101
|
Wattacheril JJ, Raj S, Knowles DA, Greally JM. Using epigenomics to understand cellular responses to environmental influences in diseases. PLoS Genet 2023; 19:e1010567. [PMID: 36656803 PMCID: PMC9851565 DOI: 10.1371/journal.pgen.1010567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It is a generally accepted model that environmental influences can exert their effects, at least in part, by changing the molecular regulators of transcription that are described as epigenetic. As there is biochemical evidence that some epigenetic regulators of transcription can maintain their states long term and through cell division, an epigenetic model encompasses the idea of maintenance of the effect of an exposure long after it is no longer present. The evidence supporting this model is mostly from the observation of alterations of molecular regulators of transcription following exposures. With the understanding that the interpretation of these associations is more complex than originally recognised, this model may be oversimplistic; therefore, adopting novel perspectives and experimental approaches when examining how environmental exposures are linked to phenotypes may prove worthwhile. In this review, we have chosen to use the example of nonalcoholic fatty liver disease (NAFLD), a common, complex human disease with strong environmental and genetic influences. We describe how epigenomic approaches combined with emerging functional genetic and single-cell genomic techniques are poised to generate new insights into the pathogenesis of environmentally influenced human disease phenotypes exemplified by NAFLD.
Collapse
Affiliation(s)
- Julia J. Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York, United States of America
| | - Srilakshmi Raj
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Knowles
- New York Genome Center, New York, New York, United States of America
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - John M. Greally
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
102
|
Mehdorn AS, Moulla Y, Mehdorn M, Dietrich A, Schönfels W, Becker T, Braun F, Beckmann JH, Linecker M. Bariatric surgery in liver cirrhosis. Front Surg 2022; 9:986297. [PMID: 36589626 PMCID: PMC9800004 DOI: 10.3389/fsurg.2022.986297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Obesity is frequently associated with its hepatic manifestation, the nonalcoholic fatty liver disease (NAFLD). The most effective treatment for morbid obesity is bariatric surgery (BS) also improving NAFLD and liver function. In patients where NAFLD has already progressed to liver cirrhosis, BS can be considered a high-risk procedure. Hence, consideration of the procedure and the most appropriate timing is crucial. Material and Methods Obese patients suffering from NAFLD who underwent BS from two German University Medical Centers were retrospectively analyzed. Results Twenty-seven patients underwent BS. Most common procedures were laparoscopic Roux-en-Y-gastric (RYGB) and laparoscopic sleeve gastrectomy (SG). All patients suffered from liver cirrhosis Child A. A preoperative transjugular portosystemic shunt (TIPS) was established in three patients and failed in another patient. Postoperative complications consisted of wound healing disorders (n = 2), anastomotic bleeding (n = 1), and leak from the staple line (n = 1). This patient suffered from intraoperatively detected macroscopic liver cirrhosis. Excess weight loss was 73% and 85% after 1 and 2 years, respectively. Two patients suffered from postoperative aggravation of their liver function, resulting in a higher Child-Pugh score, while three could be removed from the waiting list for a liver transplantation. Conclusion BS leads to weight loss, both after SG and RYGB, and potential improvement of liver function in liver cirrhosis. These patients need to be considered with care when evaluated for BS. Preoperative TIPS implantation may reduce the perioperative risk in selected patients.
Collapse
Affiliation(s)
- A. S. Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Y. Moulla
- Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - M. Mehdorn
- Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - A. Dietrich
- Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - W. Schönfels
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - T. Becker
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - F. Braun
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - J. H. Beckmann
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - M. Linecker
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany,Correspondence: Michael Linecker
| |
Collapse
|
103
|
Barahona I, Rada P, Calero-Pérez S, Grillo-Risco R, Pereira L, Soler-Vázquez MC, LaIglesia LM, Moreno-Aliaga MJ, Herrero L, Serra D, García-Monzon C, González-Rodriguez Á, Balsinde J, García-García F, Valdecantos MP, Valverde ÁM. Ptpn1 deletion protects oval cells against lipoapoptosis by favoring lipid droplet formation and dynamics. Cell Death Differ 2022; 29:2362-2380. [PMID: 35681014 PMCID: PMC9751306 DOI: 10.1038/s41418-022-01023-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/31/2023] Open
Abstract
Activation of oval cells (OCs) has been related to hepatocyte injury during chronic liver diseases including non-alcoholic fatty liver disease (NAFLD). However, OCs plasticity can be affected under pathological environments. We previously found protection against hepatocyte cell death by inhibiting protein tyrosine phosphatase 1B (PTP1B). Herein, we investigated the molecular and cellular processes involved in the lipotoxic susceptibility in OCs expressing or not PTP1B. Palmitic acid (PA) induced apoptotic cell death in wild-type (Ptpn1+/+) OCs in parallel to oxidative stress and impaired autophagy. This lipotoxic effect was attenuated in OCs lacking Ptpn1 that showed upregulated antioxidant defences, increased unfolded protein response (UPR) signaling, higher endoplasmic reticulum (ER) content and elevated stearoyl CoA desaturase (Scd1) expression and activity. These effects in Ptpn1-/- OCs concurred with an active autophagy, higher mitochondrial efficiency and a molecular signature of starvation, favoring lipid droplet (LD) formation and dynamics. Autophagy blockade in Ptpn1-/- OCs reduced Scd1 expression, mitochondrial fitness, LD formation and restored lipoapoptosis, an effect also recapitulated by Scd1 silencing. PTP1B immunostaining was detected in OCs from mouse liver and, importantly, LDs were found in OCs from Ptpn1-/- mice with NAFLD. In conclusion, we demonstrated that Ptpn1 deficiency restrains lipoapoptosis in OCs through a metabolic rewiring towards a "starvation-like" fate, favoring autophagy, mitochondrial fitness and LD formation. Dynamic LD-lysosomal interations likely ensure lipid recycling and, overall, these adaptations protect against lipotoxicity. The identification of LDs in OCs from Ptpn1-/- mice with NAFLD opens therapeutic perspectives to ensure OC viability and plasticity under lipotoxic liver damage.
Collapse
Affiliation(s)
- Inés Barahona
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Silvia Calero-Pérez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Ruben Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Laura Pereira
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003, Valladolid, Spain
| | - M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Laura María LaIglesia
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
| | - María J Moreno-Aliaga
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carmelo García-Monzon
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, 28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Águeda González-Rodriguez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, 28009, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
| | - Jesús Balsinde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003, Valladolid, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain.
| |
Collapse
|
104
|
MRG15 aggravates non-alcoholic steatohepatitis progression by regulating the mitochondrial proteolytic degradation of TUFM. J Hepatol 2022; 77:1491-1503. [PMID: 35985547 DOI: 10.1016/j.jhep.2022.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS How hepatic steatosis progresses to non-alcoholic steatohepatitis (NASH) is complicated and remains unclear. The mortality factor 4-like protein 1 (MORF4L1, also called MRG15) was previously identified as a master nuclear chromatin remodeler in the rhythmic regulation of lipid synthesis gene expression in the liver. Whether it also contributes to the progression from liver steatosis to NASH is unclear. METHODS We adopted 2 different murine NASH models, liver biopsies from patients with NASH, and primary mouse and human hepatocyte cultures for functional examination of MRG15 in NASH progression. Immunoprecipitation-mass spectrometry was applied to identify protein partners of MRG15, and CRISPR targeting was used for gene depletion in liver cells in vivo. RESULTS The MRG15 level is increased in the livers of humans and mice with NASH. The inflammatory cytokines in NASH livers stabilize MRG15 by increasing its acetylation. Considerable amounts of MRG15 associate with the outer mitochondrial membrane, where it interacts with and deacetylates the mitochondrial Tu translation elongation factor (TUFM). Deacetylated TUFM, especially at the K82 and K91 sites, is subjected to accelerated degradation by the mitochondrial ClpXP protease system. Reduced liver TUFM consequently results in impaired mitophagy, increased oxidative stress and activation of the NLRP3 inflammasome pathway. Blocking MRG15 expression protects the liver from NASH progression by increasing the stability of liver TUFM. Liver samples from patients with NASH also display a clear reduction in TUFM level, which correlates with increased MRG15 expression. CONCLUSION Collectively, these findings uncover a mitochondrial MRG15-TUFM regulatory pathway that contributes significantly to progression from simple steatosis to NASH, and which could potentially be targeted to treat NASH. LAY SUMMARY The incidence of non-alcoholic fatty liver disease and its progressive form non-alcoholic steatohepatitis (NASH) is increasing, posing a significant global health challenge. Herein, we have uncovered the importance of the MRG15-TUFM pathway in NASH development. This pathway is active in the mitochondria (energy powerhouse of the cell) and could be targeted for the treatment of NASH.
Collapse
|
105
|
Magee N, Ahamed F, Eppler N, Jones E, Ghosh P, He L, Zhang Y. Hepatic transcriptome profiling reveals early signatures associated with disease transition from non-alcoholic steatosis to steatohepatitis. LIVER RESEARCH 2022; 6:238-250. [PMID: 36864891 PMCID: PMC9977163 DOI: 10.1016/j.livres.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and aim Non-alcoholic fatty liver disease (NAFLD) is becoming a leading cause of chronic liver disease worldwide. The molecular events that influence disease progression from non-alcoholic fatty liver (NAFL) to aggressive non-alcoholic steatohepatitis (NASH) remain incompletely understood, leading to lack of mechanism-based targeted treatment options for NASH. This study aims to identify early signatures associated with disease progression from NAFL to NASH in mice and humans. Materials and methods Male C57BL/6J mice were fed a high-fat, -cholesterol, and - fructose (HFCF) diet for up to 9 months. The extent of steatosis, inflammation, and fibrosis was evaluated in liver tissues. Total RNA sequencing (RNA-seq) was conducted to determine liver transcriptomic changes. Results After being fed the HFCF diet, mice sequentially developed steatosis, early steatohepatitis, steatohepatitis with fibrosis, and eventually spontaneous liver tumor. Hepatic RNA-seq revealed that the key signatures during steatosis progression to early steatohepatitis were pathways related to extracellular matrix organization and immune responses such as T cell migration, arginine biosynthesis, C-type lectin receptor signaling, and cytokine-cytokine receptor interaction. Genes regulated by transcription factors forkhead box M1 (FOXM1) and negative elongation factor complex member E (NELFE) were significantly altered during disease progression. This phenomenon was also observed in patients with NASH. Conclusions In summary, we identified early signatures associated with disease progression from NAFL to early NASH in a mouse model that recapitulated key metabolic, histologic, and transcriptomic changes seen in humans. The findings from our study may shed light on the development of novel preventative, diagnostic, and therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Nancy Magee
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Priyanka Ghosh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lily He
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Liver Center, University of Kansas, Kansas City, KS, USA
| |
Collapse
|
106
|
Moylan CA, Mavis AM, Jima D, Maguire R, Bashir M, Hyun J, Cabezas MN, Parish A, Niedzwiecki D, Diehl AM, Murphy SK, Abdelmalek MF, Hoyo C. Alterations in DNA methylation associate with fatty liver and metabolic abnormalities in a multi-ethnic cohort of pre-teenage children. Epigenetics 2022; 17:1446-1461. [PMID: 35188871 PMCID: PMC9586600 DOI: 10.1080/15592294.2022.2039850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022] Open
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. Epigenetic alterations, such as through DNA methylation (DNAm), may link adverse childhood exposures and fatty liver and provide non-invasive methods for identifying children at high risk for NAFLD and associated metabolic dysfunction. We investigated the association between differential DNAm and liver fat content (LFC) and liver injury in pre-adolescent children. Leveraging data from the Newborn Epigenetics Study (NEST), we enrolled 90 mother-child dyads and used linear regression to identify CpG sites and differentially methylated regions (DMRs) in peripheral blood associated with LFC and alanine aminotransferase (ALT) levels in 7-12yo children. DNAm was measured using Infinium HumanMethylationEPIC BeadChips (Illumina). LFC and fibrosis were quantified by magnetic resonance imaging proton density fat fraction and elastography. Median LFC was 1.4% (range, 0.3-13.4%) and MRE was 2.5 kPa (range, 1.5-3.6kPa). Three children had LFC ≥ 5%, while six (7.6%) met our definition of NAFLD (LFC ≥ 3.7%). All children with NAFLD were obese and five were Black. LFC was associated with 88 DMRs and 106 CpGs (FDR<5%). The top two CpGs, cg25474373 and cg07264203, mapped to or near RFTN2 and PRICKLE2 genes. These two CpG sites were also significantly associated with a NAFLD diagnosis. As higher LFC associates with an adverse cardiometabolic profile already in childhood, altered DNAm may identify these children early in disease course for targeted intervention. Larger, longitudinal studies are needed to validate these findings and determine mechanistic relevance.
