101
|
Charpentier M, Spada S, VanNest S, Demaria S. Radiation therapy-induced remodeling of the tumor immune microenvironment. Semin Cancer Biol 2022; 86:737-747. [DOI: 10.1016/j.semcancer.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
|
102
|
Borden ES, Ghafoor S, Buetow KH, LaFleur BJ, Wilson MA, Hastings KT. NeoScore Integrates Characteristics of the Neoantigen:MHC Class I Interaction and Expression to Accurately Prioritize Immunogenic Neoantigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1813-1827. [PMID: 35304420 DOI: 10.4049/jimmunol.2100700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Accurate prioritization of immunogenic neoantigens is key to developing personalized cancer vaccines and distinguishing those patients likely to respond to immune checkpoint inhibition. However, there is no consensus regarding which characteristics best predict neoantigen immunogenicity, and no model to date has both high sensitivity and specificity and a significant association with survival in response to immunotherapy. We address these challenges in the prioritization of immunogenic neoantigens by (1) identifying which neoantigen characteristics best predict immunogenicity; (2) integrating these characteristics into an immunogenicity score, the NeoScore; and (3) demonstrating a significant association of the NeoScore with survival in response to immune checkpoint inhibition. One thousand random and evenly split combinations of immunogenic and nonimmunogenic neoantigens from a validated dataset were analyzed using a regularized regression model for characteristic selection. The selected characteristics, the dissociation constant and binding stability of the neoantigen:MHC class I complex and expression of the mutated gene in the tumor, were integrated into the NeoScore. A web application is provided for calculation of the NeoScore. The NeoScore results in improved, or equivalent, performance in four test datasets as measured by sensitivity, specificity, and area under the receiver operator characteristics curve compared with previous models. Among cutaneous melanoma patients treated with immune checkpoint inhibition, a high maximum NeoScore was associated with improved survival. Overall, the NeoScore has the potential to improve neoantigen prioritization for the development of personalized vaccines and contribute to the determination of which patients are likely to respond to immunotherapy.
Collapse
Affiliation(s)
- Elizabeth S Borden
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ
| | - Suhail Ghafoor
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ
| | - Kenneth H Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ; and
| | | | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ; and
| | - K Taraszka Hastings
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ; .,Phoenix Veterans Affairs Health Care System, Phoenix, AZ
| |
Collapse
|
103
|
Borden ES, Buetow KH, Wilson MA, Hastings KT. Cancer Neoantigens: Challenges and Future Directions for Prediction, Prioritization, and Validation. Front Oncol 2022; 12:836821. [PMID: 35311072 PMCID: PMC8929516 DOI: 10.3389/fonc.2022.836821] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Prioritization of immunogenic neoantigens is key to enhancing cancer immunotherapy through the development of personalized vaccines, adoptive T cell therapy, and the prediction of response to immune checkpoint inhibition. Neoantigens are tumor-specific proteins that allow the immune system to recognize and destroy a tumor. Cancer immunotherapies, such as personalized cancer vaccines, adoptive T cell therapy, and immune checkpoint inhibition, rely on an understanding of the patient-specific neoantigen profile in order to guide personalized therapeutic strategies. Genomic approaches to predicting and prioritizing immunogenic neoantigens are rapidly expanding, raising new opportunities to advance these tools and enhance their clinical relevance. Predicting neoantigens requires acquisition of high-quality samples and sequencing data, followed by variant calling and variant annotation. Subsequently, prioritizing which of these neoantigens may elicit a tumor-specific immune response requires application and integration of tools to predict the expression, processing, binding, and recognition potentials of the neoantigen. Finally, improvement of the computational tools is held in constant tension with the availability of datasets with validated immunogenic neoantigens. The goal of this review article is to summarize the current knowledge and limitations in neoantigen prediction, prioritization, and validation and propose future directions that will improve personalized cancer treatment.
