101
|
van Zanten M, Tessadori F, McLoughlin F, Smith R, Millenaar FF, van Driel R, Voesenek LA, Peeters AJ, Fransz P. Photoreceptors CRYTOCHROME2 and phytochrome B control chromatin compaction in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1686-96. [PMID: 20935177 PMCID: PMC2996035 DOI: 10.1104/pp.110.164616] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/06/2010] [Indexed: 05/20/2023]
Abstract
Development and acclimation processes to the environment are associated with large-scale changes in chromatin compaction in Arabidopsis (Arabidopsis thaliana). Here, we studied the effects of light signals on chromatin organization. A decrease in light intensity induces a large-scale reduction in chromatin compaction. This low light response is reversible and shows strong natural genetic variation. Moreover, the degree of chromatin compaction is affected by light quality signals relevant for natural canopy shade. The photoreceptor CRYPTOCHROME2 appears a general positive regulator of low light-induced chromatin decompaction. Phytochrome B also controls light-induced chromatin organization, but its effect appears to be dependent on the genetic background. We present a model in which chromatin compaction is regulated by the light environment via CRYPTOCHROME2 protein abundance, which is controlled by phytochrome B action.
Collapse
|
102
|
Li J, Li G, Gao S, Martinez C, He G, Zhou Z, Huang X, Lee JH, Zhang H, Shen Y, Wang H, Deng XW. Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. THE PLANT CELL 2010; 22:3634-49. [PMID: 21097709 PMCID: PMC3015127 DOI: 10.1105/tpc.110.075788] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 10/28/2010] [Accepted: 11/05/2010] [Indexed: 05/19/2023]
Abstract
Phytochrome A (phyA) is the primary photoreceptor responsible for perceiving and mediating various responses to far-red light in Arabidopsis thaliana. FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL) are two small plant-specific proteins essential for light-regulated phyA nuclear accumulation and subsequent phyA signaling processes. FHY3 and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) are two transposase-derived transcription factors that directly activate FHY1/FHL transcription and thus mediate subsequent phyA nuclear accumulation and responses. Here, we report that ELONGATED HYPOCOTYL5 (HY5), a well-characterized bZIP transcription factor involved in promoting photomorphogenesis, directly binds ACGT-containing elements a few base pairs away from the FHY3/FAR1 binding sites in the FHY1/FHL promoters. We demonstrate that HY5 physically interacts with FHY3/FAR1 through their respective DNA binding domains and negatively regulates FHY3/FAR1-activated FHY1/FHL expression under far-red light. Together, our data show that HY5 plays a role in negative feedback regulation of phyA signaling by attenuating FHY3/FAR1-activated FHY1/FHL expression, providing a mechanism for fine-tuning phyA signaling homeostasis.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Gang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Shumin Gao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Cristina Martinez
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Guangming He
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Zhenzhen Zhou
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Xi Huang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Jae-Hoon Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Huiyong Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Yunping Shen
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Address correspondence to
| |
Collapse
|
103
|
Nagatani A. Phytochrome: structural basis for its functions. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:565-70. [PMID: 20801708 DOI: 10.1016/j.pbi.2010.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/30/2010] [Indexed: 05/20/2023]
Abstract
Phytochrome mediates various physiological as well as developmental responses to light stimuli in plants. Phytochrome is a soluble chromoprotein consisting of the N-terminal photosensory and C-terminal dimerization moieties. Close homologues of plant phytochromes are widely found in prokaryotes. Recently, the crystal structures of the core photosensory module of bacterial phytochromes are resolved. Intriguingly, three sub-domains (PAS, GAF and PHY) in the module are connected by unusual structures named 'light-sensing knot' and 'tongue', which are in tight contact with the chromophore. These findings enable us to review previous data on the structure-function relationships in phytochrome. Consequently, functional importance of these peculiar structures is further highlighted. Thus, the three-dimensional structure provides a framework for understanding how phytochrome processes the light signals.
Collapse
Affiliation(s)
- Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
104
|
Chao D, Lin H. The tricks plants use to reach appropriate light. SCIENCE CHINA-LIFE SCIENCES 2010; 53:916-26. [PMID: 20821290 DOI: 10.1007/s11427-010-4047-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/25/2010] [Indexed: 11/30/2022]
Abstract
The perception of ambient light signals that produce a relevant response to ensure exposure to appropriate levels of light energy is vital for plants. In response to this, intricate molecular mechanisms to mediate light signaling have evolved in plants. Among the responses induced by light, seedling extension is a determining event for plant survival in darkness, especially in the initial stage of plant growth. Here we review previous studies and recent progress towards an understanding of light signaling that regulates seedling elongation. We focus on the three regions of the sunlight spectrum that primarily control seedling elongation, namely red/far-red light, blue/UV-A light and UV-B light, and summarize the four signaling pathways that correspond to the three effective spectra.
Collapse
Affiliation(s)
- DaiYin Chao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
105
|
Rösler J, Jaedicke K, Zeidler M. Cytoplasmic phytochrome action. PLANT & CELL PHYSIOLOGY 2010; 51:1248-1254. [PMID: 20576692 DOI: 10.1093/pcp/pcq091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phytochrome photoperception is a common mechanism for the detection of red and far-red light in bacteria, cyanobacteria, fungi and plants. However, the responses following phytochrome activation appear to be quite diverse between species. Lower plants, such as mosses, show phytochrome-mediated directional responses, namely phototropism and polarotropism. These cannot be explained by nuclear gene regulation and are thought to be triggered by phytochromes in the cytoplasm or at the plasma membrane. In higher plants, similar directional responses are mediated via phototropin, a blue light receptor, with phytochromes mainly controlling morphogenetic responses through gene regulation. However, cytoplasmic phytochrome responses exist in higher plants too, which appear to be intertwined with directional blue light perception. By summarizing the respective findings, a possible conservation of cytoplasmic phytochrome function in higher and lower plants is addressed here.
