101
|
Hayter EA, Brown TM. Additive contributions of melanopsin and both cone types provide broadband sensitivity to mouse pupil control. BMC Biol 2018; 16:83. [PMID: 30064443 PMCID: PMC6066930 DOI: 10.1186/s12915-018-0552-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/20/2018] [Indexed: 01/13/2023] Open
Abstract
Background Intrinsically photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. Given recent data revealing that cone-derived colour signals influence mouse circadian timing and pupil responses in humans, here we set out to investigate the role of colour information in pupil control in mice. Results We first recorded electrophysiological activity from the pretectal olivary nucleus (PON) of anaesthetised mice with a red-shifted cone population (Opn1mwR) and mice lacking functional cones (Cnga3−/−) or melanopsin (Opn1mwR; Opn4−/−). Using multispectral stimuli to selectively modulate the activity of individual opsin classes, we show that PON cells which receive ipRGC input also exhibit robust S- and/or L-cone opsin-driven activity. This population includes many cells where the two cone opsins drive opponent responses (most commonly excitatory/ON responses to S-opsin stimulation and inhibitory/OFF responses to L-opsin stimulation). These cone inputs reliably tracked even slow (0.025 Hz) changes in illuminance/colour under photopic conditions with melanopsin contributions becoming increasingly dominant for higher-contrast/lower temporal frequency stimuli. We also evaluated consensual pupil responses in awake animals and show that, surprisingly, this aspect of physiology is insensitive to chromatic signals originating with cones. Instead, by contrast with the situation in humans, signals from melanopsin and both cone opsins combine in a purely additive manner to drive pupil constriction in mice. Conclusion Our data reveal a key difference in the sensory control of the mouse pupil relative to another major target of ipRGCs—the circadian clock. Whereas the latter uses colour information to help estimate time of day, the mouse pupil instead sums signals across cone opsin classes to provide broadband spectral sensitivity to changes in illumination. As such, while the widespread co-occurrence of chromatic responses and melanopsin input in the PON supports a close association between colour discrimination mechanisms and NIF visual processing, our data suggest that colour opponent PON cells in the mouse contribute to functions other than pupil control. Electronic supplementary material The online version of this article (10.1186/s12915-018-0552-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward A Hayter
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Timothy M Brown
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
102
|
Schroeder MM, Harrison KR, Jaeckel ER, Berger HN, Zhao X, Flannery MP, St Pierre EC, Pateqi N, Jachimska A, Chervenak AP, Wong KY. The Roles of Rods, Cones, and Melanopsin in Photoresponses of M4 Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) and Optokinetic Visual Behavior. Front Cell Neurosci 2018; 12:203. [PMID: 30050414 PMCID: PMC6052130 DOI: 10.3389/fncel.2018.00203] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate not only image-forming vision like other ganglion cells, but also non-image-forming physiological responses to light such as pupil constriction and circadian photoentrainment. All ipRGCs respond to light through their endogenous photopigment melanopsin as well as rod/cone-driven synaptic inputs. A major knowledge gap is how melanopsin, rods, and cones differentially drive ipRGC photoresponses and image-forming vision. We whole-cell-recorded from M4-type ipRGCs lacking melanopsin, rod input, or cone input to dissect the roles of each component in ipRGCs' responses to steady and temporally modulated (≥0.3 Hz) lights. We also used a behavioral assay to determine how the elimination of melanopsin, rod, or cone function impacts the optokinetic visual behavior of mice. Results showed that the initial, transient peak in an M4 cell's responses to 10-s light steps arises from rod and cone inputs. Both the sustainability and poststimulus persistence of these light-step responses depend only on rod and/or cone inputs, which is unexpected because these ipRGC photoresponse properties have often been attributed primarily to melanopsin. For temporally varying stimuli, the enhancement of response sustainedness involves melanopsin, whereas stimulus tracking is mediated by rod and cone inputs. Finally, the behavioral assay showed that while all three photoreceptive systems are nearly equally important for contrast sensitivity, only cones and rods contribute to spatial acuity.