Collapse
Affiliation(s)
- Elizabeth S Borden
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Research and Internal Medicine (Dermatology), Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States
| | - Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Karen Taraszka Hastings
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Research and Internal Medicine (Dermatology), Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States
| |
Collapse
|
104
|
The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 2022; 32:243-258. [PMID: 34844857 PMCID: PMC8934435 DOI: 10.1016/j.tcb.2021.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Omics-based technologies have revolutionized our understanding of the coding potential of the genome. In particular, these studies revealed widespread unannotated open reading frames (ORFs) throughout genomes and that these regions have the potential to encode novel functional (micro-)proteins and/or hold regulatory roles. However, despite their genomic prevalence, relatively few of these noncanonical ORFs have been functionally characterized, likely in part due to their under-recognition by the broader scientific community. The few that have been investigated in detail have demonstrated their essentiality in critical and divergent biological processes. As such, here we aim to discuss recent advances in understanding the diversity of noncanonical ORFs and their roles, as well as detail biologically important examples within the context of the mammalian genome.
Collapse
|
105
|
Pontarotti P, Paganini J. COVID-19 Pandemic: Escape of Pathogenic Variants and MHC Evolution. Int J Mol Sci 2022; 23:ijms23052665. [PMID: 35269808 PMCID: PMC8910380 DOI: 10.3390/ijms23052665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
We propose a new hypothesis that explains the maintenance and evolution of MHC polymorphism. It is based on two phenomena: the constitution of the repertoire of naive T lymphocytes and the evolution of the pathogen and its impact on the immune memory of T lymphocytes. Concerning the latter, pathogen evolution will have a different impact on reinfection depending on the MHC allomorph. If a mutation occurs in a given region, in the case of MHC allotypes, which do not recognize the peptide in this region, the mutation will have no impact on the memory repertoire. In the case where the MHC allomorph binds to the ancestral peptides and not to the mutated peptide, that individual will have a higher chance of being reinfected. This difference in fitness will lead to a variation of the allele frequency in the next generation. Data from the SARS-CoV-2 pandemic already support a significant part of this hypothesis and following up on these data may enable it to be confirmed. This hypothesis could explain why some individuals after vaccination respond less well than others to variants and leads to predict the probability of reinfection after a first infection depending upon the variant and the HLA allomorph.
Collapse
Affiliation(s)
- Pierre Pontarotti
- Evolutionary Biology Team, MEPHI, Aix Marseille Université, IRD, APHM, IHU MI, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- SNC 5039 CNRS, 13005 Marseille, France
- Xegen, 15 Rue Dominique Piazza, 13420 Gemenos, France
- Correspondence: (P.P.); (J.P.)
| | - Julien Paganini
- Xegen, 15 Rue Dominique Piazza, 13420 Gemenos, France
- Correspondence: (P.P.); (J.P.)
| |
Collapse
|
106
|
Li Q, Yang H, Stroup EK, Wang H, Ji Z. Low-input RNase footprinting for simultaneous quantification of cytosolic and mitochondrial translation. Genome Res 2022; 32:545-557. [PMID: 35193938 PMCID: PMC8896460 DOI: 10.1101/gr.276139.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022]
Abstract
We describe a low-input RNase footprinting approach for the rapid quantification of ribosome-protected fragments with as few as 1000 cultured cells. The assay uses a simplified procedure to selectively capture ribosome footprints based on optimized RNase digestion. It simultaneously maps cytosolic and mitochondrial translation with single-nucleotide resolution. We applied it to reveal selective functions of the elongation factor TUFM in mitochondrial translation, as well as synchronized repression of cytosolic translation after TUFM perturbation. We show the assay is applicable to small amounts of primary tissue samples with low protein synthesis rates, including snap-frozen tissues and immune cells from an individual's blood draw. We showed its feasibility to characterize the personalized immuno-translatome. Our analyses revealed that thousands of genes show lower translation efficiency in monocytes compared with lymphocytes, and identified thousands of translated noncanonical open reading frames (ORFs). Altogether, our RNase footprinting approach opens an avenue to assay transcriptome-wide translation using low-input samples from a wide range of physiological conditions.
