101
|
Lui YLE, Tan TL, Timms P, Hafner LM, Tan KH, Tan EL. Elucidating the host-pathogen interaction between human colorectal cells and invading Enterovirus 71 using transcriptomics profiling. FEBS Open Bio 2014; 4:426-31. [PMID: 24918057 PMCID: PMC4050184 DOI: 10.1016/j.fob.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main etiological agents for Hand, Foot and Mouth Disease (HFMD). Types I, II and III interferon may be a key antiviral response against EV71. We examine the transcriptomic changes in human colorectal cells during EV71 infection. The intestinal epithelial immune system plays a key role in the progression of HFMD.
Enterovirus 71 (EV71) is one of the main etiological agents for Hand, Foot and Mouth Disease (HFMD) and has been shown to be associated with severe clinical manifestation. Currently, there is no antiviral therapeutic for the treatment of HFMD patients owing to a lack of understanding of EV71 pathogenesis. This study seeks to elucidate the transcriptomic changes that result from EV71 infection. Human whole genome microarray was employed to monitor changes in genomic profiles between infected and uninfected cells. The results reveal altered expression of human genes involved in critical pathways including the immune response and the stress response. Together, data from this study provide valuable insights into the host–pathogen interaction between human colorectal cells and EV71.
Collapse
Affiliation(s)
- Yan Long Edmund Lui
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Queensland, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia ; School of Chemical and Life Sciences, Singapore Polytechnic, Singapore ; Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore
| | - Tuan Lin Tan
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore
| | - Peter Timms
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Queensland, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia ; Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Louise Marie Hafner
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Queensland, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Kian Hwa Tan
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore
| | - Eng Lee Tan
- Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore ; Department of Paediatrics, University Children's Medical Institute, National University Hospital, Singapore
| |
Collapse
|
102
|
Xu LJ, Jiang T, Zhao W, Han JF, Liu J, Deng YQ, Zhu SY, Li YX, Nian QG, Zhang Y, Wu XY, Qin ED, Qin CF. Parallel mRNA and microRNA profiling of HEV71-infected human neuroblastoma cells reveal the up-regulation of miR-1246 in association with DLG3 repression. PLoS One 2014; 9:e95272. [PMID: 24739954 PMCID: PMC3989279 DOI: 10.1371/journal.pone.0095272] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/26/2014] [Indexed: 11/19/2022] Open
Abstract
Human enterovirus 71 (HEV71) has emerged as the leading cause of viral encephalitis in children in most Asian countries. The roles of host miRNAs in the neurological pathogenesis of HEV71 infection remain unknown. In the present study, comprehensive miRNA expression profiling in HEV71-infected human neuroblastoma SH-SY5Y cells was performed using the Affymetrix Gene Chip microarray assay and was validated using real-time RT-PCR. Among the 69 differentially expressed miRNAs, miR-1246 was specifically induced by HEV71 infection in human neuroblastoma cells, but inhibition of miR-1246 failed to affect HEV71 replication. Parallel mRNA and microRNA profiling based on the 35 K Human Genome Array identified 182 differentially regulated genes. Target prediction of miR-1246 and network modeling revealed 14 potential target genes involved in cell death and cell signaling. Finally, a combined analysis of the results from mRNA profiling and miR-1246 target predication led to the identification of disc-large homolog 3 (DLG3), which is associated with neurological disorders, for further validation. Sequence alignment and luciferase reporter assay showed that miR-1246 directly bound with the 3′-UTR of DLG3 gene. Down-regulation of miR-1246 induced significant changes in DLG3 expression levels in HEV71-infected SHSY5Y cells. Together, these results suggested that miR-1246 might play a role in neurological pathogenesis of HEV71 by regulating DLG3 gene in infected cells. These findings provide new information on the miRNA and mRNA profiles of HEV71-infected neuroblastoma cells. The biological significance of miR-1246 and DLG3 during the course of HEV71 infection deserves further investigation.
