101
|
Rodas-Junco BA, Hernández-Solís SE, Serralta-Interian AA, Rueda-Gordillo F. Dental Stem Cells and Lipopolysaccharides: A Concise Review. Int J Mol Sci 2024; 25:4338. [PMID: 38673923 PMCID: PMC11049850 DOI: 10.3390/ijms25084338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Dental tissue stem cells (DTSCs) are well known for their multipotent capacity and regenerative potential. They also play an important role in the immune response of inflammatory processes derived from caries lesions, periodontitis, and gingivitis. These oral diseases are triggered by toxins known as lipopolysaccharides (LPS) produced by gram-negative bacteria. LPS present molecular patterns associated with pathogens and are recognized by Toll-like receptors (TLRs) in dental stem cells. In this review, we describe the effect of LPS on the biological behavior of DTSCs. We also focus on the molecular sensors, signaling pathways, and emerging players participating in the interaction of DTSCs with lipopolysaccharides. Although the scientific advances generated provide an understanding of the immunomodulatory potential of DTSCs, there are still new reflections to explore with regard to their clinical application in the treatment of oral inflammatory diseases.
Collapse
Affiliation(s)
- Beatriz A. Rodas-Junco
- CONAHCYT–Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, Mérida CP 97203, Yucatán, Mexico
- Laboratorio Traslacional de Células Troncales de la Cavidad Bucal, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico;
| | - Sandra E. Hernández-Solís
- Departamento de Microbiología Oral y Biología Molecular, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico; (S.E.H.-S.); (F.R.-G.)
| | - Angelica A. Serralta-Interian
- Laboratorio Traslacional de Células Troncales de la Cavidad Bucal, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico;
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, Mérida CP 97203, Yucatán, Mexico
| | - Florencio Rueda-Gordillo
- Departamento de Microbiología Oral y Biología Molecular, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico; (S.E.H.-S.); (F.R.-G.)
| |
Collapse
|
102
|
Ovsepian A, Kardaras FS, Skoulakis A, Hatzigeorgiou AG. Microbial signatures in human periodontal disease: a metatranscriptome meta-analysis. Front Microbiol 2024; 15:1383404. [PMID: 38659984 PMCID: PMC11041396 DOI: 10.3389/fmicb.2024.1383404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
The characterization of oral microbial communities and their functional potential has been shaped by metagenomics and metatranscriptomics studies. Here, a meta-analysis of four geographically and technically diverse oral shotgun metatranscriptomics studies of human periodontitis was performed. In total, 54 subgingival plaque samples, 27 healthy and 27 periodontitis, were analyzed. The core microbiota of the healthy and periodontitis group encompassed 40 and 80 species, respectively, with 38 species being common to both microbiota. The differential abundance analysis identified 23 genera and 26 species, that were more abundant in periodontitis. Our results not only validated previously reported genera and species associated with periodontitis with heightened statistical significance, but also elucidated additional genera and species that were overlooked in the individual studies. Functional analysis revealed a significant up-regulation in the transcription of 50 gene families (UniRef-90) associated with transmembrane transport and secretion, amino acid metabolism, surface protein and flagella synthesis, energy metabolism, and DNA supercoiling in periodontitis samples. Notably, the overwhelming majority of the identified gene families did not exhibit differential abundance when examined across individual datasets. Additionally, 4 bacterial virulence factor genes, including TonB dependent receptor from P. gingivalis, surface antigen BspA from T. forsynthia, and adhesin A (PsaA) and Type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the Streptococcus genus, were also found to be significantly more transcribed in periodontitis group. Microbial co-occurrence analysis demonstrated that the periodontitis microbial network was less dense compared to the healthy network, but it contained more positive correlations between the species. Furthermore, there were discernible disparities in the patterns of interconnections between the species in the two networks, denoting the rewiring of the whole microbial network during the transition to the disease state. In summary, our meta-analysis has provided robust insights into the oral active microbiome and transcriptome in both health and disease.
Collapse
Affiliation(s)
- Armen Ovsepian
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Filippos S. Kardaras
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Anargyros Skoulakis
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
103
|
Zhang M, Zhao Y, Umar A, Zhang H, Yang L, Huang J, Long Y, Yu Z. Comparative analysis of microbial composition and functional characteristics in dental plaque and saliva of oral cancer patients. BMC Oral Health 2024; 24:411. [PMID: 38575895 PMCID: PMC10993480 DOI: 10.1186/s12903-024-04181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The oral cavity is home to various ecological niches, each with its own unique microbial composition. Understanding the microbial communities and gene composition in different ecological niches within the oral cavity of oral cancer (OC) patients is crucial for determining how these microbial populations contribute to disease progression. METHODS In this study, saliva and dental plaque samples were collected from patients with OC. Metagenomic sequencing was employed to analyze the microbial community classification and functional composition of the different sample groups. RESULTS The results of the study revealed significant differences in both the function and classification of microbial communities between saliva and dental plaque samples. The diversity of microbial species in saliva was found to be higher compared to that in plaque samples. Notably, Actinobacteria were enriched in the dental plaque of OC patients. Furthermore, the study identified several inter-group differential marker species, including Prevotella intermedia, Haemophilus parahaemolyticus, Actinomyces radius, Corynebacterium matruchitii, and Veillonella atypica. Additionally, 1,353 differential genes were annotated into 23 functional pathways. Interestingly, a significant correlation was observed between differentially labeled species and Herpes simplex virus 1 (HSV-1) infection, which may be related to the occurrence and development of cancer. CONCLUSIONS Significant differences in the microbial and genetic composition of saliva and dental plaque samples were observed in OC patients. Furthermore, pathogenic bacteria associated with oral diseases were predominantly enriched in saliva. The identification of inter-group differential biomarkers and pathways provide insights into the relationship between oral microbiota and the occurrence and development of OC.
Collapse
Affiliation(s)
- Man Zhang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiming Zhao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hailin Zhang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lirong Yang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ying Long
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
104
|
Chepchumba B, Asudi GO, Katana J, Ngayo MO, Khayeli JA. Isolation of phages against Streptococcus species in the oral cavity for potential control of dental diseases and associated systemic complications. Arch Microbiol 2024; 206:175. [PMID: 38493441 DOI: 10.1007/s00203-024-03897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Dental infections and systemic complications caused by Streptococcus species in the oral cavity are increasingly exhibiting resistance to commonly used antibiotics, posing a potential threat to global public health. Phage therapy may offer a superior alternative, given that bacteriophages can be easily isolated and rapidly replicate in large numbers. In this study, six Streptococcus species from the oral cavity were characterized. Bacteriophages isolated from wastewater using five of these species as hosts produced plaques ranging from 0.2 to 2.4 mm in size. The phages demonstrated stability within a temperature range of 4 ℃ to 37 ℃. However, at temperatures exceeding 45 ℃, a noticeable reduction in bacteriophage titer was observed. Similarly, the phages showed greater stability within a pH range of 5 to 10. The isolated phages exhibited latency periods ranging from 15 to 20 min and had burst sizes varying from 10 to 200 viral particles. This study supports the potential use of bacteriophages in controlling infections caused by Streptococcus species.
Collapse
Affiliation(s)
- Beatrice Chepchumba
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
| | - George O Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Japhet Katana
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Musa O Ngayo
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | |
Collapse
|
105
|
Pallavi P, Sahoo PP, Sen SK, Raut S. Comparative evaluation of anti-biofilm and anti- adherence potential of plant extracts against Streptococcus mutans: A therapeutic approach for oral health. Microb Pathog 2024; 188:106514. [PMID: 38296118 DOI: 10.1016/j.micpath.2023.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024]
Abstract
Dental caries predominantly attributed to the cariogenic nature of Streptococcus mutans, continue to pose a substantial global challenge to oral health. In response to this challenge, this study aimed to evaluate the effectiveness of leaf extracts (LEs) and essential oils (EOs) derived from different medicinal plants in inhibiting the growth of Streptococcus mutans biofilm. In vitro and in silico approaches were employed to identify active compounds and assess their inhibitory effects on S. mutans. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were measured to determine the anti-biofilm and anti-adherence activity against S. mutans. Biofilm viability (CFU/mL) and extracellular polymeric substance (EPS) concentration were quantified. GC-MS analysis was utilized to identify active compounds in the most effective plant extracts exhibiting anti-S. mutans activity. A high-throughput screening focused on the interaction between these compounds and the target enzyme SortaseA (SrtA) using molecular docking was performed. Results indicated that Cymbopogon citratus displayed the highest efficacy in reducing S. mutans biofilm formation and adhesion activity, achieving 90 % inhibition at an MIC value of 12 μg/mL. Among the 12 bioactive compounds identified, trans-Carvyl acetate exhibited the lowest binding energy with SrtA (-6.0 Kcal/mole). Trans-Carvyl acetate also displayed favorable pharmacokinetic properties. This study provides novel insights into the anti-S. mutans properties of C. citratus and suggests its potential as a therapeutic approach for oral health. Further research is needed to explore the combined effect of plant extracts for enhanced protection against dental caries.