Collapse
Affiliation(s)
- Qianru Li
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Haiwang Yang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Emily K Stroup
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Hongbin Wang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60628, USA
| |
Collapse
|
107
|
Lodha M, Erhard F, Dölken L, Prusty BK. The Hidden Enemy Within: Non-canonical Peptides in Virus-Induced Autoimmunity. Front Microbiol 2022; 13:840911. [PMID: 35222346 PMCID: PMC8866975 DOI: 10.3389/fmicb.2022.840911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Viruses play a key role in explaining the pathogenesis of various autoimmune disorders, whose underlying principle is defined by the activation of autoreactive T-cells. In many cases, T-cells escape self-tolerance due to the failure in encountering certain MHC-I self-peptide complexes at substantial levels, whose peptides remain invisible from the immune system. Over the years, contribution of unstable defective ribosomal products (DRiPs) in immunosurveillance has gained prominence. A class of unstable products emerge from non-canonical translation and processing of unannotated mammalian and viral ORFs and their peptides are cryptic in nature. Indeed, high throughput sequencing and proteomics have revealed that a substantial portion of our genomes comprise of non-canonical ORFs, whose generation is significantly modulated during disease. Many of these ORFs comprise short ORFs (sORFs) and upstream ORFs (uORFs) that resemble DRiPs and may hence be preferentially presented. Here, we discuss how such products, normally “hidden” from the immune system, become abundant in viral infections activating autoimmune T-cells, by discussing their emerging role in infection and disease. Finally, we provide a perspective on how these mechanisms can explain several autoimmune disorders in the wake of the COVID-19 pandemic.
Collapse
|
108
|
Kubiniok P, Marcu A, Bichmann L, Kuchenbecker L, Schuster H, Hamelin DJ, Duquette JD, Kovalchik KA, Wessling L, Kohlbacher O, Rammensee HG, Neidert MC, Sirois I, Caron E. Understanding the constitutive presentation of MHC class I immunopeptidomes in primary tissues. iScience 2022; 25:103768. [PMID: 35141507 PMCID: PMC8810409 DOI: 10.1016/j.isci.2022.103768] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the molecular principles that govern the composition of the MHC-I immunopeptidome across different primary tissues is fundamentally important to predict how T cells respond in different contexts in vivo. Here, we performed a global analysis of the MHC-I immunopeptidome from 29 to 19 primary human and mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and HLA-C allotypes do not contribute evenly to the global composition of the MHC-I immunopeptidome across multiple human tissues. Second, we found that tissue-specific and housekeeping MHC-I peptides share very distinct properties. Third, we discovered that proteins that are evolutionarily hyperconserved represent the primary source of the MHC-I immunopeptidome at the organism-wide scale. Fourth, we uncovered new components of the antigen processing and presentation network, including the carboxypeptidases CPE, CNDP1/2, and CPVL. Together, this study opens up new avenues toward a system-wide understanding of antigen presentation in vivo across mammalian species. Tissue-specific and housekeeping MHC class I peptides share distinct properties HLA-A, HLA-B, and HLA-C allotypes contribute very unevenly to the pool of class I peptides MHC-I immunopeptidomes are represented by evolutionarily conserved proteins An extended antigen processing and presentation pathway is uncovered
Collapse
Affiliation(s)
- Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Leon Kuchenbecker
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, 72076 Tübingen, Baden-Württemberg, Germany
| | - David J. Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | | | - Laura Wessling
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence Machine Learning in the Sciences (EXC 2064), University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Baden-Württemberg, Germany
| | - Marian C. Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zürich, 8057&8091 Zürich, Switzerland
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada
- Corresponding author
| |
Collapse
|
109
|
Cardon T, Fournier I, Salzet M. Unveiling a Ghost Proteome in the Glioblastoma Non-Coding RNAs. Front Cell Dev Biol 2022; 9:703583. [PMID: 35004666 PMCID: PMC8733697 DOI: 10.3389/fcell.2021.703583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common brain cancer in adults. Nevertheless, the median survival time is 15 months, if treated with at least a near total resection and followed by radiotherapy in association with temozolomide. In glioblastoma (GBM), variations of non-coding ribonucleic acid (ncRNA) expression have been demonstrated in tumor processes, especially in the regulation of major signaling pathways. Moreover, many ncRNAs present in their sequences an Open Reading Frame (ORF) allowing their translations into proteins, so-called alternative proteins (AltProt) and constituting the “ghost proteome.” This neglected world in GBM has been shown to be implicated in protein–protein interaction (PPI) with reference proteins (RefProt) reflecting involvement in signaling pathways linked to cellular mobility and transfer RNA regulation. More recently, clinical studies have revealed that AltProt is also involved in the patient’s survival and bad prognosis. We thus propose to review the ncRNAs involved in GBM and highlight their function in the disease.
