101
|
Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress. Proc Natl Acad Sci U S A 2011; 108:10620-5. [PMID: 21673141 DOI: 10.1073/pnas.1019735108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent work has identified several posttranslational modifications (PTMs) on chromatin-remodeling complexes. Compared with our understanding of histone PTMs, significantly less is known about the functions of PTMs on remodeling complexes, because identification of their specific roles often is hindered by the presence of redundant pathways. Remodels the Structure of Chromatin (RSC) is an essential, multifunctional ATP-dependent chromatin-remodeling enzyme of Saccharomyces cerevisiae that preferentially binds acetylated nucleosomes. RSC is itself acetylated by Gcn5 on lysine 25 (K25) of its Rsc4 subunit, adjacent to two tandem bromodomains. It has been shown that an intramolecular interaction between the acetylation mark and the proximal bromodomain inhibits binding of the second bromodomain to acetylated histone H3 tails. We report here that acetylation does not significantly alter the catalytic activity of RSC or its ability to recognize histone H3-acetylated nucleosomes preferentially in vitro. However, we find that Rsc4 acetylation is crucial for resistance to DNA damage in vivo. Epistatic miniarray profiling of the rsc4-K25R mutant reveals an interaction with mutants in the INO80 complex, a mediator of DNA damage and replication stress tolerance. In the absence of a core INO80 subunit, rsc4-K25R mutants display sensitivity to hydroxyurea and delayed S-phase progression under DNA damage. Thus, Rsc4 helps promote resistance to replication stress, and its single acetylation mark regulates this function. These studies offer an example of acetylation of a chromatin-remodeling enzyme controlling a biological output of the system rather than regulating its core enzymatic properties.
Collapse
|
102
|
Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 2011; 13:292-302. [PMID: 21336312 DOI: 10.1038/ncb2170] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/21/2010] [Indexed: 12/11/2022]
Abstract
Two major mechanisms have been causally implicated in the establishment of cellular senescence: the activation of the DNA damage response (DDR) pathway and the formation of senescence-associated heterochromatic foci (SAHF). Here we show that in human fibroblasts resistant to premature p16(INK4a) induction, SAHF are preferentially formed following oncogene activation but are not detected during replicative cellular senescence or on exposure to a variety of senescence-inducing stimuli. Oncogene-induced SAHF formation depends on DNA replication and ATR (ataxia telangiectasia and Rad3-related). Inactivation of ATM (ataxia telangiectasia mutated) or p53 allows the proliferation of oncogene-expressing cells that retain increased heterochromatin induction. In human cancers, levels of heterochromatin markers are higher than in normal tissues, and are independent of the proliferative index or stage of the tumours. Pharmacological and genetic perturbation of heterochromatin in oncogene-expressing cells increase DDR signalling and lead to apoptosis. In vivo, a histone deacetylase inhibitor (HDACi) causes heterochromatin relaxation, increased DDR, apoptosis and tumour regression. These results indicate that heterochromatin induced by oncogenic stress restrains DDR and suggest that the use of chromatin-modifying drugs in cancer therapies may benefit from the study of chromatin and DDR status of tumours.
Collapse
|
103
|
Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 2011; 144:200-13. [PMID: 21241891 DOI: 10.1016/j.cell.2010.12.021] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/18/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
Abstract
INO80 is an evolutionarily conserved, ATP-dependent chromatin-remodeling enzyme that plays roles in transcription, DNA repair, and replication. Here, we show that yeast INO80 facilitates these diverse processes at least in part by controlling genome-wide distribution of the histone variant H2A.Z. In the absence of INO80, H2A.Z nucleosomes are mislocalized, and H2A.Z levels at promoters show reduced responsiveness to transcriptional changes, suggesting that INO80 controls H2A.Z dynamics. Additionally, we demonstrate that INO80 has a histone-exchange activity in which the enzyme can replace nucleosomal H2A.Z/H2B with free H2A/H2B dimers. Genetic interactions between ino80 and htz1 support a model in which INO80 catalyzes the removal of unacetylated H2A.Z from chromatin as a mechanism to promote genome stability.
Collapse
|
104
|
Wong RPC, Lin H, Khosravi S, Piche B, Jafarnejad SM, Chen DWC, Li G. Tumour suppressor ING1b maintains genomic stability upon replication stress. Nucleic Acids Res 2011; 39:3632-42. [PMID: 21227930 PMCID: PMC3089469 DOI: 10.1093/nar/gkq1337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lesion bypass pathway, which is regulated by monoubiquitination of proliferating cell nuclear antigen (PCNA), is essential for resolving replication stalling due to DNA lesions. This process is important for preventing genomic instability and cancer development. Previously, it was shown that cells deficient in tumour suppressor p33ING1 (ING1b) are hypersensitive to DNA damaging agents via unknown mechanism. In this study, we demonstrated a novel tumour suppressive function of ING1b in preserving genomic stability upon replication stress through regulating PCNA monoubiquitination. We found that ING1b knockdown cells are more sensitive to UV due to defects in recovering from UV-induced replication blockage, leading to enhanced genomic instability. We revealed that ING1b is required for the E3 ligase Rad18-mediated PCNA monoubiquitination in lesion bypass. Interestingly, ING1b-mediated PCNA monoubiquitination is associated with the regulation of histone H4 acetylation. Results indicate that chromatin remodelling contributes to the stabilization of stalled replication fork and to the regulation of PCNA monoubiquitination during lesion bypass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Li
- *To whom correspondence should be addressed. Tel: +1 604 875 5826; Fax: +1 604 875 4497;
| |
Collapse
|
105
|
|
106
|
Oma Y, Harata M. Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus 2011; 2:38-46. [PMID: 21647298 PMCID: PMC3104808 DOI: 10.4161/nucl.2.1.14510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022] Open
Abstract
The actin family consists of conventional actin and actin-related proteins (ARPs), and the members show moderate similarity and share the same basal structure. Following the finding of various ARPs in the cytoplasm in the 1990s, multiple subfamilies that are localized predominantly in the nucleus were identified. Consistent with these cytological observations, subsequent biochemical analyses revealed the involvement of the nuclear ARPs in ATP-dependent chromatin-remodeling and histone acetyltransferase complexes. In addition to their contribution to chromatin remodeling, recent studies have shown that nuclear ARPs have roles in the organization of the nucleus that are independent of the activity of the above-mentioned complexes. Therefore, nuclear ARPs are recognized as novel key regulators of genome function, and affect not only the remodeling of chromatin but also the spatial arrangement and dynamics of chromatin within the nucleus.