Collapse
Affiliation(s)
- Preeti Pallavi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Pragnya Paramita Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Sudip Kumar Sen
- Biostadt India Limited, Waluj, Aurangabad, 431136, Maharashtra, India
| | - Sangeeta Raut
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
106
|
Majumder S, Kiritkumar Makwana R, Shetty V, Mukherjee S, Narayan P. Cardiovascular diseases and the heart-gut cross talk. Indian Heart J 2024; 76:94-100. [PMID: 38070671 PMCID: PMC11143509 DOI: 10.1016/j.ihj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 12/02/2023] [Indexed: 06/01/2024] Open
Abstract
The purpose of this narrative review is to provide a comprehensive overview of current research on heart-gut cross talk and its implications for cardiovascular disease. To uncover relevant preclinical and clinical research examining heart-gut cross talk, a thorough literature search was undertaken utilising electronic databases. The chosen publications were critically examined, and major findings were synthesised to offer a thorough perspective on the subject. We want to synthesise the most recent study findings, explain the underlying mechanisms, and provide potential treatment techniques. By exploring bidirectional connection between the heart and the gut, we shed light on novel future options for the prevention and treatment of cardiovascular diseases. The heart-gut cross talk is an exciting field of study with implications for cardiovascular disease. Understanding the complex connection between the heart and the gastrointestinal tract may lead to the development of novel therapeutic targets and therapies for the prevention and management of cardiovascular diseases. Future research should concentrate on identifying the specific processes driving this crosstalk as well as assessing the efficacy of therapies targeting the gut microbiota and the gut-brain axis in improving cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Varun Shetty
- Department of Cardiac Surgery, Narayana Health, India
| | | | | |
Collapse
|
107
|
Moran SP, Rosier BT, Henriquez FL, Burleigh MC. The effects of nitrate on the oral microbiome: a systematic review investigating prebiotic potential. J Oral Microbiol 2024; 16:2322228. [PMID: 38420038 PMCID: PMC10901185 DOI: 10.1080/20002297.2024.2322228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Background Nitrate (NO3-) has been suggested as a prebiotic for oral health. Evidence indicates dietary nitrate and nitrate supplements can increase the proportion of bacterial genera associated with positive oral health whilst reducing bacteria implicated in oral disease(s). In contrast, chlorhexidine-containing mouthwashes, which are commonly used to treat oral infections, promote dysbiosis of the natural microflora and may induce antimicrobial resistance. Methods A systematic review of the literature was undertaken, surrounding the effects of nitrate on the oral microbiota. Results Overall, n = 12 in vivo and in vitro studies found acute and chronic nitrate exposure increased (representatives of) health-associated Neisseria and Rothia (67% and 58% of studies, respectively) whilst reducing periodontal disease-associated Prevotella (33%). Additionally, caries-associated Veillonella and Streptococcus decreased (25% for both genera). Nitrate also altered oral microbiome metabolism, causing an increase in pH levels (n = 5), which is beneficial to limit caries development. Secondary findings highlighted the benefits of nitrate for systemic health (n = 5). Conclusions More clinical trials are required to confirm the impact of nitrate on oral communities. However, these findings support the hypothesis that nitrate could be used as an oral health prebiotic. Future studies should investigate whether chlorhexidine-containing mouthwashes could be replaced or complemented by a nitrate-rich diet or nitrate supplementation.
Collapse
Affiliation(s)
- Siobhan P. Moran
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| | - Bob T. Rosier
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Fiona L. Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| | - Mia C. Burleigh
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| |
Collapse
|
108
|
Kaliniak S, Fiedoruk K, Spałek J, Piktel E, Durnaś B, Góźdź S, Bucki R, Okła S. Remodeling of Paranasal Sinuses Mucosa Functions in Response to Biofilm-Induced Inflammation. J Inflamm Res 2024; 17:1295-1323. [PMID: 38434581 PMCID: PMC10906676 DOI: 10.2147/jir.s443420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
Rhinosinusitis (RS) is an acute (ARS) or chronic (CRS) inflammatory disease of the nasal and paranasal sinus mucosa. CRS is a heterogeneous condition characterized by distinct inflammatory patterns (endotypes) and phenotypes associated with the presence (CRSwNP) or absence (CRSsNP) of nasal polyps. Mucosal barrier and mucociliary clearance dysfunction, inflammatory cell infiltration, mucus hypersecretion, and tissue remodeling are the hallmarks of CRS. However, the underlying factors, their priority, and the mechanisms of inflammatory responses remain unclear. Several hypotheses have been proposed that link CRS etiology and pathogenesis with host (eg, "immune barrier") and exogenous factors (eg, bacterial/fungal pathogens, dysbiotic microbiota/biofilms, or staphylococcal superantigens). The abnormal interplay between these factors is likely central to the pathophysiology of CRS by triggering compensatory immune responses. Here, we discuss the role of the sinonasal microbiota in CRS and its biofilms in the context of mucosal zinc (Zn) deficiency, serving as a possible unifying link between five host and "bacterial" hypotheses of CRS that lead to sinus mucosa remodeling. To date, no clear correlation between sinonasal microbiota and CRS has been established. However, the predominance of Corynebacteria and Staphylococci and their interspecies relationships likely play a vital role in the formation of the CRS-associated microbiota. Zn-mediated "nutritional immunity", exerted via calprotectin, alongside the dysregulation of Zn-dependent cellular processes, could be a crucial microbiota-shaping factor in CRS. Similar to cystic fibrosis (CF), the role of SPLUNC1-mediated regulation of mucus volume and pH in CRS has been considered. We complement the biofilms' "mechanistic" and "mucin" hypotheses behind CRS pathogenesis with the "structural" one - associated with bacterial "corncob" structures. Finally, microbiota restoration approaches for CRS prevention and treatment are reviewed, including pre- and probiotics, as well as Nasal Microbiota Transplantation (NMT).
Collapse
Affiliation(s)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Stanisław Góźdź
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Sławomir Okła
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| |
Collapse
|
109
|
Banar M, Rokaya D, Azizian R, Khurshid Z, Banakar M. Oral bacteriophages: metagenomic clues to interpret microbiomes. PeerJ 2024; 12:e16947. [PMID: 38406289 PMCID: PMC10885796 DOI: 10.7717/peerj.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Bacteriophages are bacterial viruses that are distributed throughout the environment. Lytic phages and prophages in saliva, oral mucosa, and dental plaque interact with the oral microbiota and can change biofilm formation. The interactions between phages and bacteria can be considered a portion of oral metagenomics. The metagenomic profile of the oral microbiome indicates various bacteria. Indeed, there are various phages against these bacteria in the oral cavity. However, some other phages, like phages against Absconditabacteria, Chlamydiae, or Chloroflexi, have not been identified in the oral cavity. This review gives an overview of oral bacteriophage and used for metagenomics. Metagenomics of these phages deals with multi-drug-resistant bacterial plaques (biofilms) in oral cavities and oral infection. Hence, dentists and pharmacologists should know this metagenomic profile to cope with predental and dental infectious diseases.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Dinesh Rokaya
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Reza Azizian
- Biomedical Innovation and Start-up student association (Biomino), Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
110
|
Chen D, Chew D, Xiang Q, Lam T, Dai Y, Liu J, Wang L, He T, Strand R, Zhang X, Lim L, Xu J, Shi Y, Dong W. Interactions and effects of a stannous-containing sodium fluoride dentifrice on oral pathogens and the oral microbiome. Front Microbiol 2024; 15:1327913. [PMID: 38426054 PMCID: PMC10902866 DOI: 10.3389/fmicb.2024.1327913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Numerous studies have investigated the effects of stannous ions on specific microbes and their efficacy in reducing dental plaque. Nonetheless, our understanding of their impact on the oral microbiome is still a subject of ongoing exploration. Therefore, this study sought to evaluate the effects of a stannous-containing sodium fluoride dentifrice in comparison to a zinc-containing sodium fluoride dentifrice and a control group on intact, healthy oral biofilms. Utilizing the novel 2bRAD-M approach for species-resolved metagenomics, and FISH/CLSM with probes targeting periodontal and caries associated species alongside Sn2+ and Zn2+ ions, we collected and analyzed in situ biofilms from 15 generally healthy individuals with measurable dental plaque and treated the biofilms with dentifrices to elucidate variations in microbial distribution. Although significant shifts in the microbiome upon treatment were not observed, the use of a stannous-containing sodium fluoride dentifrice primarily led to an increase in health-associated commensal species and decrease in pathogenic species. Notably, FISH/CLSM analysis highlighted a marked reduction in representative species associated with periodontitis and caries following treatment with the use of a stannous-containing sodium fluoride dentifrice, as opposed to a zinc-containing sodium fluoride dentifrice and the control group. Additionally, Sn2+ specific intracellular imaging reflected the colocalization of Sn2+ ions with P. gingivalis but not with other species. In contrast, Zn2+ ions exhibited non-specific binding, thus suggesting that Sn2+ could exhibit selective binding toward pathogenic species. Altogether, our results demonstrate that stannous ions could help to maintain a healthy oral microbiome by preferentially targeting certain pathogenic bacteria to reverse dysbiosis and underscores the importance of the continual usage of such products as a preventive measure for oral diseases and the maintenance of health.
Collapse
Affiliation(s)
- Danyan Chen
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Stomatology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Dillon Chew
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Qianfeng Xiang
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, Netherlands
| | - TzeHau Lam
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Yajie Dai
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Jiquan Liu
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Lijiang Wang
- Procter & Gamble Technology Co. Ltd, Beijing, China
| | - Tao He
- The Procter & Gamble Company, Mason, OH, United States
| | - Ross Strand
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Xiaolan Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linda Lim
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yunming Shi
- Procter & Gamble Technology Co. Ltd, Beijing, China
| | - Weili Dong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
111
|
Nor Azmi NJ, Mohamad S, Shahidan WNS, Taib H, Mohamed Z, Osman E. Risk factors and approaches for detection of Trichomonas tenax, the silent culprit in periodontal disease: A narrative review. Saudi Dent J 2024; 36:258-261. [PMID: 38419993 PMCID: PMC10897585 DOI: 10.1016/j.sdentj.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 03/02/2024] Open
Abstract
Introduction Periodontal disease is the inflammation of the periodontium tissues surrounding the teeth, potentially leading to loss of tooth attachment. In individuals with periodontal disease, the presence of Trichomonas tenax, a parasitic protozoan of the oral cavity has been observed and its frequency tends to rise as the disease progresses. Methods A literature search was conducted in the online databases of PubMed, Google Scholar, Web of Science, and Scopus using the combination of keywords: "Trichomonas tenax" AND "periodontal disease" OR "gum disease", OR "oral disease" OR "periodontitis". A total of 9 articles satisfied the inclusion criteria and were included in this study. Results This review highlights the incidence of T. tenax with periodontal diseases, the risk factors that contribute to the infection of T. tenax and available detection methods for the identification of the protozoan. Conclusion The inhabitation of the oral cavity by T. tenax prospers with the severity of periodontal diseases. Extensive research should be conducted to fully understand the potential pathogenic role and damaging effect of T. tenax in the oral cavity.