Collapse
Affiliation(s)
- Melanie M Schroeder
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Krystal R Harrison
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Jaeckel
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Hunter N Berger
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Xiwu Zhao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Michael P Flannery
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Emma C St Pierre
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Nancy Pateqi
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Agnieszka Jachimska
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Andrew P Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
103
|
Kankanamge D, Ratnayake K, Samaradivakara S, Karunarathne A. Melanopsin (Opn4) utilizes Gα i and Gβγ as major signal transducers. J Cell Sci 2018; 131:jcs.212910. [PMID: 29712722 DOI: 10.1242/jcs.212910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/23/2018] [Indexed: 01/16/2023] Open
Abstract
Melanopsin (Opn4), a ubiquitously expressed photoreceptor in all classes of vertebrates, is crucial for both visual and non-visual signaling. Opn4 supports visual functions of the eye by sensing radiance levels and discriminating contrast and brightness. Non-image-forming functions of Opn4 not only regulate circadian behavior, but also control growth and development processes of the retina. It is unclear how a single photoreceptor could govern such a diverse range of physiological functions; a role in genetic hardwiring could be one explanation, but molecular and mechanistic evidence is lacking. In addition to its role in canonical Gq pathway activation, here we demonstrate that Opn4 efficiently activates Gi heterotrimers and signals through the G protein βγ. Compared with the low levels of Gi pathway activation observed for several Gq-coupled receptors, the robust Gαi and Gβγ signaling of Opn4 led to both generation of PIP3 and directional migration of RAW264.7 macrophages. We propose that the ability of Opn4 to signal through Gαi and Gβγ subunits is a major contributor to its functional diversity.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Saroopa Samaradivakara
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
104
|
Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M. Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Exp Eye Res 2018; 174:93-97. [PMID: 29856984 DOI: 10.1016/j.exer.2018.05.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/27/2023]
Abstract
In this study we have compared the response to optic nerve crush (ONC) and to optic nerve transection (ONT) of the general population of retinal ganglion cells in charge of the image-forming visual functions that express Brn3a (Brn3a+RGCs) with that of the sub-population of non-image forming RGCs that express melanopsin (m+RGCs). Intact animals were used as control. ONT and ONC were performed at 0.5 mm from the optic disk, and retinas dissected 3, 5, 7, 14, 30, 45 or 90 days later (n = 5/injury/time point). In all the retinas, Brn3a+RGCs and m+RGCs were identified and their survival analyzed quantitatively and topographically. There were no differences in the course of RGC loss between lesions. The decrease of RGCs was significant at short time points (3 or 5 days for Brn3a+ or m+ RGCs, respectively) and, up to 14 days, the course of loss of both RGC populations was similar, surviving at this time point between 20 and 22% of their original population. However, while the loss of Brn3a+RGCs continues steadily up to 90 days when only 5-6% of them still remain, the loss of m+RGCs stops at 14 days, and the proportion of surviving m+RGCs remains constant up to 90 days (26-30%). In conclusion, m+RGC do not respond to axotomy in the same way than the rest of RGCs, and so whilst image-forming RGCs die in two exponential phases a quick one and a slow protracted one, non-image forming RGCs die only during the first quick phase.
Collapse
Affiliation(s)
- M C Sánchez-Migallón
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - F J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - F M Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - J Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - M Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - M Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
105
|
Joyce DS, Feigl B, Kerr G, Roeder L, Zele AJ. Melanopsin-mediated pupil function is impaired in Parkinson's disease. Sci Rep 2018; 8:7796. [PMID: 29773814 PMCID: PMC5958070 DOI: 10.1038/s41598-018-26078-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/30/2018] [Indexed: 01/16/2023] Open
Abstract
Parkinson's disease (PD) is characterised by non-motor symptoms including sleep and circadian disruption. Melanopsin-expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGC) transmit light signals to brain areas controlling circadian rhythms and the pupil light reflex. To determine if non-motor symptoms observed in PD are linked to ipRGC dysfunction, we evaluated melanopsin and rod/cone contributions to the pupil response in medicated participants with PD (n = 17) and controls (n = 12). Autonomic tone was evaluated by measuring pupillary unrest in darkness. In the PD group, there is evidence for an attenuated post-illumination pupil response (PIPR) amplitude and reduced pupil constriction amplitude, and PIPR amplitudes did not correlate with measures of sleep quality, retinal nerve fibre layer thickness, disease severity, or medication dosage. Both groups exhibited similar pupillary unrest. We show that melanopsin- and the rod/cone-photoreceptor contributions to the pupil control pathway are impaired in people with early-stage PD who have no clinically observable ophthalmic abnormalities. Given that ipRGCs project to brain targets involved in arousal, sleep and circadian rhythms, ipRGC dysfunction may underpin some of the non-motor symptoms observed in PD.