Collapse
Affiliation(s)
- Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | |
Collapse
|
107
|
The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol Cell Biol 2010; 31:662-73. [PMID: 21135121 DOI: 10.1128/mcb.01035-10] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mobilization of nucleosomes by the ATP-dependent remodeler INO80 is quite different from another remodeler (SWI/SNF) that is also involved in gene activation. Unlike that recently shown for SWI/SNF, INO80 is unable to disassemble nucleosomes when remodeling short nucleosomal arrays. Instead, INO80 more closely resembles, although with notable exceptions, the nucleosome spacing activity of ISW2 and ISW1a, which are generally involved in transcription repression. INO80 required a minimum of 33 to 43 bp of extranucleosomal DNA for mobilizing nucleosomes, with 70 bp being optimal. INO80 prefers to move mononucleosomes to the center of DNA, like ISW2 and ISW1a, but does so with higher precision. Unlike ISW2/1a, INO80 does not require the H4 tail for nucleosome mobilization; instead, the H2A histone tail negatively regulates nucleosome movement by INO80. INO80 moved arrays of two or three nucleosomes with 50 or 79 bp of linker DNA closer together, with a final length of ∼30 bp of linker DNA or a repeat length of ∼177 bp. A minimum length of >30 bp of linker DNA was required for nucleosome movement and spacing by INO80 in arrays.
Collapse
|
108
|
Sarkar S, Kiely R, McHugh PJ. The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair. ACTA ACUST UNITED AC 2010; 191:1061-8. [PMID: 21135142 PMCID: PMC3002029 DOI: 10.1083/jcb.201006178] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ino80 facilitates restoration of nucleosome structure during NER-mediated repair of UV-induced lesions. Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4–Rad23 and is recruited to chromatin by Rad4 in a UV damage–dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.
Collapse
Affiliation(s)
- Sovan Sarkar
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, England, UK
| | | | | |
Collapse
|
109
|
Flynn RL, Zou L. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 2010; 36:133-40. [PMID: 20947357 DOI: 10.1016/j.tibs.2010.09.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 12/22/2022]
Abstract
The integrity of the genome is constantly challenged by intrinsic and extrinsic genotoxic stresses that damage DNA. The cellular responses to DNA damage are orchestrated by DNA damage signaling pathways, also known as DNA damage checkpoints. These signaling pathways play crucial roles in detecting DNA damage, regulating DNA repair and coordinating DNA repair with other cellular processes. In vertebrates, the ATM- and Rad3-related (ATR) kinase plays a key role in the response to a broad spectrum of DNA damage and DNA replication stress. Here, we will discuss the recent findings on how ATR is activated by DNA damage and how it protects the genome against interference with DNA replication.
Collapse
Affiliation(s)
- Rachel Litman Flynn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
110
|
Clelland BW, Schultz MC. Genome stability control by checkpoint regulation of tRNA gene transcription. Transcription 2010; 1:115-125. [PMID: 21326884 DOI: 10.4161/trns.1.3.13735] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 08/31/2010] [Accepted: 09/23/2010] [Indexed: 12/21/2022] Open
Abstract
The RNA polymerase III pre-initiation complex (PIC) assembled on yeast tRNA genes naturally causes replication fork pausing that contributes to genome instability. Mechanistic coupling of the fork pausing activity of tRNA genes to replication has long been considered likely, but only recently demonstrated. In contrast to the expectation that this coupling might occur by a passive mechanism such as direct disruption of transcription factor-DNA complexes by a component of the replisome, it turns out that disassembly of the RNA polymerase III PIC is actively controlled by the replication stress checkpoint signal transduction pathway. This advance supports a new model in which checkpoint-dependent disassembly of the transcription machinery at tRNA genes is a vital component of an overall system of genome stability control that also targets replication and DNA repair proteins.
Collapse
Affiliation(s)
- Brett W Clelland
- Department of Biochemistry; School of Molecular and Systems Medicine; University of Alberta; Edmonton, AB Canada
| | | |
Collapse
|
111
|
Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe. Genome Res 2010; 20:1250-61. [PMID: 20688779 DOI: 10.1101/gr.104513.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites.
Collapse
|
112
|
Czaja W, Bespalov VA, Hinz JM, Smerdon MJ. Proficient repair in chromatin remodeling defective ino80 mutants of Saccharomyces cerevisiae highlights replication defects as the main contributor to DNA damage sensitivity. DNA Repair (Amst) 2010; 9:976-84. [PMID: 20674516 DOI: 10.1016/j.dnarep.2010.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 01/16/2023]
Abstract
Ino80 is an evolutionarily conserved member of the SWI2/SNF2-family of ATPases in Saccharomyces cerevisiae. It resides in a multiprotein helicase/chromatin remodeling complex, and has been shown to play a key role in the stability of replication forks during replication stress. Though yeast with defects in ino80 show sensitivity to killing by a variety of DNA-damaging agents, a role for the INO80 protein complex in the repair of DNA has only been assessed for double-strand breaks, and the results are contradictory and inconclusive. We report that ino80Delta cells are hypersensitive to DNA base lesions induced by ultraviolet (UV) radiation and methyl methanesulfonate (MMS), but show little (or no) increased sensitivity to the DNA double-strand break (DSB)-inducing agents ionizing radiation and camptothecin. Importantly, ino80Delta cells display efficient removal of UV-induced cyclobutane pyrimidine dimers, and show a normal rate of removal of DNA methylation damage after MMS exposure. In addition, ino80Delta cells have an overall normal rate of repair of DSBs induced by ionizing radiation. Altogether, our data support a model of INO80 as an important suppressor of genome instability in yeast involved in DNA damage tolerance through a role in stability and recovery of broken replication forks, but not in the repair of lesions leading to such events. This conclusion is in contrast to strong evidence for the DNA repair-promoting role of the corresponding INO80 complexes in higher eukaryotes. Thus, our results provide insight into the specialized roles of the INO80 subunits and the differential needs of different species for chromatin remodeling complexes in genome maintenance.