Collapse
Affiliation(s)
- Nurin Jazlina Nor Azmi
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Suharni Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | | | - Haslina Taib
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Zeehaida Mohamed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Emelia Osman
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
112
|
Ganesan SM, Peter TK, Withanage MHH, Boksa F, Zeng E, Martinez A, Dabdoub SM, Dhingra K, Hernandez-Kapila Y. COVID-19 associated oral and oropharyngeal microbiome: Systematic review and meta-analysis. Periodontol 2000 2024; 94:603-626. [PMID: 37277934 DOI: 10.1111/prd.12489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/01/2023] [Indexed: 06/07/2023]
Abstract
Three years into the coronavirus disease 2019 (COVID-19) pandemic, there are still growing concerns with the emergence of different variants, unknown long- and short-term effects of the virus, and potential biological mechanisms underlying etiopathogenesis and increased risk for morbidity and mortality. The role of the microbiome in human physiology and the initiation and progression of several oral and systemic diseases have been actively studied in the past decade. With the proof of viral transmission, carriage, and a potential role in etiopathogenesis, saliva and the oral environment have been a focus of COVID-19 research beyond diagnostic purposes. The oral environment hosts diverse microbial communities and contributes to human oral and systemic health. Several investigations have identified disruptions in the oral microbiome in COVID-19 patients. However, all these studies are cross-sectional in nature and present heterogeneity in study design, techniques, and analysis. Therefore, in this undertaking, we (a) systematically reviewed the current literature associating COVID-19 with changes in the microbiome; (b) performed a re-analysis of publicly available data as a means to standardize the analysis, and (c) reported alterations in the microbial characteristics in COVID-19 patients compared to negative controls. Overall, we identified that COVID-19 is associated with oral microbial dysbiosis with significant reduction in diversity. However, alterations in specific bacterial members differed across the study. Re-analysis from our pipeline shed light on Neisseria as the potential key microbial member associated with COVID-19.
Collapse
Affiliation(s)
- Sukirth M Ganesan
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Tabitha K Peter
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Miyuraj H H Withanage
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Frank Boksa
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa, USA
| | - Erliang Zeng
- Iowa Institute for Oral Health Research, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
- Department of Preventive and Community Dentistry, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - April Martinez
- Division of Periodontology, University of California at San Francisco School of Dentistry, San Francisco, California, USA
| | - Shareef M Dabdoub
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Kunaal Dhingra
- Periodontology Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Yvonne Hernandez-Kapila
- Section of Biosystems and Function Periodontics, University of California at Los Angeles School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
113
|
Skopkó BE, Homoki JR, Fazekas MÉ, Paholcsek M, Fauszt P, Dávid P, Stündl L, Molnár PB, Forgács IN, Váradi J, Bágyi KÁ, Remenyik J. Changes in the Composition of Unstimulated and Stimulated Saliva Due to Chewing Sour Cherry Gum and a Toothbrush Change. Cells 2024; 13:251. [PMID: 38334643 PMCID: PMC10854574 DOI: 10.3390/cells13030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Our previous studies demonstrated that sour cherry anthocyanins (AC) reduce the salivary count of Streptococcus mutans and inhibit salivary amylase activity within 30 minutes after chewing AC gum. AC gum and changing toothbrushes after scaling reduced the Gram-negative species in the unstimulated salivary microbiota. The present study examined the effect of AC gums on salivary factors, including changes in microbiome. METHODS The study was conducted over three weeks with two groups; young adults (18-30) and adults (30-45). Ten participants changed their toothbrushes, while the other 10 participants did not change after the control period. After scaling, all participants received three doses of AC gum daily. The salivary mRNA and protein levels of cytokines, mucins, melatonin, and the microbiota of unstimulated and stimulated saliva were determined by polymerase chain reaction, enzyme-linked immunosorbent assay, and 16S rRNA gene sequencing. RESULTS Significantly higher levels of tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), mucin5B (MUC5B), mucin7 (MUC7), and melatonin were detected in stimulated saliva. Correlation analysis of these factors with the microbiota showed positive correlations with the genera Lachnospiraceae, Eikenella, Saccharibacteria_(TM7), Streptococcus, Prevotella, and Haemophilus. CONCLUSIONS AC chewing gum has a beneficial effect on the composition of the oral microbiome, and toothbrush replacement leads to changes in the levels of salivary pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Boglárka Emese Skopkó
- Department of Dentoalveolar Surgery, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Rita Homoki
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Éva Fazekas
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Melinda Paholcsek
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Fauszt
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Dávid
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Piroska Bíróné Molnár
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Ildikó Noémi Forgács
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Kinga Ágnes Bágyi
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
114
|
Ye HL, Zhi MF, Chen BY, Lin WZ, Li YL, Huang SJ, Zhou LJ, Xu S, Zhang J, Zhang WC, Feng Q, Duan SZ. Alterations of oral and gut viromes in hypertension and/or periodontitis. mSystems 2024; 9:e0116923. [PMID: 38108668 PMCID: PMC10804974 DOI: 10.1128/msystems.01169-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
The microbiota plays an important role in both hypertension (HTN) and periodontitis (PD), and PD exacerbates the development of HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, which is also a member of the microbiota. We collected 180 samples of subgingival plaques, saliva, and feces from a cohort of healthy subjects (nHTNnPD), subjects with HTN (HTNnPD) or PD (PDnHTN), and subjects with both HTN and PD (HTNPD). We performed metagenomic sequencing to assess the roles of the oral and gut viromes in HTN and PD. The HTNnPD, PDnHTN, and HTNPD groups all showed significantly distinct beta diversity from the nHTNnPD group in saliva. We analyzed alterations in oral and gut viral composition in HTN and/or PD and identified significantly changed viruses in each group. Many viruses across three sites were significantly associated with blood pressure and other clinical parameters. Combined with these clinical associations, we found that Gillianvirus in subgingival plaques was negatively associated with HTN and that Torbevirus in saliva was positively associated with HTN. We found that Pepyhexavirus from subgingival plaques was indicated to be transferred to the gut. We finally evaluated viral-bacterial transkingdom interactions and found that viruses and bacteria may cooperate to affect HTN and PD. Correspondingly, HTN and PD may synergize to improve communications between viruses and bacteria.IMPORTANCEPeriodontitis (PD) and hypertension (HTN) are both highly prevalent worldwide and cause serious adverse outcomes. Increasing studies have shown that PD exacerbates HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, even though viruses are common inhabitants in humans. Alterations in oral and gut viral diversity and composition contribute to diseases. The present study, for the first time, profiled the oral and gut viromes in HTN and/or PD. We identified key indicator viruses and their clinical implications in HTN and/or PD. We also investigated interactions between viruses and bacteria. This work improved the overall understanding of the viromes in HTN and PD, providing vital insights into the role of the virome in the development of HTN and PD.
Collapse
Affiliation(s)
- Hui-Lin Ye
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Meng-Fan Zhi
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shi-Jia Huang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jun Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
115
|
Marcano-Ruiz M, Lima T, Tavares GM, Mesquita MTS, Kaingang LDS, Schüler-Faccini L, Bortolini MC. Oral microbiota, co-evolution, and implications for health and disease: The case of indigenous peoples. Genet Mol Biol 2024; 46:e20230129. [PMID: 38259033 PMCID: PMC10829892 DOI: 10.1590/1678-4685-gmb-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Evidence indicates that oral microbiota plays a crucial role in human health and disease. For instance, diseases with multifactorial etiology, such as periodontitis and caries, which cause a detrimental impact on human well-being and health, can be caused by alterations in the host-microbiota interactions, where non-pathogenic bacteria give way to pathogenic orange/red-complex bacterial species (a change from a eubiotic to dysbiotic state). In this scenario, where thousands of oral microorganisms, including fungi, archaea, and phage species, and their host are co-evolving, a set of phenomena, such as the arms race and Red or Black Queen dynamics, are expected to operate. We review concepts on the subject and revisit the nature of bacterial complexes linked to oral health and diseases, as well as the problem of the bacterial resistome in the face of the use of antibiotics and what is the impact of this on the evolutionary trajectory of the members of this symbiotic ecosystem. We constructed a 16SrRNA tree to show that adaptive consortia of oral bacterial complexes do not necessarily rescue phylogenetic relationships. Finally, we remember that oral health is not exempt from health disparity trends in some populations, such as Native Americans, when compared with non-Indigenous people.
Collapse
Affiliation(s)
- Mariana Marcano-Ruiz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Thaynara Lima
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Gustavo Medina Tavares
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | | | - Luana da Silva Kaingang
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Odontologia, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
116
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
117
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
118
|
Villar A, Paladini S, Cossatis J. Periodontal Disease and Alzheimer's: Insights from a Systematic Literature Network Analysis. J Prev Alzheimers Dis 2024; 11:1148-1165. [PMID: 39044527 PMCID: PMC11266257 DOI: 10.14283/jpad.2024.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/03/2024] [Indexed: 07/25/2024]
Abstract
This study investigated the relationship between periodontal disease (PD) and Alzheimer's Disease (AD) through a Systematic Literature Network Analysis (SLNA), combining bibliometric analysis with a Systematic Literature Review (SLR). Analyzing 328 documents from 2000 to 2023, we utilized the Bibliometrix R-package for multiple bibliometric analysis. The SLR primarily centered on the 47 most globally cited papers, highlighting influential research. Our study reveals a positive correlation between Periodontal Disease (PD) and Alzheimer's Disease (AD), grounded in both biological plausibility and a comprehensive review of the literature, yet the exact causal relationship remains a subject of ongoing scientific investigation. We conducted a detailed analysis of the two main pathways by which PD could contribute to brain inflammation: (a) the Inflammatory Cascade, and (b) Microbial Involvement. The results of our SLNA emphasize the importance of oral health in reducing Alzheimer's risk, suggesting that managing periodontal health could be an integral part of Alzheimer's prevention and treatment strategies. The insights from this SLNA pave the way for future research and clinical practices, underscoring the necessity of interdisciplinary methods in both the investigation and treatment of neurodegenerative diseases like Alzheimer's. Furthermore, our study presents a prospective research roadmap to support ongoing advancement in this field.