Collapse
Affiliation(s)
- Daniel S Joyce
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Visual Science Laboratory, School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, USA
| | - Beatrix Feigl
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Medical Retina Laboratory, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
- Queensland Eye Institute, Brisbane, Australia
| | - Graham Kerr
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Movement Neuroscience Program, Queensland University of Technology (QUT), Brisbane, Australia
| | - Luisa Roeder
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Movement Neuroscience Program, Queensland University of Technology (QUT), Brisbane, Australia
| | - Andrew J Zele
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
- Visual Science Laboratory, School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
106
|
Saito M, Miyamoto K, Uchiyama Y, Murakami I. Invisible light inside the natural blind spot alters brightness at a remote location. Sci Rep 2018; 8:7540. [PMID: 29765135 PMCID: PMC5954096 DOI: 10.1038/s41598-018-25920-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
The natural blind spot in the visual field has been known as a large oval region that cannot receive any optical input because it corresponds to the retinal optic disk containing no rod/cone-photoreceptors. Recently, stimulation inside the blind spot was found to enhance, but not trigger, the pupillary light reflex. However, it is unknown whether blind-spot stimulation also affects visual perception. We addressed this question using psychophysical brightness-matching experiments. We found that a test stimulus outside the blind spot was judged as darker when it was accompanied by a consciously unexperienced blue oval inside the blind spot; moreover, the pupillary light reflex was enhanced. These findings suggested that a photo-sensitive mechanism inside the optic disk, presumably involving the photopigment melanopsin, contributes to our image-forming vision and provides a ‘reference’ for calibrating the perceived brightness of visual objects.
Collapse
Affiliation(s)
- Marina Saito
- Department of Psychology, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kentaro Miyamoto
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, 113-0033, Japan.,Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom.,Japan Society for the Promotion of Science, Tokyo, 102-8472, Japan
| | - Yusuke Uchiyama
- Department of Psychology, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ikuya Murakami
- Department of Psychology, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
107
|
Zele AJ, Adhikari P, Feigl B, Cao D. Cone and melanopsin contributions to human brightness estimation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:B19-B25. [PMID: 29603934 DOI: 10.1364/josaa.35.000b19] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/17/2017] [Indexed: 06/08/2023]
Abstract
We determined the contributions of cone and melanopsin luminance signaling to human brightness perception. The absolute brightness of four narrowband primary lights presented in a full-field Ganzfeld was estimated in two conditions, either cone luminance-equated (186.7-1,867.0 cd·m-2) or melanopsin luminance-equated (31.6-316.3 melanopsin cd·m-2). We show that brightness estimations for each primary light follow an approximately linear increase with increasing cone or melanopsin luminance (in log units), but are not equivalent for primary lights equated with either cone or melanopsin luminance. Instead, brightness estimations result from a combined interaction between cone and melanopsin signaling. Analytical modeling with wavelength-dependent coefficients signifies that melanopsin luminance positively correlates with brightness magnitudes, and the cone luminance has two contribution components, one that is additive to melanopsin luminance and a second that is negative, implying an adaptation process. These results provide a new framework for evaluating the physiological basis of brightness perception and have direct practical applications for the development of energy-efficient light sources.
Collapse
|
108
|
CAO DINGCAI, CHANG ADAM, GAI SHAOYAN. Evidence for an impact of melanopsin activation on unique white perception. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:B287-B291. [PMID: 29603954 PMCID: PMC6223255 DOI: 10.1364/josaa.35.00b287] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
Current models of human color vision only consider cone inputs at photopic light levels, yet it is unclear whether the recently discovered melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) contribute to color perception. Using a lab-made five-primary photostimulator that can independently control the stimulations of rods, cones, and ipRGCs in human retina, we determined the observer's unique white perception, an equilibrium point for signals arising from the opponent mechanisms of color vision, under different levels of melanopsin activation. We found changing melanopsin activation levels shifts the equilibrium point in the chromatic pathways. Our results suggest potential evidence for an impact of melanopsin activation on unique white perception and the existing color vision model for the periphery may need to be revised by incorporating melanopsin signaling.