Collapse
Affiliation(s)
- Wioletta Czaja
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, United States
| | | | | | | |
Collapse
|
113
|
Replication stress checkpoint signaling controls tRNA gene transcription. Nat Struct Mol Biol 2010; 17:976-81. [DOI: 10.1038/nsmb.1857] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/20/2010] [Indexed: 01/21/2023]
|
114
|
Hur SK, Park EJ, Han JE, Kim YA, Kim JD, Kang D, Kwon J. Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability. Cell Mol Life Sci 2010; 67:2283-96. [PMID: 20237820 PMCID: PMC11115786 DOI: 10.1007/s00018-010-0337-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 01/12/2023]
Abstract
Although INO80 chromatin remodeling enzyme has been shown in yeast to play roles in non-transcriptional nuclear processes such as DNA replication, its cellular functions in higher eukaryotes have remained largely unexplored. Here, we provide evidence that human INO80 (hINO80) participates in both DNA replication and chromosome segregation during the normal cell division cycle. hINO80 binds to chromatin localizing at replication forks during the S-phase, and is required for efficient DNA synthesis and S-phase progression. Unexpectedly, hINO80 associates with spindle microtubule during mitosis, and its deficiency leads to defective microtubule assembly and abnormal chromosome segregation. Consistent with these results, hINO80 is critical for suppressing aneuploidy and structural chromosome abnormalities. This work therefore not only emphasizes the evolutionary importance of INO80 in DNA replication but also reveals a new role for this remodeler in chromosome segregation, both of which likely come into play in maintaining the genome integrity.
Collapse
Affiliation(s)
- Shin-Kyoung Hur
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Ewha Womans University, Seoul, 120-750 Korea
| | - Eun-Jung Park
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Ewha Womans University, Seoul, 120-750 Korea
| | - Ji-Eun Han
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Ewha Womans University, Seoul, 120-750 Korea
| | - Yoon-Ah Kim
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Ewha Womans University, Seoul, 120-750 Korea
| | - Jong-Doo Kim
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Ewha Womans University, Seoul, 120-750 Korea
- Present Address: University of Science and Technology, Seoul, Korea
| | - Dongmin Kang
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Ewha Womans University, Seoul, 120-750 Korea
| | - Jongbum Kwon
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Ewha Womans University, Seoul, 120-750 Korea
| |
Collapse
|
115
|
Li DQ, Kumar R. Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle 2010; 9:2071-9. [PMID: 20505336 DOI: 10.4161/cc.9.11.11735] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, packaging of DNA into highly condensed chromatin presents a significant obstacle to DNA-based processes. Cells use two major strategies including histone modifications and ATP-dependent chromatin remodeling to alter chromatin structure that allows protein factors to gain access to nucleosomal DNA. Beyond their well-established role in transcription, histone modifications and several classes of ATP-dependent chromatin-remodeling complex have been functionally linked to efficient DNA repair. Mi-2/nucleosome remodeling and histone deacetylation (NuRD) complex uniquely possess both nucleosome remodeling and histone deacetylation activities, which play a vital role in regulating transcription. However, the role of the Mi-2/NuRD complex in DNA damage response remains largely unexplored until now. Recent findings reveal that metastasis-associated protein 1 (MTA1), an integral component of the Mi-2/NuRD complex, has successfully made inroads into DNA damage response pathway, and thus, links two previously unconnected Mi-2/NuRD complex and DNA damage response research areas. In this review, we will summarize recent progress concerning the functions of histone modifications and chromatin remodeling in DNA repair, and discuss new role of Mi-2/NuRD complex in DNA damage response.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, DC, USA
| | | |
Collapse
|
116
|
Abstract
Regulation of eukaryotic gene expression is far more complex than one might have imagined 30 years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: (1) a well-defined organization of nucleosomes and modification states at most genes; (2) regulatory networks of sequence-specific transcription factors; (3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II; and (4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
117
|
De Haro LP, Wray J, Williamson EA, Durant ST, Corwin L, Gentry AC, Osheroff N, Lee SH, Hromas R, Nickoloff JA. Metnase promotes restart and repair of stalled and collapsed replication forks. Nucleic Acids Res 2010; 38:5681-91. [PMID: 20457750 PMCID: PMC2943610 DOI: 10.1093/nar/gkq339] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Metnase is a human protein with methylase (SET) and nuclease domains that is widely expressed, especially in proliferating tissues. Metnase promotes non-homologous end-joining (NHEJ), and knockdown causes mild hypersensitivity to ionizing radiation. Metnase also promotes plasmid and viral DNA integration, and topoisomerase IIα (TopoIIα)-dependent chromosome decatenation. NHEJ factors have been implicated in the replication stress response, and TopoIIα has been proposed to relax positive supercoils in front of replication forks. Here we show that Metnase promotes cell proliferation, but it does not alter cell cycle distributions, or replication fork progression. However, Metnase knockdown sensitizes cells to replication stress and confers a marked defect in restart of stalled replication forks. Metnase promotes resolution of phosphorylated histone H2AX, a marker of DNA double-strand breaks at collapsed forks, and it co-immunoprecipitates with PCNA and RAD9, a member of the PCNA-like RAD9–HUS1–RAD1 intra-S checkpoint complex. Metnase also promotes TopoIIα-mediated relaxation of positively supercoiled DNA. Metnase is not required for RAD51 focus formation after replication stress, but Metnase knockdown cells show increased RAD51 foci in the presence or absence of replication stress. These results establish Metnase as a key factor that promotes restart of stalled replication forks, and implicate Metnase in the repair of collapsed forks.
Collapse
Affiliation(s)
- Leyma P De Haro
- Department of Molecular Genetics and Microbiology, Division of Hematology-Oncology, Cancer Research and Treatment Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Castano E, Philimonenko VV, Kahle M, Fukalová J, Kalendová A, Yildirim S, Dzijak R, Dingová-Krásna H, Hozák P. Actin complexes in the cell nucleus: new stones in an old field. Histochem Cell Biol 2010; 133:607-26. [PMID: 20443021 DOI: 10.1007/s00418-010-0701-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2010] [Indexed: 01/13/2023]
Abstract
Actin is a well-known protein that has shown a myriad of activities in the cytoplasm. However, recent findings of actin involvement in nuclear processes are overwhelming. Actin complexes in the nucleus range from very dynamic chromatin-remodeling complexes to structural elements of the matrix with single partners known as actin-binding proteins (ABPs). This review summarizes the recent findings of actin-containing complexes in the nucleus. Particular attention is given to key processes like chromatin remodeling, transcription, DNA replication, nucleocytoplasmic transport and to actin roles in nuclear architecture. Understanding the mechanisms involving ABPs will definitely lead us to the principles of the regulation of gene expression performed via concerting nuclear and cytoplasmic processes.