Collapse
Affiliation(s)
- A Villar
- Alice Villar, Faculty of Medicine, University Castelo Branco (UCB), Brazil,
| | | | | |
Collapse
|
119
|
Zhao Y, Bhatnagar S. Epigenetic Modulations by Microbiome in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:55-69. [PMID: 39586993 DOI: 10.1007/978-3-031-66686-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Recent studies have identified a critical role of the diverse and dynamic microbiome in modulating various aspects of host physiology and intrinsic processes. However, the altered microbiome has also become a hallmark of cancer, which could influence the tumor microenvironment. Aberrations in epigenetic regulation of tumor suppressors, apoptotic genes, and oncogenes can accentuate breast cancer onset and progression. Interestingly, recent studies have established that the microbiota modulates the epigenetic mechanisms at global and gene-specific levels. While the mechanistic basis is unclear, the cross-talk between the microbiome and epigenetics influences breast cancer trajectory. Here, we review different epigenetic mechanisms of mammalian gene expression and summarize the host-associated microbiota distributed across the human body and their influence on cancer and other disease-related genes. Understanding this complex relationship between epigenetics and the microbiome holds promise for new insights into effective therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
- Yuanji Zhao
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
| |
Collapse
|
120
|
Heidari-Tajabadi F, Banakar M, Azizian R, Mousavi SM, Lai CW. Probiotics and metagenomics’ role in oral health. MICROBIAL METAGENOMICS IN EFFLUENT TREATMENT PLANT 2024:203-217. [DOI: 10.1016/b978-0-443-13531-6.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
121
|
Nashef A, Qabaja R, Hazan R, Schafer A, Hasturk H, Kantarci A, Houri-Haddad Y, Iraqi FA. The Collaborative Cross-Mouse Population for Studying Genetic Determinants Underlying Alveolar Bone Loss Due to Polymicrobial Synergy and Dysbiosis. Int J Mol Sci 2023; 25:473. [PMID: 38203644 PMCID: PMC10778843 DOI: 10.3390/ijms25010473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Dysbiosis of oral microbiota is associated with the initiation and progression of periodontitis. The cause-and-effect relationship between genetics, periodontitis, and oral microbiome dysbiosis is poorly understood. Here, we demonstrate the power of the collaborative cross (CC) mice model to assess the effect of the genetic background on microbiome diversity shifts during periodontal infection and host suitability status. We examined the bacterial composition in plaque samples from seven different CC lines using 16s rRNA sequencing before and during periodontal infection. The susceptibility/resistance of the CC lines to alveolar bone loss was determined using the micro-CT technique. A total of 53 samples (7 lines) were collected before and after oral infection using oral swaps followed by DNA extraction and 16 s rRNA sequencing analysis. CC lines showed a significant variation in response to the co-infection (p < 0.05). Microbiome compositions were significantly different before and after infection and between resistant and susceptible lines to periodontitis (p < 0.05). Gram-positive taxa were significantly higher at the resistant lines compared to susceptible lines (p < 0.05). Gram-positive bacteria were reduced after infection, and gram-negative bacteria, specifically anaerobic groups, increased after infection. Our results demonstrate the utility of the CC mice in exploring the interrelationship between genetic background, microbiome composition, and periodontitis.
Collapse
Affiliation(s)
- Aysar Nashef
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University, Jerusalem 9112102, Israel; (A.N.); (R.Q.); (Y.H.-H.)
- Department of Oral and Maxillofacial Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rawan Qabaja
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University, Jerusalem 9112102, Israel; (A.N.); (R.Q.); (Y.H.-H.)
| | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Arne Schafer
- Department of Periodontology and Synoptic Dentistry, Institute for Dental and Craniofacial Sciences, Charité–Medical University, 10117 Berlin, Germany;
| | - Hatice Hasturk
- The Forsyth Institute, Applied Oral Sciences, Cambridge, MA 02142, USA; (H.H.); (A.K.)
| | - Alpdogan Kantarci
- The Forsyth Institute, Applied Oral Sciences, Cambridge, MA 02142, USA; (H.H.); (A.K.)
| | - Yael Houri-Haddad
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University, Jerusalem 9112102, Israel; (A.N.); (R.Q.); (Y.H.-H.)
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
122
|
Rahnama-Hezavah M, Mertowska P, Mertowski S, Skiba J, Krawiec K, Łobacz M, Grywalska E. How Can Imbalance in Oral Microbiota and Immune Response Lead to Dental Implant Problems? Int J Mol Sci 2023; 24:17620. [PMID: 38139449 PMCID: PMC10743591 DOI: 10.3390/ijms242417620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dental implantology is one of the most dynamically developing fields of dentistry, which, despite developing clinical knowledge and new technologies, is still associated with many complications that may lead to the loss of the implant or the development of the disease, including peri-implantitis. One of the reasons for this condition may be the fact that dental implants cannot yield a proper osseointegration process due to the development of oral microbiota dysbiosis and the accompanying inflammation caused by immunological imbalance. This study aims to present current knowledge as to the impact of oral microflora dysbiosis and deregulation of the immune system on the course of failures observed in dental implantology. Evidence points to a strong correlation between these biological disturbances and implant complications, often stemming from improper osseointegration, pathogenic biofilms on implants, as well as an exacerbated inflammatory response. Technological enhancements in implant design may mitigate pathogen colonization and inflammation, underscoring implant success rates.
Collapse
Affiliation(s)
- Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Julia Skiba
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karol Krawiec
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
123
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
124
|
Zhou S, He TC, Zhang Y, Zhang H. Comparison of the main pathogenic microorganisms of various common oral diseases in children and adults. PEDIATRIC DISCOVERY 2023; 1:e35. [PMID: 38371743 PMCID: PMC10874635 DOI: 10.1002/pdi3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024]
Abstract
The microorganisms in the human body gradually change and maintain a dynamic balance with the development of physiology and pathology. Oral microbiota is one of the most important microbiota in human body. It is not only closely related to the occurrence and development of oral diseases, but also plays an important role in the overall health. In childhood, the population of oral microorganisms is relatively small, but with the growth of age and tooth development, the species and quantity of oral microorganisms are gradually increasing. Different oral diseases also have their corresponding main microorganisms, and these dominant microorganisms change at different stages of the disease. In this review, we summarized and compared the main pathogenic microorganisms of several common oral diseases in children and adults. In addition, the possible association and difference between adults and children of the main pathogenic microorganisms in different stages of the same or different diseases are also discussed in order to provide research data for the development and diagnosis of common oral diseases in children and adults.
Collapse
Affiliation(s)
- Siqi Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
125
|
Asili P, Mirahmad M, Rezaei P, Mahdavi M, Larijani B, Tavangar SM. The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy. J Gastrointest Cancer 2023; 54:1082-1101. [PMID: 36600023 DOI: 10.1007/s12029-022-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The second leading mortality cause in the world is cancer, making it a critical issue that impacts human health. As a result, scientists are looking for novel biomarkers for cancer detection. The oral microbiome, made up of approximately 700 species-level taxa, is a significant source for discovering novel biomarkers. In this review, we aimed to prepare a summary of research that has investigated the association between the oral microbiome and gastrointestinal cancers. METHODS We searched online scientific datasets including Web of Science, PubMed, Scopus, and Google Scholar. Eligibility criteria included human studies that reported abundances of the oral microbiome, or its diagnostic/prognostic performance in patients with gastrointestinal cancers. RESULTS Some phyla of the oral microbiome have a relationship with cancers. Some particular phyla of the oral microbiome that may be related to gastrointestinal cancers consist of Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria. Changes in the abundances of Porphyromonas, Fusobacterium, Prevotella, and Veillonella are correlated with carcinogenesis, and may be used for distinguishing cancer patients from healthy subjects. Oral, colorectal, pancreatic, and esophageal cancers are the most important cancers related to the oral microbiome. CONCLUSION The results of this study may help future research to select bacteria as an early diagnostic or prognostic biomarker of gastrointestinal cancer. Given the current state of our knowledge, additional research is required to comprehend the multiplex processes underlying the role of bacterial microbiota upon cancer progression and to characterize the complex microbiota-host interaction network.
Collapse
Affiliation(s)
- Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rezaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
126
|
Huang Q, Wu X, Zhou X, Sun Z, Shen J, Kong M, Chen N, Qiu JG, Jiang BH, Yuan C, Zheng Y. Association of cigarette smoking with oral bacterial microbiota and cardiometabolic health in Chinese adults. BMC Microbiol 2023; 23:346. [PMID: 37978427 PMCID: PMC10655299 DOI: 10.1186/s12866-023-03061-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
The interplay among cigarette smoking status, oral microbiota, and cardiometabolic health is poorly understood. We aimed to examine the association of cigarette smoking status with oral microbiota and to assess the association of the identified microbial features with cardiometabolic risk factors in a Chinese population. This study included 587 participants within the Central China Cohort, including 111 smokers and 476 non-smokers, and their oral microbiota was profiled by 16S rRNA sequencing. Both oral microbial alpha- and beta-diversity were distinct between smokers and non-smokers (p < 0.05). With adjustment for sociodemographics, alcohol and tea drinking, tooth brushing frequency, and body mass index, the relative abundance of nine genera and 26 pathways, including the genus Megasphaera and two pathways involved in inositol degradation which have potentially adverse effects on cardiometabolic health, was significantly different between two groups (FDR q < 0.20). Multiple microbial features related to cigarette smoking were found to partly mediate the associations of cigarette smoking with serum triglycerides and C-reactive protein levels (p-mediation < 0.05). In conclusion, cigarette smoking status may have impacts on the oral microbial features, which may partially mediate the associations of cigarette smoking and cardiometabolic health.
Collapse
Affiliation(s)
- Qiumin Huang
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xuemei Wu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xiaofeng Zhou
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zhonghan Sun
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jie Shen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengmeng Kong
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Nannan Chen
- School of Medicine, Nantong University, Jiangsu, 226019, China
| | - Jian-Ge Qiu
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Bing-Hua Jiang
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yan Zheng
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
127
|
Tortora SC, Agurto MG, Martello LA. The oral-gut-circulatory axis: from homeostasis to colon cancer. Front Cell Infect Microbiol 2023; 13:1289452. [PMID: 38029267 PMCID: PMC10663299 DOI: 10.3389/fcimb.2023.1289452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The human microbiota is widely recognized as providing crucial health benefits to its host, specifically by modulating immune homeostasis. Microbial imbalance, known as dysbiosis, is linked to several conditions in the body. The oral cavity and gut host the two largest microbial communities playing a major role in microbial-associated diseases. While the oral-gut axis has been previously explored, our review uniquely highlights the significance of incorporating the circulatory system into this axis. The interaction between immune cells, inflammatory factors, circulating bacteria, and microbial metabolites influences the homeostasis of both the oral and gut microbiota in a bidirectional manner. In this comprehensive review, we aim to describe the bacterial components of the oral-gut-circulatory axis in both health and disease, with a specific focus on colon cancer.
