting eATP and initiating the generation of adenosine, it impairs memory cell development and contributes to T cell exhaustion, thereby causing defective tumor immunity and deficient T cell responses in older adults who have increased CD39 expression. Tuning enzymatic activity of CD39 and targeting the transcriptional regulation of ENTPD1 can be used to modulate purinergic signaling. Here, we describe that STAT6 phosphorylation downstream of IL-4 signaling represses CD39 expression on activated T cells by inducing a transcription factor network including GATA3, GFI1, and YY1. GATA3 suppresses ENTPD1 transcription through prevention of RUNX3 recruitment to the ENTPD1 promoter. Conversely, pharmacological STAT6 inhibition decreases T cell effector functions via increased CD39 expression, resulting in the defective signaling of P2X receptors by ATP and stimulation of A2A receptors by adenosine. Our studies suggest that inhibiting the STAT6 pathway to increase CD39 expression has the potential to treat autoimmune disease while stimulation of the pathway could improve T cell immunity.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Hirohisa Okuyama
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Jingtao Qiu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
148
|
Indini A, Massi D, Pirro M, Roila F, Grossi F, Sahebkar A, Glodde N, Bald T, Mandalà M. Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Semin Cancer Biol 2022; 86:477-490. [DOI: 10.1016/j.semcancer.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 10/31/2022]
|
149
|
Piovesan D, Tan JB, Becker A, Banuelos J, Narasappa N, DiRenzo D, Zhang K, Chen A, Ginn E, Udyavar AR, Yin F, Paprcka SL, Purandare B, Park TW, Kimura N, Kalisiak J, Young SW, Powers JP, Schindler U, Sivick KE, Walters MJ. Targeting CD73 with AB680 (Quemliclustat), a Novel and Potent Small-Molecule CD73 Inhibitor, Restores Immune Functionality and Facilitates Antitumor Immunity. Mol Cancer Ther 2022; 21:948-959. [PMID: 35405741 PMCID: PMC9381133 DOI: 10.1158/1535-7163.mct-21-0802] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 01/07/2023]
Abstract
T cells play a critical role in the control of cancer. The development of immune checkpoint blockers (ICB) aimed at enhancing antitumor T-cell responses has revolutionized cancer treatment. However, durable clinical benefit is observed in only a subset of patients, prompting research efforts to focus on strategies that target multiple inhibitory signals within the tumor microenvironment (TME) to limit tumor evasion and improve patient outcomes. Adenosine has emerged as a potent immune suppressant within the TME, and CD73 is the major enzyme responsible for its extracellular production. CD73 can be co-opted within the TME to impair T-cell-mediated antitumor immunity and promote tumor growth. To target this pathway and block the formation of adenosine, we designed a novel, selective, and potent class of small-molecule inhibitors of CD73, including AB680 (quemliclustat), which is currently being tested in patients with cancer. AB680 effectively restored T-cell proliferation, cytokine secretion, and cytotoxicity that were dampened by the formation of immunosuppressive adenosine by CD73. Furthermore, in an allogeneic mixed lymphocyte reaction where CD73-derived adenosine had a dominant suppressive effect in the presence of PD-1 blockade, AB680 restored T-cell activation and function. Finally, in a preclinical mouse model of melanoma, AB680 inhibited CD73 in the TME and increased the antitumor activity of PD-1 blockade. Collectively, these data provide a rationale for the inhibition of CD73 with AB680 in combination with ICB, such as anti-PD-1, to improve cancer patient outcomes.
Collapse
Affiliation(s)
| | - Joanne B.L. Tan
- Arcus Biosciences, Hayward, California.,Nkarta Inc., South San Francisco, California
| | - Annette Becker
- Arcus Biosciences, Hayward, California.,Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| | | | - Nell Narasappa
- Arcus Biosciences, Hayward, California.,Nurix Therapeutics, San Francisco, California
| | | | - Kristen Zhang
- Arcus Biosciences, Hayward, California.,Allogene Therapeutics, South San Francisco, California
| | - Ada Chen
- Arcus Biosciences, Hayward, California
| | | | - Akshata R. Udyavar
- Arcus Biosciences, Hayward, California.,Instil Bio Inc., Thousand Oaks, California
| | - Fangfang Yin
- Arcus Biosciences, Hayward, California.,BeiGene USA, Inc., San Mateo, California
| | | | | | | | | | | | | | | | | | | | - Matthew J. Walters
- Arcus Biosciences, Hayward, California.,Corresponding Author: Matthew J. Walters, Biology, Arcus Biosciences Inc., Hayward, CA 94545. Phone: 510-694-6200, E-mail:
| |
Collapse
|
150
|
Da M, Chen L, Enk A, Ring S, Mahnke K. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells. Front Immunol 2022; 13:914799. [PMID: 35711418 PMCID: PMC9197450 DOI: 10.3389/fimmu.2022.914799] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine (Ado) has been shown to have immunosuppressive effects in a variety of diseases. It can either be released directly into the extracellular environment by cells, or it can be produced by degradation of ATP within the extracellular spaces. This extracellular pathway is facilitated by the concerted actions of the ectoenzymes CD39 and CD73. In a first step CD39 dephosphorylates ATP to ADP and AMP, respectively, and in a second step CD73 converts AMP to Ado. Thus, activity of CD73 on the cell surface of cells is the rate limiting step in the generation of extracellular Ado. Among T cells, CD73 is most abundantly expressed by regulatory T cells (Tregs) and is even upregulated after their activation. Functionally, the generation of Ado by CD73+ Tregs has been shown to play a role in immune suppression of dendritic cells, monocytes and T cells, and the defined expression of CD73 by Tregs in immunosuppressive environments, such as tumors, made CD73 a novel checkpoint inhibitor. Therefore, therapeutical intervention by anti-CD73 antibodies or by chemical inhibitors of the enzymatic function is currently under investigation in some preclinical animal models. In the following we summarize the expression pattern and the possible functions of CD73 in T cells and Tregs, and exemplify novel ways to manipulate CD73 functions in Tregs to stimulate anti-tumor immunity.
Collapse
|