Collapse
Affiliation(s)
- Tristan Cardon
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France
| | - Isabelle Fournier
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France.,Institut Universitaire de France, Paris, France
| | - Michel Salzet
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
110
|
Barbosa CRR, Barton J, Shepherd AJ, Mishto M. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478:4187-4202. [PMID: 34940832 PMCID: PMC8786304 DOI: 10.1042/bcj20200910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.
Collapse
Affiliation(s)
- Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| | - Justin Barton
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Adrian J. Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| |
Collapse
|
111
|
Umer HM, Audain E, Zhu Y, Pfeuffer J, Sachsenberg T, Lehtiö J, Branca RM, Perez-Riverol Y. Generation of ENSEMBL-based proteogenomics databases boosts the identification of non-canonical peptides. Bioinformatics 2021; 38:1470-1472. [PMID: 34904638 PMCID: PMC8825679 DOI: 10.1093/bioinformatics/btab838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/06/2023] Open
Abstract
SUMMARY We have implemented the pypgatk package and the pgdb workflow to create proteogenomics databases based on ENSEMBL resources. The tools allow the generation of protein sequences from novel protein-coding transcripts by performing a three-frame translation of pseudogenes, lncRNAs and other non-canonical transcripts, such as those produced by alternative splicing events. It also includes exonic out-of-frame translation from otherwise canonical protein-coding mRNAs. Moreover, the tool enables the generation of variant protein sequences from multiple sources of genomic variants including COSMIC, cBioportal, gnomAD and mutations detected from sequencing of patient samples. pypgatk and pgdb provide multiple functionalities for database handling including optimized target/decoy generation by the algorithm DecoyPyrat. Finally, we have reanalyzed six public datasets in PRIDE by generating cell-type specific databases for 65 cell lines using the pypgatk and pgdb workflow, revealing a wealth of non-canonical or cryptic peptides amounting to >5% of the total number of peptides identified. AVAILABILITY AND IMPLEMENTATION The software is freely available. pypgatk: https://github.com/bigbio/py-pgatk/ and pgdb: https://nf-co.re/pgdb. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Husen M Umer
- Department of Oncology‐Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm 17165, Sweden
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel 24105, Germany
| | - Yafeng Zhu
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Julianus Pfeuffer
- Algorithmic Bioinformatics, Freie Universität Berlin, Berlin 14195, Germany,Visualization and Data Analysis, Zuse Institute Berlin, Berlin 14195, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Janne Lehtiö
- Department of Oncology‐Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm 17165, Sweden
| | - Rui M Branca
- Department of Oncology‐Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm 17165, Sweden,To whom correspondence should be addressed. or
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK,To whom correspondence should be addressed. or
| |
Collapse
|
112
|
Lyapina I, Ivanov V, Fesenko I. Peptidome: Chaos or Inevitability. Int J Mol Sci 2021; 22:13128. [PMID: 34884929 PMCID: PMC8658490 DOI: 10.3390/ijms222313128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Thousands of naturally occurring peptides differing in their origin, abundance and possible functions have been identified in the tissue and biological fluids of vertebrates, insects, fungi, plants and bacteria. These peptide pools are referred to as intracellular or extracellular peptidomes, and besides a small proportion of well-characterized peptide hormones and defense peptides, are poorly characterized. However, a growing body of evidence suggests that unknown bioactive peptides are hidden in the peptidomes of different organisms. In this review, we present a comprehensive overview of the mechanisms of generation and properties of peptidomes across different organisms. Based on their origin, we propose three large peptide groups-functional protein "degradome", small open reading frame (smORF)-encoded peptides (smORFome) and specific precursor-derived peptides. The composition of peptide pools identified by mass-spectrometry analysis in human cells, plants, yeast and bacteria is compared and discussed. The functions of different peptide groups, for example the role of the "degradome" in promoting defense signaling, are also considered.