Collapse
Affiliation(s)
- E Castano
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Yoshida T, Shimada K, Oma Y, Kalck V, Akimura K, Taddei A, Iwahashi H, Kugou K, Ohta K, Gasser SM, Harata M. Actin-related protein Arp6 influences H2A.Z-dependent and -independent gene expression and links ribosomal protein genes to nuclear pores. PLoS Genet 2010; 6:e1000910. [PMID: 20419146 PMCID: PMC2855322 DOI: 10.1371/journal.pgen.1000910] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 03/16/2010] [Indexed: 11/19/2022] Open
Abstract
Actin-related proteins are ubiquitous components of chromatin remodelers and are conserved from yeast to man. We have examined the role of the budding yeast actin-related protein Arp6 in gene expression, both as a component of the SWR1 complex (SWR-C) and in its absence. We mapped Arp6 binding sites along four yeast chromosomes using chromatin immunoprecipitation from wild-type and swr1 deleted (swr1Delta) cells. We find that a majority of Arp6 binding sites coincide with binding sites of Swr1, the catalytic subunit of SWR-C, and with the histone H2A variant Htz1 (H2A.Z) deposited by SWR-C. However, Arp6 binding detected at centromeres, the promoters of ribosomal protein (RP) genes, and some telomeres is independent of Swr1 and Htz1 deposition. Given that RP genes and telomeres both show association with the nuclear periphery, we monitored the ability of Arp6 to mediate the localization of chromatin to nuclear pores. Arp6 binding is sufficient to shift a randomly positioned locus to nuclear periphery, even in a swr1Delta strain. Arp6 is also necessary for the pore association of its targeted RP promoters possibly through cell cycle-dependent factors. Loss of Arp6, but not Htz1, leads to an up-regulation of these RP genes. In contrast, the pore-association of GAL1 correlates with Htz1 deposition, and loss of Arp6 reduces both GAL1 activation and peripheral localization. We conclude that Arp6 functions both together with the nucleosome remodeler Swr1 and also without it, to mediate Htz1-dependent and Htz1-independent binding of chromatin domains to nuclear pores. This association is shown to have modulating effects on gene expression.
Collapse
Affiliation(s)
- Takahito Yoshida
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Véronique Kalck
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kazumi Akimura
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Angela Taddei
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Centre National de la Recherche Scientifique/Institut Curie-Section de Recherche, Paris, France
| | - Hitoshi Iwahashi
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazuto Kugou
- Shibata Distinguished Senior Laboratory, RIKEN Discovery Research Institute, Wako, Saitama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Ohta
- Shibata Distinguished Senior Laboratory, RIKEN Discovery Research Institute, Wako, Saitama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
120
|
Kumeta M, Yoshimura SH, Harata M, Takeyasu K. Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. J Cell Sci 2010; 123:1020-30. [DOI: 10.1242/jcs.059568] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to its well-known role as a crosslinker of actin filaments at focal-adhesion sites, actinin-4 is known to be localized to the nucleus. In this study, we reveal the molecular mechanism underlying nuclear localization of actinin-4 and its novel interactions with transcriptional regulators. We found that actinin-4 is imported into the nucleus through the nuclear pore complex in an importin-independent manner and is exported by the chromosome region maintenance-1 (CRM1)-dependent pathway. Nuclear actinin-4 levels were significantly increased in the late G2 phase of the cell cycle and were decreased in the G1 phase, suggesting that active release from the actin cytoskeleton was responsible for increased nuclear actinin-4 in late G2. Nuclear actinin-4 was found to interact with the INO80 chromatin-remodeling complex. It also directs the expression of a subset of cell-cycle-related genes and interacts with the upstream-binding factor (UBF)-dependent rRNA transcriptional machinery in the M phase. These findings provide molecular mechanisms for both nucleocytoplasmic shuttling of proteins that do not contain a nuclear-localization signal and cell-cycle-dependent gene regulation that reflects morphological changes in the cytoskeleton.
Collapse
Affiliation(s)
- Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | - Masahiko Harata
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
121
|
Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. Conserved nucleosome positioning defines replication origins. Genes Dev 2010; 24:748-53. [PMID: 20351051 DOI: 10.1101/gad.1913210] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The origin recognition complex (ORC) specifies replication origin location. The Saccharomyces cerevisiae ORC recognizes the ARS (autonomously replicating sequence) consensus sequence (ACS), but only a subset of potential genomic sites are bound, suggesting other chromosomal features influence ORC binding. Using high-throughput sequencing to map ORC binding and nucleosome positioning, we show that yeast origins are characterized by an asymmetric pattern of positioned nucleosomes flanking the ACS. The origin sequences are sufficient to maintain a nucleosome-free origin; however, ORC is required for the precise positioning of nucleosomes flanking the origin. These findings identify local nucleosomes as an important determinant for origin selection and function.
Collapse
Affiliation(s)
- Matthew L Eaton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
122
|
Buonomo SBC. Heterochromatin DNA replication and Rif1. Exp Cell Res 2010; 316:1907-13. [PMID: 20347809 DOI: 10.1016/j.yexcr.2010.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Constitutive heterochromatin is essential for chromosome maintenance in all eukaryotes. However, the repetitive nature of the underlying DNA, the presence of very stable protein-DNA complexes and the highly compacted nature of this type of chromatin represent a challenge for the DNA replication machinery. Data collected from different model organisms suggest that at least some of the components of the DNA replication checkpoint could be essential for ensuring the completion of DNA replication in the context of heterochromatin. I review and discuss the literature that directly or indirectly contributes to the formulation of this hypothesis. In particular, I focus my attention on Rif1, a newly discovered member of the DNA replication checkpoint. Recent data generated in mammalian cells highlight the spatial and temporal relation between Rif1, pericentromeric heterochromatin and S-phase. I review these recent and the previous data coming from studies performed in yeast in order to highlight the possible evolutionary conserved links and propose a molecular model for Rif1 role in heterochromatin replication.
Collapse
Affiliation(s)
- S B C Buonomo
- EMBL Mouse Biology Unit, Via Ramarini 32, Monteorotondo, Rome, Italy.
| |
Collapse
|
123
|
Dion V, Shimada K, Gasser SM. Actin-related proteins in the nucleus: life beyond chromatin remodelers. Curr Opin Cell Biol 2010; 22:383-91. [PMID: 20303249 DOI: 10.1016/j.ceb.2010.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 12/18/2022]
Abstract
Since their discovery in the mid-1990s, nuclear actin-related proteins (ARPs) have gained attention for their roles as structural components of ATP-dependent chromatin-remodeling complexes. These remodelers can move nucleosomes along the DNA, evict them from chromatin, and exchange histone variants to alter chromatin states locally. Chromatin-remodeling facilitates DNA-templated processes such as transcription regulation, DNA replication, and repair. Consistent with a role for ARPs in shaping chromatin structure, recent genetic studies show that they affect developmental and cell-type specific transcriptional programming. Here, we focus on recent results that suggest a specific contribution of ARPs to long-range interactions in the nucleus, and review evidence indicating that some ARPs may act independently of chromatin-remodeling machines.