Collapse
Affiliation(s)
- DINGCAI CAO
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Corresponding author:
| | - ADAM CHANG
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - SHAOYAN GAI
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Key Laboratory of Measurement and Control for Complex System of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
109
|
Zele AJ, Feigl B, Adhikari P, Maynard ML, Cao D. Melanopsin photoreception contributes to human visual detection, temporal and colour processing. Sci Rep 2018; 8:3842. [PMID: 29497109 PMCID: PMC5832793 DOI: 10.1038/s41598-018-22197-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
The visual consequences of melanopsin photoreception in humans are not well understood. Here we studied melanopsin photoreception using a technique of photoreceptor silent substitution with five calibrated spectral lights after minimising the effects of individual differences in optical pre-receptoral filtering and desensitising penumbral cones in the shadow of retinal blood vessels. We demonstrate that putative melanopsin-mediated image-forming vision corresponds to an opponent S-OFF L + M-ON response property, with an average temporal resolution up to approximately 5 Hz, and >10x higher thresholds than red-green colour vision. With a capacity for signalling colour and integrating slowly changing lights, melanopsin-expressing intrinsically photosensitive retinal ganglion cells maybe the fifth photoreceptor type for peripheral vision.
Collapse
Affiliation(s)
- Andrew J Zele
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Beatrix Feigl
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
- Queensland Eye Institute, Brisbane, Australia
| | - Prakash Adhikari
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia
| | - Michelle L Maynard
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
110
|
Bauer M, Glenn T, Monteith S, Gottlieb JF, Ritter PS, Geddes J, Whybrow PC. The potential influence of LED lighting on mental illness. World J Biol Psychiatry 2018; 19:59-73. [PMID: 29251065 DOI: 10.1080/15622975.2017.1417639] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Two recent scientific breakthroughs may alter the treatment of mental illness, as discussed in this narrative review. The first was the invention of white light-emitting diodes (LEDs), which enabled an ongoing, rapid transition to energy-efficient LEDs for lighting, and the use of LEDs to backlight digital devices. The second was the discovery of melanopsin-expressing photosensitive retinal ganglion cells, which detect environmental irradiance and mediate non-image forming (NIF) functions including circadian entrainment, melatonin secretion, alertness, sleep regulation and the pupillary light reflex. These two breakthroughs are interrelated because unlike conventional lighting, white LEDs have a dominant spectral wavelength in the blue light range, near the peak sensitivity for the melanopsin system. METHODS Pertinent articles were identified. RESULTS Blue light exposure may suppress melatonin, increase alertness, and interfere with sleep in young, healthy volunteers and in animals. Areas of concern in mental illness include the influence of blue light on sleep, other circadian-mediated symptoms, prescribed treatments that target the circadian system, measurement using digital apps and devices, and adolescent sensitivity to blue light. CONCLUSIONS While knowledge in both fields is expanding rapidly, future developments must address the potential impact of blue light on NIF functions for healthy individuals and those with mental illness.
Collapse
Affiliation(s)
- Michael Bauer
- a Department of Psychiatry and Psychotherapy , University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden , Dresden , Germany
| | - Tasha Glenn
- b ChronoRecord Association, Inc , Fullerton , CA , USA
| | - Scott Monteith
- c Michigan State University College of Human Medicine, Traverse City Campus , Traverse City , MI , USA
| | - John F Gottlieb
- d Department of Psychiatry , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Philipp S Ritter
- a Department of Psychiatry and Psychotherapy , University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden , Dresden , Germany
| | - John Geddes
- e Department of Psychiatry , University of Oxford, Warneford Hospital , Oxford , UK
| | - Peter C Whybrow
- f Department of Psychiatry and Biobehavioral Sciences , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA) , Los Angeles , CA , USA
| |
Collapse
|
111
|
Melanopsin- and L-cone-induced pupil constriction is inhibited by S- and M-cones in humans. Proc Natl Acad Sci U S A 2018; 115:792-797. [PMID: 29311335 PMCID: PMC5789936 DOI: 10.1073/pnas.1716281115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human retina contains five photoreceptor types: rods; short (S)-, mid (M)-, and long (L)-wavelength-sensitive cones; and melanopsin-expressing ganglion cells. Recently, it has been shown that selective increments in M-cone activation are paradoxically perceived as brightness decrements, as opposed to L-cone increments. Here we show that similar effects are also observed in the pupillary light response, whereby M-cone or S-cone increments lead to pupil dilation whereas L-cone or melanopic illuminance increments resulted in pupil constriction. Additionally, intermittent photoreceptor activation increased pupil constriction over a 30-min interval. Modulation of L-cone or melanopic illuminance within the 0.25-4-Hz frequency range resulted in more sustained pupillary constriction than light of constant intensity. Opposite results were found for S-cone and M-cone modulations (2 Hz), mirroring the dichotomy observed in the transient responses. The transient and sustained pupillary light responses therefore suggest that S- and M-cones provide inhibitory input to the pupillary control system when selectively activated, whereas L-cones and melanopsin response fulfill an excitatory role. These findings provide insight into functional networks in the human retina and the effect of color-coding in nonvisual responses to light, and imply that nonvisual and visual brightness discrimination may share a common pathway that starts in the retina.