Collapse
Affiliation(s)
| | | | - Igor Fesenko
- Department of Functional Genomics and Proteomics of Plants, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (I.L.); (V.I.)
| |
Collapse
|
113
|
Chen L, Yang Y, Zhang Y, Li K, Cai H, Wang H, Zhao Q. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies. Chembiochem 2021; 23:e202100534. [PMID: 34862721 DOI: 10.1002/cbic.202100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Indexed: 11/07/2022]
Abstract
Small open reading frames (sORFs) are an important class of genes with less than 100 codons. They were historically annotated as noncoding or even junk sequences. In recent years, accumulating evidence suggests that sORFs could encode a considerable number of polypeptides, many of which play important roles in both physiology and disease pathology. However, it has been technically challenging to directly detect sORF-encoded peptides (SEPs). Here, we discuss the latest advances in methodologies for identifying SEPs with mass spectrometry, as well as the progress on functional studies of SEPs.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Kecheng Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510623, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, P. R. China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
114
|
Papadopoulos C, Callebaut I, Gelly JC, Hatin I, Namy O, Renard M, Lespinet O, Lopes A. Intergenic ORFs as elementary structural modules of de novo gene birth and protein evolution. Genome Res 2021; 31:2303-2315. [PMID: 34810219 PMCID: PMC8647833 DOI: 10.1101/gr.275638.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
The noncoding genome plays an important role in de novo gene birth and in the emergence of genetic novelty. Nevertheless, how noncoding sequences' properties could promote the birth of novel genes and shape the evolution and the structural diversity of proteins remains unclear. Therefore, by combining different bioinformatic approaches, we characterized the fold potential diversity of the amino acid sequences encoded by all intergenic open reading frames (ORFs) of S. cerevisiae with the aim of (1) exploring whether the structural states' diversity of proteomes is already present in noncoding sequences, and (2) estimating the potential of the noncoding genome to produce novel protein bricks that could either give rise to novel genes or be integrated into pre-existing proteins, thus participating in protein structure diversity and evolution. We showed that amino acid sequences encoded by most yeast intergenic ORFs contain the elementary building blocks of protein structures. Moreover, they encompass the large structural state diversity of canonical proteins, with the majority predicted as foldable. Then, we investigated the early stages of de novo gene birth by reconstructing the ancestral sequences of 70 yeast de novo genes and characterized the sequence and structural properties of intergenic ORFs with a strong translation signal. This enabled us to highlight sequence and structural factors determining de novo gene emergence. Finally, we showed a strong correlation between the fold potential of de novo proteins and one of their ancestral amino acid sequences, reflecting the relationship between the noncoding genome and the protein structure universe.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Jean-Christophe Gelly
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015 Paris, France
- Laboratoire d'Excellence GR-Ex, 75015 Paris, France
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maxime Renard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
115
|
Martin PJ, Levine DM, Storer BE, Zheng X, Jain D, Heavner B, Norris BM, Geraghty DE, Spellman SR, Sather CL, Wu F, Hansen JA. A Model of Minor Histocompatibility Antigens in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:782152. [PMID: 34868058 PMCID: PMC8636906 DOI: 10.3389/fimmu.2021.782152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Minor histocompatibility antigens (mHAg) composed of peptides presented by HLA molecules can cause immune responses involved in graft-versus-host disease (GVHD) and graft-versus-leukemia effects after allogeneic hematopoietic cell transplantation (HCT). The current study was designed to identify individual graft-versus-host genomic mismatches associated with altered risks of acute or chronic GVHD or relapse after HCT between HLA-genotypically identical siblings. Our results demonstrate that in allogeneic HCT between a pair of HLA-identical siblings, a mHAg manifests as a set of peptides originating from annotated proteins and non-annotated open reading frames, which i) are encoded by a group of highly associated recipient genomic mismatches, ii) bind to HLA allotypes in the recipient, and iii) evoke a donor immune response. Attribution of the immune response and consequent clinical outcomes to individual peptide components within this set will likely differ from patient to patient according to their HLA types.