Collapse
Affiliation(s)
- Li-Juan Xu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- PLA 404 Hospital, Weihai, Shandong, China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Zhao
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Feng Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Juan Liu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yue-Xiang Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Graduate School, Anhui Medical University, Hefei, Anhui, China
| | - Qing-Gong Nian
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Yan Wu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Graduate School, Anhui Medical University, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
103
|
Ye X, Zhang HM, Qiu Y, Hanson PJ, Hemida MG, Wei W, Hoodless PA, Chu F, Yang D. Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components. PLoS Pathog 2014; 10:e1004070. [PMID: 24722419 PMCID: PMC3983067 DOI: 10.1371/journal.ppat.1004070] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/25/2014] [Indexed: 01/28/2023] Open
Abstract
Intercalated disks (ICDs) are substantial connections maintaining cardiac structures and mediating signal communications among cardiomyocytes. Deficiency in ICD components such as desmosomes, fascia adherens and gap junctions leads to heart dysfunction. Coxsackievirus B3 (CVB3) infection induces cardiac failure but its pathogenic effect on ICDs is unclear. Here we show that CVB3-induced miR-21 expression affects ICD structure, i.e., upregulated miR-21 targets YOD1, a deubiquitinating enzyme, to enhance the K48-linked ubiquitination and degradation of desmin, resulting in disruption of desmosomes. Inhibition of miR-21 preserves desmin during CVB3 infection. Treatment with proteasome inhibitors blocks miR-21-mediated desmin degradation. Transfection of miR-21 or knockdown of YOD1 triggers co-localization of desmin with proteasomes. We also identified K108 and K406 as important sites for desmin ubiquintination and degradation. In addition, miR-21 directly targets vinculin, leading to disturbed fascia adherens evidenced by the suppression and disorientation of pan-cadherin and α-E-catenin proteins, two fascia adherens-components. Our findings suggest a new mechanism of miR-21 in modulating cell-cell interactions of cardiomyocytes during CVB3 infection. Coxsackievirus B3 (CVB3) is one of most common causes of heart inflammation and failure. However, the mechanism by which CVB3 induces cardiac damage has not been fully elucidated. Particularly, the involvement of microRNAs (miRNAs), a family of small RNAs controlling the progression of a wide range of diseases, in CVB3 infection is still unclear. These small RNAs are essential to understand the CVB3-caused heart muscle cell injury and have great potential to serve therapeutic purposes. Here, we systematically analyzed the miRNA changes during CVB3 infection and found that miR-21 is increased by viral infection. We further demonstrated that the CVB3-induced miR-21 triggers heart muscle cell damage by interfering with the cell-cell interactions. miR-21 suppresses the levels of components in cell-cell interactions by either promoting the degradation of those proteins or directly inhibiting the protein production. Inhibition of miR-21 can reduce the host injury caused by CVB3 infection. Our findings will shed new lights on the pathogenesis of CVB3-induced heart failure.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pathology and Laboratory Medicine, University of British Columbia, The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Huifang Mary Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Ye Qiu
- Department of Pathology and Laboratory Medicine, University of British Columbia, The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Paul J. Hanson
- Department of Pathology and Laboratory Medicine, University of British Columbia, The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Maged Gomaa Hemida
- Department of Pathology and Laboratory Medicine, University of British Columbia, The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Wei Wei
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Fanny Chu
- Department of Pathology and Laboratory Medicine, University of British Columbia, The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
104
|
Zhang KS, Liu YJ, Kong HJ, Cheng WW, Shang YJ, Tian H, Zheng HX, Guo JH, Liu XT. Identification and analysis of differential miRNAs in PK-15 cells after foot-and-mouth disease virus infection. PLoS One 2014; 9:e90865. [PMID: 24675746 PMCID: PMC3968000 DOI: 10.1371/journal.pone.0090865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 01/07/2023] Open
Abstract
The alterations of MicroRNAs(miRNAs) in host cell after foot-and-mouth disease virus (FMDV) infection is still obscure. To increase our understanding of the pathogenesis of FMDV at the post-transcriptional regulation level, Solexa high-throu MicroRNAs (miRNAs) play an important role both in the post-transcriptional regulation of gene expression and host-virus interactions. Despite investigations of miRNA expression ghput sequencing and bioinformatic tools were used to identify differentially expressed miRNAs and analyze their functions during FMDV infection of PK-15cells. Results indicated that 9,165,674 and 9,230,378 clean reads were obtained, with 172 known and 72 novel miRNAs differently expressed in infected and uninfected groups respectively. Some of differently expressed miRNAs were validated using stem-loop real-time quantitative RT-PCR. The GO annotation and KEGG pathway analysis for target genes revealed that differently expressed miRNAs were involved in immune response and cell death pathways.
Collapse
Affiliation(s)
- Ke-Shan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong-Jie Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Han-Jin Kong
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wei-Wei Cheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - You-Jun Shang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian-Hong Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian-Tao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail:
| |
Collapse
|
105
|
Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, Chang YL, Wu CT, Chang LY, Shih SR, Lin SW, Lee CN, Yang PC, Yu SL. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun 2014; 5:3344. [DOI: 10.1038/ncomms4344] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/29/2014] [Indexed: 02/07/2023] Open
|
106
|
Mazan-Mamczarz K, Zhao XF, Dai B, Steinhardt JJ, Peroutka RJ, Berk KL, Landon AL, Sadowska M, Zhang Y, Lehrmann E, Becker KG, Shaknovich R, Liu Z, Gartenhaus RB. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development. PLoS Genet 2014; 10:e1004105. [PMID: 24497838 PMCID: PMC3907297 DOI: 10.1371/journal.pgen.1004105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023] Open
Abstract
Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity. Control of gene expression on the translational level is critical for proper function of major cellular processes and deregulation of translation can promote cellular transformation. Emerging actors in this post-transcriptional gene regulation are small non-coding RNAs referred to as microRNAs (miRNAs). We established that miR-520c-3p represses tumor growth through the repression of eIF4GII, a major structural component of the translation initiation complex. Since translation of most cellular mRNAs is primarily regulated at the level of initiation, this node is becoming a potential target for therapeutic intervention. Identified in this study, tumor suppressor function of miR-520c-3p is mediated through the inhibition of translational factor eIF4GII, resulting in the repression of global translational machinery and induction of senescence in tumor cells. While aging and senescence has been shown to be associated with reduced translation the linkage between translational deregulation and senescence in malignant cells has not been previously described. Lending further clinical significance to our findings, we were able to demonstrate that primary DLBCL samples had elevated levels of eIF4GII while having reciprocally low miR-520c-3p expression.