Collapse
|
112
|
The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience. Proc Natl Acad Sci U S A 2017; 114:12291-12296. [PMID: 29087940 DOI: 10.1073/pnas.1711522114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The photopigment melanopsin supports reflexive visual functions in people, such as pupil constriction and circadian photoentrainment. What contribution melanopsin makes to conscious visual perception is less studied. We devised a stimulus that targeted melanopsin separately from the cones using pulsed (3-s) spectral modulations around a photopic background. Pupillometry confirmed that the melanopsin stimulus evokes a response different from that produced by cone stimulation. In each of four subjects, a functional MRI response in area V1 was found. This response scaled with melanopic contrast and was not easily explained by imprecision in the silencing of the cones. Twenty additional subjects then observed melanopsin pulses and provided a structured rating of the perceptual experience. Melanopsin stimulation was described as an unpleasant, blurry, minimal brightening that quickly faded. We conclude that isolated stimulation of melanopsin is likely associated with a response within the cortical visual pathway and with an evoked conscious percept.
Collapse
|
113
|
Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans. Sci Rep 2017; 7:14215. [PMID: 29079823 PMCID: PMC5660221 DOI: 10.1038/s41598-017-13973-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022] Open
Abstract
Artificial light endows a "round-the-clock", 24-h/7-d society. Chronic exposure to light at night contributes to health hazards for humans, including disorders of sleep. Yet the influence of inter-individual traits, such as sex-differences, on light sensitivity remains to be established. Here we investigated potential sex-differences to evening light exposure of 40 lx at 6500 K (blue-enriched) or at 2500 K (non-blue-enriched), and their impact on brightness perception, vigilant attention and sleep physiology. In contrast to women, men had higher brightness perception and faster reaction times in a sustained attention task during blue-enriched light than non-blue-enriched. After blue-enriched light exposure, men had significantly higher all-night frontal NREM sleep slow-wave activity (SWA: 2-4 Hz), than women, particularly during the beginning of the sleep episode. Furthermore, brightness perception during blue-enriched light significantly predicted men's improved sustained attention performance and increased frontal NREM SWA. Our data indicate that, in contrast to women, men show a stronger response to blue-enriched light in the late evening even at very low light levels (40lux), as indexed by increased vigilant attention and sleep EEG hallmarks. Collectively, the data indicate that sex differences in light sensitivity might play a key role for ensuring the success of individually-targeted light interventions.
Collapse
|
114
|
Chellappa SL, Lasauskaite R, Cajochen C. In a Heartbeat: Light and Cardiovascular Physiology. Front Neurol 2017; 8:541. [PMID: 29104560 PMCID: PMC5654948 DOI: 10.3389/fneur.2017.00541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Light impinging on the retina fulfils a dual function: it serves for vision and it is required for proper entrainment of the endogenous circadian timing system to the 24-h day, thus influencing behaviors that promote health and optimal quality of life but are independent of image formation. The circadian pacemaker located in the suprachiasmatic nuclei modulates the cardiovascular system with an intrinsic ability to anticipate morning solar time and with a circadian nature of adverse cardiovascular events. Here, we infer that light exposure might affect cardiovascular function and provide evidence from existing research. Findings show a time-of-day dependent increase in relative sympathetic tone associated with bright light in the morning but not in the evening hours. Furthermore, dynamic light in the early morning hours can reduce the deleterious sleep-to-wake evoked transition on cardiac modulation. On the contrary, effects of numerous light parameters, such as illuminance level and wavelength of monochromatic light, on cardiac function are mixed. Therefore, in future research studies, light modalities, such as timing, duration, and its wavelength composition, should be taken in to account when testing the potential of light as a non-invasive countermeasure for adverse cardiovascular events.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Ruta Lasauskaite
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
115
|
Vartanian G, Wong KY, Ku PC. LED Lights With Hidden Intensity-Modulated Blue Channels Aiming for Enhanced Subconscious Visual Responses. IEEE PHOTONICS JOURNAL 2017; 9:8201009. [PMID: 28751938 PMCID: PMC5526349 DOI: 10.1109/jphot.2017.2697974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new form of light-emitting diode (LED) light suitable for general illumination is proposed to enhance subconscious, nonimage-forming visual responses, which are essential to our well-being. Pulsing light has been shown to reduce photoreceptor adaptation and elicit stronger subconscious visual responses at an indoor illumination level. Using the silent substitution technique, a melanopsin-selective flicker can be added into white light. A linear optimization algorithm was developed to suppress any perceivable fluctuation of light intensity and colors of illuminated objects. Two examples of lights are given to illustrate the potential applications of the proposed multi-LED light for general illumination and therapeutic purposes.