Collapse
Affiliation(s)
- Paul J. Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - David M. Levine
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Barry E. Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Ben Heavner
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Brandon M. Norris
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN, United States
| | - Cassie L. Sather
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Feinan Wu
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - John A. Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
116
|
Fesenko I, Shabalina SA, Mamaeva A, Knyazev A, Glushkevich A, Lyapina I, Ziganshin R, Kovalchuk S, Kharlampieva D, Lazarev V, Taliansky M, Koonin EV. A vast pool of lineage-specific microproteins encoded by long non-coding RNAs in plants. Nucleic Acids Res 2021; 49:10328-10346. [PMID: 34570232 DOI: 10.1093/nar/gkab816] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Pervasive transcription of eukaryotic genomes results in expression of long non-coding RNAs (lncRNAs) most of which are poorly conserved in evolution and appear to be non-functional. However, some lncRNAs have been shown to perform specific functions, in particular, transcription regulation. Thousands of small open reading frames (smORFs, <100 codons) located on lncRNAs potentially might be translated into peptides or microproteins. We report a comprehensive analysis of the conservation and evolutionary trajectories of lncRNAs-smORFs from the moss Physcomitrium patens across transcriptomes of 479 plant species. Although thousands of smORFs are subject to substantial purifying selection, the majority of the smORFs appear to be evolutionary young and could represent a major pool for functional innovation. Using nanopore RNA sequencing, we show that, on average, the transcriptional level of conserved smORFs is higher than that of non-conserved smORFs. Proteomic analysis confirmed translation of 82 novel species-specific smORFs. Numerous conserved smORFs containing low complexity regions (LCRs) or transmembrane domains were identified, the biological functions of a selected LCR-smORF were demonstrated experimentally. Thus, microproteins encoded by smORFs are a major, functionally diverse component of the plant proteome.
Collapse
Affiliation(s)
- Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Andrey Knyazev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Anna Glushkevich
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Rustam Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Sergey Kovalchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Daria Kharlampieva
- Department of Cell Biology, Federal Research and Clinical Center of Physical -Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russian Federation
| | - Vassili Lazarev
- Department of Cell Biology, Federal Research and Clinical Center of Physical -Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russian Federation.,Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region, 141701, Russian Federation
| | - Michael Taliansky
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation.,The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
117
|
Marcu A, Schlosser A, Keupp A, Trautwein N, Johann P, Wölfl M, Lager J, Monoranu CM, Walz JS, Henkel LM, Krauß J, Ebinger M, Schuhmann M, Thomale UW, Pietsch T, Klinker E, Schlegel PG, Oyen F, Reisner Y, Rammensee HG, Eyrich M. Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors. J Immunother Cancer 2021; 9:jitc-2021-003404. [PMID: 34599019 PMCID: PMC8488729 DOI: 10.1136/jitc-2021-003404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells. Methods Here, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM. Results Comparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8+ T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors. Conclusions These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion.