Collapse
Affiliation(s)
- Sofia C. Tortora
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Maria Gonzalez Agurto
- Departamento de Rehabilitación Craneofacial Integral, Universidad de Los Andes, Santiago, Chile
| | - Laura A. Martello
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
128
|
Baidamshina DR, Trizna EY, Goncharova SS, Sorokin AV, Lavlinskaya MS, Melnik AP, Gafarova LF, Kharitonova MA, Ostolopovskaya OV, Artyukhov VG, Sokolova EA, Holyavka MG, Bogachev MI, Kayumov AR, Zelenikhin PV. The Effect of Ficin Immobilized on Carboxymethyl Chitosan on Biofilms of Oral Pathogens. Int J Mol Sci 2023; 24:16090. [PMID: 38003281 PMCID: PMC10671066 DOI: 10.3390/ijms242216090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
In the last decade, Ficin, a proteolytic enzyme extracted from the latex sap of the wild fig tree, has been widely investigated as a promising tool for the treatment of microbial biofilms, wound healing, and oral care. Here we report the antibiofilm properties of the enzyme immobilized on soluble carboxymethyl chitosan (CMCh) and CMCh itself. Ficin was immobilized on CMCh with molecular weights of either 200, 350 or 600 kDa. Among them, the carrier with a molecular weight of 200 kDa bound the maximum amount of enzyme, binding up to 49% of the total protein compared to 19-32% of the total protein bound to other CMChs. Treatment with pure CMCh led to the destruction of biofilms formed by Streptococcus salivarius, Streptococcus gordonii, Streptococcus mutans, and Candida albicans, while no apparent effect on Staphylococcus aureus was observed. A soluble Ficin was less efficient in the destruction of the biofilms formed by Streptococcus sobrinus and S. gordonii. By contrast, treatment with CMCh200-immobilized Ficin led to a significant reduction of the biofilms of the primary colonizers S. gordonii and S. mutans. In model biofilms obtained by the inoculation of swabs from teeth of healthy volunteers, the destruction of the biofilm by both soluble and immobilized Ficin was observed, although the degree of the destruction varied between artificial plaque samples. Nevertheless, combined treatment of oral Streptococci biofilm by enzyme and chlorhexidine for 3 h led to a significant decrease in the viability of biofilm-embedded cells, compared to solely chlorhexidine application. This suggests that the use of either soluble or immobilized Ficin would allow decreasing the amount and/or concentration of the antiseptics required for oral care or improving the efficiency of oral cavity sanitization.
Collapse
Affiliation(s)
- Diana R. Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Elena Yu. Trizna
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Svetlana S. Goncharova
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
| | - Andrey V. Sorokin
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Maria S. Lavlinskaya
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Anastasia P. Melnik
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Leysan F. Gafarova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Maya A. Kharitonova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Olga V. Ostolopovskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Valeriy G. Artyukhov
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
| | - Evgenia A. Sokolova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Marina G. Holyavka
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Mikhail I. Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia;
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
- Interdepartment Research Laboratory, Kazan State Academy of Veterinary Medicine Named after N. E. Bauman, 420029 Kazan, Russia
| | - Pavel V. Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| |
Collapse
|
129
|
Carrouel F, Kanoute A, Lvovschi VE, Bourgeois D. Periodontal pathogens of the interdental microbiota in a 3 months pregnant population with an intact periodontium. Front Microbiol 2023; 14:1275180. [PMID: 38029104 PMCID: PMC10646527 DOI: 10.3389/fmicb.2023.1275180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Steroid hormones and the oral microbiota of pregnant women both appear as cumulative risk factors for gingivitis. This cross-sectional study, using real-time PCR, investigated the composition and diversity of the microbiota in interdental spaces of 3 months pregnant women with intact periodontium according the 2018 EFP/AAP classification. Bacteria identified were belonged to the red (Porphyromonas gingivalis Treponema denticola, and Tanerella forsythia), orange (Fusobacterium nucleatum, Prevotella intermedia, Campylobacter rectus, and Parvimonas micra), and green (Eikenella corrodens and A. actinomycetencomitans) Socransky complexes. Approximatively 109.11 bacteria were counted per interdental space in pregnant women. Bacteria from the red complex represented 33.80% versus 62.81% for the orange group versus 3.39% for the green group of the total number spread over the 3 groups. Dietary habits and physical activity did not have a significant impact on interdental microbiota, although a decrease in the median amount of 9 periodontopathogens was observed when fruit and vegetable consumption increased. Pregnant women who brushed their teeth at least twice a day had lower counts of total bacteria and 9 periodontal pathogens than those who brushed less. In 3 months pregnant women at high risk of periodontal disease (>30% bleeding sites), the dendogram revealed 2 clusters of the 9 periodontopathogens. This provides further support for the "key pathogen" hypothesis, among which Porphyromonas gingivalis plays a key role, indicating that specific bacteria in limited quantities can influence the host immune system and convert the microbiota from symbiotic to dysbiotic to induce inflammatory disorder. As a result, this study reported that 3 months pregnant women with healthy periodontium had high levels of interdental bleeding and a dysbiotic microbiota with periodontal pathogens of the Socransky orange and red complexes. These subjects were therefore potentially at increased risk of developing periodontal disease and, consequently, an adverse pregnancy outcome. So, preventive oral prophylaxis measures, in particular individual interdental prophylaxis, should be implemented as soon as pregnancy is established.
Collapse
Affiliation(s)
- Florence Carrouel
- Laboratory “Health, Systemic, Process” (P2S), UR4129, University Claude Bernard Lyon 1, Lyon, France
| | - Aida Kanoute
- Public Health Service, Department of Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Virginie-Eve Lvovschi
- Laboratory “Research on Healthcare Performance” (RESHAPE), INSERM U1290, University Claude Bernard Lyon 1, Lyon, France
- Hospices Civils of Lyon, Lyon, France
| | - Denis Bourgeois
- Laboratory “Health, Systemic, Process” (P2S), UR4129, University Claude Bernard Lyon 1, Lyon, France
- Hospices Civils of Lyon, Lyon, France
| |
Collapse
|
130
|
Wang Y, Zheng Y, Kuang L, Yang K, Xie J, Liu X, Shen S, Li X, Wu S, Yang Y, Shi J, Wu J, Wang Y. Effects of probiotics in patients with morbid obesity undergoing bariatric surgery: a systematic review and meta-analysis. Int J Obes (Lond) 2023; 47:1029-1042. [PMID: 37674033 PMCID: PMC10600003 DOI: 10.1038/s41366-023-01375-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Probiotics are commonly used after bariatric surgery. However, uncertainty remains regarding their effects. The purpose of this systematic review was to assess the effect of probiotics in patients with morbid obesity undergoing bariatric surgery. METHODS PubMed, Cochrane Library, Embase, Science Direct, and Web of Science were searched from inception to April 4, 2023. No language restrictions were applied. Relevant randomized controlled trials and controlled clinical trials were included. We used the aggregated data extracted from the trials and assessed the heterogeneity. When severe heterogeneity was detected, a random effect model was used. All stages of the review were done by independent authors. RESULTS We screened 2024 references and included 11 randomized controlled trials and controlled clinical trials. Compared with the protocol groups, probiotics showed significant effects on regulating aspartate amino transferase level (MD = -4.32 U/L; 95% CI [-7.10, -1.53], p = 0.002), triglycerides (MD = -20.16 mg/dL; 95% CI [-34.51, -5.82], p = 0.006), weight (MD = -1.99 kg; 95% CI [-3.97, -0.01], p = 0.05), vitamin B12 (MD = 2.24 pg/dL; 95% CI [-0.02, 4.51], p = 0.05), dietary energy (MD = -151.03 kcal; 95% CI [-215.68, -86.37], p < 0.00001), dietary protein (MD = -4.48 g/day, 95% CI [-8.76, -0.20], p = 0.04), dietary carbohydrate (MD = -34.25 g/day, 95% CI [-44.87, -23.62], p < 0.00001), and dietary fiber (MD = -2.17 g/day, 95% CI [-3.21, -1.14], p < 0.0001). There were no severe side effects related to probiotics. CONCLUSIONS Our meta-analysis suggested that probiotics may delay the progression of liver function injury, improve lipid metabolism, reduce weight, and reduce food intake, although the effects on other indicators were insignificant. Probiotics may be helpful for patients undergoing bariatric surgery. The review was registered on PROSPERO (International prospective register of systematic reviews): CRD42023407970. No primary source of funding.
Collapse
Affiliation(s)
- Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Youwei Zheng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jiaji Xie
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xinchao Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yuyi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jiafei Shi
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jialiang Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
131
|
Berthouzoz E, Lazarevic V, Zekeridou A, Castro M, Debove I, Aybek S, Schrenzel J, Burkhard PR, Fleury V. Oral and intestinal dysbiosis in Parkinson's disease. Rev Neurol (Paris) 2023; 179:937-946. [PMID: 36934020 DOI: 10.1016/j.neurol.2022.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/29/2022] [Accepted: 12/10/2022] [Indexed: 03/18/2023]
Abstract
The suspicion of an origin of Parkinson's disease (PD) at the periphery of the body and the involvement of environmental risk factors in the pathogenesis of PD have directed the attention of the scientific community towards the microbiota. The microbiota represents all the microorganisms residing both in and on a host. It plays an essential role in the physiological functioning of the host. In this article, we review the dysbiosis repeatedly demonstrated in PD and how it influences PD symptoms. Dysbiosis is associated with both motor and non-motor PD symptoms. In animal models, dysbiosis only promotes symptoms in individuals genetically susceptible to Parkinson's disease, suggesting that dysbiosis is a risk factor but not a cause of Parkinson's disease. We also review how dysbiosis contributes to the pathophysiology of PD. Dysbiosis induces numerous and complex metabolic changes, resulting in increased intestinal permeability, local and systemic inflammation, production of bacterial amyloid proteins that promote α-synuclein aggregation, as well as a decrease in short-chain fatty acid-producing bacteria that have anti-inflammatory and neuroprotective potential. In addition, we review how dysbiosis decreases the efficacy of dopaminergic treatments. We then discuss the interest of dysbiosis analysis as a biomarker of Parkinson's disease. Finally, we give an overview of how interventions modulating the gut microbiota such as dietary interventions, pro-biotics, intestinal decontamination and fecal microbiota transplantation could influence the course of PD.