Collapse
Affiliation(s)
- Cynthia A. Moylan
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alisha M. Mavis
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Dereje Jima
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rachel Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mustafa Bashir
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Jeongeun Hyun
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Melanie N. Cabezas
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alice Parish
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Donna Niedzwiecki
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Susan K. Murphy
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Manal F. Abdelmalek
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
107
|
Zhu X, Xia M, Gao X. Update on genetics and epigenetics in metabolic associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221132138. [PMID: 36325500 PMCID: PMC9619279 DOI: 10.1177/20420188221132138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
108
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
109
|
Fernández-Ramos D, Lopitz-Otsoa F, Millet O, Alonso C, Lu SC, Mato JM. One Carbon Metabolism and S-Adenosylmethionine in Non-Alcoholic Fatty Liver Disease Pathogenesis and Subtypes. LIVERS 2022; 2:243-257. [PMID: 37123053 PMCID: PMC10137169 DOI: 10.3390/livers2040020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
One carbon metabolism (1CM) can be defined as the transfer of a carbon unit from one metabolite to another and its replenishment by different sources of labile methyl-group nutrients: primarily choline, methionine, betaine, and serine. This flow of carbon units allows the biosynthesis of nucleotides, amino acids, formylated methionyl-tRNA, polyamines, glutathione, phospholipids, detoxification reactions, maintenance of the redox status and the concentration of NAD, and methylation reactions including epigenetic modifications. That is, 1CM functions as a nutrient sensor and integrator of cellular metabolism. A critical process in 1CM is the synthesis of S-adenosylmethionine (SAMe), the source of essentially all the hundreds of millions of daily methyl transfer reactions in a cell. This versatility of SAMe imposes a tight control in its synthesis and catabolism. Much of our knowledge concerning 1CM has been gained from studies in the production and prevention of nonalcoholic fatty liver disease (NAFLD). Here, we discuss in detail the function of the most important enzymes for their quantitative contribution to maintaining the flux of carbon units through 1CM in the liver and discuss how alterations in their enzymatic activity contribute to the development of NAFLD. Next, we discuss NAFLD subtypes based on serum lipidomic profiles with different risk of cardiovascular disease. Among the latter, we highlight the so-called subtype A for its serum lipidomic profile phenocopying that of mice deficient in SAMe synthesis and because its high frequency (about 50% of the NAFLD patients).
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Cristina Alonso
- OWL Metabolomics, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - José M. Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
- Correspondence: ; Tel.: +34-944-061300; Fax: +34-944-0611301
| |
Collapse
|
110
|
Martínez‐Arranz I, Bruzzone C, Noureddin M, Gil‐Redondo R, Mincholé I, Bizkarguenaga M, Arretxe E, Iruarrizaga‐Lejarreta M, Fernández‐Ramos D, Lopitz‐Otsoa F, Mayo R, Embade N, Newberry E, Mittendorf B, Izquierdo‐Sánchez L, Smid V, Arnold J, Iruzubieta P, Pérez Castaño Y, Krawczyk M, Marigorta UM, Morrison MC, Kleemann R, Martín‐Duce A, Hayardeny L, Vitek L, Bruha R, Aller de la Fuente R, Crespo J, Romero‐Gomez M, Banales JM, Arrese M, Cusi K, Bugianesi E, Klein S, Lu SC, Anstee QM, Millet O, Davidson NO, Alonso C, Mato JM. Metabolic subtypes of patients with NAFLD exhibit distinctive cardiovascular risk profiles. Hepatology 2022; 76:1121-1134. [PMID: 35220605 PMCID: PMC9790568 DOI: 10.1002/hep.32427] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS We previously identified subsets of patients with NAFLD with different metabolic phenotypes. Here we align metabolomic signatures with cardiovascular disease (CVD) and genetic risk factors. APPROACH AND RESULTS We analyzed serum metabolome from 1154 individuals with biopsy-proven NAFLD, and from four mouse models of NAFLD with impaired VLDL-triglyceride (TG) secretion, and one with normal VLDL-TG secretion. We identified three metabolic subtypes: A (47%), B (27%), and C (26%). Subtype A phenocopied the metabolome of mice with impaired VLDL-TG secretion; subtype C phenocopied the metabolome of mice with normal VLDL-TG; and subtype B showed an intermediate signature. The percent of patients with NASH and fibrosis was comparable among subtypes, although subtypes B and C exhibited higher liver enzymes. Serum VLDL-TG levels and secretion rate were lower among subtype A compared with subtypes B and C. Subtype A VLDL-TG and VLDL-apolipoprotein B concentrations were independent of steatosis, whereas subtypes B and C showed an association with these parameters. Serum TG, cholesterol, VLDL, small dense LDL5,6 , and remnant lipoprotein cholesterol were lower among subtype A compared with subtypes B and C. The 10-year high risk of CVD, measured with the Framingham risk score, and the frequency of patatin-like phospholipase domain-containing protein 3 NAFLD risk allele were lower in subtype A. CONCLUSIONS Metabolomic signatures identify three NAFLD subgroups, independent of histological disease severity. These signatures align with known CVD and genetic risk factors, with subtype A exhibiting a lower CVD risk profile. This may account for the variation in hepatic versus cardiovascular outcomes, offering clinically relevant risk stratification.
Collapse
Affiliation(s)
| | | | - Mazen Noureddin
- Karsh Division of Gastroenterology and HepatologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | | | | | | | | | | | | | | | - Elizabeth Newberry
- Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Bettina Mittendorf
- Center for Human NutritionWashington University School of MedicineSt. LouisMissouriUSA
| | - Laura Izquierdo‐Sánchez
- Department of Liver and Gastrointestinal DiseasesBiodonostia Research InstituteDonostia University HospitalDonostiaSpain
| | - Vaclav Smid
- First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jorge Arnold
- Departamento de GastroenterologiaEscuela de MedicinaPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Paula Iruzubieta
- Marqués de Valdecilla University HospitalCantabria UniversitySantanderSpain
| | - Ylenia Pérez Castaño
- Department of Digestive SystemOsakidetza Basque Health ServiceDonostia University HospitalSan SebastianSpain
| | - Marcin Krawczyk
- Department of Medicine IISaarland University Medical CenterHomburgGermany
- Laboratory of Metabolic Liver DiseasesCenter for Preclinical ResearchDepartment of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | | | - Martine C. Morrison
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Robert Kleemann
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Antonio Martín‐Duce
- Alcalá University School of Medicine and Health SciencesUniversity Hospital Prıncipe de AsturiasMadridSpain
| | | | - Libor Vitek
- First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Radan Bruha
- First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Rocío Aller de la Fuente
- Department of Digestive DiseaseClinic University HospitalUniversity Hospital of ValladolidValladolidSpain
| | - Javier Crespo
- Marqués de Valdecilla University HospitalCantabria UniversitySantanderSpain
| | | | - Jesus M Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Research InstituteDonostia University HospitalDonostiaSpain
- University of the Basque CountryCIBERehdIKERBASQUEDonostiaSpain
| | - Marco Arrese
- Departamento de GastroenterologiaEscuela de MedicinaPontificia Universidad Católica de ChileSantiago de ChileChile
- Centro de Envejecimiento y RegeneraciónSantiagoChile
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and MetabolismUniversity of Florida and Malcom Randall VAMCGainesvilleFloridaUSA
| | | | - Samuel Klein
- Center for Human NutritionWashington University School of MedicineSt. LouisMissouriUSA
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and HepatologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Quentin M. Anstee
- Translational & Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Newcastle NIHR Biomedical Research CenterNewcastle Upon Tyne Hospitals NHS TrustNewcastle Upon TyneUK
| | | | - Nicholas O. Davidson
- Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | | | | |
Collapse
|
111
|
Dai L, Xu J, Liu B, Dang Y, Wang R, Zhuang L, Li D, Jiao L, Wang J, Zhang L, Zhong LLD, Zhou W, Ji G. Lingguizhugan Decoction, a Chinese herbal formula, improves insulin resistance in overweight/obese subjects with non-alcoholic fatty liver disease: a translational approach. Front Med 2022; 16:745-759. [PMID: 35471471 DOI: 10.1007/s11684-021-0880-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Lingguizhugan Decoction (LGZG) has been investigated in basic studies, with satisfactory effects on insulin resistance in non-alcoholic fatty liver disease (NAFLD). This translational approach aimed to explore the effect and underlying mechanism of LGZG in clinical setting. A randomized, double-blinded, placebo-controlled trial was performed. A total of 243 eligible participants with NAFLD were equally allocated to receive LGZG (two groups: standard dose and low dose) or placebo for 12 weeks on the basis of lifestyle modifications. The primary efficacy variable was homeostasis model assessment of insulin resistance (HOMA-IR). Analyses were performed in two populations in accordance with body mass index (BMI; overweight/obese, BMI ⩾ 24 kg/m2; lean, BMI < 24 kg/m2). For overweight/obese participants, low-dose LGZG significantly decreased their HOMA-IR level compared with placebo (-0.19 (1.47) versus 0.08 (1.99), P = 0.038). For lean subjects, neither dose of LGZG showed a superior effect compared with placebo. Methylated DNA immunoprecipitation sequencing and real-time qPCR found that the DNA N6-methyladenine modification levels of protein phosphatase 1 regulatory subunit 3A (PPP1R3A) and autophagy related 3 (ATG3) significantly increased after LGZG intervention in overweight/obese population. Low-dose LGZG effectively improved insulin resistance in overweight/obese subjects with NAFLD. The underlying mechanism may be related to the regulation of DNA N6-methyladenine modification of PPP1R3A and ATG3. Lean subjects may not be a targeted population for LGZG.