Collapse
Affiliation(s)
- Jutta Rösler
- Department of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
106
|
Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 2010; 141:1230-40. [PMID: 20603003 DOI: 10.1016/j.cell.2010.05.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/21/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Light plays a profound role in plant development, yet how photoreceptor excitation directs phenotypic plasticity remains elusive. One of the earliest effects of light is the regulated translocation of the red/far-red photoreceptors, phytochromes, from the cytoplasm to subnuclear foci called phytochrome nuclear bodies. The function of these nuclear bodies is unknown. We report the identification of hemera, a seedling lethal mutant of Arabidopsis with altered phytochrome nuclear body patterns. hemera mutants are impaired in all phytochrome responses examined, including proteolysis of phytochrome A and phytochrome-interacting transcription factors. HEMERA was identified previously as pTAC12, a component of a plastid complex associated with transcription. Here, we show that HEMERA has a function in the nucleus, where it acts specifically in phytochrome signaling, is predicted to be structurally similar to the multiubiquitin-binding protein, RAD23, and can partially rescue yeast rad23mutants. Together, these results implicate phytochrome nuclear bodies as sites of proteolysis.
Collapse
|
107
|
Jang IC, Henriques R, Seo HS, Nagatani A, Chua NH. Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. THE PLANT CELL 2010; 22:2370-83. [PMID: 20605855 PMCID: PMC2929111 DOI: 10.1105/tpc.109.072520] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 05/07/2010] [Accepted: 06/23/2010] [Indexed: 05/18/2023]
Abstract
Many plant photoresponses from germination to shade avoidance are mediated by phytochrome B (phyB). In darkness, phyB exists as the inactive Pr in the cytosol but upon red (R) light treatment, the active Pfr translocates into nuclei to initiate signaling. Degradation of phyB Pfr likely regulates signal termination, but the mechanism is not understood. Here, we show that phyB is stable in darkness, but in R, a fraction of phyB translocates into nuclei and becomes degraded by 26S proteasomes. Nuclear phyB degradation is mediated by COP1 E3 ligase, which preferentially interacts with the PhyB N-terminal region (PhyB-N). PhyB-N polyubiquitination by CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in vitro can be enhanced by different PHYTOCHROME INTERACTING FACTOR (PIF) proteins that promote COP1/PhyB interaction. Consistent with these results, nuclear phyB accumulates to higher levels in pif single and double mutants and in cop1-4. Our results identify COP1 as an E3 ligase for phyB and other stable phytochromes and uncover the mechanism by which PIFs negatively regulate phyB levels.
Collapse
Affiliation(s)
- In-Cheol Jang
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065
| | - Rossana Henriques
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065
| | - Hak Soo Seo
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065
- Address correspondence to
| |
Collapse
|
108
|
Punwani JA, Hutchison CE, Schaller GE, Kieber JJ. The subcellular distribution of the Arabidopsis histidine phosphotransfer proteins is independent of cytokinin signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:473-82. [PMID: 20136728 DOI: 10.1111/j.1365-313x.2010.04165.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cytokinins are a class of mitogenic plant hormones that play an important role in most aspects of plant development, including shoot and root growth, vascular and photomorphogenic development and leaf senescence. A model for cytokinin perception and signaling has emerged that is similar to bacterial two-component phosphorelays. In this model, binding of cytokinin to the extracellular domain of the Arabidopsis histidine kinase (AHKs) receptors induces autophosphorylation within the intracellular histidine-kinase domain. The phosphoryl group is subsequently transferred to cytosolic Arabidopsis histidine phosphotransfer proteins (AHPs), which have been suggested to translocate to the nucleus in response to cytokinin treatment, where they then transfer the phosphoryl group to nuclear-localized response regulators (Type-A and Type-B ARRs). We examined the effects of cytokinin on AHP subcellular localization in Arabidopsis and, contrary to expectations, the AHPs maintained a constant nuclear/cytosolic distribution following cytokinin treatment. Furthermore, mutation of the conserved phosphoacceptor histidine residue of the AHP, as well as disruption of multiple cytokinin signaling elements, did not affect the subcellular localization of the AHP proteins. Finally, we present data indicating that AHPs maintain a nuclear/cytosolic distribution by balancing active transport into and out of the nucleus. Our findings suggest that the current models indicating relocalization of AHP protein into the nucleus in response to cytokinin are incorrect. Rather, AHPs actively maintain a consistent nuclear/cytosolic distribution regardless of the status of the cytokinin response pathway.
Collapse
Affiliation(s)
- Jayson A Punwani
- Department of Biology, University of North Carolina, CB #3280, Chapel Hill, NC 27599-3280, USA
| | | | | | | |
Collapse
|
109
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol 2010; 91:29-66. [PMID: 20705178 DOI: 10.1016/s0070-2153(10)91002-8] [Citation(s) in RCA: 463] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
110
|
Levskaya A, Weiner OD, Lim WA, Voigt CA. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 2009; 461:997-1001. [PMID: 19749742 PMCID: PMC2989900 DOI: 10.1038/nature08446] [Citation(s) in RCA: 786] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 08/24/2009] [Indexed: 11/09/2022]
Abstract
Genetically encodable optical reporters, such as green fluorescent protein, have revolutionized the observation and measurement of cellular states. However, the inverse challenge of using light to control precisely cellular behaviour has only recently begun to be addressed; semi-synthetic chromophore-tethered receptors and naturally occurring channel rhodopsins have been used to perturb directly neuronal networks. The difficulty of engineering light-sensitive proteins remains a significant impediment to the optical control of most cell-biological processes. Here we demonstrate the use of a new genetically encoded light-control system based on an optimized, reversible protein-protein interaction from the phytochrome signalling network of Arabidopsis thaliana. Because protein-protein interactions are one of the most general currencies of cellular information, this system can, in principle, be generically used to control diverse functions. Here we show that this system can be used to translocate target proteins precisely and reversibly to the membrane with micrometre spatial resolution and at the second timescale. We show that light-gated translocation of the upstream activators of Rho-family GTPases, which control the actin cytoskeleton, can be used to precisely reshape and direct the cell morphology of mammalian cells. The light-gated protein-protein interaction that has been optimized here should be useful for the design of diverse light-programmable reagents, potentially enabling a new generation of perturbative, quantitative experiments in cell biology.