Collapse
Affiliation(s)
- E Berthouzoz
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | - V Lazarevic
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Genomic Research Laboratory, Department of Infectious Diseases, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - A Zekeridou
- Division of Regenerative Dentistry and Periodontology, University Clinic of Dental Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - M Castro
- Movement disorders Unit, Department of Neurology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - I Debove
- Movement disorders Unit, Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - S Aybek
- Psychosomatic Medicine Unit, Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - J Schrenzel
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Genomic Research Laboratory, Department of Infectious Diseases, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - P R Burkhard
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Movement disorders Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - V Fleury
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Movement disorders Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva, 1211 Geneva 14, Switzerland.
| |
Collapse
|
132
|
Zhang OL, Niu JY, Yu OY, Mei ML, Jakubovics NS, Chu CH. Development of a Novel Peptide with Antimicrobial and Mineralising Properties for Caries Management. Pharmaceutics 2023; 15:2560. [PMID: 38004539 PMCID: PMC10675526 DOI: 10.3390/pharmaceutics15112560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of the study is to develop a novel peptide for caries management. Gallic-Acid-Polyphemusin-I (GAPI) was synthesised by grafting Polyphemusin I (PI) and gallic acid (GA). Biocompatibility was evaluated using a Cell Counting Kit-8 Assay. Antimicrobial properties were assessed using minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The bacterial and fungal morphology after GAPI treatment was investigated using transmission electron microscopy (TEM). The architecture of a consortium biofilm consisting of Streptococcus mutans, Lacticaseibacillus casei and Candida albicans was evaluated using scanning electron microscopy (SEM) and confocal laser scanning microscopy. The growth kinetics of the biofilm was examined using a propidium monoazide-quantitative polymerase chain reaction. The surface and calcium-to-phosphorus molar ratio of GAPI-treated enamel after pH cycling were examined with SEM and energy-dispersive X-ray spectroscopy. Enamel crystal characteristics were analysed using X-ray diffraction. Lesion depths representing the enamel's mineral loss were assessed using micro-computed tomography. The MIC of GAPI against S. mutans, L. casei and C. albicans were 40 μM, 40 μM and 20 μM, respectively. GAPI destroyed the biofilm's three-dimensional structure and inhibited the growth of the biofilm. SEM showed that enamel treated with GAPI had a relatively smooth surface compared to that treated with water. The calcium-to-phosphorus molar ratio of enamel treated with GAPI was higher than that of the control. The lesion depths and mineral loss of the GAPI-treated enamel were less than the control. The crystallinity of the GAPI-treated enamel was higher than the control. This study developed a biocompatible, mineralising and antimicrobial peptide GAPI, which may have potential as an anti-caries agent.
Collapse
Affiliation(s)
- Olivia Lili Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
- Faculty of Dentistry, The University of Otago, Dunedin 9054, New Zealand
| | - Nicholas Stephen Jakubovics
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| |
Collapse
|
133
|
Leonov GE, Varaeva YR, Livantsova EN, Starodubova AV. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023; 11:2749. [PMID: 37893122 PMCID: PMC10604844 DOI: 10.3390/biomedicines11102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The human oral microbiome has emerged as a focal point of research due to its profound implications for human health. The involvement of short-chain fatty acids in oral microbiome composition, oral health, and chronic inflammation is gaining increasing attention. In this narrative review, the results of early in vitro, in vivo, and pilot clinical studies and research projects are presented in order to define the boundaries of this new complicated issue. According to the results, the current research data are disputable and ambiguous. When investigating the role of SCFAs in human health and disease, it is crucial to distinguish between their local GI effects and the systemic influences. Locally, SCFAs are a part of normal oral microbiota metabolism, but the increased formation of SCFAs usually attribute to dysbiosis; excess SCFAs participate in the development of local oral diseases and in oral biota gut colonization and dysbiosis. On the other hand, a number of studies have established the positive impact of SCFAs on human health as a whole, including the reduction of chronic systemic inflammation, improvement of metabolic processes, and decrease of some types of cancer incidence. Thus, a complex and sophisticated approach with consideration of origin and localization for SCFA function assessment is demanded. Therefore, more research, especially clinical research, is needed to investigate the complicated relationship of SCFAs with health and disease and their potential role in prevention and treatment.
Collapse
Affiliation(s)
- Georgy E Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Yurgita R Varaeva
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Elena N Livantsova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
134
|
Radaic A, Shamir ER, Jones K, Villa A, Garud NR, Tward AD, Kamarajan P, Kapila YL. Specific Oral Microbial Differences in Proteobacteria and Bacteroidetes Are Associated with Distinct Sites When Moving from Healthy Mucosa to Oral Dysplasia-A Microbiome and Gene Profiling Study and Focused Review. Microorganisms 2023; 11:2250. [PMID: 37764094 PMCID: PMC10534919 DOI: 10.3390/microorganisms11092250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Oral potentially malignant disorders (OPMDs) are a group of conditions that carry a risk of oral squamous cell carcinoma (OSCC) development. Recent studies indicate that periodontal disease-associated pathogenic bacteria may play a role in the transition from healthy mucosa to dysplasia and to OSCC. Yet, the microbial signatures associated with the transition from healthy mucosa to dysplasia have not been established. To characterize oral microbial signatures at these different sites, we performed a 16S sequencing analysis of both oral swab and formalin-fixed, paraffin-embedded tissue (FFPE) samples. We collected oral swabs from healthy mucosa (from healthy patients), histologically normal mucosa adjacent to dysplasia, and low-grade oral dysplasia. Additionally, FFPE samples from histologically normal mucosa adjacent to OSCC, plus low grade and high-grade oral dysplasia samples were also collected. The collected data demonstrate significant differences in the alpha and beta microbial diversities of different sites in oral mucosa, dysplasia, and OSCC, as well as increased dissimilarities within these sites. We found that the Proteobacteria phyla abundance increased, concurrent with a progressive decrease in the Firmicutes phyla abundance, as well as altered levels of Enterococcus cecorum, Fusobacterium periodonticum, Prevotella melaninogenica, and Fusobacterium canifelinum when moving from healthy to diseased sites. Moreover, the swab sample analysis indicates that the oral microbiome may be altered in areas that are histologically normal, including in mucosa adjacent to dysplasia. Furthermore, trends in specific microbiome changes in oral swab samples preceded those in the tissues, signifying early detection opportunities for clinical diagnosis. In addition, we evaluated the gene expression profile of OSCC cells (HSC-3) infected with either P. gingivalis, T. denticola, F. nucelatum, or S. sanguinis and found that the three periodontopathogens enrich genetic processes related to cancer progression, including skin keratinization/cornification, while the commensal enriched processes related to RNA processing and adhesion. Finally, we reviewed the dysplasia microbiome literature and found a significant decrease in commensal bacteria, such as the Streptococci genus, and a simultaneous increase in pathogenic bacteria, mainly Bacteroidetes phyla and Fusobacterium genus. These findings suggest that features of the oral microbiome can serve as novel biomarkers for dysplasia and OSCC disease progression.
Collapse
Affiliation(s)
- Allan Radaic
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; (A.R.); (P.K.)
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
| | - Eliah R. Shamir
- School of Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (E.R.S.); (A.D.T.)
- Genentech, Inc., South San Francisco, CA 94080, USA
| | - Kyle Jones
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
- Genentech, Inc., South San Francisco, CA 94080, USA
| | - Alessandro Villa
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Nandita R. Garud
- College of Life Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aaron D. Tward
- School of Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (E.R.S.); (A.D.T.)
| | - Pachiyappan Kamarajan
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; (A.R.); (P.K.)
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
| | - Yvonne L. Kapila
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; (A.R.); (P.K.)
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; (K.J.); (A.V.)
| |
Collapse
|
135
|
Baker JL. Illuminating the oral microbiome and its host interactions: recent advancements in omics and bioinformatics technologies in the context of oral microbiome research. FEMS Microbiol Rev 2023; 47:fuad051. [PMID: 37667515 PMCID: PMC10503653 DOI: 10.1093/femsre/fuad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The oral microbiota has an enormous impact on human health, with oral dysbiosis now linked to many oral and systemic diseases. Recent advancements in sequencing, mass spectrometry, bioinformatics, computational biology, and machine learning are revolutionizing oral microbiome research, enabling analysis at an unprecedented scale and level of resolution using omics approaches. This review contains a comprehensive perspective of the current state-of-the-art tools available to perform genomics, metagenomics, phylogenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics, and multi-omics analysis on (all) microbiomes, and then provides examples of how the techniques have been applied to research of the oral microbiome, specifically. Key findings of these studies and remaining challenges for the field are highlighted. Although the methods discussed here are placed in the context of their contributions to oral microbiome research specifically, they are pertinent to the study of any microbiome, and the intended audience of this includes researchers would simply like to get an introduction to microbial omics and/or an update on the latest omics methods. Continued research of the oral microbiota using omics approaches is crucial and will lead to dramatic improvements in human health, longevity, and quality of life.
Collapse
Affiliation(s)
- Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, School of Dentistry, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97202, United States
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA 92093, United States
| |
Collapse
|
136
|
Motoc GV, Juncar RI, Moca AE, Motoc O, Vaida LL, Juncar M. The Relationship between Age, Gender, BMI, Diet, Salivary pH and Periodontal Pathogenic Bacteria in Children and Adolescents: A Cross-Sectional Study. Biomedicines 2023; 11:2374. [PMID: 37760818 PMCID: PMC10525996 DOI: 10.3390/biomedicines11092374] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The oral microbiome can be influenced by many factors and its dysbiosis can have negative effects on oral and general health. The purpose of this study was to analyze the intensity of 11 periodontal pathogenic microorganisms identified in the oral cavity of a sample of children and adolescents from Oradea, Romania and to investigate the association of some variables (age, gender, body mass index, diet, and salivary pH) with the identified microorganisms. The cross-sectional study was conducted on a group of clinically healthy patients under the age of 18 years from Oradea, Romania. For the analysis of the periodontal pathogens, the micro-IDent kit was used, which determines 11 bacterial markers for periodontitis and peri-implantitis. The kit is based on the polymerase chain reaction (PCR). Bacterial sampling was carried out according to the manufacturer's instructions. A total of 60 children (23 male, 37 female) were included in this study, and were divided into three different age categories. No statistically significant results were identified for gender. However statistically significant results were obtained for other variables. Positive results for Prevotella intermedia and Bacteroides forsythus were associated with ages between 13 and 18 years, while positive results for Capnocytophaga spp. were associated with ages between 2 and 5 years. Positive results for Prevotella intermedia, Bacteroides forsythus, Peptostreptococcus micros, Campylobacter rectus and Eikenella corodens were associated with an overweight BMI. Negative results for Prevotella intermedia and Eikenella corodens were associated with a natural diet in the first 6 months of life. Positive results for Fusobacterium nucleatum and Campylobacter rectus were associated with an acidic salivary pH. In this study, the identified periodontal pathogens were associated with age, body mass index, diet in the first 6 months of life, and salivary pH.