Collapse
Affiliation(s)
- Liang Dai
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen, 518032, China
| | - Jingjuan Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Baocheng Liu
- Shanghai Innovation Centre of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ruirui Wang
- Shanghai Innovation Centre of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijie Zhuang
- Sanlin Health Centre of Pudong New District, Shanghai, 200120, China
| | - Dong Li
- Zhangjiang Health Centre of Pudong New District, Shanghai, 201203, China
| | - Lulu Jiao
- Beicai Health Centre of Pudong New District, Shanghai, 201204, China
| | - Jianying Wang
- Shanghai Innovation Centre of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Zhang
- Shanghai Innovation Centre of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Linda L D Zhong
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Hong Kong Chinese Medicine Study Centre, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
112
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|
113
|
Spermidine-mediated hypusination of translation factor EIF5A improves mitochondrial fatty acid oxidation and prevents non-alcoholic steatohepatitis progression. Nat Commun 2022; 13:5202. [PMID: 36057633 PMCID: PMC9440896 DOI: 10.1038/s41467-022-32788-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
Spermidine is a natural polyamine that has health benefits and extends life span in several species. Deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH) are key enzymes that utilize spermidine to catalyze the post-translational hypusination of the translation factor EIF5A (EIF5AH). Here, we have found that hepatic DOHH mRNA expression is decreased in patients and mice with non-alcoholic steatohepatitis (NASH), and hepatic cells treated with fatty acids. The mouse and cell culture models of NASH have concomitant decreases in Eif5aH and mitochondrial protein synthesis which leads to lower mitochondrial activity and fatty acid β-oxidation. Spermidine treatment restores EIF5AH, partially restores protein synthesis and mitochondrial function in NASH, and prevents NASH progression in vivo. Thus, the disrupted DHPS-DOHH-EIF5AH pathway during NASH represents a therapeutic target to increase hepatic protein synthesis and mitochondrial fatty acid oxidation (FAO) and prevent NASH progression.
Collapse
|
114
|
Du A, Zhao F, Liu Y, Xu L, Chen K, Sun D, Han B. Genetic polymorphisms of PKLR gene and their associations with milk production traits in Chinese Holstein cows. Front Genet 2022; 13:1002706. [PMID: 36118870 PMCID: PMC9479125 DOI: 10.3389/fgene.2022.1002706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work had confirmed that pyruvate kinase L/R (PKLR) gene was expressed differently in different lactation periods of dairy cattle, and participated in lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling pathways, suggesting that PKLR is a candidate gene to affect milk production traits in dairy cattle. Here, we verified whether this gene has significant genetic association with milk yield and composition traits in a Chinese Holstein cow population. In total, we identified 21 single nucleotide polymorphisms (SNPs) by resequencing the entire coding region and partial flanking region of PKLR gene, in which, two SNPs were located in 5′ promoter region, two in 5′ untranslated region (UTR), three in introns, five in exons, six in 3′ UTR and three in 3′ flanking region. The single marker association analysis displayed that all SNPs were significantly associated with milk yield, fat and protein yields or protein percentage (p ≤ 0.0497). The haplotype block containing all the SNPs, predicted by Haploview, had a significant association with fat yield and protein percentage (p ≤ 0.0145). Further, four SNPs in 5′ regulatory region and eight SNPs in UTR and exon regions were predicted to change the transcription factor binding sites (TFBSs) and mRNA secondary structure, respectively, thus affecting the expression of PKLR, leading to changes in milk production phenotypes, suggesting that these SNPs might be the potential functional mutations for milk production traits in dairy cattle. In conclusion, we demonstrated that PKLR had significant genetic effects on milk production traits, and the SNPs with significant genetic effects could be used as candidate genetic markers for genomic selection (GS) in dairy cattle.
Collapse
Affiliation(s)
- Aixia Du
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Yanan Liu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingna Xu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kewei Chen
- Yantai Institute, China Agricultural University, Yantai, China
| | - Dongxiao Sun
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Han
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Bo Han, /
| |
Collapse
|
115
|
Yang Y, Liu X, Chen H, Wang P, Yao S, Zhou B, Yin R, Li C, Wu C, Yang X, Yu M. HPS protects the liver against steatosis, cell death, inflammation, and fibrosis in mice with steatohepatitis. FEBS J 2022; 289:5279-5304. [PMID: 35285180 DOI: 10.1111/febs.16430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Hepassocin (HPS) is a hepatokine associated with metabolic regulation and development of non-alcoholic steatohepatitis (NASH). However, previous reports on HPS are controversial and its true function is not yet understood. Here, we demonstrated that hepatic HPS expression levels were upregulated in short-term feeding and downregulated in long-term feeding in high-fat diet (HFD)- and methionine- and choline-deficient (MCD) diet-fed mice, as well as in genetically obese (ob/ob) mice. HFD- and MCD-induced hepatic steatosis, inflammation, apoptosis, and fibrosis were more pronounced in HPS knockout mice than in the wild-type mice. Moreover, HPS depletion aggravated HFD-induced insulin resistance. By contrast, HPS administration improved MCD- or HFD-induced liver phenotypes and insulin resistance in HPS knockout and wild-type mice. Mechanistic studies revealed that MCD-induced hepatic oxidative stress was significantly increased by HPS deficiency and could be attenuated by HPS administration. Furthermore, palmitic acid-induced lipid accumulation and oxidative stress were exclusively enhanced in HPS knockout hepatocytes and diminished by HPS cotreatment. These data suggest that HPS ameliorates NASH in mice, at least in part, by inhibiting the oxidative stress. HPS expression levels are downregulated in human fatty liver tissues, suggesting that it may play an important protective role in NASH. Collectively, our findings provide clear genetic evidence that HPS has beneficial effects on the development of steatohepatitis in mice and suggest that upregulating HPS signaling may represent an effective treatment strategy for NASH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Pengjun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Songhui Yao
- Institute of Life Sciences, HeBei University, Baoding, China
| | - Bin Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Chutse Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China.,Beijing Institute of Radiation Medicine, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China.,Institute of Life Sciences, HeBei University, Baoding, China
| |
Collapse
|
116
|
Yang L, Li JZ, Li MR. Progress in research of lipogenesis inhibitors for treatment of nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2022; 30:735-742. [DOI: 10.11569/wcjd.v30.i16.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Liu Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Jin-Zhong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Min-Ran Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
117
|
Zhang C, Fu Q, Shao K, Liu L, Ma X, Zhang F, Zhang X, Meng L, Yan C, Zhao X. Indole-3-acetic acid improves the hepatic mitochondrial respiration defects by PGC1a up-regulation. Cell Signal 2022; 99:110442. [PMID: 35988807 DOI: 10.1016/j.cellsig.2022.110442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
Recent evidences have linked indole-3-acetic acid (I3A), a gut microbiota-derived metabolite from dietary tryptophan, with the protection against non-alcoholic fatty liver disease (NAFLD). However, the values of I3A on mitochondrial homeostasis in NAFLD have yet to be analyzed. In this study, we verified that I3A alleviated dietary-induced metabolic impairments, particularly glucose dysmetabolism and liver steatosis. Importantly, we expanded the understanding of I3A further to enhance mitochondrial oxidative phosphorylation in the liver by RNA-seq. Consistently, I3A restored the deficiency of mitochondrial respiration complex (MRC) capacity in palmitic acid (PA)-induced HepG2 without initiating oxidative stress in vitro. These changes were dependent on peroxisome proliferator-activated receptor γ coactivator 1 (PGC1)-a, a key regulator of mitochondrial biogenesis. Silencing of PGC1a by siRNA and pharmacologic inhibitor SR-18292, blocked the restoration of I3A on mitochondrial oxidative phosphorylation. In addition, pre-treatment of I3A guarded against the deficiency of MRC capacity. In conclusion, our findings uncovered that I3A increased hepatic PGC1a expression, contributing to mitochondrial respiration improvement in NAFLD.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Qingsong Fu
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Kai Shao
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Limin Liu
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Xiaotian Ma
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Fengyi Zhang
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Xiaodong Zhang
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Liying Meng
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - ChuanZhu Yan
- Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China
| | - Xiaoyun Zhao
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Hefei Road No 758, Qingdao 266035, China.
| |
Collapse
|
118
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
119
|
Chen T, Zhang S, Zhou D, Lu P, Mo X, Tamrakar R, Yang X. Screening of co-pathogenic genes of non-alcoholic fatty liver disease and hepatocellular carcinoma. Front Oncol 2022; 12:911808. [PMID: 36033523 PMCID: PMC9410624 DOI: 10.3389/fonc.2022.911808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a risk factor for hepatocellular carcinoma (HCC). However, its carcinogenic mechanism is still unclear, looking for both diseases’ transcriptome levels, the same changes as we are looking for NAFLD may provide a potential mechanism of action of HCC. Thus, our study aimed to discover the coexisting pathogenic genes of NAFLD and HCC. Methods We performed a variance analysis with public data for both diseases. At the same time, weighted gene correlation network analysis (WGCNA) was used to find highly correlated gene modules in both diseases. The darkturquoise gene module was found to be highly correlated with both diseases. Based on the diagnosis related module genes and the differential genes of the two diseases, we constructed diagnostic and prognostic models by logistic regression, univariate Cox regression, and LASSO regression. Public datasets verified the results. Meanwhile, we built a competing endogenous RNA (ceRNA) network based on the model genes and explored the related pathways and immune correlation involved in the two diseases by using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analyses. Immunohistochemistry was used to verify the different expression of ABCC5 and TUBG1 among the normal liver, NAFLD, and HCC tissues. Sodium palmitate/sodium oleate was used to establish high-fat cell models, and Real Time Quantitative Polymerase Chain Reaction (RT-qPCR) was used to verify the messenger RNA (mRNA) expression of ABCC5 in lipidization cells. Results A total of 26 upregulated genes and 87 downregulated genes were found using limma package identification analysis. According to WGCNA, the darkturquoise gene module was highly correlated with the prognosis of both diseases. The coexisting genes acquired by the two groups were only three central genes, that is, ABCC5, DHODH and TUBG1. The results indicated that the diagnostic and prognostic models constructed by ABCC5 and TUBG1 genes had high accuracy in both diseases. The results of immunohistochemistry showed that ABCC5 and TUBG1 were significantly overexpressed in NAFLD and HCC tissues compared with normal liver tissues. The Oil Red O staining and triglyceride identified the successful construction of HepG2 and LO2 high-fat models using PA/OA. The results of RT-qPCR showed that the lipidization of LO2 and HepG2 increased the mRNA expression of ABCC5. Conclusions The gene model constructed by ABCC5 and TUBG1 has high sensibility and veracity in the diagnosis of NAFLD as well as the diagnosis and prognosis of HCC. ABCC5 and TUBG1 may play an important role in the development of NAFLD to HCC. In addition, lipidization could upregulate the mRNA expression of ABCC5 in HCC.