Collapse
Affiliation(s)
- Ana Marcu
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | | | - Anne Keupp
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Nico Trautwein
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | - Pascal Johann
- Swabian Children's Cancer Center, Augsburg, Germany.,DKFZ Heidelberg, Heidelberg, Germany
| | - Matthias Wölfl
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Johanna Lager
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Juliane S Walz
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany.,Cluster of Excellence iFIT (EXC2180), University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital of Tübingen, Tübingen, Germany
| | - Lisa M Henkel
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Jürgen Krauß
- Department of Neurosurgery, University Medical Center Würzburg, Würzburg, Germany
| | - Martin Ebinger
- University Children's Hospital, University Medical Center Tübingen, Tübingen, Germany
| | - Martin Schuhmann
- Department of Neurosurgery, University Medical Center Tübingen, Tübingen, Germany
| | | | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Erdwine Klinker
- Institute for Transfusion Medicine, University Medical Center Würzburg, Würzburg, Germany
| | - Paul G Schlegel
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Florian Oyen
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yair Reisner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | - Matthias Eyrich
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| |
Collapse
|
118
|
Lill JR, Mathews WR, Rose CM, Schirle M. Proteomics in the pharmaceutical and biotechnology industry: a look to the next decade. Expert Rev Proteomics 2021; 18:503-526. [PMID: 34320887 DOI: 10.1080/14789450.2021.1962300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Pioneering technologies such as proteomics have helped fuel the biotechnology and pharmaceutical industry with the discovery of novel targets and an intricate understanding of the activity of therapeutics and their various activities in vitro and in vivo. The field of proteomics is undergoing an inflection point, where new sensitive technologies are allowing intricate biological pathways to be better understood, and novel biochemical tools are pivoting us into a new era of chemical proteomics and biomarker discovery. In this review, we describe these areas of innovation, and discuss where the fields are headed in terms of fueling biotechnological and pharmacological research and discuss current gaps in the proteomic technology landscape. AREAS COVERED Single cell sequencing and single molecule sequencing. Chemoproteomics. Biological matrices and clinical samples including biomarkers. Computational tools including instrument control software, data analysis. EXPERT OPINION Proteomics will likely remain a key technology in the coming decade, but will have to evolve with respect to type and granularity of data, cost and throughput of data generation as well as integration with other technologies to fulfill its promise in drug discovery.
Collapse
Affiliation(s)
- Jennie R Lill
- Department of Microchemistry, Lipidomics and Next Generation Sequencing, Genentech Inc. DNA Way, South San Francisco, CA, USA
| | - William R Mathews
- OMNI Department, Genentech Inc. 1 DNA Way, South San Francisco, CA, USA
| | - Christopher M Rose
- Department of Microchemistry, Lipidomics and Next Generation Sequencing, Genentech Inc. DNA Way, South San Francisco, CA, USA
| | - Markus Schirle
- Chemical Biology and Therapeutics Department, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
119
|
Ramarathinam SH, Ho BK, Dudek NL, Purcell AW. HLA class II immunopeptidomics reveals that co-inherited HLA-allotypes within an extended haplotype can improve proteome coverage for immunosurveillance. Proteomics 2021; 21:e2000160. [PMID: 34357683 DOI: 10.1002/pmic.202000160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Human leucocyte antigen (HLA) class II molecules in humans are encoded by three different loci, HLA-DR, -DQ, and -DP. These molecules share approximately 70% sequence similarity and all present peptide ligands to circulating T cells. While the peptide repertoires of numerous HLA-DR, -DQ, and -DP allotypes have been examined, there have been few reports on the combined repertoire of these co-inherited molecules expressed in a single cell as an extended HLA haplotype. Here we describe the endogenous peptide repertoire of a human B lymphoblastoid cell line (C1R) expressing the class II haplotype HLA-DR12/DQ7/DP4. We have identified 71350 unique naturally processed peptides presented collectively by HLA-DR12, HLA-DQ7, or HLA-DP4. The resulting "haplodome" is complemented by the cellular proteome defined by standard LC-MS/MS approaches. This large dataset has shed light on properties of these class II ligands especially the preference for membrane and extracellular source proteins. Our data also provides insights into the co-evolution of these conserved haplotypes of closely linked and co-inherited HLA molecules; which together increase sequence coverage of cellular proteins for immune surveillance with minimal overlap between each co-inherited HLA-class II allomorph.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Bosco K Ho
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nadine L Dudek
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
120
|
Abstract
T cells must recognize pathogen-derived peptides bound to major histocompatibility complexes (MHCs) in order to initiate a cell-mediated immune response against an infection, or to support the development of high-affinity antibody responses. Identifying antigens presented on MHCs by infected cells and professional antigen-presenting cells (APCs) during infection may therefore provide a route toward developing new vaccines. Peptides bound to MHCs can be identified at whole-proteome scale using mass spectrometry-a technique referred to as "immunopeptidomics." This technique has emerged as a powerful tool for identifying potential vaccine targets in the context of many infectious diseases. In this review, we discuss the contributions immunopeptidomic studies have made to understanding antigen presentation and T cell priming in the context of infection and the potential for immunopeptidomics to inform the development of vaccines to address pressing global health problems in infectious disease.