Collapse
Affiliation(s)
- Anselm Levskaya
- The Cell Propulsion Lab, UCSF/UCB NIH Nanomedicine Development Center, University of California, San Francisco, California 94158-2517, USA
| | | | | | | |
Collapse
|
111
|
Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LACJ, Spillane C, Pikaard CS, Fransz P, Peeters AJM. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000638. [PMID: 19730687 PMCID: PMC2728481 DOI: 10.1371/journal.pgen.1000638] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 08/08/2009] [Indexed: 11/18/2022] Open
Abstract
Natural genetic variation in Arabidopsis thaliana exists for many traits and often reflects acclimation to local environments. Studying natural variation has proven valuable in the characterization of phenotypic traits and, in particular, in identifying genetic factors controlling these traits. It has been previously shown that chromatin compaction changes during development and biotic stress. To gain more insight into the genetic control of chromatin compaction, we investigated the nuclear phenotype of 21 selected Arabidopsis accessions from different geographic origins and habitats. We show natural variation in chromatin compaction and demonstrate a positive correlation with latitude of geographic origin. The level of compaction appeared to be dependent on light intensity. A novel approach, combining Quantitative Trait Locus (QTL) mapping and microscopic examination, pointed at PHYTOCHROME-B (PHYB) and HISTONE DEACETYLASE-6 (HDA6) as positive regulators of light-controlled chromatin compaction. Indeed, mutant analyses demonstrate that both factors affect global chromatin organization. HDA6, in addition, strongly promotes the light-mediated compaction of the Nucleolar Organizing Regions (NORs). The accession Cape Verde Islands-0 (Cvi-0), which shows sequence polymorphism in the PHYB gene and in the HDA6 promotor, resembles the hda6 mutant in having reduced chromatin compaction and decreased methylation levels of DNA and histone H3K9 at the NORs. We provide evidence that chromatin organization is controlled by light intensity. We propose that chromatin plasticity is associated with acclimation of Arabidopsis to its environment. The polymorphic alleles such as PHYB and HDA6 control this process. The habitat of the plant model species Arabidopsis thaliana can be found throughout the Northern hemisphere. As a consequence, individual populations have acclimated to a great diversity of environmental conditions. This is reflected by a wealth of natural genetic variation in many phenotypic traits. We utilized this natural variation via a novel approach, combining microscopic examination, quantitative genetics, and analysis of environmental parameters, to understand the regulation of nuclear chromatin compaction in leaf mesophyll cells. We show that the level of chromatin compaction among natural Arabidopsis thaliana accessions correlates with latitude of origin and depends on local light intensity. Our study provides evidence that the photoreceptor PHYTOCHROME-B (PHYB) and the histone modifier HISTONE DEACETYLASE 6 (HDA6) are positive regulators of global chromatin organization in a light-dependent manner. In addition, HDA6 specifically controls light-mediated chromatin compaction of the Nucleolar Organizing Regions (NORs). We propose that the observed light-controlled plasticity of chromatin plays a role in acclimation and survival of plants in their natural environment.
Collapse
Affiliation(s)
- Federico Tessadori
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Penka Pavlova
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Genetics, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Rachel Clifton
- Genetics & Biotechnology Laboratory, Department of Biochemistry & Biosciences Institute, University College Cork, Cork, Republic of Ireland
| | - Frédéric Pontvianne
- Biology Department, Washington University, St. Louis, Missouri, United States of America
| | - L. Basten Snoek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Frank F. Millenaar
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Roeland Kees Schulkes
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel van Driel
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Charles Spillane
- Genetics & Biotechnology Laboratory, Department of Biochemistry & Biosciences Institute, University College Cork, Cork, Republic of Ireland
| | - Craig S. Pikaard
- Biology Department, Washington University, St. Louis, Missouri, United States of America
| | - Paul Fransz
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (PF); (AJMP)
| | - Anton J. M. Peeters
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail: (PF); (AJMP)
| |
Collapse
|
112
|
Clack T, Shokry A, Moffet M, Liu P, Faul M, Sharrock RA. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. THE PLANT CELL 2009; 21:786-99. [PMID: 19286967 PMCID: PMC2671712 DOI: 10.1105/tpc.108.065227] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/17/2009] [Accepted: 03/02/2009] [Indexed: 05/18/2023]
Abstract
Phytochromes are dimeric chromoproteins that regulate plant responses to red (R) and far-red (FR) light. The Arabidopsis thaliana genome encodes five phytochrome apoproteins: type I phyA mediates responses to FR, and type II phyB-phyE mediate shade avoidance and classical R/FR-reversible responses. In this study, we describe the complete in vivo complement of homodimeric and heterodimeric type II phytochromes. Unexpectedly, phyC and phyE do not homodimerize and are present in seedlings only as heterodimers with phyB and phyD. Roles in light regulation of hypocotyl length, leaf area, and flowering time are demonstrated for heterodimeric phytochromes containing phyC or phyE. Heterodimers of phyC and chromophoreless phyB are inactive, indicating that phyC subunits require spectrally intact dimer partners to be active themselves. Consistent with the obligate heterodimerization of phyC and phyE, phyC is made unstable by removal of its phyB binding partner, and overexpression of phyE results in accumulation of phyE monomers. Following a pulse of red light, phyA, phyB, phyC, and phyD interact in vivo with the PHYTOCHROME INTERACTING FACTOR3 basic helix-loop-helix transcription factor, and this interaction is FR reversible. Therefore, most or all of the type I and type II phytochromes, including heterodimeric forms, appear to function through PIF-mediated pathways. These findings link an unanticipated diversity of plant R/FR photoreceptor structures to established phytochrome signaling mechanisms.