Collapse
Affiliation(s)
- Ting Chen
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Siwen Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- *Correspondence: Xi Yang, ; Siwen Zhang,
| | - Dongmei Zhou
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rashi Tamrakar
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
- *Correspondence: Xi Yang, ; Siwen Zhang,
| |
Collapse
|
120
|
Yin G, Zeng W, Li R, Zeng M, Chen R, Liu Y, Jiang R, Wang Y. Glia Maturation Factor-β Supports Liver Regeneration by Remodeling Actin Network to Enhance STAT3 Proliferative Signals. Cell Mol Gastroenterol Hepatol 2022; 14:1123-1145. [PMID: 35953024 PMCID: PMC9606832 DOI: 10.1016/j.jcmgh.2022.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Glia maturation factor-β (GMFB) is a bona fide member of the actin depolymerizing factor homology family. Recently, emerging evidence suggested its implication in liver diseases, but data on its role in liver remain limited. METHODS Assessment of GMFB in liver histology, impact on liver regeneration and hepatocyte proliferation, and the underlying molecular pathways were conducted using mouse models with acute liver injury. RESULTS GMFB is widely distributed in normal liver. Its expression increases within 24 hours after partial hepatectomy (PHx). Adult Gmfb knockout mice and wild-type littermates are similar in gross appearance, body weight, liver function, and histology. However, compared with wild-type control, Gmfb knockout mice post-PHx develop more serious liver damage and steatosis and have delayed liver regeneration; the dominant change in liver transcriptome at 24 hours after PHx is the significantly suppressed acute inflammation pathways; the top down-regulated gene sets relate to interleukin (IL)6/Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling. Another mouse model intoxicated with carbon tetrachloride replicated these findings. Furthermore, Gmfb knockout and wild-type groups have the similar numbers of Kupffer cells, but Gmfb knockout Kupffer cells once stimulated produce less IL6, tumor necrosis factor, and IL1β. In hepatocytes treated with IL6, GMFB associates positively with cell proliferation and STAT3/cyclin D1 activation, but without any direct interaction with STAT3. In Gmfb knockout hepatocytes, cytoskeleton-related gene expression was changed significantly, with an abnormal-appearing morphology of actin networks. In hepatocyte modeling, actin-filament turnover, STAT3 activation, and metabolite excretion show a strong reliance on the status of actin-filament organization. CONCLUSIONS GMFB plays a significant role in liver regeneration by promoting acute inflammatory response in Kupffer cells and by intracellularly coordinating the responsive hepatocyte proliferation.
Collapse
Affiliation(s)
- Guo Yin
- Biomedical Research Center, Southern Medical University, Guangzhou, China,Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Weilan Zeng
- Biomedical Research Center, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Manman Zeng
- Department of Gynecology, Women and Children's Hospital of Guangdong, Guangzhou, China
| | - Ronghua Chen
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaxue Liu
- Biomedical Research Center, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Ronglong Jiang
- Department of Hepatology, Southern Medical University Affiliated Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Biomedical Research Center, Southern Medical University, Guangzhou, China,Department of Hepatology, Southern Medical University Affiliated Shenzhen Hospital, Shenzhen, China,Correspondence Address correspondence to: Yan Wang, MD, PhD, Biomedical Research Center, Southern Medical University, No 1023 Sha Tai Nan Avenue, Guangzhou 510515, China. fax: (86) 20-6164-7396.
| |
Collapse
|
121
|
Stork BA, Dean A, Ortiz AR, Saha P, Putluri N, Planas-Silva MD, Mahmud I, Rajapakshe K, Coarfa C, Knapp S, Lorenzi PL, Kemp BE, Turk BE, Scott JW, Means AR, York B. Calcium/calmodulin-dependent protein kinase kinase 2 regulates hepatic fuel metabolism. Mol Metab 2022; 62:101513. [PMID: 35562082 PMCID: PMC9157561 DOI: 10.1016/j.molmet.2022.101513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The liver is the primary internal metabolic organ that coordinates whole body energy homeostasis in response to feeding and fasting. Genetic ablation or pharmacological inhibition of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) has been shown to significantly improve hepatic health and peripheral insulin sensitivity upon overnutrition with high fat diet. However, the precise molecular underpinnings that explain this metabolic protection have remained largely undefined. METHODS To characterize the role of CaMKK2 in hepatic metabolism, we developed and challenged liver-specific CaMKK2 knockout (CaMKK2LKO) mice with high fat diet and performed glucose and insulin tolerance tests to evaluate peripheral insulin sensitivity. We used a combination of RNA-Sequencing, glucose and fatty acid istotopic tracer studies, a newly developed Seahorse assay for measuring the oxidative capacity of purified peroxisomes, and a degenerate peptide libarary to identify putative CaMKK2 substrates that mechanistically explain the protective effects of hepatic CaMKK2 ablation. RESULTS Consistent with previous findings, we show that hepatic CaMKK2 ablation significantly improves indices of peripheral insulin sensitivity. Mechanistically, we found that CaMKK2 phosphorylates and regulates GAPDH to promote glucose metabolism and PEX3 to blunt peroxisomal fatty acid catabolism in the liver. CONCLUSION CaMKK2 is a central metabolic fuel sensor in the liver that significantly contributes to whole body systems metabolism.
Collapse
Affiliation(s)
- Brittany A Stork
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adam Dean
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrea R Ortiz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pradip Saha
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kimal Rajapakshe
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John W Scott
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, 3065, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
122
|
Identification of Shared Gene Signatures in Different Stages of Nonalcoholic Fatty Liver Disease Using Integrated Microarray Datasets. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease worldwide. Left untreated, it can be a risk factor for developing cirrhosis or hepatocellular carcinoma (HCC). Although experts have made many efforts to find the underlying mechanisms of NAFLD, they remain a mystery. Objectives: This study aimed to distinguish common gene signatures and pathways in the human liver during NAFLD progression through systems biology. Methods: In this study, the researchers selected three microarray datasets, GSE48452, GSE63067, and GSE89632, from the NCBI GEO database to explore differentially expressed genes (DEGs) among healthy controls, simple steatosis, and nonalcoholic steatohepatitis (NASH) patients. Furthermore, protein-protein interaction (PPI) networks and pathway enrichment analyses were used to detect common genes and biological pathways in different stages of NAFLD. Results: The current study included 45 healthy participants, 36 simple steatosis patients, and 46 NASH patients. Common genes for NAFLD progression were Chi3L1, ICAM1, MT1A, MT1H, ABCB11, ACOT1, CYP2C9, HSP90B1, and CPB2, which are involved in inflammation and oxidative stress pathways. Conclusions: The present study investigated the shared vital genes and pathways between different stages of NAFLD, which may facilitate understanding NAFLD mechanisms and identifying potential therapeutic targets in this disease.
Collapse
|
123
|
Aljabban J, Rohr M, Syed S, Khorfan K, Borkowski V, Aljabban H, Segal M, Mukhtar M, Mohammed M, Panahiazar M, Hadley D, Spengler R, Spengler E. Transcriptome changes in stages of non-alcoholic fatty liver disease. World J Hepatol 2022; 14:1382-1397. [PMID: 36158924 PMCID: PMC9376779 DOI: 10.4254/wjh.v14.i7.1382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States and globally. The currently understood model of pathogenesis consists of a ‘multiple hit’ hypothesis in which environmental and genetic factors contribute to hepatic inflammation and injury.
AIM To examine the genetic expression of NAFLD and non-alcoholic steatohepatitis (NASH) tissue samples to identify common pathways that contribute to NAFLD and NASH pathogenesis.
METHODS We employed the Search Tag Analyze Resource for Gene Expression Omnibus platform to search the The National Center for Biotechnology Information Gene Expression Omnibus to elucidate NAFLD and NASH pathology. For NAFLD, we conducted meta-analysis of data from 58 NAFLD liver biopsies and 60 healthy liver biopsies; for NASH, we analyzed 187 NASH liver biopsies and 154 healthy liver biopsies.
RESULTS Our results from the NAFLD analysis reinforce the role of altered metabolism, inflammation, and cell survival in pathogenesis and support recently described contributors to disease activity, such as altered androgen and long non-coding RNA activity. The top upstream regulator was found to be sterol regulatory element binding transcription factor 1 (SREBF1), a transcription factor involved in lipid homeostasis. Downstream of SREBF1, we observed upregulation in CXCL10, HMGCR, HMGCS1, fatty acid binding protein 5, paternally expressed imprinted gene 10, and downregulation of sex hormone-binding globulin and insulin-like growth factor 1. These molecular changes reflect low-grade inflammation secondary to accumulation of fatty acids in the liver. Our results from the NASH analysis emphasized the role of cholesterol in pathogenesis. Top canonical pathways, disease networks, and disease functions were related to cholesterol synthesis, lipid metabolism, adipogenesis, and metabolic disease. Top upstream regulators included pro-inflammatory cytokines tumor necrosis factor and IL1B, PDGF BB, and beta-estradiol. Inhibition of beta-estradiol was shown to be related to derangement of several cellular downstream processes including metabolism, extracellular matrix deposition, and tumor suppression. Lastly, we found riciribine (an AKT inhibitor) and ZSTK-474 (a PI3K inhibitor) as potential drugs that targeted the differential gene expression in our dataset.
CONCLUSION In this study we describe several molecular processes that may correlate with NAFLD disease and progression. We also identified ricirbine and ZSTK-474 as potential therapy.