Collapse
Affiliation(s)
- Vincent Dion
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | |
Collapse
|
124
|
Neves-Costa A, Will WR, Vetter AT, Miller JR, Varga-Weisz P. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci. PLoS One 2009; 4:e8111. [PMID: 19956593 PMCID: PMC2780329 DOI: 10.1371/journal.pone.0008111] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 10/28/2009] [Indexed: 12/11/2022] Open
Abstract
Chromatin regulates many key processes in the nucleus by controlling access to the underlying DNA. SNF2-like factors are ATP-driven enzymes that play key roles in the dynamics of chromatin by remodelling nucleosomes and other nucleoprotein complexes. Even simple eukaryotes such as yeast contain members of several subfamilies of SNF2-like factors. The FUN30/ETL1 subfamily of SNF2 remodellers is conserved from yeasts to humans, but is poorly characterized. We show that the deletion of FUN30 leads to sensitivity to the topoisomerase I poison camptothecin and to severe cell cycle progression defects when the Orc5 subunit is mutated. We demonstrate a role of FUN30 in promoting silencing in the heterochromatin-like mating type locus HMR, telomeres and the rDNA repeats. Chromatin immunoprecipitation experiments demonstrate that Fun30 binds at the boundary element of the silent HMR and within the silent HMR. Mapping of nucleosomes in vivo using micrococcal nuclease demonstrates that deletion of FUN30 leads to changes of the chromatin structure at the boundary element. A point mutation in the ATP-binding site abrogates the silencing function of Fun30 as well as its toxicity upon overexpression, indicating that the ATPase activity is essential for these roles of Fun30. We identify by amino acid sequence analysis a putative CUE motif as a feature of FUN30/ETL1 factors and show that this motif assists Fun30 activity. Our work suggests that Fun30 is directly involved in silencing by regulating the chromatin structure within or around silent loci.
Collapse
Affiliation(s)
- Ana Neves-Costa
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| | - W. Ryan Will
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| | - Anna T. Vetter
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| | - J. Ross Miller
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| | - Patrick Varga-Weisz
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
125
|
Hannum G, Srivas R, Guénolé A, van Attikum H, Krogan NJ, Karp RM, Ideker T. Genome-wide association data reveal a global map of genetic interactions among protein complexes. PLoS Genet 2009; 5:e1000782. [PMID: 20041197 PMCID: PMC2788232 DOI: 10.1371/journal.pgen.1000782] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/22/2009] [Indexed: 12/30/2022] Open
Abstract
This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex.
Collapse
Affiliation(s)
- Gregory Hannum
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Rohith Srivas
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Aude Guénolé
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Richard M. Karp
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States of America
| | - Trey Ideker
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
126
|
Fission yeast Iec1-ino80-mediated nucleosome eviction regulates nucleotide and phosphate metabolism. Mol Cell Biol 2009; 30:657-74. [PMID: 19933844 DOI: 10.1128/mcb.01117-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ino80 is an ATP-dependent nucleosome-remodeling enzyme involved in transcription, replication, and the DNA damage response. Here, we characterize the fission yeast Ino80 and find that it is essential for cell viability. We show that the Ino80 complex from fission yeast mediates ATP-dependent nucleosome remodeling in vitro. The purification of the Ino80-associated complex identified a highly conserved complex and the presence of a novel zinc finger protein with similarities to the mammalian transcriptional regulator Yin Yang 1 (YY1) and other members of the GLI-Krüppel family of proteins. Deletion of this Iec1 protein or the Ino80 complex subunit arp8, ies6, or ies2 causes defects in DNA damage repair, the response to replication stress, and nucleotide metabolism. We show that Iec1 is important for the correct expression of genes involved in nucleotide metabolism, including the ribonucleotide reductase subunit cdc22 and phosphate- and adenine-responsive genes. We find that Ino80 is recruited to a large number of promoter regions on phosphate starvation, including those of phosphate- and adenine-responsive genes that depend on Iec1 for correct expression. Iec1 is required for the binding of Ino80 to target genes and subsequent histone loss at the promoter and throughout the body of these genes on phosphate starvation. This suggests that the Iec1-Ino80 complex promotes transcription through nucleosome eviction.
Collapse
|
127
|
Driscoll R, Cimprich KA. HARPing on about the DNA damage response during replication. Genes Dev 2009; 23:2359-65. [PMID: 19833762 DOI: 10.1101/gad.1860609] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this issue of Genes & Development, four papers report that the annealing helicase HepA-related protein (HARP, also known as SMARCAL1 [SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1]) binds directly to the ssDNA-binding protein Replication protein A (RPA) and is recruited to sites of replicative stress. Knockdown of HARP results in hypersensitivity to multiple DNA-damaging agents and defects in fork stability or restart. These exciting insights reveal a key new player in the S-phase DNA damage response.
Collapse
Affiliation(s)
- Robert Driscoll
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
128
|
Kandasamy MK, McKinney EC, Deal RB, Smith AP, Meagher RB. Arabidopsis actin-related protein ARP5 in multicellular development and DNA repair. Dev Biol 2009; 335:22-32. [PMID: 19679120 PMCID: PMC2778271 DOI: 10.1016/j.ydbio.2009.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Actin-related protein 5 (ARP5) is a conserved subunit of the INO80 chromatin-remodeling complex in yeast and mammals. We have characterized the expression and subcellular distribution of Arabidopsis thaliana ARP5 and explored its role in the epigenetic control of multicellular development and DNA repair. ARP5-specific monoclonal antibodies localized ARP5 protein to the nucleoplasm of interphase cells in Arabidopsis and Nicotiana tabacum. ARP5 promoter-reporter fusions and the ARP5 protein are ubiquitously expressed. A null mutant and a severe knockdown allele produced moderately dwarfed plants with all organs smaller than the wild type. The small and slightly deformed organs such as leaves and hypocotyls were composed of small-sized cells. The ratio of leaf stomata to epidermal cells was high in the mutant, which also exhibited a delayed stomatal development compared with the wild type. Mutant plants were hypersensitive to DNA-damaging reagents including hydroxyurea, methylmethane sulfonate, and bleocin, demonstrating a role for ARP5 in DNA repair. Interestingly, the hypersensitivity phenotype of ARP5 null allele arp5-1 is stronger than the severe knockdown allele arp5-2. Moreover, a wild-type transgene fully complemented all developmental and DNA repair mutant phenotypes. Despite the common participation of both ARP4 and ARP5 in the INO80 complex, ARP4- and ARP5-deficient plants displayed only a small subset of common phenotypes and each displayed novel phenotypes, suggesting that in Arabidopsis they have both shared and unique functions.