Collapse
Affiliation(s)
- Krystyna Mazan-Mamczarz
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - X. Frank Zhao
- Department of Pathology, University of Maryland, Baltimore, Maryland, United States of America
| | - Bojie Dai
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - James J. Steinhardt
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Raymond J. Peroutka
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Kimberly L. Berk
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Ari L. Landon
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Mariola Sadowska
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Rita Shaknovich
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Zhenqiu Liu
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Ronald B. Gartenhaus
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Veterans Administration Medical Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
107
|
Small RNA analysis in Sindbis virus infected human HEK293 cells. PLoS One 2013; 8:e84070. [PMID: 24391886 PMCID: PMC3877139 DOI: 10.1371/journal.pone.0084070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/12/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION In contrast to the defence mechanism of RNA interference (RNAi) in plants and invertebrates, its role in the innate response to virus infection of mammals is a matter of debate. Since RNAi has a well-established role in controlling infection of the alphavirus Sindbis virus (SINV) in insects, we have used this virus to investigate the role of RNAi in SINV infection of human cells. RESULTS SINV AR339 and TR339-GFP were adapted to grow in HEK293 cells. Deep sequencing of small RNAs (sRNAs) early in SINV infection (4 and 6 hpi) showed low abundance (0.8%) of viral sRNAs (vsRNAs), with no size, sequence or location specific patterns characteristic of Dicer products nor did they possess any discernible pattern to ascribe to a specific RNAi biogenesis pathway. This was supported by multiple variants for each sequence, and lack of hot spots along the viral genome sequence. The abundance of the best defined vsRNAs was below the limit of Northern blot detection. The adaptation of the virus to HEK293 cells showed little sequence changes compared to the reference; however, a SNP in E1 gene with a preference from G to C was found. Deep sequencing results showed little variation of expression of cellular microRNAs (miRNAs) at 4 and 6 hpi compared to uninfected cells. Twelve miRNAs exhibiting some minor differential expression by sequencing, showed no difference in expression by Northern blot analysis. CONCLUSIONS We show that, unlike SINV infection of invertebrates, generation of Dicer-dependent svRNAs and change in expression of cellular miRNAs were not detected as part of the Human response to SINV.
Collapse
|
108
|
Ye X, Hemida MG, Qiu Y, Hanson PJ, Zhang HM, Yang D. MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/β-catenin signal pathways. Cell Mol Life Sci 2013; 70:4631-44. [PMID: 23811937 PMCID: PMC11113642 DOI: 10.1007/s00018-013-1411-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
Coxsackievirus B3 (CVB3) is one of the most prevalent causes of viral myocarditis and is associated with many other pathological conditions. CVB3 replication relies on host cellular machineries and causes direct damage to host cells. MicroRNAs have been found to regulate viral infections but their roles in CVB3 infection are still poorly understood. Here we describe a novel mechanism by which miR-126 regulates two signal pathways essential for CVB3 replication. We found that CVB3-induced ERK1/2 activation triggered the phosphorylation of ETS-1 and ETS-2 transcription factors, which induced miR-126 upregulation. By using both microRNA mimics and inhibitors, we proved that the upregulated miR-126 suppressed sprouty-related, EVH1 domain containing 1 (SPRED1) and in turn enhanced ERK1/2 activation. This positive feedback loop of ERK1/2-miR-126-ERK1/2 promoted CVB3 replication. Meanwhile, miR-126 expression stimulated GSK-3β activity and induced degradation of β-catenin through suppressing LRP6 and WRCH1, two newly identified targets in the Wnt/β-catenin pathway, which sensitized the cells to virus-induced cell death and increased viral progeny release to initiate new infections. Our results demonstrate that upregulated miR-126 upon CVB3 infection targets SPRED1, LRP6, and WRCH1 genes, mediating cross-talk between ERK1/2 and Wnt/β-catenin pathways, and thus promoting viral replication and contributes to the viral cytopathogenicity.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Maged Gomaa Hemida
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Ye Qiu
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Paul J. Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Huifang Mary Zhang
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| |
Collapse
|
109
|
Affiliation(s)
- Bryan R. Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
110
|
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs expressed by plants, animals, and some viruses. miRNAs generally function as part of miRNA-induced silencing complexes to modestly repress mRNAs with imperfect sequence complementarity. Over the last years, many different roles of miRNA mediated regulation in the life cycles of mammalian viruses have been uncovered. In this chapter, I will mainly explore four different examples of how cellular miRNAs interact with viruses: the role of miR-155 in viral oncogenesis, viral strategies to eliminate cellular miR-27, the contribution of miR-122 to the replication of hepatitis C virus, and miRNAs as an experimental tool to control virus replication and vector transgene expression. In the final part of this chapter, I will give a brief overview of virally encoded microRNAs.