Collapse
|
121
|
Weingarten-Gabbay S, Klaeger S, Sarkizova S, Pearlman LR, Chen DY, Gallagher KME, Bauer MR, Taylor HB, Dunn WA, Tarr C, Sidney J, Rachimi S, Conway HL, Katsis K, Wang Y, Leistritz-Edwards D, Durkin MR, Tomkins-Tinch CH, Finkel Y, Nachshon A, Gentili M, Rivera KD, Carulli IP, Chea VA, Chandrashekar A, Bozkus CC, Carrington M, Bhardwaj N, Barouch DH, Sette A, Maus MV, Rice CM, Clauser KR, Keskin DB, Pregibon DC, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs. Cell 2021; 184:3962-3980.e17. [PMID: 34171305 PMCID: PMC8173604 DOI: 10.1016/j.cell.2021.05.046] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 01/23/2023]
Abstract
T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | | | - Leah R Pearlman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Da-Yuan Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Kathleen M E Gallagher
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R Bauer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Suzanna Rachimi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hasahn L Conway
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Katelin Katsis
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yuntong Wang
- Repertoire Immune Medicines, Cambridge, MA 02139, USA
| | | | | | - Christopher H Tomkins-Tinch
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matteo Gentili
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith D Rivera
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Isabel P Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vipheaviny A Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Cansu Cimen Bozkus
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
| | - Nina Bhardwaj
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Dan H Barouch
- Harvard Medical School, Boston, MA 02115, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derin B Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA; Health Informatics Lab, Metropolitan College, Boston University, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
122
|
Purcell AW. Is the Immunopeptidome Getting Darker?: A Commentary on the Discussion around Mishto et al., 2019. Front Immunol 2021; 12:720811. [PMID: 34326850 PMCID: PMC8315041 DOI: 10.3389/fimmu.2021.720811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
123
|
Atkins JF, O’Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021; 13:1251. [PMID: 34199077 PMCID: PMC8310308 DOI: 10.3390/v13071251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.
Collapse
Affiliation(s)
- John F. Atkins
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Kate M. O’Connor
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Pramod R. Bhatt
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gary Loughran
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| |
Collapse
|
124
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
125
|
Taylor HB, Klaeger S, Clauser KR, Sarkizova S, Weingarten-Gabbay S, Graham DB, Carr SA, Abelin JG. MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies. Mol Cell Proteomics 2021; 20:100116. [PMID: 34146720 PMCID: PMC8327157 DOI: 10.1016/j.mcpro.2021.100116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Immunotherapies have emerged to treat diseases by selectively modulating a patient's immune response. Although the roles of T and B cells in adaptive immunity have been well studied, it remains difficult to select targets for immunotherapeutic strategies. Because human leukocyte antigen class II (HLA-II) peptides activate CD4+ T cells and regulate B cell activation, proliferation, and differentiation, these peptide antigens represent a class of potential immunotherapy targets and biomarkers. To better understand the molecular basis of how HLA-II antigen presentation is involved in disease progression and treatment, systematic HLA-II peptidomics combined with multiomic analyses of diverse cell types in healthy and diseased states is required. For this reason, MS-based innovations that facilitate investigations into the interplay between disease pathologies and the presentation of HLA-II peptides to CD4+ T cells will aid in the development of patient-focused immunotherapies.
Collapse
Affiliation(s)
- Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | |
Collapse
|
126
|
Perreault C, Thibault P, Kroemer G. A bacterium-derived, cancer-associated immunopeptidome. Oncoimmunology 2021; 10:1918373. [PMID: 33996268 PMCID: PMC8096325 DOI: 10.1080/2162402x.2021.1918373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Claude Perreault
- Institute for Research in Immunology and Cancer, Université De Montréal, Montréal, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université De Montréal, Montréal, Canada
| | - Guido Kroemer
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, Inserm U1138, Centre De Recherche Des Cordeliers, Institut Universitaire De France, Paris, France
- Pôle De Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|