Collapse
Affiliation(s)
- Ted Clack
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | |
Collapse
|
113
|
A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome. Biochem J 2009; 415:247-55. [PMID: 18564962 DOI: 10.1042/bj20071555] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Light signal transduction in plants involves an intricate series of pathways which is finely regulated by interactions between specific signalling proteins, as well as by protein modifications such as phosphorylation and ubiquitination. The identification of novel phytochrome-interacting proteins and the precise signalling mechanisms that they mediate is still ongoing. In our present study, we show that the newly identified putative phytochrome-associated protein, PAPP2C (phytochrome-associated protein phosphatase type 2C), interacts in the nucleus with phyA (phytochrome A) and phyB, both in vitro and in vivo. Moreover, the phosphatase activity of PAPP2C and its association with phytochromes were found to be enhanced by red light, indicating that it plays a role in mediating phytochrome signalling. In particular, PAPP2C specifically binds to the N-terminal PHY domain of the phytochromes. We thus speculate that this interaction reflects a unique regulatory function of this phosphatase toward established phytochrome-associated proteins. We also show that PAPP2C effectively dephosphorylates phytochromes in vitro. Interestingly, PAPP2C indirectly mediates the dephosphorylation of PIF3 (phytochrome-interacting factor 3) in vitro. Taken together, we suggest that PAPP2C functions as a regulator of PIF3 by dephosphorylating phytochromes in the nucleus.
Collapse
|
114
|
Fankhauser C, Chen M. Transposing phytochrome into the nucleus. TRENDS IN PLANT SCIENCE 2008; 13:596-601. [PMID: 18824397 DOI: 10.1016/j.tplants.2008.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 05/19/2023]
Abstract
To control many physiological responses, phytochromes directly modulate gene expression. A key regulatory event in this signal transduction pathway is the light-controlled translocation of the photoreceptor from the cytoplasm into the nucleus. Recent publications are beginning to shed light on the molecular mechanisms underlying this central control point. Interestingly, there is a specific mechanism for phytochrome A (phyA) nuclear accumulation. The dedicated phyA nuclear import pathway might be important for the distinct photosensory specificity of this atypical phytochrome. Recent studies in the field also provide a starting point for investigating how the different subcellular pools of phytochrome can control distinct responses to light.
Collapse
Affiliation(s)
- Christian Fankhauser
- Centre for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, Switzerland.
| | | |
Collapse
|
115
|
Chico JM, Chini A, Fonseca S, Solano R. JAZ repressors set the rhythm in jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:503-8. [PMID: 18653378 DOI: 10.1016/j.pbi.2008.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/18/2008] [Accepted: 06/27/2008] [Indexed: 05/08/2023]
Abstract
Jasmonates (JAs) are essential hormones for plant defense and development. In spite of their importance, the molecular details of their signaling pathways remain largely unknown. A new family of regulators of JA signaling named JAZ, jasmonate ZIM-domain proteins, has recently been described. JAZ proteins repress of JA signaling and are targeted by the E3-ubiquitin ligase SCF(COI1) for proteasome degradation in response to JA. Hormone binding depends on a functional COI1 protein suggesting that COI1 is the JA receptor. MYC2, a positive regulator of JA-dependent responses, has been identified as a target of JAZ repressors. Interestingly, MYC2 and JAZ proteins are involved in a negative regulatory feedback loop, suggesting a model to explain how transcriptional reprogramming is turned on and off in response to JA. The discovery of JAZ repressors provides a new framework to understand JA-signaling pathways from hormonal perception to transcriptional activation.
Collapse
Affiliation(s)
- Jose M Chico
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
116
|
Genoud T, Schweizer F, Tscheuschler A, Debrieux D, Casal JJ, Schäfer E, Hiltbrunner A, Fankhauser C. FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor. PLoS Genet 2008; 4:e1000143. [PMID: 18670649 PMCID: PMC2483295 DOI: 10.1371/journal.pgen.1000143] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 06/25/2008] [Indexed: 01/30/2023] Open
Abstract
The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.