Collapse
|
111
|
Li Z, Cui X, Li F, Li P, Ni M, Wang S, Bo X. Exploring the role of human miRNAs in virus-host interactions using systematic overlap analysis. ACTA ACUST UNITED AC 2013; 29:2375-9. [PMID: 23926228 DOI: 10.1093/bioinformatics/btt391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MOTIVATION Human miRNAs have recently been found to have important roles in viral replication. Understanding the patterns and details of human miRNA interactions during virus-host interactions may help uncover novel antiviral therapies. Based on the abundance of knowledge available regarding protein-protein interactions (PPI), virus-host protein interactions, experimentally validated human miRNA-target pairs and transcriptional regulation of human miRNAs, it is possible to explore the complex regulatory network that exists between viral proteins and human miRNAs at the system level. RESULTS By integrating current data regarding the virus-human interactome and human miRNA-target pairs, the overlap between targets of viral proteins and human miRNAs was identified and found to represent topologically important proteins (e.g. hubs or bottlenecks) at the global center of the human PPI network. Viral proteins and human miRNAs were also found to significantly target human PPI pairs. Furthermore, an overlap analysis of virus targets and transcription factors (TFs) of human miRNAs revealed that viral proteins preferentially target human miRNA TFs, representing a new pattern of virus-host interactions. Potential feedback loops formed by viruses, human miRNAs and miRNA TFs were also identified, and these may be exploited by viruses resulting in greater virulence and more effective replication strategies.
Collapse
Affiliation(s)
- Zhenpeng Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | | | | | | | | | | |
Collapse
|
112
|
Lu J, Yi L, Ke C, Zhang Y, Liu R, Chen J, Kung HF, He ML. The interaction between human enteroviruses and type I IFN signaling pathway. Crit Rev Microbiol 2013; 41:201-7. [PMID: 23919297 DOI: 10.3109/1040841x.2013.813903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human enteroviruses (HEV), very common and important human pathogens, cause infections in diverse ways. Recently, the large epidemic of HFMD caused by HEV infection became a growing threat to public health in China. As the first line of immune response, the type I interferon (IFN-α/β) pathway plays an essential role in antiviral infection, particularly in limiting both the early and late stages of infection. Because of co-evolution with the host, the viruses have evolved multiple strategies to evade or subvert the host immunity to ensure their survival. In this paper, we systematically reviewed and summarized the interaction between HEV infections and host type I IFN responses. We firstly described the recent findings of HEV recognition and IFN induction, specifically on host pattern-recognition receptors (PRRs) in HEV infection. Then we discussed the antiviral effect of IFN in HEV infection. Finally, we timely summarized the mechanisms of HEV to circumvent the IFN responses. Clarification of the complexity in this battle may provide us new strategies for prevention and antiviral treatment.
Collapse
Affiliation(s)
- Jing Lu
- Center for Diseases Control and Prevention of Guangdong Province , Guangzhou , China
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Global transcriptomic analysis of human neuroblastoma cells in response to enterovirus type 71 infection. PLoS One 2013; 8:e65948. [PMID: 23861741 PMCID: PMC3702535 DOI: 10.1371/journal.pone.0065948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/30/2013] [Indexed: 01/27/2023] Open
Abstract
Human enterovirus type 71 (EV71) is the major pathogen of hand-foot-and-mouth disease (HFMD) and has been associated with severe neurological disease and even death in infants and young children. The pathogenesis of EV71 infection in the human central nervous system remains unclear. In this study, human whole genome microarray was employed to perform transcriptome profiling in SH-SY5Y human neuroblastoma cells infected with EV71. The results indicated that EV71 infection lead to altered expression of 161 human mRNAs, including 74 up-regulated genes and 87 down-regulated genes. Bioinformatics analysis indicated the possible roles of the differentially regulated mRNAs in selected pathways, including cell cycle/proliferation, apoptosis, and cytokine/chemokine responses. Finally, the microarray results were validated using real-time RT-PCR with high identity. Overall, our results provided fundamental information regarding the host response to EV71 infection in human neuroblastoma cells, and this finding will help explain the pathogenesis of EV71 infection and virus-host interaction.