Collapse
Affiliation(s)
| | - Elizabeth C. McKinney
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | - Roger B. Deal
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | - Aaron P. Smith
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | - Richard B. Meagher
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
129
|
Falbo KB, Alabert C, Katou Y, Wu S, Han J, Wehr T, Xiao J, He X, Zhang Z, Shi Y, Shirahige K, Pasero P, Shen X. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nat Struct Mol Biol 2009; 16:1167-72. [PMID: 19855395 DOI: 10.1038/nsmb.1686] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/03/2009] [Indexed: 12/12/2022]
Abstract
ATP-dependent chromatin remodeling complexes have been shown to participate in DNA replication in addition to transcription and DNA repair. However, the mechanisms of their involvement in DNA replication remain unclear. Here, we reveal a specific function of the yeast INO80 chromatin remodeling complex in the DNA damage tolerance pathways. Whereas INO80 is necessary for the resumption of replication at forks stalled by methyl methane sulfonate (MMS), it is not required for replication fork collapse after treatment with hydroxyurea (HU). Mechanistically, INO80 regulates DNA damage tolerance during replication through modulation of PCNA (proliferating cell nuclear antigen) ubiquitination and Rad51-mediated processing of recombination intermediates at impeded replication forks. Our findings establish a mechanistic link between INO80 and DNA damage tolerance pathways, indicating that chromatin remodeling is important for accurate DNA replication.
Collapse
Affiliation(s)
- Karina B Falbo
- Department of Carcinogenesis, Science Park Research Division, MD Anderson Cancer Center, Smithville, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Ciccia A, Bredemeyer AL, Sowa ME, Terret ME, Jallepalli PV, Harper JW, Elledge SJ. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev 2009; 23:2415-25. [PMID: 19793862 DOI: 10.1101/gad.1832309] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The integrity of genomic DNA is continuously challenged by the presence of DNA base lesions or DNA strand breaks. Here we report the identification of a new DNA damage response protein, SMARCAL1 (SWI/SNF-related, matrix associated, actin-dependent regulator of chromatin, subfamily a-like 1), which is a member of the SNF2 family and is mutated in Schimke immunoosseous dysplasia (SIOD). We demonstrate that SMARCAL1 directly interacts with Replication protein A (RPA) and is recruited to sites of DNA damage in an RPA-dependent manner. SMARCAL1-depleted cells display sensitivity to DNA-damaging agents that induce replication fork collapse, and exhibit slower fork recovery and delayed entry into mitosis following S-phase arrest. Furthermore, SIOD patient fibroblasts reconstituted with SMARCAL1 exhibit faster cell cycle progression after S-phase arrest. Thus, the symptoms of SIOD may be caused, at least in part, by defects in the cellular response to DNA replication stress.
Collapse
Affiliation(s)
- Alberto Ciccia
- Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Bansbach CE, Bétous R, Lovejoy CA, Glick GG, Cortez D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 2009; 23:2405-14. [PMID: 19793861 DOI: 10.1101/gad.1839909] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations in SMARCAL1 (HARP) cause Schimke immunoosseous dysplasia (SIOD). The mechanistic basis for this disease is unknown. Using functional genomic screens, we identified SMARCAL1 as a genome maintenance protein. Silencing and overexpression of SMARCAL1 leads to activation of the DNA damage response during S phase in the absence of any genotoxic agent. SMARCAL1 contains a Replication protein A (RPA)-binding motif similar to that found in the replication stress response protein TIPIN (Timeless-Interacting Protein), which is both necessary and sufficient to target SMARCAL1 to stalled replication forks. RPA binding is critical for the cellular function of SMARCAL1; however, it is not necessary for the annealing helicase activity of SMARCAL1 in vitro. An SIOD-associated SMARCAL1 mutant fails to prevent replication-associated DNA damage from accumulating in cells in which endogenous SMARCAL1 is silenced. Ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) phosphorylate SMARCAL1 in response to replication stress. Loss of SMARCAL1 activity causes increased RPA loading onto chromatin and persistent RPA phosphorylation after a transient exposure to replication stress. Furthermore, SMARCAL1-deficient cells are hypersensitive to replication stress agents. Thus, SMARCAL1 is a replication stress response protein, and the pleiotropic phenotypes of SIOD are at least partly due to defects in genome maintenance during DNA replication.
Collapse
Affiliation(s)
- Carol E Bansbach
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
132
|
Abstract
The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
Collapse
Affiliation(s)
- Cedric R Clapier
- Howard Hughes Medical Institute, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
133
|
Jha S, Dutta A. RVB1/RVB2: running rings around molecular biology. Mol Cell 2009; 34:521-33. [PMID: 19524533 DOI: 10.1016/j.molcel.2009.05.016] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/25/2009] [Accepted: 05/20/2009] [Indexed: 12/31/2022]
Abstract
RVB1/RVB2 (also known as Pontin/Reptin, TIP49/TIP48, RuvbL1/RuvbL2, ECP54/ECP51, INO80H/INO80J, TIH1/TIH2, and TIP49A/TIP49B) are two highly conserved members of the AAA+ family that are present in different protein and nucleoprotein complexes. Recent studies implicate the RVB-containing complexes in many cellular processes such as transcription, DNA damage response, snoRNP assembly, cellular transformation, and cancer metastasis. In this review, we discuss recent advances in our understanding of RVB-containing complexes and their role in these pathways.
Collapse
Affiliation(s)
- Sudhakar Jha
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan 1240, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | |
Collapse
|
134
|
Altaf M, Auger A, Covic M, Côté J. Connection between histone H2A variants and chromatin remodeling complexes. Biochem Cell Biol 2009; 87:35-50. [PMID: 19234522 DOI: 10.1139/o08-140] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The organization of the eukaryotic genome into chromatin makes it inaccessible to the factors required for gene transcription and DNA replication, recombination, and repair. In addition to histone-modifying enzymes and ATP-dependent chromatin remodeling complexes, which play key roles in regulating many nuclear processes by altering the chromatin structure, cells have developed a mechanism of modulating chromatin structure by incorporating histone variants. These variants are incorporated into specific regions of the genome throughout the cell cycle. H2A.Z, which is an evolutionarily conserved H2A variant, performs several seemingly unrelated and even contrary functions. Another H2A variant, H2A.X, plays a very important role in the cellular response to DNA damage. This review summarizes the recent developments in our understanding of the role of H2A.Z and H2A.X in the regulation of chromatin structure and function, focusing on their functional links with chromatin modifying and remodeling complexes.