Collapse
Affiliation(s)
- Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Rohr
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Saad Syed
- Department of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, United States
| | - Kamal Khorfan
- Department of Gastroenterology and Hepatology, University of California San Francisco-Fresno , Fresno, CA 93701, United States
| | - Vincent Borkowski
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Hisham Aljabban
- Department of Medicine, Barry University, Miami, FL 33161, United States
| | - Michael Segal
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Mohamed Mukhtar
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI 49503, United States
| | - Mohammed Mohammed
- Department of Medicine, Windsor University School of Medicine, Saint Kitts 1621, Cayon, Saint Kitts and Nevis
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, CA 94305, United States
| | - Dexter Hadley
- Department of Artificial Intelligence, Pathology, University of Central Florida College of Medicine , Orlando, FL 32827, United States
| | - Ryan Spengler
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Erin Spengler
- Department of Gastroenterology and Hepatology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| |
Collapse
|
124
|
Liu Z, Li Y, Yu C. Identification of the Non-Alcoholic Fatty Liver Disease Molecular Subtypes Associated With Clinical and Immunological Features via Bioinformatics Methods. Front Immunol 2022; 13:857892. [PMID: 35958576 PMCID: PMC9358963 DOI: 10.3389/fimmu.2022.857892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome in the liver with varying severity. Heterogeneity in terms of molecules and immune cell infiltration drives NAFLD from one stage to the next. However, a precise molecular classification of NAFLD is still lacking, and the effects of complex clinical phenotypes on the efficacy of drugs are usually ignored. Methods We introduced multiple omics data to differentiate NAFLD subtypes via consensus clustering, and a weighted gene co-expression network analysis was used to identify eight co-expression modules. Further, eigengenes of eight modules were analyzed with regard to Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, the infiltration rates of 22 immune cell types were calculated with CIBERSORT and the ESTIMATE algorithm. Results In total, 111 NAFLD patients from three independent GEO datasets were divided into four molecular subtypes, and the corresponding clinical features and immune cell infiltration traits were determined. Based on high gene expression correlations, four molecular subtypes were further divided into eight co-expression modules. We also demonstrated a significant correlation between gene modules and clinical phenotypes. Moreover, we integrated phenotypic, immunologic, and genetic data to assess the potential for progression of different molecular subtypes. Furthermore, the efficacy of drugs against various NAFLD molecular subtypes was discussed to aid in individualized therapy. Conclusion Overall, this study could provide new insights into the underlying pathogenesis of and drug targets for NAFLD.
Collapse
Affiliation(s)
| | - Yufei Li
- *Correspondence: Yufei Li, ; Caihong Yu,
| | - Caihong Yu
- *Correspondence: Yufei Li, ; Caihong Yu,
| |
Collapse
|
125
|
Wang M, Zhu Z, Kan Y, Yu M, Guo W, Ju M, Wang J, Yi S, Han S, Shang W, Zhang Z, Zhang L, Fang P. Treatment with spexin mitigates diet-induced hepatic steatosis in vivo and in vitro through activation of galanin receptor 2. Mol Cell Endocrinol 2022; 552:111688. [PMID: 35654225 DOI: 10.1016/j.mce.2022.111688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 01/12/2023]
Abstract
It was reported that spexin as an adipocyte-secreted protein could regulate obesity and insulin resistance. However, the specific metabolic contribution of spexin to fatty liver remains incompletely understood. Herein, we investigated the effects of spexin on hepatosteatosis and explored the underlying molecular mechanisms. HFD-fed mice were injected with spexin and/or GALR2 antagonist M871, while PA-induced HepG2 cells were treated with spexin in the absence or presence of M871 for 12 h, respectively. Gene expression in liver tissues and hepatocytes was assessed by qRT-PCR and western blotting, respectively. The results showed that body weight, visceral fat content, liver lipid droplet formation, hepatic intracellular triglyceride, and serum triglyceride were reduced in spexin-treated mice. Furthermore, spexin increased the expression of hepatic CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK in vivo and in vitro. Additionally, spexin treatment improved glucose tolerance and insulin sensitivity in mice fed the HFD. Interestingly, these spexin-mediated beneficial effects were abolished by the GALR2 antagonist M871 in mice fed HFD and PA-induced HepG2 cells, suggesting that spexin mitigated HFD-induced hepatic steatosis by activating the GALR2, thereby increasing CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK expression. Taken together, these data suggest that spexin ameliorates NAFLD by improving lipolysis and fatty acid oxidation via activation of GALR2 signaling.
Collapse
Affiliation(s)
- Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyue Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wancheng Guo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Mengxian Ju
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Junjun Wang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Shuxin Yi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| |
Collapse
|
126
|
Laparoscopic Sleeve Gastrectomy in Patients with Severe Obesity Restores Adaptive Responses Leading to Nonalcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms23147830. [PMID: 35887177 PMCID: PMC9320342 DOI: 10.3390/ijms23147830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The surgically induced remission of liver disease represents a model to investigate the signalling processes that trigger the development of nonalcoholic steatohepatitis with the aim of identifying novel therapeutic targets. We recruited patients with severe obesity with or without nonalcoholic steatohepatitis and obtained liver and plasma samples before and after laparoscopic sleeve gastrectomy for immunoblotting, immunocytochemical, metabolomic, transcriptomic and epigenetic analyses. Functional studies were performed in HepG2 cells and primary hepatocytes. Surgery was associated with a decrease in the inflammatory response and revealed the role of mitogen-activated protein kinases. Nonalcoholic steatohepatitis was associated with an increased glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy and affected methylation-related epigenomic remodelling enzymes. Hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. Our results suggest that the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation play a crucial role in the inefficient adaptive responses leading to steatohepatitis in obesity.
Collapse
|
127
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
128
|
Fujiwara N, Kubota N, Crouchet E, Koneru B, Marquez CA, Jajoriya AK, Panda G, Qian T, Zhu S, Goossens N, Wang X, Liang S, Zhong Z, Lewis S, Taouli B, Schwartz ME, Fiel MI, Singal AG, Marrero JA, Fobar AJ, Parikh ND, Raman I, Li QZ, Taguri M, Ono A, Aikata H, Nakahara T, Nakagawa H, Matsushita Y, Tateishi R, Koike K, Kobayashi M, Higashi T, Nakagawa S, Yamashita YI, Beppu T, Baba H, Kumada H, Chayama K, Baumert TF, Hoshida Y. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Sci Transl Med 2022; 14:eabo4474. [PMID: 35731891 PMCID: PMC9236162 DOI: 10.1126/scitranslmed.abo4474] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prediction of hepatocellular carcinoma (HCC) risk is an urgent unmet need in patients with nonalcoholic fatty liver disease (NAFLD). In cohorts of 409 patients with NAFLD from multiple global regions, we defined and validated hepatic transcriptome and serum secretome signatures predictive of long-term HCC risk in patients with NAFLD. A 133-gene signature, prognostic liver signature (PLS)-NAFLD, predicted incident HCC over up to 15 years of longitudinal observation. High-risk PLS-NAFLD was associated with IDO1+ dendritic cells and dysfunctional CD8+ T cells in fibrotic portal tracts along with impaired metabolic regulators. PLS-NAFLD was validated in independent cohorts of patients with NAFLD who were HCC naïve (HCC incidence rates at 15 years were 22.7 and 0% in high- and low-risk patients, respectively) or HCC experienced (de novo HCC recurrence rates at 5 years were 71.8 and 42.9% in high- and low-risk patients, respectively). PLS-NAFLD was bioinformatically translated into a four-protein secretome signature, PLSec-NAFLD, which was validated in an independent cohort of HCC-naïve patients with NAFLD and cirrhosis (HCC incidence rates at 15 years were 37.6 and 0% in high- and low-risk patients, respectively). Combination of PLSec-NAFLD with our previously defined etiology-agnostic PLSec-AFP yielded improved HCC risk stratification. PLS-NAFLD was modified by bariatric surgery, lipophilic statin, and IDO1 inhibitor, suggesting that the signature can be used for drug discovery and as a surrogate end point in HCC chemoprevention clinical trials. Collectively, PLS/PLSec-NAFLD may enable NAFLD-specific HCC risk prediction and facilitate clinical translation of NAFLD-directed HCC chemoprevention.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Emilie Crouchet
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and IHU, Pole Hépato-digestif, Strasbourg University Hospitals; Strasbourg, 67000, France
| | - Bhuvaneswari Koneru
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Cesia A Marquez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Arun K Jajoriya
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Gayatri Panda
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Tongqi Qian
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Shijia Zhu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, Geneva University Hospital; Geneva, 44041, Switzerland
| | - Xiaochen Wang
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Myron E Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Amit G Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, 19104, U.S
| | - Austin J Fobar
- Division of Gastroenterology and Hepatology, University of Michigan; Ann Arbor, 48109, U.S
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan; Ann Arbor, 48109, U.S
| | - Indu Raman
- BioCenter Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Quan-Zhen Li
- BioCenter Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Masataka Taguri
- Department of Data Science, School of Data Science, Yokohama City University; Yokohama, 236-0027, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Yuki Matsushita
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | | | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Yo-ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Toru Beppu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Hiromitsu Kumada
- Department of Hepatology, Toranomon Hospital; Tokyo, 105-0001, Japan
| | - Kazuaki Chayama
- Collaborative Research Laboratory of Medical Innovation, Research Center for Hepatology and Gastroenterology, Hiroshima University; Hiroshima, 734-8551, Japan
- RIKEN Center for Integrative Medical Sciences; Yokohama, 230-0045, Japan
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and IHU, Pole Hépato-digestif, Strasbourg University Hospitals; Strasbourg, 67000, France
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| |
Collapse
|
129
|
Guo F, Zhu Y, Han Y, Feng X, Pan Z, He Y, Li Y, Jin L. DEPP Deficiency Contributes to Browning of White Adipose Tissue. Int J Mol Sci 2022; 23:ijms23126563. [PMID: 35743009 PMCID: PMC9223522 DOI: 10.3390/ijms23126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Decidual protein induced by progesterone (DEPP) was originally identified as a modulator in the process of decidualization in the endometrium. Here, we define that DEPP is involved in adipose tissue thermogenesis, which contributes to metabolic regulation. Knockdown of DEPP suppressed adipocyte differentiation and lipid accumulation in 3T3-L1 cells, induced expression of brown adipose tissue (BAT) markers in primary brown adipocyte and induced mouse embryonic fibroblasts (MEFs) differentiation to brown adipocytes. Moreover, DEPP deficiency in mice induced white adipocyte browning and enhanced BAT activity. Cold exposure stimulated more browning of white adipose tissue (WAT) and maintained higher body temperature in DEPP knockout mice compared to that in wild-type control mice. DEPP deficiency also protected mice against high-fat-diet-induced insulin resistance. Mechanistic studies demonstrated that DEPP competitively binds SIRT1, inhibiting the interaction between peroxisome proliferator-activated receptor gamma (PPARγ) and Sirtuin 1 (SIRT1). Collectively, these findings suggest that DEPP plays a crucial role in orchestrating thermogenesis through regulating adipocyte programs and thus might be a potential target for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Yaping Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Xuhui Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Zhifu Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
| | - Ying He
- Laboratory Animal Center, Xiamen University, Xiamen 361102, China;
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
- Correspondence: (Y.L.); (L.J.)