Collapse
Affiliation(s)
- Thierry Genoud
- Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Fabian Schweizer
- Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Anke Tscheuschler
- Institut für Biologie II/Botanik, Albert Ludwigs Universität, Freiburg, Germany
| | - Dimitry Debrieux
- Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jorge J. Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eberhard Schäfer
- Institut für Biologie II/Botanik, Albert Ludwigs Universität, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Andreas Hiltbrunner
- Institut für Biologie II/Botanik, Albert Ludwigs Universität, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
117
|
PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc Natl Acad Sci U S A 2008; 105:9433-8. [PMID: 18591656 DOI: 10.1073/pnas.0803611105] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plants depend on light signals to modulate many aspects of their development and optimize their photosynthetic capacity. Phytochromes (phys), a family of photoreceptors, initiate a signal transduction pathway that alters expression of a large number of genes to induce these responses. Recently, phyA and phyB were shown to bind members of a basic helix-loop-helix family of transcription factors called phy-interacting factors (PIFs). PIF1 negatively regulates chlorophyll biosynthesis and seed germination in the dark, and light-induced degradation of PIF1 relieves this negative regulation to promote photomorphogenesis. Here, we report that PIF1 regulates expression of a discrete set of genes in the dark, including protochlorophyllide oxidoreductase (POR), ferrochelatase (FeChII), and heme oxygenase (HO3), which are involved in controlling the chlorophyll biosynthetic pathway. Using ChIP and DNA gel-shift assays, we demonstrate that PIF1 directly binds to a G-box (CACGTG) DNA sequence element present in the PORC promoter. Moreover, in transient assays, PIF1 activates transcription of PORC in a G-box-dependent manner. These data strongly suggest that PIF1 directly and indirectly regulates key genes involved in chlorophyll biosynthesis to optimize the greening process in Arabidopsis.
Collapse
|
118
|
Lee Y, Kim MH, Kim SK, Kim SH. Phytochrome-mediated differential gene expression of plant Ran/TC4 small G-proteins. PLANTA 2008; 228:215-24. [PMID: 18481083 DOI: 10.1007/s00425-008-0745-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/21/2008] [Indexed: 05/26/2023]
Abstract
Ran/TC4 is the only known member of the family of small GTP-binding proteins primarily localized inside the nucleus. We cloned a pea Ran gene (PsRan1) and characterized its expression in tissues, and under different light sources. PsRan1 is a member of a highly homologous multigene family, and it encodes a protein containing plant-specific amino acids in its sequence. It is ubiquitously expressed in pea tissues with high expression in radicles. The amount of total mRNA transcripts representing multiple Ran family members increased in response to very low-fluence R, while the amount of mRNA transcript encoding PsRan1 specifically was not affected by various light treatments. In addition, Ran genes in Arabidopsis were also differentially expressed in various mutants defective in phytochromes or the light-responding HY5 protein, such as phyA, phyB, and hy5. AtRan1 and AtRan3 gene expression was significantly reduced in the phyA mutant background compared to that in Ler-0 wild type plants. AtRan1 expression was also decreased in the phyB background. In contrast, the expression of AtRan2 did not vary in the hy5 and phytochrome mutant backgrounds examined. Interestingly, expression of AtRan1 was significantly reduced in hy5 plants, while AtRan3 expression was increased in the same plants. From these results, we conclude that Ran gene expression is differentially regulated by various light sources and phytochrome-mediated signaling pathways.
Collapse
Affiliation(s)
- Yew Lee
- Division of Biological Sciences and Biotechnology, Yonsei University, Wonju-Si, 220-710, South Korea
| | | | | | | |
Collapse
|
119
|
Lee Y, Lee HS, Lee JS, Kim SK, Kim SH. Hormone- and light-regulated nucleocytoplasmic transport in plants: current status. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3229-45. [PMID: 18678754 DOI: 10.1093/jxb/ern200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.
Collapse
Affiliation(s)
- Yew Lee
- Department of Biological Sciences, Yonsei University, 234 Heungup-Myun, Wonju-Si, 220-710, Korea
| | | | | | | | | |
Collapse
|
120
|
Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:281-311. [PMID: 18257712 DOI: 10.1146/annurev.arplant.59.032607.092859] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytochromes are red/far-red light photoreceptors that convert the information contained in external light into biological signals. The decoding process starts with the perception of red light, which occurs through photoisomerization of a chromophore located within the phytochrome, leading to structural changes that include the disruption of intramolecular interactions between the N- and C-terminal domains of the phytochrome. This disruption exposes surfaces required for interactions with other proteins. In contrast, the perception of far-red light reverses the photoisomerization, restores the intramolecular interaction, and closes the interacting surfaces. Light information represented by the concentration of opened interacting surfaces is converted into biological signals through the modulating activity of interacting proteins. This review summarizes plant phytochromes, phytochrome-interacting proteins, and signal transmission from phytochromes to their interacting proteins.
Collapse
Affiliation(s)
- Gabyong Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | |
Collapse
|
121
|
Shen H, Luong P, Huq E. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2007; 145:1471-83. [PMID: 17951458 PMCID: PMC2151697 DOI: 10.1104/pp.107.107227] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/08/2007] [Indexed: 05/20/2023]
Abstract
Light is vital for plant growth and development. To respond to ambient light signals, plants are equipped with an array of photoreceptors, including phytochromes that sense red (R)/far-R (FR) regions and cryptochromes and phototropins that respond to the ultraviolet-A/blue (B) region of the light spectrum, respectively. Several positively and negatively acting components in light-signaling pathways have been identified using genetic approaches; however, the pathways are not saturated. Here, we characterize a new mutant named pleiotropic photosignaling (pps), isolated from a genetic screen under continuous R light. pps has longer hypocotyls and slightly smaller cotyledons under continuous R, FR, and B light compared to that of the wild type. pps is also hyposensitive to both R and FR light-induced seed germination. Although photosynthetic marker genes are constitutively expressed in pps in the dark at high levels, the expression of early light-regulated genes is reduced in the pps seedlings compared to wild-type seedlings under R light. PPS encodes MAX2/ORE9 (for MORE AXILLARY BRANCHES2/ORESARA9), an F-box protein involved in inflorescence architecture and senescence. MAX2 is expressed ubiquitously in the seedling stage. However, its expression is restricted to vascular tissues and meristems at adult stages. MAX2 is also localized to the nucleus. As an F-box protein, MAX2 is predicted to be a component of the SCF (for SKP, Cullin, and F-box protein) complex involved in regulated proteolysis. These results suggest that SCF(MAX2) plays critical roles in R, FR, and B light-signaling pathways. In addition, MAX2 might regulate multiple targets at different developmental stages to optimize plant growth and development.