Collapse
Affiliation(s)
- Mohammed Altaf
- Laval University Cancer Research Center, Hotel-Dieu de Quebec, Quebec City, QCG1R2J6, Canada
| | | | | | | |
Collapse
|
135
|
Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 2009; 10:373-84. [PMID: 19424290 DOI: 10.1038/nrm2693] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromatin-modifying factors have essential roles in DNA processing pathways that dictate cellular functions. The ability of chromatin modifiers, including the INO80 and SWR1 chromatin-remodelling complexes, to regulate transcriptional processes is well established. However, recent studies reveal that the INO80 and SWR1 complexes have crucial functions in many other essential processes, including DNA repair, checkpoint regulation, DNA replication, telomere maintenance and chromosome segregation. During these diverse nuclear processes, the INO80 and SWR1 complexes function cooperatively with their histone substrates, gamma-H2AX and H2AZ. This research reveals that INO80 and SWR1 ATP-dependent chromatin remodelling is an integral component of pathways that maintain genomic integrity.
Collapse
|
136
|
van Attikum H, Gasser SM. Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 2009; 19:207-17. [PMID: 19342239 DOI: 10.1016/j.tcb.2009.03.001] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 12/18/2022]
Abstract
Chromatin structure has a crucial role in processes of metabolism, including transcription, DNA replication and DNA damage repair. An evolutionarily conserved variant of histone H2A, called H2AX, is one of the key components of chromatin. H2AX becomes rapidly phosphorylated on chromatin surrounding DNA double-strand breaks (DSBs). Recent studies have shown that H2AX and other components of damaged chromatin also become modified by acetylation and ubiquitylation. This review discusses how specific combinations of histone modifications affect the accumulation and function of DNA repair factors (MDC1, RNF8, RNF168, 53BP1, BRCA1) and chromatin remodeling complexes (INO80, SWR1, TIP60-p400) at DSBs. These collectively regulate DSB repair and checkpoint arrest, avoiding genomic instability and oncogenic transformation in higher eukaryotes.
Collapse
Affiliation(s)
- Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| | | |
Collapse
|
137
|
INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair (Amst) 2009; 8:360-9. [DOI: 10.1016/j.dnarep.2008.11.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/14/2008] [Accepted: 11/20/2008] [Indexed: 11/17/2022]
|
138
|
Friedel AM, Pike BL, Gasser SM. ATR/Mec1: coordinating fork stability and repair. Curr Opin Cell Biol 2009; 21:237-44. [PMID: 19230642 DOI: 10.1016/j.ceb.2009.01.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 01/16/2009] [Indexed: 12/16/2022]
Abstract
During S phase, eukaryotic cells unwind and duplicate a tremendous amount of DNA, generating structures that are very sensitive to both endogenous and exogenous insults. The collision of DNA polymerases with damaged DNA or other obstructions to fork progression generates replication stress, which can evolve into fork collapse if the replisome components are not stabilized. To ensure genome integrity, stalled replication forks are recognized by a checkpoint, whose central player is the human kinase ATR or Mec1 in S. cerevisiae. This review will discuss recent findings revealing roles of the ATR/Mec1 kinase: both in stabilizing the replisome directly and in activating the checkpoint response to regulate origin firing, DNA repair, fork restart, and cell cycle progression.
Collapse
Affiliation(s)
- Anna M Friedel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | |
Collapse
|
139
|
Makhnevych T, Sydorskyy Y, Xin X, Srikumar T, Vizeacoumar FJ, Jeram SM, Li Z, Bahr S, Andrews BJ, Boone C, Raught B. Global map of SUMO function revealed by protein-protein interaction and genetic networks. Mol Cell 2009; 33:124-35. [PMID: 19150434 DOI: 10.1016/j.molcel.2008.12.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 10/06/2008] [Accepted: 12/29/2008] [Indexed: 12/27/2022]
Abstract
Systematic functional genomics approaches were used to map a network centered on the small ubiquitin-related modifier (SUMO) system. Over 250 physical interactions were identified using the SUMO protein as bait in affinity purification-mass spectrometry and yeast two-hybrid screens. More than 500 genes and 1400 synthetic genetic interactions were mapped by synthetic genetic array (SGA) analysis using eight different SUMO pathway query genes. The resultant global SUMO network highlights its role in 15 major biological processes and better defines functional relationships between the different components of the SUMO pathway. Using this information-rich resource, we have identified roles for the SUMO system in the function of the AAA ATPase Cdc48p, the regulation of lipid metabolism, localization of the ATP-dependent endonuclease Dna2p, and recovery from the DNA-damage checkpoint.
Collapse
Affiliation(s)
- Taras Makhnevych
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Groth A. Replicating chromatin: a tale of histonesThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:51-63. [DOI: 10.1139/o08-102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures reassembly on nascent DNA strands. The aim of this review is to discuss how histones — new and old — are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms.
Collapse
Affiliation(s)
- Anja Groth
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark (e-mail: )
| |
Collapse
|
141
|
Kitayama K, Kamo M, Oma Y, Matsuda R, Uchida T, Ikura T, Tashiro S, Ohyama T, Winsor B, Harata M. The human actin-related protein hArp5: nucleo-cytoplasmic shuttling and involvement in DNA repair. Exp Cell Res 2009; 315:206-17. [PMID: 19014934 DOI: 10.1016/j.yexcr.2008.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 09/23/2008] [Accepted: 10/14/2008] [Indexed: 11/30/2022]
Abstract
Certain actin-related proteins (Arps) of budding yeast are localized in the nucleus, and have essential roles as stoichiometric components of histone acetyltransferase (HAT) and chromatin remodeling complexes. On the other hand, identification of vertebrate nuclear Arps and their functional analyses are just beginning. We show that human Arp5 (hArp5) proteins are localized in the nucleus, and that arp5Delta yeast cells are partially complemented by hArp5. Thus, hArp5 is a novel member of the nuclear Arps of vertebrates, which possess evolutionarily conserved functions from yeast to humans. We show here that hArp5 shuttles between the nucleus and the cytoplasm. Furthermore, after the induction of DNA double strand breaks (DSB), cell growth and the accumulation of phosphorylated histone H2AX (gamma-H2AX) are impaired by hArp5 depletion. Association of hArp5 with the hIno80 chromatin remodeling enzyme and decrease of chromatin-bound hIno80 by hArp5-depletion indicate that hArp5 may have a role in the recruitment of the hINO80 complex to chromatin. Overexpression of hArp5 and hIno80 enhanced gamma-H2AX accumulation. These observations suggest that hArp5 is involved in the process of DSB repair through the regulation of the chromatin remodelling machinery.