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (F.G.); (Y.Z.); (Y.H.); (X.F.); (Z.P.)
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Correspondence: (Y.L.); (L.J.)
| |
Collapse
|
130
|
Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab 2022; 34:919-936.e8. [PMID: 35675800 DOI: 10.1016/j.cmet.2022.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/25/2022] [Accepted: 05/16/2022] [Indexed: 01/04/2023]
Abstract
Elevated liver de novo lipogenesis contributes to non-alcoholic steatohepatitis (NASH) and can be inhibited by targeting acetyl-CoA carboxylase (ACC). However, hypertriglyceridemia limits the use of pharmacological ACC inhibitors as a monotherapy. ATP-citrate lyase (ACLY) generates acetyl-CoA and oxaloacetate from citrate, but whether inhibition is effective for treating NASH is unknown. Here, we characterize a new mouse model that replicates many of the pathological and molecular drivers of NASH and find that genetically inhibiting ACLY in hepatocytes reduces liver malonyl-CoA, oxaloacetate, steatosis, and ballooning as well as blood glucose, triglycerides, and cholesterol. Pharmacological inhibition of ACLY mirrors genetic inhibition but has additional positive effects on hepatic stellate cells, liver inflammation, and fibrosis. Mendelian randomization of human variants that mimic reductions in ACLY also associate with lower circulating triglycerides and biomarkers of NASH. These data indicate that inhibiting liver ACLY may be an effective approach for treatment of NASH and dyslipidemia.
Collapse
|
131
|
Lefever DE, Miedel MT, Pei F, DiStefano JK, Debiasio R, Shun TY, Saydmohammed M, Chikina M, Vernetti LA, Soto-Gutierrez A, Monga SP, Bataller R, Behari J, Yechoor VK, Bahar I, Gough A, Stern AM, Taylor DL. A Quantitative Systems Pharmacology Platform Reveals NAFLD Pathophysiological States and Targeting Strategies. Metabolites 2022; 12:528. [PMID: 35736460 PMCID: PMC9227696 DOI: 10.3390/metabo12060528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.
Collapse
Affiliation(s)
- Daniel E. Lefever
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Fen Pei
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute TGen, Phoenix, AZ 85004, USA;
| | - Richard Debiasio
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Tong Ying Shun
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Manush Saydmohammed
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lawrence A. Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Alejandro Soto-Gutierrez
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Satdarshan P. Monga
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ramon Bataller
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.B.); (J.B.)
| | - Jaideep Behari
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.B.); (J.B.)
- UPMC Liver Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Vijay K. Yechoor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ivet Bahar
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Andrew M. Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - D. Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
132
|
Kurokawa S, Yoneda M, Ogawa Y, Honda Y, Kessoku T, Imajo K, Saito S, Nakajima A, Hotta K. Two differentially methylated region networks in nonalcoholic fatty liver disease, viral hepatitis, and hepatocellular carcinoma. BMC Gastroenterol 2022; 22:278. [PMID: 35655171 PMCID: PMC9164838 DOI: 10.1186/s12876-022-02360-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background We previously reported that two differentially methylated region (DMR) networks identified by DMR and co-methylation analyses are strongly correlated with the fibrosis stages of nonalcoholic fatty liver disease (NAFLD). In the current study, we examined these DMR networks in viral hepatitis and hepatocellular carcinoma (HCC). Methods We performed co-methylation analysis of DMRs using a normal dataset (GSE48325), two NAFLD datasets (JGAS000059 and GSE31803), and two HCC datasets (GSE89852 and GSE56588). The dataset GSE60753 was used for validation. Results One DMR network was clearly observed in viral hepatitis and two HCC populations. Methylation levels of genes in this network were higher in viral hepatitis and cirrhosis, and lower in HCC. Fatty acid binding protein 1 (FABP1), serum/glucocorticoid regulated kinase 2 (SGK2), and hepatocyte nuclear factor 4 α (HNF4A) were potential hub genes in this network. Increased methylation levels of the FABP1 gene may be correlated with reduced protection of hepatocytes from oxidative metabolites in NAFLD and viral hepatitis. The decreased methylation levels of SGK2 may facilitate the growth and proliferation of HCC cells. Decreased methylation levels of HNF4A in HCC may be associated with tumorigenesis. The other DMR network was observed in NAFLD, but not in viral hepatitis or HCC. This second network included genes involved in transcriptional regulation, cytoskeleton organization, and cellular proliferation, which are specifically related to fibrosis and/or tumorigenesis in NAFLD. Conclusions Our results suggest that one DMR network was associated with fibrosis and tumorigenesis in both NAFLD and viral hepatitis, while the other network was specifically associated with NAFLD progression. Furthermore, FABP1, SGK2, and HNF4A are potential candidate targets for the prevention and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02360-4.
Collapse
|
133
|
Ding N, Wang K, Jiang H, Yang M, Zhang L, Fan X, Zou Q, Yu J, Dong H, Cheng S, Xu Y, Liu J. AGK regulates the progression to NASH by affecting mitochondria complex I function. Am J Cancer Res 2022; 12:3237-3250. [PMID: 35547757 PMCID: PMC9065199 DOI: 10.7150/thno.69826] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Impaired mitochondrial function contributes to non-alcoholic steatohepatitis (NASH). Acylglycerol kinase (AGK) is a subunit of the translocase of the mitochondrial inner membrane 22 (TIM22) protein import complex. AGK mutation is the leading cause of Sengers syndrome, characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, lactic acidosis, and liver dysfunction. The potential roles and mechanisms of AGK in NASH are not yet elucidated. Methods: Hepatic-specific AGK-deficient mice and AGK G126E mutation (AGK kinase activity arrest) mice were on a choline-deficient and high-fat diet (CDAHFD) and a methionine choline-deficient diet (MCD). The mitochondrial function and the molecular mechanisms underlying AGK were investigated in the pathogenesis of NASH. Results: The levels of AGK were significantly downregulated in human NASH liver samples. AGK deficiency led to severe liver damage and lipid accumulation in mice. Aged mice lacking hepatocyte AGK spontaneously developed NASH. AGK G126E mutation did not affect the structure and function of hepatocytes. AGK deficiency, but not AGK G126E mice, aggravated CDAHFD- and MCD-induced NASH symptoms. AGK deficiency-induced liver damage could be attributed to hepatic mitochondrial dysfunction. The mechanism revealed that AGK interacts with mitochondrial respiratory chain complex I subunits, NDUFS2 and NDUFA10, and regulates mitochondrial fatty acid metabolism. Moreover, the AGK DGK domain might directly interact with NDUFS2 and NDUFA10 to maintain the hepatic mitochondrial respiratory chain complex I function. Conclusions: The current study revealed the critical roles of AGK in NASH. AGK interacts with mitochondrial respiratory chain complex I to maintain mitochondrial integrity via the kinase-independent pathway.
Collapse
Affiliation(s)
- Nan Ding
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haojie Jiang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mina Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
134
|
Santos A, Colaço AR, Nielsen AB, Niu L, Strauss M, Geyer PE, Coscia F, Albrechtsen NJW, Mundt F, Jensen LJ, Mann M. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol 2022; 40:692-702. [PMID: 35102292 PMCID: PMC9110295 DOI: 10.1038/s41587-021-01145-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.
Collapse
Affiliation(s)
- Alberto Santos
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Li-Ka Shing Big Data Institute, University of Oxford, Oxford, UK.
- Center for Health Data Science, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ana R Colaço
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annelaura B Nielsen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lili Niu
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Strauss
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- OmicEra Diagnostics GmbH, Planegg, Germany
| | - Philipp E Geyer
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- OmicEra Diagnostics GmbH, Planegg, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Fabian Coscia
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department for Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Filip Mundt
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
135
|
Isac T, Isac S, Rababoc R, Cotorogea M, Iliescu L. Epigenetics in inflammatory liver diseases: A clinical perspective (Review). Exp Ther Med 2022; 23:366. [PMID: 35481220 PMCID: PMC9016790 DOI: 10.3892/etm.2022.11293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022] Open
Abstract
Inflammatory liver diseases are, nowadays, multifactorial and wide-spread, thus having an important socio-economic impact. Although the therapeutic algorithms are well-known in hepatitis, regardless of etiology, strategies to identify inflammatory hepatic lesions in early stages and to develop new epigenetic therapies should be prioritized. The main entities of inflammatory liver disease are: alcoholic and non-alcoholic fatty liver disease, autoimmune hepatitis, viral hepatitis and Wilson disease. The main epigenetic processes include: DNA methylation/demethylation, which imply changes in DNA tertiary structure; post-translational histone covalent changes (methylation/demethylation, acetylation/deacetylation, ubiquitination), that cause DNA-histone instability; synthesis of small, non-coding RNA molecules, called microRNAs, that modulate translational potential of transcripts (mRNAs) and post-translational modification of polypeptide chains. Consequently, the epigenetic interactions aforementioned, play an important modulatory role in disease progression and response to conventional therapies The present review focused on the main epigenetic changes in inflammatory liver conditions, considering a new perspective: Epigenetic therapy. This approach is more than welcomed, taking into consideration that conventional therapeutic strategies are almost exhausted.
Collapse
Affiliation(s)
- Teodora Isac
- Department of Internal Medicine II, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sebastian Isac
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Razvan Rababoc
- Department of Internal Medicine II, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihail Cotorogea
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Laura Iliescu
- Department of Internal Medicine II, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
136
|
Pan X, Wu Y, Peng H, Cai X, Hu Z, Lin X, Peng XE. Genome-wide DNA methylation profiling in nonalcoholic fatty liver reveals predictive aberrant methylation in PRKCE and SEC14L3 promoters. Dig Liver Dis 2022; 54:521-528. [PMID: 34108094 DOI: 10.1016/j.dld.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal non-invasive biomarkers for diagnosis and treatment of nonalcoholic fatty liver disease (NAFLD) remain to be identified. AIMS To identify potential DNA methylation biomarkers for NAFLD. METHODS Genome-wide DNA methylation profiling was performed to identify differentially methylated CpG sites in peripheral blood leukocytes. Differentially methylated regions were validated using the MassCLEAVE assay. The expression levels of candidate genes were explored by Gene Expression Omnibus database. RESULTS The hypomethylation of PRKCE CpG 4.5 and CpG 18.19 was associated with nonalcoholic fatty liver (NAFL), the odds ratio (OR) and 95% confidence interval (CI) were 0.129 (0.026-0.639) and 0.231 (0.069-0.768). The methylation level of CpG 1.2 and average methylation level of SEC14L3 were correlated with NAFL, with OR (95% CI) being 0.283 (0.093-0.865) and 0.264 (0.087-0.799). PRKCE CpG 4.5 and cg17802464 of SEC14L3 were correlated with body mass index, waist circumference, total triglyceride, high-density lipoprotein cholesterol, alanine aminotransferase and aspartate aminotransferase. All selected datasets showed high expression levels of PRKCE and SEC14L3 in patients with NAFLD. CONCLUSIONS Our findings suggest that the hypomethylation of PRKCE and SEC14L3 promoters represent attractive biomarkers for NAFLD. Further studies are warranted to validate these biomarkers as molecular tools for diagnosis of NAFLD and therapeutic targets.