Collapse
|
114
|
Lam WY, Yeung ACM, Ngai KLK, Li MS, To KF, Tsui SKW, Chan PKS. Effect of avian influenza A H5N1 infection on the expression of microRNA-141 in human respiratory epithelial cells. BMC Microbiol 2013; 13:104. [PMID: 23663545 PMCID: PMC3663648 DOI: 10.1186/1471-2180-13-104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/04/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Avian influenza remains a serious threat to human health. The consequence of human infection varies markedly among different subtypes of avian influenza viruses. In addition to viral factors, the difference in host cellular response is likely to play a critical role. This study aims at elucidating how avian influenza infection perturbs the host's miRNA regulatory pathways that may lead to adverse pathological events, such as cytokine storm, using the miRNA microarray approach. RESULTS The results showed that dysregulation of miRNA expression was mainly observed in highly pathogenic avian influenza A H5N1 infection. We found that miR-21*, miR-100*, miR-141, miR-574-3p, miR-1274a and miR1274b were differentially expressed in response to influenza A virus infection. Interestingly, we demonstrated that miR-141, which was more highly induced by H5N1 than by H1N1 (p < 0.05), had an ability to suppress the expression of a cytokine - transforming growth factor (TGF)-β2. This was supported by the observation that the inhibitory effect could be reversed by antagomiR-141. CONCLUSIONS Since TGF-β2 is an important cytokine that can act as both an immunosuppressive agent and a potent proinflammatory molecule through its ability to attract and regulate inflammatory molecules, and previous report showed that only seasonal influenza H1N1 (but not the other avian influenza subtypes) could induce a persistent expression of TGF-β2, we speculate that the modulation of TGF-β2 expression by different influenza subtypes via miR-141 might be a critical step for determining the outcome of either normal or excessive inflammation progression.
Collapse
Affiliation(s)
- Wai-Yip Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong Special Administration Region, Shatin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
115
|
Wen BP, Dai HJ, Yang YH, Zhuang Y, Sheng R. MicroRNA-23b inhibits enterovirus 71 replication through downregulation of EV71 VPl protein. Intervirology 2013; 56:195-200. [PMID: 23594713 DOI: 10.1159/000348504] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/22/2013] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the causative pathogens of hand-foot-and-mouth disease and effective antiviral agents and vaccines against this virus have, to date, not been available. MicroRNAs (miRNAs) are a recently discovered class of RNAs with the function of post-transcriptional gene expression regulation. It has been demonstrated that miRNAs play important roles in the complicated interaction network between virus and host, while few studies have explored the role of miRNAs in EV71 infection. A recent study showed that hsa-miR-23b was downregulated significantly in cell-infected viruses. To address this issue, biological software miRanda was first used to predict possible target sites of miR-23b at EV71 gene sequence, then to confirm it by luciferase assay. miR-23b mimics were transfected to verify its effects on infection of EV71. These results suggest that miR-23b and upregulation of miR-23b inhibited the replication of EV71 by targeting at EV71 3'UTR conserved sequence. Taken together, miR-23b could inhibit EV71 replication through downregulation of EV71 VPl protein. These results may enhance our understanding on the prevention and treatment of hand-foot-and-mouth disease caused by EV71 infection.
Collapse
|
116
|
In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio 2013; 4:e000193. [PMID: 23592263 PMCID: PMC3634607 DOI: 10.1128/mbio.00193-13] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4+ peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
Collapse
|
117
|
Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol 2013; 87:5645-56. [PMID: 23468506 DOI: 10.1128/jvi.02655-12] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterovirus 71 (EV71) has emerged as a major cause of neurological disease following the near eradication of poliovirus. Accumulating evidence suggests that mammalian microRNAs (miRNAs), a class of noncoding RNAs of 18 to 23 nucleotides (nt) with important regulatory roles in many cellular processes, participate in host antiviral defenses. However, the roles of miRNAs in EV71 infection and pathogenesis are still unclear. Here, hsa-miR-296-5p expression was significantly increased in EV71-infected human cells. As determined by virus titration, quantitative real-time PCR (qRT-PCR), and Western blotting, overexpression of hsa-miR-296-5p inhibited, while inhibition of endogenous hsa-miR-296-5p facilitated, EV71 infection. Additionally, two potential hsa-miR-296-5p targets (nt 2115 to 2135 and nt 2896 to 2920) located in the EV71 genome (strain BrCr) were bioinformatically predicted and validated by luciferase reporter assays and Western blotting. Genomic alignment of various EV71 strains revealed synonymous mutations in hsa-miR-296-5p target sequences. Furthermore, the introduction of synonymous mutations into the EV71 BrCr genome by site-directed mutagenesis impaired the viral inhibitory effects of hsa-miR-296-5p and facilitated mutant virus infection. Meanwhile, compensatory mutations in corresponding hsa-miR-296-5p target sequences of the EV71 HeN strain (GenBank accession number JN256064) restored the inhibitory effects of the miRNA. These results indicate that hsa-miR-296-5p inhibits EV71 replication by targeting the viral genome. Our findings support the notion that cellular miRNAs can inhibit virus infection and that the virus mutates to escape suppression by cellular miRNAs.
Collapse
|
118
|
Cullen BR. MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 2013; 14:205-10. [PMID: 23416678 DOI: 10.1038/ni.2537] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/29/2012] [Indexed: 02/08/2023]
Abstract
Cellular microRNAs serve key roles in the post-transcriptional regulation of almost every cellular gene-regulatory pathway, and it therefore is not surprising that viruses have found ways to subvert this process. Several viruses encode microRNAs that directly downregulate the expression of factors of the innate immune system, including proteins involved in promoting apoptosis and recruiting effector cells of the immune system. Viruses have also evolved the ability to downregulate or upregulate the expression of specific cellular miRNAs to enhance their replication. This Review provides an overview of the present knowledge of the complex interactions of viruses with the microRNA machinery of cells.