Collapse
Affiliation(s)
- Georgiana Veronica Motoc
- Doctoral School of Biomedical Sciences, University of Oradea, 1 Universității Street, 410087 Oradea, Romania;
| | - Raluca Iulia Juncar
- Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piața 1 Decembrie Street, 410073 Oradea, Romania; (O.M.); (L.L.V.); (M.J.)
| | - Abel Emanuel Moca
- Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piața 1 Decembrie Street, 410073 Oradea, Romania; (O.M.); (L.L.V.); (M.J.)
| | - Ovidiu Motoc
- Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piața 1 Decembrie Street, 410073 Oradea, Romania; (O.M.); (L.L.V.); (M.J.)
| | - Luminița Ligia Vaida
- Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piața 1 Decembrie Street, 410073 Oradea, Romania; (O.M.); (L.L.V.); (M.J.)
| | - Mihai Juncar
- Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piața 1 Decembrie Street, 410073 Oradea, Romania; (O.M.); (L.L.V.); (M.J.)
| |
Collapse
|
137
|
Yadalam PK, Arumuganainar D, Anegundi RV, Shrivastava D, Alftaikhah SAA, Almutairi HA, Alobaida MA, Alkaberi AA, Srivastava KC. CRISPR-Cas-Based Adaptive Immunity Mediates Phage Resistance in Periodontal Red Complex Pathogens. Microorganisms 2023; 11:2060. [PMID: 37630620 PMCID: PMC10459013 DOI: 10.3390/microorganisms11082060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal diseases are polymicrobial immune-inflammatory diseases that can severely destroy tooth-supporting structures. The critical bacteria responsible for this destruction include red complex bacteria such as Porphoromonas gingivalis, Tanerella forsythia and Treponema denticola. These organisms have developed adaptive immune mechanisms against bacteriophages/viruses, plasmids and transposons through clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas). The CRISPR-Cas system contributes to adaptive immunity, and this acquired genetic immune system of bacteria may contribute to moderating the microbiome of chronic periodontitis. The current research examined the role of the CRISPR-Cas system of red complex bacteria in the dysbiosis of oral bacteriophages in periodontitis. Whole-genome sequences of red complex bacteria were obtained and investigated for CRISPR using the CRISPR identification tool. Repeated spacer sequences were analyzed for homologous sequences in the bacteriophage genome and viromes using BLAST algorithms. The results of the BLAST spacer analysis for T. denticola spacers had a 100% score (e value with a bacillus phage), and the results for T. forsthyia and P. gingivalis had a 56% score with a pectophage and cellulophage (e value: 0.21), respectively. The machine learning model of the identified red complex CRISPR sequences predicts with area an under the curve (AUC) accuracy of 100 percent, indicating phage inhibition. These results infer that red complex bacteria could significantly inhibit viruses and phages with CRISPR immune sequences. Therefore, the role of viruses and bacteriophages in modulating sub-gingival bacterial growth in periodontitis is limited or questionable.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Deepavalli Arumuganainar
- Department of Periodontics, Ragas Dental College and Hospital, 2/102, East Coast Road, Uthandi, Chennai 600119, India;
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Deepti Shrivastava
- Periodontics Division, Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | | | - Haifa Ali Almutairi
- College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia; (S.A.A.A.); (H.A.A.)
| | - Muhanad Ali Alobaida
- General Dentist, Ministry of Health, Riyadh 12613, Saudi Arabia; (M.A.A.); (A.A.A.)
| | | | - Kumar Chandan Srivastava
- Oral Medicine & Maxillofacial Radiology Division, Department of Oral & Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia;
- Department of Oral Medicine and Radiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
138
|
Bem JSP, Lacerda NGS, Polizello ACM, Cabral H, da Rosa-Garzon NG, Aires CP. Mutanase from Trichoderma harzianum inductively Produced by Mutan: Short-Term Treatment to Degrade Mature Streptococcus mutans Biofilm. Curr Microbiol 2023; 80:312. [PMID: 37542660 DOI: 10.1007/s00284-023-03417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
This study aimed to evaluate the disruptive effect of fungal mutanase against cariogenic biofilm after short-term treatment. For that, mature Streptococcus mutans biofilms (n = 9) were exposed to active or inactivated enzymes produced by Trichoderma harzianum for 1 min, two times per day. Biofilms were analyzed by amount of matrix water-insoluble polysaccharides, bacterial viability, acidogenicity, and morphology by scanning electron microscopy (SEM). The group treated with active enzymes (AE) had a significantly lower amount of insoluble polysaccharides (893.30 ± 293.69) when compared to the negative control group (NaCl, 2192.59 ± 361.96), yet no significant difference was found when comparing to the positive control group (CHX, 436.82 ± 151.07). Also, there was no significant effect on bacteria metabolism and viability (P-value < 0.05). Data generated by the quantitative analysis were confirmed through scanning electron microscopy images. Thus, fungal mutanase degraded the biofilm after a short-term treatment without interfering with bacterial viability and metabolism. Such findings offer insight to the development of routine oral care products containing this input.
Collapse
Affiliation(s)
- Jéssica Silva Peixoto Bem
- Department of Children's Clinic, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Nayanna Gomes Silva Lacerda
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ana Cristina Morseli Polizello
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Nathalia Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Carolina Patrícia Aires
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
139
|
Li H, Niu C, Luo J, Huang Z, Zhou W. Anticariogenic Activity of Celastrol and Its Enhancement of Streptococcal Antagonism in Multispecies Biofilm. Antibiotics (Basel) 2023; 12:1245. [PMID: 37627665 PMCID: PMC10451999 DOI: 10.3390/antibiotics12081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Dental caries is a chronic disease resulting from dysbiosis in the oral microbiome. Antagonism of commensal Streptococcus sanguinis and Streptococcus gordonii against cariogenic Streptococcus mutans is pivotal to keep the microecological balance. However, concerns are growing on antimicrobial agents in anticaries therapy, for broad spectrum antimicrobials may have a profound impact on the oral microbial community, especially on commensals. Here, we report celastrol, extracted from Traditional Chinese Medicine's Tripterygium wilfordii (TW) plant, as a promising anticaries candidate. Our results revealed that celastrol showed antibacterial and antibiofilm activity against cariogenic bacteria S. mutans while exhibiting low cytotoxicity. By using a multispecies biofilm formed by S. mutans UA159, S. sanguinis SK36, and S. gordonii DL1, we observed that even at relatively low concentrations, celastrol reduced S. mutans proportion and thereby inhibited lactic acid production as well as water-insoluble glucan formation. We found that celastrol thwarted S. mutans outgrowth through the activation of pyruvate oxidase (SpxB) and H2O2-dependent antagonism between commensal oral streptococci and S. mutans. Our data reveal new anticaries properties of celastrol that enhance oral streptococcal antagonism, which thwarts S. mutans outgrowth, indicating its potential to maintain oral microbial balance for prospective anticaries therapy.
Collapse
Affiliation(s)
- Hao Li
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Junyuan Luo
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Wei Zhou
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
140
|
Winning L, Moran G, McClory M, El Karim I, Lundy FT, Patterson CC, Linden D, Cullen KM, Kee F, Linden GJ. Subgingival microbial diversity and respiratory decline: A cross-sectional study. J Clin Periodontol 2023; 50:921-931. [PMID: 37051866 PMCID: PMC10947346 DOI: 10.1111/jcpe.13819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
AIM To investigate whether there is an association between subgingival microbial diversity and reduced respiratory function. MATERIALS AND METHODS A group of dentate 58-72-year-old men in Northern Ireland had a comprehensive periodontal examination including subgingival plaque sampling. DNA was extracted from plaque samples and the V1-V3 regions of the 16S rRNA gene were analysed by high-throughput sequencing and a microbial diversity index (MDI) was derived. Spirometry measurements were made using a wedge bellows spirometer. The primary outcome variable of interest was the percentage of predicted forced expiratory volume in 1 s (% predicted FEV1 ). Analysis included multiple linear regression with adjustment for various confounders. RESULTS Five-hundred and seven men were included in the analysis. The mean age was 63.6 years (SD = 3.1). Of these, 304 (60.0%) men had no or mild periodontitis, 105 (20.7%) had moderate periodontitis and 98 (19.3%) had severe periodontitis. Multiple linear regression analysis showed that a one unit increase in MDI was associated with a 0.71% loss (95% confidence interval: 0.06%-1.35%; p = .03) in % predicted FEV1 after adjustment for all confounders. CONCLUSIONS In this group of dentate men from Northern Ireland, subgingival microbial diversity was associated with reduced respiratory function.
Collapse
Affiliation(s)
- Lewis Winning
- Dublin Dental University Hospital, Trinity College DublinDublinIreland
| | - Gary Moran
- Dublin Dental University Hospital, Trinity College DublinDublinIreland
| | - Mary McClory
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastNorthern Ireland
| | - Ikhlas El Karim
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastNorthern Ireland
| | - Fionnuala T. Lundy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastNorthern Ireland
| | - Christopher C. Patterson
- Centre for Public Health, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastNorthern Ireland
| | - Dermot Linden
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastNorthern Ireland
| | - Kathy M. Cullen
- Centre for Medical Education, School of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastNorthern Ireland
| | - Frank Kee
- Centre for Public Health, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastNorthern Ireland
| | - Gerard J. Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastNorthern Ireland
| |
Collapse
|
141
|
Grant WB, van Amerongen BM, Boucher BJ. Periodontal Disease and Other Adverse Health Outcomes Share Risk Factors, including Dietary Factors and Vitamin D Status. Nutrients 2023; 15:2787. [PMID: 37375691 DOI: 10.3390/nu15122787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
For nearly a century, researchers have associated periodontal disease (PD) with risks of other adverse health outcomes such as cardiovascular disease, diabetes mellitus, and respiratory diseases, as well as adverse pregnancy outcomes. Those findings have led to the hypothesis that PD causes those adverse health outcomes either by increasing systemic inflammation or by the action of periodontopathic bacteria. However, experiments largely failed to support that hypothesis. Instead, the association is casual, not causal, and is due to shared underlying modifiable risk factors, including smoking, diet, obesity, low levels of physical activity, and low vitamin D status. Diabetes mellitus is also considered a risk factor for PD, whereas red and processed meat are the most important dietary risk factors for diabetes. Because PD generally develops before other adverse health outcomes, a diagnosis of PD can alert patients that they could reduce the risk of adverse health outcomes with lifestyle changes. In addition, type 2 diabetes mellitus can often be reversed rapidly by adopting an anti-inflammatory, nonhyperinsulinemic diet that emphasizes healthful, whole plant-based foods. This review describes the evidence that proinflammatory and prohyperinsulinemia diets and low vitamin D status are important risk factors for PD and other adverse health outcomes. We also make recommendations regarding dietary patterns, food groups, and serum 25-hydroxyvitamin D concentrations. Oral health professionals should routinely inform patients with PD that they could reduce their risk of severe PD as well as the risks of many other adverse health outcomes by making appropriate lifestyle changes.