Collapse
Affiliation(s)
- Xinting Pan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China
| | - Yunli Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, PR China
| | - Hewei Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Xiaoling Cai
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, PR China
| | - Xian-E Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
137
|
Pirola CJ, Sookoian S. Metabolic dysfunction-associated fatty liver disease: advances in genetic and epigenetic implications. Curr Opin Lipidol 2022; 33:95-102. [PMID: 34966133 DOI: 10.1097/mol.0000000000000814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Fatty liver associated with metabolic dysfunction, also known under the acronym NAFLD (nonalcoholic fatty liver disease) is the leading global cause of chronic liver disease. In this review, we address the state of research on genetics and epigenetics of NAFLD with focus on key discoveries and conceptual advances over the past 2 years. RECENT FINDINGS The analysis of NAFLD-associated genetic variant effects on the whole-transcriptome, including quantitative trait loci (QTL) associated with gene expression (eQTL) or splicing (sQTL) may explain pleiotropic effects. Functional experiments on NAFLD-epigenetics, including profiling of liver chromatin accessibility quantitative trait loci (caQTL) show co-localization with numerous genome-wide association study signals linked to metabolic and cardiovascular traits. Novel studies provide insights into the modulation of the hepatic transcriptome and epigenome by tissue microbiotas. Genetic variation of components of the liver cellular respirasome may result in broad cellular and metabolic effects. Mitochondrial noncoding RNAs may regulate liver inflammation and fibrogenesis. RNA modifications as N6-methyladenosine may explain sex-specific differences in liver gene transcription linked to lipid traits. SUMMARY The latest developments in the field of NAFLD-genomics can be leveraged for identifying novel disease mechanisms and therapeutic targets that may prevent the morbidity and mortality associated with disease progression. VIDEO ABSTRACT http://links.lww.com/COL/A23.
Collapse
Affiliation(s)
- Carlos J Pirola
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET) - University of Buenos Aires
| | - Silvia Sookoian
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
138
|
Li X, Qi L. Epigenetics in Precision Nutrition. J Pers Med 2022; 12:jpm12040533. [PMID: 35455649 PMCID: PMC9027461 DOI: 10.3390/jpm12040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging area of nutrition research, with primary focus on the individual variability in response to dietary and lifestyle factors, which are mainly determined by an individual’s intrinsic variations, such as those in genome, epigenome, and gut microbiome. The current research on precision nutrition is heavily focused on genome and gut microbiome, while epigenome (DNA methylation, non-coding RNAs, and histone modification) is largely neglected. The epigenome acts as the interface between the human genome and environmental stressors, including diets and lifestyle. Increasing evidence has suggested that epigenetic modifications, particularly DNA methylation, may determine the individual variability in metabolic health and response to dietary and lifestyle factors and, therefore, hold great promise in discovering novel markers for precision nutrition and potential targets for precision interventions. This review summarized recent studies on DNA methylation with obesity, diabetes, and cardiovascular disease, with more emphasis put in the relations of DNA methylation with nutrition and diet/lifestyle interventions. We also briefly reviewed other epigenetic events, such as non-coding RNAs, in relation to human health and nutrition, and discussed the potential role of epigenetics in the precision nutrition research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-504-988-7259
| |
Collapse
|
139
|
Patel SJ, Liu N, Piaker S, Gulko A, Andrade ML, Heyward FD, Sermersheim T, Edinger N, Srinivasan H, Emont MP, Westcott GP, Luther J, Chung RT, Yan S, Kumari M, Thomas R, Deleye Y, Tchernof A, White PJ, Baselli GA, Meroni M, De Jesus DF, Ahmad R, Kulkarni RN, Valenti L, Tsai L, Rosen ED. Hepatic IRF3 fuels dysglycemia in obesity through direct regulation of Ppp2r1b. Sci Transl Med 2022; 14:eabh3831. [PMID: 35320000 PMCID: PMC9162056 DOI: 10.1126/scitranslmed.abh3831] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.
Collapse
Affiliation(s)
- Suraj J. Patel
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Digestive and Liver Diseases, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Liu
- Harvard Medical School, Boston, MA 02115, USA
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children’s Hospital, Boston, MA 02215, USA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Sam Piaker
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Maynara L. Andrade
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Frankie D. Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Tyler Sermersheim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nufar Edinger
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Margo P. Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Gregory P. Westcott
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jay Luther
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Raymond T. Chung
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Manju Kumari
- Department of Cardiology, Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Reeby Thomas
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Yann Deleye
- Duke Molecular Physiology Institute and Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - André Tchernof
- Institut Universitaire de Cardiologie and Pneumologie de Québec–Université Laval (IUCPQUL), Québec City, Canada
| | - Phillip J. White
- Duke Molecular Physiology Institute and Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido A. Baselli
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
- Precision Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario F. De Jesus
- Harvard Medical School, Boston, MA 02115, USA
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rohit N. Kulkarni
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
- Precision Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
140
|
Boeckmans J, Gatzios A, Heymans A, Rombaut M, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Transcriptomics Reveals Discordant Lipid Metabolism Effects between In Vitro Models Exposed to Elafibranor and Liver Samples of NAFLD Patients after Bariatric Surgery. Cells 2022; 11:893. [PMID: 35269515 PMCID: PMC8909190 DOI: 10.3390/cells11050893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in the progression of NASH. In the present study, we first characterize the transcriptome of multiple in vitro NASH models. Subsequently, we investigate how elafibranor, which is a peroxisome proliferator-activated receptor (PPAR)-α/δ agonist that has recently failed a phase 3 clinical trial as a potential anti-NASH compound, modulates the transcriptome of these models. Finally, we compare the elafibranor-induced gene expression modulation to transcriptome data of patients with improved/resolved NAFLD/NASH upon bariatric surgery, which is the only proven clinical NASH therapy. METHODS Human whole genome microarrays were used for the transcriptomics evaluation of hepatic in vitro models. Comparison to publicly available clinical datasets was conducted using multiple bioinformatic application tools. RESULTS Primary human hepatocytes (PHH), HepaRG, and human skin stem cell-derived hepatic progenitors (hSKP-HPC) exposed to NASH-inducing triggers exhibit up to 35% overlap with datasets of liver samples from NASH patients. Exposure of the in vitro NASH models to elafibranor partially reversed the transcriptional modulations, predicting an inhibition of toll-like receptor (TLR)-2/4/9-mediated inflammatory responses, NFκB-signaling, hepatic fibrosis, and leukocyte migration. These transcriptomic changes were also observed in the datasets of liver samples of patients with resolved NASH. Peroxisome Proliferator Activated Receptor Alpha (PPARA), PPARG Coactivator 1 Alpha (PPARGC1A), and Sirtuin 1 (SIRT1) were identified as the major common upstream regulators upon exposure to elafibranor. Analysis of the downstream mechanistic networks further revealed that angiopoietin Like 4 (ANGPTL4), pyruvate dehydrogenase kinase 4 (PDK4), and perilipin 2 (PLIN2), which are involved in the promotion of hepatic lipid accumulation, were also commonly upregulated by elafibranor in all in vitro NASH models. Contrarily, these genes were not upregulated in liver samples of patients with resolved NASH. CONCLUSION Transcriptomics comparison between in vitro NASH models exposed to elafibranor and clinical datasets of NAFLD patients after bariatric surgery reveals commonly modulated anti-inflammatory responses, but discordant modulations of key factors in lipid metabolism. This discordant adverse effect of elafibranor deserves further investigation when assessing PPAR-α/δ agonism as a potential anti-NASH therapy.
Collapse
Affiliation(s)
- Joost Boeckmans
- Correspondence: (J.B.); (R.M.R.); Tel.: +32-(0)-2-477-45-19 (R.M.R.)
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Dam TV, Toft NI, Grøntved L. Cell-Type Resolved Insights into the Cis-Regulatory Genome of NAFLD. Cells 2022; 11:870. [PMID: 35269495 PMCID: PMC8909044 DOI: 10.3390/cells11050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing rapidly, and unmet treatment can result in the development of hepatitis, fibrosis, and liver failure. There are difficulties involved in diagnosing NAFLD early and for this reason there are challenges involved in its treatment. Furthermore, no drugs are currently approved to alleviate complications, a fact which highlights the need for further insight into disease mechanisms. NAFLD pathogenesis is associated with complex cellular changes, including hepatocyte steatosis, immune cell infiltration, endothelial dysfunction, hepatic stellate cell activation, and epithelial ductular reaction. Many of these cellular changes are controlled by dramatic changes in gene expression orchestrated by the cis-regulatory genome and associated transcription factors. Thus, to understand disease mechanisms, we need extensive insights into the gene regulatory mechanisms associated with tissue remodeling. Mapping cis-regulatory regions genome-wide is a step towards this objective and several current and emerging technologies allow detection of accessible chromatin and specific histone modifications in enriched cell populations of the liver, as well as in single cells. Here, we discuss recent insights into the cis-regulatory genome in NAFLD both at the organ-level and in specific cell populations of the liver. Moreover, we highlight emerging technologies that enable single-cell resolved analysis of the cis-regulatory genome of the liver.
Collapse
Affiliation(s)
| | | | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark; (T.V.D.); (N.I.T.)
| |
Collapse
|
142
|
Dietary lipid droplet structure in postnatal life improves hepatic energy and lipid metabolism in a mouse model for postnatal programming. Pharmacol Res 2022; 179:106193. [DOI: 10.1016/j.phrs.2022.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
143
|
Martinou E, Pericleous M, Stefanova I, Kaur V, Angelidi AM. Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022; 12:407. [PMID: 35204498 PMCID: PMC8871470 DOI: 10.3390/diagnostics12020407] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is currently the most common cause of chronic liver disease worldwide, and its prevalence is increasing globally. NAFLD is a multifaceted disorder, and its spectrum includes steatosis to steatohepatitis, which may evolve to advanced fibrosis and cirrhosis. In addition, the presence of NAFLD is independently associated with a higher cardiometabolic risk and increased mortality rates. Considering that the vast majority of individuals with NAFLD are mainly asymptomatic, early diagnosis of non-alcoholic steatohepatitis (NASH) and accurate staging of fibrosis risk is crucial for better stratification, monitoring and targeted management of patients at risk. To date, liver biopsy remains the gold standard procedure for the diagnosis of NASH and staging of NAFLD. However, due to its invasive nature, research on non-invasive tests is rapidly increasing with significant advances having been achieved during the last decades in the diagnostic field. New promising non-invasive biomarkers and techniques have been developed, evaluated and assessed, including biochemical markers, imaging modalities and the most recent multi-omics approaches. Our article provides a comprehensive review of the currently available and emerging non-invasive diagnostic tools used in assessing NAFLD, also highlighting the importance of accurate and validated diagnostic tools.