Collapse
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
119
|
Wang Y, Huang R, Song C, Hu H, Zhang M. Some viral microRNAs were up-regulated in megakaryocytes incubated with immune thrombocytopenia plasma. Eur J Haematol 2013; 90:220-7. [PMID: 23282244 DOI: 10.1111/ejh.12063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ya Wang
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Rui Huang
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Chaoyang Song
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Haiyan Hu
- Department of Oncology; The Sixth People's Hospital; Shanghai JiaoTong University; Shanghai; China
| | | |
Collapse
|
120
|
Tang YW, Stratton CW. Diagnosis and Assessment of Microbial Infections with Host and Microbial microRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2013. [PMCID: PMC7120657 DOI: 10.1007/978-1-4614-3970-7_46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biomarkers are continuously being sought in the field of diagnostic microbiology for the laboratory diagnosis and assessment of microbial infections. A set of clinical and laboratory criteria necessary for an ideal diagnostic marker of infection have previously been proposed by Ng and his colleagues [1]. According these criteria, an ideal biomarker should possess at a minimum the following characteristics: (a) biochemically, a biomarker should be stable and remain significantly deregulated in the body fluid compartment for at least 12–24 h even after commencement of appropriate treatment that may allow an adequate time window for specimen collection or storage without significant decomposition of the active compound until laboratory processing; (b) its concentration should be determined quantitatively and the method of measurement should be automatic, rapid, easy, and inexpensive; (c) the collection of a specimen should be minimally invasive and require a small volume (e.g., <0.5 mL blood). Numerous biomarkers have been found and tested in clinical practice. Currently, microRNA (miRNA) molecules are without a doubt the biomarkers with the greatest potential capacities in the diagnostic microbiology field.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, 10065 New York USA
| | - Charles W. Stratton
- Vanderbilt Clinic, Clinical Microbiology Laboratory, Vanderbilt University Medical Center, 22nd Avenue 1301, Nashville, 37232-5310 Tennessee USA
| |
Collapse
|
121
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
122
|
Abstract
By controlling gene expression at the level of mRNA translation, organisms temporally and spatially respond swiftly to an ever-changing array of environmental conditions. This capacity for rapid response is ideally suited for mobilizing host defenses and coordinating innate responses to infection. Not surprisingly, a growing list of pathogenic microbes target host mRNA translation for inhibition. Infection with bacteria, protozoa, viruses, and fungi has the capacity to interfere with ongoing host protein synthesis and thereby trigger and/or suppress powerful innate responses. This review discusses how diverse pathogens manipulate the host translation machinery and the impact of these interactions on infection biology and the immune response.
Collapse
Affiliation(s)
- Ian Mohr
- Department of Microbiology, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
123
|
Loveday EK, Svinti V, Diederich S, Pasick J, Jean F. Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection. J Virol 2012; 86:6109-22. [PMID: 22438559 PMCID: PMC3372180 DOI: 10.1128/jvi.06892-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/08/2012] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to virus-associated diseases involving members of the Hepacivirus, Herpesvirus, and Retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the life cycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenicity swine-origin infA (S-OIV) pandemic H1N1 (2009) and highly pathogenic avian-origin infA (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral life cycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time points during the viral life cycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including the immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.
Collapse
Affiliation(s)
- Emma-Kate Loveday
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria Svinti
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra Diederich
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Pasick
- Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
124
|
Huang HI, Weng KF, Shih SR. Viral and host factors that contribute to pathogenicity of enterovirus 71. Future Microbiol 2012; 7:467-79. [DOI: 10.2217/fmb.12.22] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The single-stranded RNA virus enterovirus 71 (EV71), which belongs to the Picornaviridae family, has caused epidemics worldwide, particularly in the Asia–Pacific region. Most EV71 infections result in mild clinical symptoms, including herpangina and hand, foot and mouth disease. However, serious pathological complications have also been reported, especially for young children. The mechanisms of EV71 disease progression remain unclear. The pathogenesis of adverse clinical outcomes may relate to many factors, including cell tropism, cell death and host immune responses. This article reviews the recent advances in the identification of factors determining EV71 cell tropism, the associated mechanisms of viral infection-induced cell death and the interplay between EV71 and immunity.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- The Center for Molecular & Clinical Immunology, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|
125
|
Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D. IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Front Microbiol 2012; 3:92. [PMID: 22461781 PMCID: PMC3307021 DOI: 10.3389/fmicb.2012.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Many virus infections and stresses can induce endoplasmic reticulum (ER) stress response, a host self-defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to internal ribosome-entry sites (IRES)-dependent. This switching is largely dependent on the mRNA structure of the 5′ untranslated region (5′ UTR) and on the particular stress stimuli. Picornaviruses and some other viruses contain IRESs within their 5′ UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5′ UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation, and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation) of host factors for translation initiation, overproduction of homologous proteins of cap-binding protein eukaryotic initiation factors (eIF)4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