Collapse
Affiliation(s)
- Hui Shen
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
122
|
Castillon A, Shen H, Huq E. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. TRENDS IN PLANT SCIENCE 2007; 12:514-521. [PMID: 17933576 DOI: 10.1016/j.tplants.2007.10.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/23/2007] [Accepted: 10/01/2007] [Indexed: 05/21/2023]
Abstract
To adapt to the surrounding environment, plants constantly monitor and respond to changes in the red and far-red regions of the light spectrum through the phytochrome family of photoreceptors. Extensive efforts using genetic, molecular and photobiological techniques have led to the identification of a group of basic helix-loop-helix transcription factors called the Phytochrome Interacting Factors, PIFs, which directly bind to the photoactivated phytochromes. Members of the PIF family have been shown to control light-regulated gene expression directly and indirectly. PIF1, PIF3, PIF4 and PIF5 are degraded in response to light signals, and physical interaction of PIF3 with phytochromes is necessary for the light-induced phosphorylation and degradation of PIF3. PIFs constitute an excellent model for the investigation of the biochemical mechanisms of signal transfer from photoactivated phytochromes and the light-regulation of gene expression that controls photomorphogenesis in plants.
Collapse
Affiliation(s)
- Alicia Castillon
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hui Shen
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
123
|
Su YS, Lagarias JC. Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. THE PLANT CELL 2007; 19:2124-39. [PMID: 17660358 PMCID: PMC1955707 DOI: 10.1105/tpc.107.051516] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The photoreversibility of plant phytochromes enables continuous surveillance of the ambient light environment. Through expression of profluorescent, photoinsensitive Tyr-to-His mutant alleles of Arabidopsis thaliana phytochrome B (PHYB(Y276H)) and Arabidopsis phytochrome A (PHYA(Y242H)) in transgenic Arabidopsis plants, we demonstrate that photoconversion is not a prerequisite for phytochrome signaling. PHYB(Y276H)-expressing plants exhibit chromophore-dependent constitutive photomorphogenesis, light-independent phyB(Y276H) nuclear localization, constitutive activation of genes normally repressed in darkness, and light-insensitive seed germination. Fluence rate analyses of transgenic plants expressing PHYB(Y276H), PHYA(Y242H), and other Y(GAF) mutant alleles of PHYB demonstrate that a range of altered light-signaling activities are associated with mutation of this residue. We conclude that the universally conserved GAF domain Tyr residue, with which the bilin chromophore is intimately associated, performs a critical role in coupling light perception to signal transduction by plant phytochromes.
Collapse
Affiliation(s)
- Yi-shin Su
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
124
|
Salisbury FJ, Hall A, Grierson CS, Halliday KJ. Phytochrome coordinates Arabidopsis shoot and root development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:429-38. [PMID: 17419844 DOI: 10.1111/j.1365-313x.2007.03059.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phytochrome family of photoreceptors are potent regulators of plant development, affecting a broad range of responses throughout the plant life cycle, including hypocotyl elongation, leaf expansion and apical dominance. The plant hormone auxin has previously been linked to these phytochrome-mediated responses; however, these studies have not identified the molecular mechanisms that underpin such extensive phytochrome and auxin cross-talk. In this paper, we show that phytochrome regulates the emergence of lateral roots, at least partly by manipulating auxin distribution within the seedling. Thus, shoot-localized phytochrome is able to act over long distances, through manipulation of auxin, to regulate root development. This work reveals an important role for phytochrome as a coordinator of shoot and root development, and provides insights into how phytochrome is able to exert such a powerful effect on growth and development. This new link between phytochrome and auxin may go some way to explain the extensive overlap in responses mediated by these two developmental regulators.
Collapse
Affiliation(s)
- Frances J Salisbury
- Institute of Molecular Plant Sciences, Edinburgh University, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | | | | | | |
Collapse
|
125
|
Shin J, Park E, Choi G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:981-94. [PMID: 17319847 DOI: 10.1111/j.1365-313x.2006.03021.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phytochromes are red/far-red light receptors that regulate various light responses by initiating the transcriptional cascades responsible for changing the expression patterns of 10-30% of the entire plant transcriptome. Several transcription factors that are thought to participate in this process have been identified, but the functional relationships among them have not yet been fully elucidated. Here we investigated the functional relationship between two such transcription factors, PIF3 and HY5, and their effects on anthocyanin biosynthesis. Our results revealed that PIF3 and HY5 do not regulate each other at either the transcriptional or the protein levels in continuous light conditions, suggesting that they are not directly linked within phytochrome-mediated signaling. We found that both PIF3 and HY5 positively regulate anthocyanin biosynthesis by activating the transcription of the same anthocyanin biosynthetic genes, but the positive effects of PIF3 required functional HY5. Chromatin immunoprecipitation analyses indicated that both PIF3 and HY5 regulate anthocyanin biosynthetic gene expression by directly binding to different regions of the gene promoters in vivo. Additional experiments revealed that PIF3 bound the promoters regardless of light and HY5. Collectively, these data show that PIF3 and HY5 regulate anthocyanin biosynthesis by simultaneously binding anthocyanin biosynthetic gene promoters at separate sequence elements.