Collapse
Affiliation(s)
- Eirini Martinou
- Hepatobiliary and Pancreatic Surgery Department, Royal Surrey County Hospital, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Marinos Pericleous
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- Department of Gastroenterology and Hepatology, Royal Surrey County Hospital, Guildford GU2 7XX, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Vasha Kaur
- Department of Upper Gastrointestinal and Bariatric Surgery, St George’s Hospital, London SW17 0QT, UK;
| | - Angeliki M. Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
144
|
Li W, Liu J, Cai J, Zhang XJ, Zhang P, She ZG, Chen S, Li H. NAFLD as a continuous driver in the whole spectrum of vascular disease. J Mol Cell Cardiol 2022; 163:118-132. [PMID: 34737121 DOI: 10.1016/j.yjmcc.2021.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
Vascular disease is the prime determinant to cardiovascular morbidities and mortalities, which comprises the early vascular damage and subsequent cardiovascular events. Non-alcohol Fatty Liver Disease (NAFLD) is a systemic metabolic disorder that drives the progression of vascular disease through complex interactions. Although a causal relationship between NAFLD and cardiovascular disease (CVD) has not been established, a growing number of epidemiological studies have demonstrated an independent association between NAFLD and early vascular disease and subsequent cardiovascular events. In addition, mechanistic studies suggest that NAFLD initiates and accelerates vascular injury by increasing systemic inflammation and oxidative stress, impairing insulin sensitivity and lipid metabolism, and modulating epigenetics, the intestinal flora and hepatic autonomic nervous system; thus, NAFLD is a putative driving force for CVD progression. In this review, we summarize the clinical evidence supporting the association of NAFLD with subclinical vascular disease and cardiovascular events and discuss the potential mechanisms by which NAFLD promotes the progression of vascular disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Shaoze Chen
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
145
|
Duwaerts CC, Maiers JL. ER Disposal Pathways in Chronic Liver Disease: Protective, Pathogenic, and Potential Therapeutic Targets. Front Mol Biosci 2022; 8:804097. [PMID: 35174209 PMCID: PMC8841999 DOI: 10.3389/fmolb.2021.804097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum is a central player in liver pathophysiology. Chronic injury to the ER through increased lipid content, alcohol metabolism, or accumulation of misfolded proteins causes ER stress, dysregulated hepatocyte function, inflammation, and worsened disease pathogenesis. A key adaptation of the ER to resolve stress is the removal of excess or misfolded proteins. Degradation of intra-luminal or ER membrane proteins occurs through distinct mechanisms that include ER-associated Degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD), which includes macro-ER-phagy, micro-ER-phagy, and Atg8/LC-3-dependent vesicular delivery. All three of these processes are critical for removing misfolded or unfolded protein aggregates, and re-establishing ER homeostasis following expansion/stress, which is critical for liver function and adaptation to injury. Despite playing a key role in resolving ER stress, the contribution of these degradative processes to liver physiology and pathophysiology is understudied. Analysis of publicly available datasets from diseased livers revealed that numerous genes involved in ER-related degradative pathways are dysregulated; however, their roles and regulation in disease progression are not well defined. Here we discuss the dynamic regulation of ER-related protein disposal pathways in chronic liver disease and cell-type specific roles, as well as potentially targetable mechanisms for treatment of chronic liver disease.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica L. Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
146
|
Rodríguez-Sanabria JS, Escutia-Gutiérrez R, Rosas-Campos R, Armendáriz-Borunda JS, Sandoval-Rodríguez A. An Update in Epigenetics in Metabolic-Associated Fatty Liver Disease. Front Med (Lausanne) 2022; 8:770504. [PMID: 35087844 PMCID: PMC8787199 DOI: 10.3389/fmed.2021.770504] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of metabolic dysregulation. It is distinguished by excessive fat accumulation in hepatocytes, and a decrease in the liver's ability to oxidize fats, the accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic damage will keep this pathophysiologic cycle active causing progression from hepatic steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene expression without altering DNA sequence allows us to study MAFLD pathophysiology from a different perspective, in which DNA methylation processes, histone modifications, and miRNAs expression have been closely associated with MAFLD progression. However, these considerations also faced us with the circumstance that modifying those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is an area of great interest because it could provide new insights in therapeutic targets and non-invasive biomarkers. This review comprises an update on the role of epigenetic patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.
Collapse
Affiliation(s)
- J Samael Rodríguez-Sanabria
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Juan S Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Campus Guadalajara, Zapopan, Mexico
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
147
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
148
|
The Potential Role of Cellular Senescence in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23020652. [PMID: 35054837 PMCID: PMC8775400 DOI: 10.3390/ijms23020652] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing global health burden. Cellular senescence develops in response to cellular injury, leading not only to cell cycle arrest but also to alterations of the cellular phenotype and metabolic functions. In this review, we critically discuss the currently existing evidence for the involvement of cellular senescence in NAFLD in order to identify areas requiring further exploration. Hepatocyte senescence can be a central pathomechanism as it may foster intracellular fat accumulation, fibrosis and inflammation, also due to secretion of senescence-associated inflammatory mediators. However, in some non-parenchymal liver cell types, such as hepatic stellate cells, senescence may be beneficial by reducing the extracellular matrix deposition and thereby reducing fibrosis. Deciphering the detailed interaction between NAFLD and cellular senescence will be essential to discover novel therapeutic targets halting disease progression.
Collapse
|
149
|
Pyo JJ, Choi Y. Key hepatic signatures of human and mouse nonalcoholic steatohepatitis: A transcriptome-proteome data meta-analysis. Front Endocrinol (Lausanne) 2022; 13:934847. [PMID: 36267572 PMCID: PMC9576953 DOI: 10.3389/fendo.2022.934847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite the global prevalence of nonalcoholic fatty liver disease (NAFLD), its pathophysiology remains unclear. In this study, we established highly confident nonalcoholic steatohepatitis (NASH) gene signatures and evaluated the pathological mechanisms underlying NASH through a systematic meta-analysis of transcriptome and proteome datasets obtained from NASH patients and mouse models. METHODS We analyzed NASH transcriptome datasets from 539 patients and 99 mice. A whole-liver tissue proteome dataset was used to confirm the protein level dysregulation of NASH signatures significant in both humans and mice. RESULTS In total, 254 human and 1,917 mouse NASH gene signatures were established. Up-regulated genes of 254 human signatures were associated with inflammation, steatosis, apoptosis, and extracellular matrix organization, whereas down-regulated genes were associated with response to metal ions and lipid and amino acid metabolism. When different mouse models were compared against humans, models with high fat and high fructose diet most closely resembled the genetic features of human NAFLD. Cross-species analysis revealed 66 genes that were concordantly dysregulated between human and mouse NASH. Among these, 14 genes were further validated to be dysregulated at the protein level. The resulting 14 genes included some of the well-established NASH associated genes and a promising NASH drug target. Functional enrichment analysis revealed that dysregulation of amino acid metabolism was the most significant hepatic perturbation in both human and mouse NASH. CONCLUSIONS We established the most comprehensive hepatic gene signatures for NASH in humans and mice to date. To the best of our knowledge, this is the first study to collectively analyze the common signatures between human and mouse NASH on a transcriptome-proteome scale.
Collapse
Affiliation(s)
- Jeong Joo Pyo
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - Yongsoo Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- *Correspondence: Yongsoo Choi,
| |
Collapse
|
150
|
Sanjay K, Vishwakarma S, Zope BR, Mane VS, Mohire S, Dhakshinamoorthy S. ATP citrate lyase inhibitor Bempedoic Acid alleviate long term HFD induced NASH through improvement in glycemic control, reduction of hepatic triglycerides & total cholesterol, modulation of inflammatory & fibrotic genes and improvement in NAS score. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100051. [PMID: 34909677 PMCID: PMC8663992 DOI: 10.1016/j.crphar.2021.100051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Non-alcoholic steatohepatitis (NASH) are chronic liver disorders, the prevalence of which is increasing worldwide. Long term High Fat Diet (HFD) induced NASH animal models closely mimic the characteristics of human NASH and hence used by investigators as a model system for studying the mechanism of action of new drugs. Bempedoic acid (ETC-1002), a ATP citrate lyase (ACLY) inhibitor that lowers the LDL cholesterol was recently approved by US FDA for the treatment of heterozygous familial hypercholesterolemia (HeFH) and established atherosclerotic cardiovascular disease (ASCVD). ACLY is one of the genes modulated in NASH patients and hence we studied the effect of ACLY inhibitor Bempedoic acid in long term HFD induced NASH animal model to understand the pharmacological benefits and the associated mechanism of action of this newly approved drug in NASH. Mice fed with 60% Kcal High Fat Diet for 32 weeks were used for the study and the animals were given Bempedoic acid for 5 weeks at doses of 10 mg kg−1, po, qd, and 30 mg kg−1, po, qd. Bempedoic acid treatment resulted in inhibition of body weight gain and improved the glycemic control. Bempedoic acid treated group showed statistically significant reduction in plasma ALT, AST, hepatic triglycerides (TG) and total cholesterol (TC), along with statistically significant reduction in steatosis score by histological analysis. Hepatic gene expression analysis showed significant reduction in inflammatory and fibrotic genes such as Mcp-1/Ccl2, Timp-1 & Col1α1. Histological analysis showed significant improvement in NAS score. Overall, Bempedoic acid alleviated HFD induced Non-Alcoholic Steatohepatitis through inhibition of body weight gain, improvement in glycemic control, reduction of hepatic triglycerides & total cholesterol, modulation of inflammatory & fibrotic genes, and improvement in NAS score. Hence, Bempedoic acid can be a potential therapeutic option for metabolic syndrome and NASH. Bempedoic acid alleviated HFD induced Non-Alcoholic Steatohepatitis in a long term HFD induced NASH animal model. Mechanism of action includes modulation of lipid profile, inflammatory & fibrotic genes and inhibition of body weight gain. Overall improvement in NAS score was observed with Bempedoic acid treatment. Our study shows a promising role for Bempedoic acid in amelioration of metabolic disorders and NASH.
Collapse
|