Collapse
Affiliation(s)
- Kumiko Kitayama
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Meagher RB, Kandasamy MK, McKinney EC, Roy E. Chapter 5. Nuclear actin-related proteins in epigenetic control. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:157-215. [PMID: 19766970 PMCID: PMC2800988 DOI: 10.1016/s1937-6448(09)77005-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The nuclear actin-related proteins (ARPs) share overall structure and low-level sequence homology with conventional actin. They are indispensable subunits of macromolecular machines that control chromatin remodeling and modification leading to dynamic changes in DNA structure, transcription, and DNA repair. Cellular, genetic, and biochemical studies suggest that the nuclear ARPs are essential to the epigenetic control of the cell cycle and cell proliferation in all eukaryotes, while in plants and animals they also exert epigenetic controls over most stages of multicellular development including organ initiation, the switch to reproductive development, and senescence and programmed cell death. A theme emerging from plants and animals is that in addition to their role in controlling the general compaction of DNA and gene silencing, isoforms of nuclear ARP-containing chromatin complexes have evolved to exert dynamic epigenetic control over gene expression and different phases of multicellular development. Herein, we explore this theme by examining nuclear ARP phylogeny, activities of ARP-containing chromatin remodeling complexes that lead to epigenetic control, expanding developmental roles assigned to several animal and plant ARP-containing complexes, the evidence that thousands of ARP complex isoforms may have evolved in concert with multicellular development, and ARPs in human disease.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
143
|
Mapping genomic targets of DNA helicases by chromatin immunoprecipitation in Saccharomyces cerevisiae. Methods Mol Biol 2009; 587:113-26. [PMID: 20225145 DOI: 10.1007/978-1-60327-355-8_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA helicases utilize the energy of nucleotide hydrolysis to unwind the two annealed strands of the DNA helix and are involved in many aspects of DNA metabolism such as replication, recombination, and repair. Chromatin immunoprecipitation (ChIP) has been instrumental in determining the genomic targets of many DNA helicases and DNA helicase-containing complexes including the minichromosome maintenance (Mcm) proteins 2-7, the RecQ helicase Sgs1 as well as the Rvb1 and Rvb2 helicase-containing INO80 and SWR1 chromatin remodeling complexes. Here we describe a ChIP method that has been successfully used to map these proteins at chromosomal double-strand breaks and replication forks in the model organism Saccharomyces cerevisiae.
Collapse
|
144
|
Conaway RC, Conaway JW. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci 2008; 34:71-7. [PMID: 19062292 DOI: 10.1016/j.tibs.2008.10.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 01/05/2023]
Abstract
The Ino80 ATPase is a member of the SNF2 family of ATPases and functions as an integral component of a multisubunit ATP-dependent chromatin remodeling complex. Although INO80 complexes from yeast and higher eukaryotes share a common core of conserved subunits, the complexes have diverged substantially during evolution and have acquired new subunits with apparently species-specific functions. Recent studies have shown that the INO80 complex contributes to a wide variety of chromatin-dependent nuclear transactions, including transcription, DNA repair and DNA replication.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
145
|
Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol 2008; 19:29-41. [PMID: 19027300 DOI: 10.1016/j.tcb.2008.10.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/18/2022]
Abstract
Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.
Collapse
|
146
|
Pebernard S, Schaffer L, Campbell D, Head SR, Boddy MN. Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. EMBO J 2008; 27:3011-23. [PMID: 18923417 PMCID: PMC2585169 DOI: 10.1038/emboj.2008.220] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/22/2008] [Indexed: 01/19/2023] Open
Abstract
The Smc5/6 holocomplex executes key functions in genome maintenance that include ensuring the faithful segregation of chromosomes at mitosis and facilitating critical DNA repair pathways. Smc5/6 is essential for viability and therefore, dissecting its chromosome segregation and DNA repair roles has been challenging. We have identified distinct epigenetic and post-translational modifications that delineate roles for fission yeast Smc5/6 in centromere function, versus replication fork-associated DNA repair. We monitored Smc5/6 subnuclear and genomic localization in response to different replicative stresses, using fluorescence microscopy and chromatin immunoprecipitation (ChIP)-on-chip methods. Following hydroxyurea treatment, and during an unperturbed S phase, Smc5/6 is transiently enriched at the heterochromatic outer repeats of centromeres in an H3-K9 methylation-dependent manner. In contrast, methyl methanesulphonate treatment induces the accumulation of Smc5/6 at subtelomeres, in an Nse2 SUMO ligase-dependent, but H3-K9 methylation-independent manner. Finally, we determine that Smc5/6 loads at all genomic tDNAs, a phenomenon that requires intact consensus TFIIIC-binding sites in the tDNAs.
Collapse
Affiliation(s)
- Stephanie Pebernard
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lana Schaffer
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel Campbell
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven R Head
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael N Boddy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
147
|
Khoudoli GA, Gillespie PJ, Stewart G, Andersen JS, Swedlow JR, Blow JJ. Temporal profiling of the chromatin proteome reveals system-wide responses to replication inhibition. Curr Biol 2008; 18:838-43. [PMID: 18514518 PMCID: PMC2440559 DOI: 10.1016/j.cub.2008.04.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 10/25/2022]
Abstract
Although the replication, expression, and maintenance of DNA are well-studied processes, the way that they are coordinated is poorly understood. Here, we report an analysis of the changing association of proteins with chromatin (the chromatin proteome) during progression through interphase of the cell cycle. Sperm nuclei were incubated in Xenopus egg extracts, and chromatin-associated proteins were analyzed by mass spectrometry at different times. Approximately 75% of the proteins varied in abundance on chromatin by more than 15%, suggesting that the chromatin proteome is highly dynamic. Proteins were then assigned to one of 12 different clusters on the basis of their pattern of chromatin association. Each cluster contained functional groups of proteins involved in different nuclear processes related to progression through interphase. We also blocked DNA replication by inhibiting either replication licensing or S phase CDK activity. This revealed an unexpectedly broad system-wide effect on the chromatin proteome, indicating that the response to replication inhibition extends to many other functional modules in addition to the replication machinery. Several proteins that respond to replication inhibition (including nuclear pore proteins) coprecipitated with the Mcm2-7 licensing complex on chromatin, suggesting that Mcm2-7 play a central role in coordinating nuclear structure with DNA replication.
Collapse
Affiliation(s)
- Guennadi A. Khoudoli
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Peter J. Gillespie
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Graeme Stewart
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jens S. Andersen
- Center for Experimental BioInformatics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jason R. Swedlow
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J. Julian Blow
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|