Collapse
Affiliation(s)
- Jieun Shin
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | |
Collapse
|
126
|
Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K. Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics 2007; 277:631-46. [PMID: 17295027 DOI: 10.1007/s00438-007-0214-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 01/14/2007] [Indexed: 12/24/2022]
Abstract
A group of nuclear transcription factors, the Whirly proteins, were recently shown to be targeted also to chloroplasts and mitochondria. In order to find out whether other proteins might share this feature, an in silico-based screening of transcription factors from Arabidopsis and rice was carried out with the aim of identifying putative N-terminal chloroplast and mitochondrial targeting sequences. For this, the individual predictions of several independent programs were combined to a consensus prediction using a naïve Bayes method. This consensus prediction shows a higher specificity at a given sensitivity value than each of the single programs. In both species, transcription factors from a variety of protein families that possess putative N-terminal plastid or mitochondrial target peptides as well as nuclear localization sequences, were found. A search for homologues within members of the AP2/EREBP protein family revealed that target peptide-containing proteins are conserved among monocotyledonous and dicotyledonous species. Fusion of one of these proteins to GFP revealed, indeed, a dual targeting activity of this protein. We propose that dually targeted transcription factors might be involved in the communication between the nucleus and the organelles in plant cells. We further discuss how recent results on the physical interaction between the organelles and the nucleus could have significance for the regulation of the localization of these proteins.
Collapse
Affiliation(s)
- Rainer Schwacke
- Institute of Botany, University of Cologne, Gyrhofstr. 15, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
127
|
Quecini V. Identification of photoperception and light signal transduction pathways in citrus. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
128
|
Tarutina M, Ryjenkov DA, Gomelsky M. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J Biol Chem 2006; 281:34751-8. [PMID: 16968704 DOI: 10.1074/jbc.m604819200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophytochromes are bacterial photoreceptors that sense red/far red light using the biliverdin chromophore. Most bacteriophytochromes work as photoactivated protein kinases. The Rhodobacter sphaeroides bacteriophytochrome BphG1 is unconventional in that it has GGDEF and EAL output domains, which are involved, respectively, in synthesis (diguanylate cyclase) and degradation (phosphodiesterase) of the bacterial second messenger c-di-GMP. The GGDEF-EAL proteins studied to date displayed either diguanylate cyclase or phosphodiesterase activity but not both. To elucidate the function of BphG1, the holoprotein was purified from an Escherichia coli overexpression system designed to produce biliverdin. The holoprotein contained covalently bound biliverdin and interconverted between the red (dark) and far red (light-activated) forms. BphG1 had c-di-GMP-specific phosphodiesterase activity. Unexpectedly for a photochromic protein, this activity was essentially light-independent. BphG1 expressed in E. coli was found to undergo partial cleavage into two species. The smaller species was identified as the EAL domain of BphG1. It possessed c-di-GMP phosphodiesterase activity. Surprisingly, the larger species lacking EAL possessed diguanylate cyclase activity, which was dependent on biliverdin and strongly activated by light. BphG1 therefore is the first phytochrome with a non-kinase photoactivated enzymatic activity. This shows that the photosensory modules of phytochromes can transmit light signals to various outputs. BphG1 is potentially the first "bifunctional" enzyme capable of both c-di-GMP synthesis and hydrolysis. A model for the regulation of the "opposite" activities of BphG1 is presented.
Collapse
Affiliation(s)
- Marina Tarutina
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | |
Collapse
|
129
|
Hiltbrunner A, Viczián A, Bury E, Tscheuschler A, Kircher S, Tóth R, Honsberger A, Nagy F, Fankhauser C, Schäfer E. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 2006; 15:2125-30. [PMID: 16332538 DOI: 10.1016/j.cub.2005.10.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 11/15/2022]
Abstract
The phytochrome family of red/far-red (R/FR)-responsive photoreceptors plays a key role throughout the life cycle of plants . Arabidopsis has five phytochromes, phyA-phyE, among which phyA and phyB play the most predominant functions . Light-regulated nuclear accumulation of the phytochromes is an important regulatory step of this pathway, but to this date no factor specifically required for this event has been identified . Among all phyA signaling mutants, fhy1 and fhy3 (far-red elongated hypocotyl 1 and 3) have the most severe hyposensitive phenotype, indicating that they play particularly important roles . FHY1 is a small plant-specific protein of unknown function localized both in the nucleus and the cytoplasm . Here we show that FHY1 is specifically required for the light-regulated nuclear accumulation of phyA but not phyB. Moreover, phyA accumulation is only slightly affected in fhy3, indicating that the diminished nuclear accumulation of phyA observed in fhy1 seedlings is not simply a general consequence of reduced phyA signaling. By in vitro pull-down and yeast two-hybrid analyses, we demonstrate that FHY1 physically interacts with phyA, preferentially in its active Pfr form. Furthermore, FHY1 and phyA colocalize in planta. We therefore identify the first component required for light-regulated phytochrome nuclear accumulation.
Collapse
Affiliation(s)
- Andreas Hiltbrunner
- Institut für Biologie II/Botanik, Albert Ludwigs Universität, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Lee JY, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci U S A 2006; 103:6055-60. [PMID: 16581911 PMCID: PMC2111400 DOI: 10.1073/pnas.0510607103] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how the expression of transcription factor (TF) genes is modulated is essential for reconstructing gene regulatory networks. There is increasing evidence that sequences other than upstream noncoding can contribute to modulating gene expression, but how frequently they do so remains unclear. Here, we investigated the regulation of TFs expressed in a tissue-enriched manner in Arabidopsis roots. For 61 TFs, we created GFP reporter constructs driven by each TF's upstream noncoding sequence (including the 5'UTR) fused to the GFP reporter gene alone or together with the TF's coding sequence. We compared the visually detectable GFP patterns with endogenous mRNA expression patterns, as defined by a genome-wide microarray root expression map. An automated image analysis method for quantifying GFP signals in different tissues was developed and used to validate our visual comparison method. From these combined analyses, we found that (i) the upstream noncoding sequence was sufficient to recapitulate the mRNA expression pattern for 80% (35/44) of the TFs, and (ii) 25% of the TFs undergo posttranscriptional regulation via microRNA-mediated mRNA degradation (2/24) or via intercellular protein movement (6/24). The results suggest that, for Arabidopsis TFs, upstream noncoding sequences are major contributors to mRNA expression pattern establishment, but modulation of transcription factor protein expression pattern after transcription is relatively frequent. This study provides a systematic overview of regulation of TF expression at a cellular level.