Collapse
Affiliation(s)
- William B Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | | | - Barbara J Boucher
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
142
|
Qu S, Yu S, Ma X, Wang R. "Medicine food homology" plants promote periodontal health: antimicrobial, anti-inflammatory, and inhibition of bone resorption. Front Nutr 2023; 10:1193289. [PMID: 37396128 PMCID: PMC10307967 DOI: 10.3389/fnut.2023.1193289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
"Medicine food homology" (MFH) is a term with a lengthy history. It refers to the fact that a lot of traditional natural products have both culinary and therapeutic benefits. The antibacterial, anti-inflammatory and anticancer effects of MFH plants and their secondary metabolites have been confirmed by numerous research. A bacterially generated inflammatory illness with a complicated pathophysiology, periodontitis causes the loss of the teeth's supporting tissues. Several MFH plants have recently been shown to have the ability to prevent and treat periodontitis, which is exhibited by blocking the disease's pathogens and the virulence factors that go along with them, lowering the host's inflammatory reactions and halting the loss of alveolar bone. To give a theoretical foundation for the creation of functional foods, oral care products and adjuvant therapies, this review has especially explored the potential medicinal benefit of MFH plants and their secondary metabolites in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
143
|
Barbour A, Smith L, Oveisi M, Williams M, Huang RC, Marks C, Fine N, Sun C, Younesi F, Zargaran S, Orugunty R, Horvath TD, Haidacher SJ, Haag AM, Sabharwal A, Hinz B, Glogauer M. Discovery of phosphorylated lantibiotics with proimmune activity that regulate the oral microbiome. Proc Natl Acad Sci U S A 2023; 120:e2219392120. [PMID: 37216534 PMCID: PMC10235938 DOI: 10.1073/pnas.2219392120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are produced by bacteria. Interest in this group of natural products is increasing rapidly as alternatives to conventional antibiotics. Some human microbiome-derived commensals produce lantibiotics to impair pathogens' colonization and promote healthy microbiomes. Streptococcus salivarius is one of the first commensal microbes to colonize the human oral cavity and gastrointestinal tract, and its biosynthesis of RiPPs, called salivaricins, has been shown to inhibit the growth of oral pathogens. Herein, we report on a phosphorylated class of three related RiPPs, collectively referred to as salivaricin 10, that exhibit proimmune activity and targeted antimicrobial properties against known oral pathogens and multispecies biofilms. Strikingly, the immunomodulatory activities observed include upregulation of neutrophil-mediated phagocytosis, promotion of antiinflammatory M2 macrophage polarization, and stimulation of neutrophil chemotaxis-these activities have been attributed to the phosphorylation site identified on the N-terminal region of the peptides. Salivaricin 10 peptides were determined to be produced by S. salivarius strains found in healthy human subjects, and their dual bactericidal/antibiofilm and immunoregulatory activity may provide new means to effectively target infectious pathogens while maintaining important oral microbiota.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Leif Smith
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - McKinley Williams
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843
| | - Ruo Chen Huang
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Cara Marks
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Sina Zargaran
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | | | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Amarpreet Sabharwal
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
144
|
Yin C, Yan B. Machine learning in basic scientific research on oral diseases. DIGITAL MEDICINE 2023; 9. [DOI: 10.1097/dm-2023-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
145
|
Puri SR, Almeida E, Elangovan S, Labossiere A, Collins C, Ramsey M, Kim J. Mechanistic Assessment of Metabolic Interaction between Single Oral Commensal Cells by Scanning Electrochemical Microscopy. Anal Chem 2023. [PMID: 37228117 DOI: 10.1021/acs.analchem.3c01498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The human oral microbiome heavily influences the status of oral and systemic diseases through different microbial compositions and complex signaling between microbes. Recent evidence suggests that investigation of interactions between oral microbes can be utilized to understand how stable communities are maintained and how they may preserve health. Herein, we investigate two highly abundant species in the human supragingival plaque, Streptococcus mitis and Corynebacterium matruchotii, to elucidate their real-time chemical communication in commensal harmony. Specifically, we apply nanoscale scanning electrochemical microscopy (SECM) using a submicropipet-supported interface between two immiscible electrolyte solutions as an SECM probe not only to image the permeability of S. mitis and C. matruchotii membranes to tetraethylammonium (TEA+) probe ions but also to real-time visualize the metabolic interaction between two microbes via lactate production/consumption at a single-cell level. The metabolic relationship between two strains is quantitatively assessed by determining (1) the passive permeability of both bacterial membranes of 2.4 × 10-4 cm/s to the free diffusion of TEA+, (2) 0.5 mM of the lactate concentration produced by a single S. mitis strain at a rate of 2.7 × 10-4 cm/s, and (3) a lactate oxidation rate ≥5.0 × 106 s-1 by an individual C. matruchotii strain. Significantly, this study, for the first time, describes a mechanism of in situ metabolic interaction between oral commensals at the single-cell level through quantitative analysis, which supports the observed in vivo spatial arrangements of these microbes.
Collapse
Affiliation(s)
- Surendra R Puri
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Eric Almeida
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Subhashini Elangovan
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Cybele Collins
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jiyeon Kim
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
146
|
Jin J, Xiong H, Zhou J, Guang M, Wu X. Strong-field THz radiation-induced curing of composite resin materials in dentistry. BIOMEDICAL OPTICS EXPRESS 2023; 14:2311-2323. [PMID: 37206118 PMCID: PMC10191642 DOI: 10.1364/boe.484241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023]
Abstract
Dental caries is listed as one of the three major non-communicable diseases by the World Health Organization, and its main treatment method is to restore it by filling it with resin. At present, the visible light-cure method has the problems of non-uniform curing and low penetration efficiency, which makes the bonding area easy to develop marginal leakages, thus leading to secondary caries and requiring repeated treatment. In this work, through the strong terahertz (THz) irradiation-weak THz detection technique, it is found that the strong THz electromagnetic pulses can accelerate the curing process of the resin, and the weak-field THz spectroscopy can be used to monitor this dynamic change in real time, which will greatly promote the potential application of THz technology in dentistry.
Collapse
Affiliation(s)
- Jieqi Jin
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hongting Xiong
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Jiangping Zhou
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Mengkai Guang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaojun Wu
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
147
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
148
|
Rengo C, Valletta A, Liccardo D, Spagnuolo G, Corbi G, De Luca F, Lauria MR, Perrotta A, Rengo G, Ferrara N, Rengo S, Valletta R, Cannavo A. Healthy aging: when periodontal health matters. JOURNAL OF GERONTOLOGY AND GERIATRICS 2023. [DOI: 10.36150/2499-6564-n580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
149
|
Kimble R, Papacosta AO, Lennon LT, Whincup PH, Weyant RJ, Mathers JC, Wannamethee SG, Ramsay SE. The Relationship of Oral Health with Progression of Physical Frailty among Older Adults: A Longitudinal Study Composed of Two Cohorts of Older Adults from the United Kingdom and United States. J Am Med Dir Assoc 2023; 24:468-474.e3. [PMID: 36584971 PMCID: PMC10398566 DOI: 10.1016/j.jamda.2022.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the prospective associations between oral health and progression of physical frailty in older adults. DESIGN Prospective analysis. SETTING AND PARTICIPANTS Data are from the British Regional Heart Study (BRHS) comprising 2137 men aged 71 to 92 years from 24 British towns and the Health, Aging, and Body Composition (HABC) Study of 3075 men and women aged 70 to 79 years. METHODS Oral health markers included denture use, tooth count, periodontal disease, self-rated oral health, dry mouth, and perceived difficulty eating. Physical frailty progression after ∼8 years follow-up was determined based on 2 scoring tools: the Fried frailty phenotype (for physical frailty) and the Gill index (for severe frailty). Logistic regression models were conducted to examine the associations between oral health markers and progression to frailty and severe frailty, adjusted for sociodemographic, behavioral, and health-related factors. RESULTS After full adjustment, progression to frailty was associated with dentition [per each additional tooth, odds ratio (OR) 0.97; 95% CI: 0.95-1.00], <21 teeth with (OR 1.74; 95% CI: 1.02-2.96) or without denture use (OR 2.45; 95% CI 1.15-5.21), and symptoms of dry mouth (OR ≥1.8; 95% CI ≥ 1.06-3.10) in the BRHS cohort. In the HABC Study, progression to frailty was associated with dry mouth (OR 2.62; 95% CI 1.05-6.55), self-reported difficulty eating (OR 2.12; 95% CI 1.28-3.50) and ≥2 cumulative oral health problems (OR 2.29; 95% CI 1.17-4.50). Progression to severe frailty was associated with edentulism (OR 4.44; 95% CI 1.39-14.15) and <21 teeth without dentures after full adjustment. CONCLUSIONS AND IMPLICATIONS These findings indicate that oral health problems, particularly tooth loss and dry mouth, in older adults are associated with progression to frailty in later life. Additional research is needed to determine if interventions aimed at maintaining (or improving) oral health can contribute to reducing the risk, and worsening, of physical frailty in older adults.
Collapse
Affiliation(s)
- Rachel Kimble
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK; Division of Sport and Exercise Science, School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK.
| | - A Olia Papacosta
- Department of Primary Care and Population Health, UCL, London, UK
| | - Lucy T Lennon
- Department of Primary Care and Population Health, UCL, London, UK
| | - Peter H Whincup
- Population Health Research Institute, St George's, University of London, London, UK
| | - Robert J Weyant
- Department of Dental Public Health, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Mathers
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Sheena E Ramsay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
150
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|