126
|
Wang L, Qin Y, Tong L, Wu S, Wang Q, Jiao Q, Guo Z, Lin L, Wang R, Zhao W, Zhong Z. MiR-342-5p suppresses coxsackievirus B3 biosynthesis by targeting the 2C-coding region. Antiviral Res 2011; 93:270-279. [PMID: 22197249 DOI: 10.1016/j.antiviral.2011.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 01/12/2023]
Abstract
Coxsackievirus B type 3 (CVB3) is one of the major pathogens associated with human heart disease. miRNAs are a class of short, noncoding RNA that can post-transcriptionally modulate gene expression. By comparing the CVB3 genome and miR-342-5p sequences, we found there were potential miR-342-5p targets in the CVB3 genome. To verify the effect of miR-342-5p on CVB3 biosynthesis, HeLa cells were infected with a Renilla luciferase (RLuc)-expressing CVB3 variant (RLuc-CVB3). We observed that miR-342-5p could significantly inhibit the expression of RLuc in infected cells. In HeLa cells infected with an enhanced green fluorescence protein (EGFP)-expressing CVB3 variant (EGFP-CVB3), EGFP expression was also significantly inhibited by miR-342-5p. The inhibitory effect of miR-342-5p on EGFP expression in EGFP-CVB3-infected cells could be reversed by transfection with anti-miR-342-5p oligonucleotide (AMO-miR-342-5p). Moreover, RNA and protein biosynthesis in wild-type CVB3 was significantly inhibited by miR-342-5p. By mutating the putative targets of miR-342-5p in the 2C-coding region, a sequence, nt4989-nt5015, was identified as the miR-342-5p target. The conserved nt4989-nt5015 sequences of CVB type 1-5 suggest miR-342-5p may exert its inhibitory effect in other types of coxsackievirus besides CVB3. Western blotting indicated that miR-342-5p could indeed suppress protein expression in CVB type 1 and 5. There was a moderate abundance of miR-342-5p in the gut, heart, and brain of Balb/c mice, suggesting that miR-342-5p may interact with CVB3 in vivo. Taken together, these results indicate that miR-342-5p can inhibit CVB3 biosynthesis by targeting its 2C-coding region and therefore may be a potential therapeutic agent in the treatment of CVB3 infection.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; Department of Laboratory Diagnosis, The First Hospital of Harbin Medical University, Harbin 150001, China
| | - Ying Qin
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Qiang Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Qingguo Jiao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Zhiwei Guo
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Ruixue Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
127
|
Origin and plasticity of MHC I-associated self peptides. Autoimmun Rev 2011; 11:627-35. [PMID: 22100331 DOI: 10.1016/j.autrev.2011.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
Endogenous peptides presented by MHC I molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) regulate all key events that occur during the lifetime of CD8 T cells. CD8 T cells are selected on self-MIPs, sustained by self-MIPs, and activated in the presence of self-MIPs. Recently, large-scale mass spectrometry studies have revealed that the self-MIP repertoire is more complex and plastic than previously anticipated. The composition of the self-MIP repertoire varies from one cell type to another and can be perturbed by cell-intrinsic and -extrinsic factors including dysregulation of cellular metabolism and infection. The complexity and plasticity of the self-MIP repertoire represent a major challenge for the maintenance of self tolerance and can have pervasive effects on the global functioning of the immune system.
Collapse
|
128
|
Cui L, Qi Y, Li H, Ge Y, Zhao K, Qi X, Guo X, Shi Z, Zhou M, Zhu B, Guo Y, Li J, Stratton CW, Tang YW, Wang H. Serum microRNA expression profile distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with hand-foot-and-mouth disease. PLoS One 2011; 6:e27071. [PMID: 22087245 PMCID: PMC3210764 DOI: 10.1371/journal.pone.0027071] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/09/2011] [Indexed: 12/13/2022] Open
Abstract
Altered circulating microRNA (miRNA) profiles have been noted in patients with microbial infections. We compared host serum miRNA levels in patients with hand-foot-and-mouth disease (HFMD) caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16) as well as in other microbial infections and in healthy individuals. Among 664 different miRNAs analyzed using a miRNA array, 102 were up-regulated and 26 were down-regulated in sera of patients with enteroviral infections. Expression levels of ten candidate miRNAs were further evaluated by quantitative real-time PCR assays. A receiver operating characteristic (ROC) curve analysis revealed that six miRNAs (miR-148a, miR-143, miR-324-3p, miR-628-3p, miR-140-5p, and miR-362-3p) were able to discriminate patients with enterovirus infections from healthy controls with area under curve (AUC) values ranged from 0.828 to 0.934. The combined six miRNA using multiple logistic regression analysis provided not only a sensitivity of 97.1% and a specificity of 92.7% but also a unique profile that differentiated enterovirial infections from other microbial infections. Expression levels of five miRNAs (miR-148a, miR-143, miR-324-3p, miR-545, and miR-140-5p) were significantly increased in patients with CVA16 versus those with EV71 (p<0.05). Combination of miR-545, miR-324-3p, and miR-143 possessed a moderate ability to discrimination between CVA16 and EV71 with an AUC value of 0.761. These data indicate that sera from patients with different subtypes of enteroviral infection express unique miRNA profiles. Serum miRNA expression profiles may provide supplemental biomarkers for diagnosing and subtyping enteroviral HFMD infections.