Collapse
Affiliation(s)
| | | | | | - Daniel Mace
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| | - Uwe Ohler
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| | - Philip N. Benfey
- *Department of Biology and
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
131
|
Huq E. Degradation of negative regulators: a common theme in hormone and light signaling networks? TRENDS IN PLANT SCIENCE 2006; 11:4-7. [PMID: 16343980 DOI: 10.1016/j.tplants.2005.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/28/2005] [Accepted: 11/25/2005] [Indexed: 05/05/2023]
Abstract
Signal transduction pathways often modulate both positively and negatively acting components to optimize the efficiency of a signal. Recent results have shown that plants make extensive use of regulated proteolysis to modulate signal transduction pathways. An emerging theme from hormone (e.g. auxin and gibberellin) and light signaling pathways is signal or stimulus-induced degradation of negative regulators to optimize plant growth and development.
Collapse
Affiliation(s)
- Enamul Huq
- Section of Molecular Cell and Developmental Biology, The Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA.
| |
Collapse
|
132
|
Abstract
Phytochromes are a widespread family of red/far-red responsive photoreceptors first discovered in plants, where they constitute one of the three main classes of photomorphogenesis regulators. All phytochromes utilize covalently attached bilin chromophores that enable photoconversion between red-absorbing (P(r)) and far-red-absorbing (P(fr)) forms. Phytochromes are thus photoswitchable photosensors; canonical phytochromes have a conserved N-terminal photosensory core and a C-terminal regulatory region, which typically includes a histidine-kinase-related domain. The discovery of new bacterial and cyanobacterial members of the phytochrome family within the last decade has greatly aided biochemical and structural characterization of this family, with the first crystal structure of a bacteriophytochrome photosensory core appearing in 2005. This structure and other recent biochemical studies have provided exciting new insights into the structure of phytochrome, the photoconversion process that is central to light sensing, and the mechanism of signal transfer by this important family of photoreceptors.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Yi-Shin Su
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J. Clark Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
133
|
Wagner JR, Brunzelle JS, Forest KT, Vierstra RD. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 2005; 438:325-31. [PMID: 16292304 DOI: 10.1038/nature04118] [Citation(s) in RCA: 450] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/09/2005] [Indexed: 11/09/2022]
Abstract
Phytochromes are red/far-red light photoreceptors that direct photosensory responses across the bacterial, fungal and plant kingdoms. These include photosynthetic potential and pigmentation in bacteria as well as chloroplast development and photomorphogenesis in plants. Phytochromes consist of an amino-terminal region that covalently binds a single bilin chromophore, followed by a carboxy-terminal dimerization domain that often transmits the light signal through a histidine kinase relay. Here we describe the three-dimensional structure of the chromophore-binding domain of Deinococcus radiodurans phytochrome assembled with its chromophore biliverdin in the Pr ground state. Our model, refined to 2.5 A resolution, reaffirms Cys 24 as the chromophore attachment site, locates key amino acids that form a solvent-shielded bilin-binding pocket, and reveals an unusually formed deep trefoil knot that stabilizes this region. The structure provides the first three-dimensional glimpse into the photochromic behaviour of these photoreceptors and helps to explain the evolution of higher plant phytochromes from prokaryotic precursors.
Collapse
Affiliation(s)
- Jeremiah R Wagner
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | | | | | | |
Collapse
|
134
|
Shen H, Moon J, Huq E. PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:1023-35. [PMID: 16359394 DOI: 10.1111/j.1365-313x.2005.02606.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Light signals perceived by the phytochrome (phy) family of sensory photoreceptors control multiple aspects of plant development. Recently, PIF1, a phy-interacting basic helix-loop-helix (bHLH) transcription factor, has been shown to negatively regulate facets of the photomorphogenesis of seedlings. Moreover, the transcriptional activation activity of PIF1 is reduced in a phy-dependent manner. In this study we use the luciferase (LUC) activity of the LUC-PIF1 fusion protein as an indicator of the stability of PIF1 in various light conditions. We found that the activity of LUC-PIF1 in both transient and stable transgenic lines is rapidly reduced in light, while the LUC-only control is stable under the same conditions, suggesting that PIF1 is degraded in response to light. Fluence-rate response curves indicate that PIF1 degradation is very sensitive to the quality and quantity of light. The half-life of PIF1 is about 16 min under 10 micromol m-2 sec-1 red light. PIF1 reaccumulates in the subsequent dark period after light-induced degradation, signifying that PIF1 not only functions in the dark and during the transition from etiolated to de-etiolated growth, but may also function during diurnal cycles. Inhibitors of the 26S proteasome increased the stability of PIF1, indicating that degradation of PIF1 is mediated by the ubiquitin-26S proteasome pathway. Further, de novo protein synthesis is not required for degradation of PIF1, as the presence of cycloheximide does not prevent degradation of PIF1 in the light. Taken together, these results suggest that the light signals perceived by phys induce the degradation of PIF1 and other phy-interacting factors to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Hui Shen
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|