Collapse
Affiliation(s)
- Lunbiao Cui
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yuhua Qi
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Haijing Li
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yiyue Ge
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Kangchen Zhao
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Xian Qi
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Xiling Guo
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Zhiyang Shi
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Minghao Zhou
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Baoli Zhu
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Yan Guo
- Nanjing Children's Hospital, Nanjing, China
| | - Jun Li
- Nanjing Children's Hospital, Nanjing, China
| | - Charles W. Stratton
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yi-Wei Tang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Hua Wang
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| |
Collapse
|
129
|
Abstract
Although viruses encode many of the functions that are required for viral replication, they are completely reliant on the protein synthesis machinery that is present in their host cells. Recruiting cellular ribosomes to translate viral mRNAs represents a crucial step in the replication of all viruses. To ensure translation of their mRNAs, viruses use a diverse collection of strategies (probably pirated from their cellular hosts) to commandeer key translation factors that are required for the initiation, elongation and termination steps of translation. Viruses also neutralize host defences that seek to incapacitate the translation machinery in infected cells.
Viruses rely on the translation machinery of the host cell to produce the proteins that are essential for their replication. Here, Walsh and Mohr discuss the diverse strategies by which viruses subvert the host protein synthesis machinery and regulate the translation of viral mRNAs. Viruses are fully reliant on the translation machinery of their host cells to produce the polypeptides that are essential for viral replication. Consequently, viruses recruit host ribosomes to translate viral mRNAs, typically using virally encoded functions to seize control of cellular translation factors and the host signalling pathways that regulate their activity. This not only ensures that viral proteins will be produced, but also stifles innate host defences that are aimed at inhibiting the capacity of infected cells for protein synthesis. Remarkably, nearly every step of the translation process can be targeted by virally encoded functions. This Review discusses the diverse strategies that viruses use to subvert host protein synthesis functions and regulate mRNA translation in infected cells.
Collapse
|
130
|
Cullen BR. Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 2011; 25:1881-94. [PMID: 21896651 DOI: 10.1101/gad.17352611] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analyses of small RNA expression profiles have revealed that several DNA viruses-including particularly, herpesviruses-express high levels of multiple viral microRNAs (miRNAs) in infected cells. Here, I review our current understanding of how viral miRNAs influence viral replication and pathogenesis and discuss how viruses reshape the pattern of cellular miRNA expression. Indeed, viruses are now known to both activate and repress the expression of specific cellular miRNAs, and disrupting this process can perturb the ability of viruses to replicate normally. In addition, it is now clear that virally encoded miRNAs play a key role in inhibiting antiviral innate immune responses and can also promote cell transformation in culture. While our understanding of how viruses interact with miRNAs remains somewhat rudimentary, it is nevertheless already clear that these interactions can play a critical role in mediating viral pathogenesis and therefore may represent novel and highly specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
131
|
Kumar A. MicroRNA in HCV infection and liver cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:694-9. [PMID: 21821155 DOI: 10.1016/j.bbagrm.2011.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/08/2023]
Abstract
In the more than two-decades since hepatitis C virus (HCV) was identified, there has been considerable improvement in our understanding of virus life cycle due largely to the development of in vitro culture systems for virus replication. Still challenges remain: HCV infection is a major risk factor for chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide; yet mechanistic details of HCV infection-associated hepatocarcinogenesis remain incompletely understood. A protective vaccine is not yet available, and current therapeutic options result in sustained virus clearance only in a subset of patients. Recent interest has focused on small non-protein coding RNAs, microRNAs (miRNAs), the dependence of virus replication on miRNAs, and miRNA-regulated genes in liver cancer. Functional analysis of the miRNA-targeted genes in liver cancer has advanced our understanding of the "oncomiRs" and their role in hepatocarcinogenesis. This review focuses on the dependence of HCV replication on miRNA and role of miRNA-targeted tumor suppressor genes as molecular markers of and possible targets for developing oncomiR-targeted therapy of chronic hepatitis and HCC. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Ajit Kumar
- George Washington University, Department of Biochemistry and Molecular Biology, Washington, DC, USA.
| |
Collapse
|
132
|
Abstract
Picornaviruses have evolved elaborate strategies to subvert host translation. In this issue of Cell Host and Microbe, Ho et al. (2011) report that enterovirus infection induces the synthesis of a transcription factor that enhances the synthesis of microRNA-141, which suppresses translation of the cap-binding protein, eIF4E, mRNA to inhibit cap-dependent translation.
Collapse
Affiliation(s)
- Teresa M Abraham
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|