Collapse
Affiliation(s)
- Garen Vartanian
- Macromolecular Science and Engineering Graduate Program, University
of Michigan, Ann Arbor, MI 48109 USA
| | - Kwoon Y. Wong
- Department of Ophthalmology and Visual Sciences, University of
Michigan, Ann Arbor, MI 48109 USA
| | - Pei-Cheng Ku
- Macromolecular Science and Engineering Graduate Program, University
of Michigan, Ann Arbor, MI 48109 USA
- Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
116
|
Allen AE, Storchi R, Martial FP, Bedford RA, Lucas RJ. Melanopsin Contributions to the Representation of Images in the Early Visual System. Curr Biol 2017; 27:1623-1632.e4. [PMID: 28528909 PMCID: PMC5462620 DOI: 10.1016/j.cub.2017.04.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 11/19/2022]
Abstract
Melanopsin photoreception enhances retinal responses to variations in ambient light (irradiance) and drives non-image-forming visual reflexes such as circadian entrainment [1, 2, 3, 4, 5, 6]. Melanopsin signals also reach brain regions responsible for form vision [7, 8, 9], but melanopsin’s contribution, if any, to encoding visual images remains unclear. We addressed this deficit using principles of receptor silent substitution to present images in which visibility for melanopsin versus rods+cones was independently modulated, and we recorded evoked responses in the mouse dorsal lateral geniculate nucleus (dLGN; thalamic relay for cortical vision). Approximately 20% of dLGN units responded to patterns visible only to melanopsin, revealing that melanopsin signals alone can convey spatial information. Spatial receptive fields (RFs) mapped using melanopsin-isolating stimuli had ON centers with diameters ∼13°. Melanopsin and rod+cone responses differed in the temporal domain, and responses to slow changes in radiance (<0.9 Hz) and stationary images were deficient when stimuli were rendered invisible for melanopsin. We employed these data to devise and test a mathematical model of melanopsin’s involvement in form vision and applied it, along with further experimental recordings, to explore melanopsin signals under simulated active view of natural scenes. Our findings reveal that melanopsin enhances the thalamic representation of scenes containing local correlations in radiance, compensating for the high temporal frequency bias of cone vision and the negative correlation between magnitude and frequency for changes in direction of view. Together, these data reveal a distinct melanopsin contribution to encoding visual images, predicting that, under natural view, melanopsin augments the early visual system’s ability to encode patterns over moderate spatial scales. A five-primary display is used to define melanopsin’s contribution to form vision Melanopsin extends the spatiotemporal range of the mouse early visual system The representation of spatial patterns is deficient when melanopsin is not engaged A linear model predicting melanopsin’s contribution to pattern vision is defined
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Riccardo Storchi
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Franck P Martial
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Robert A Bedford
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
117
|
Hung SM, Milea D, Rukmini AV, Najjar RP, Tan JH, Viénot F, Dubail M, Tow SLC, Aung T, Gooley JJ, Hsieh PJ. Cerebral neural correlates of differential melanopic photic stimulation in humans. Neuroimage 2017; 146:763-769. [DOI: 10.1016/j.neuroimage.2016.09.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022] Open
|
118
|
|
119
|
Barrionuevo PA, Cao D. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response. J Vis 2016; 16:29. [PMID: 27690169 PMCID: PMC5054726 DOI: 10.1167/16.11.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary responses measured using stimuli generated with a five-primary photostimulator that selectively modulated melanopsin, rod, S-, M-, and L-cone excitations in isolation, or in combination to produce postreceptoral signals. We first analyzed the light adaptation behavior of melanopsin activation and rod and cones signals. Second, we determined how melanopsin is integrated with postreceptoral signals by testing with cone luminance, chromatic blue-yellow, and chromatic red-green stimuli that were processed by magnocellular (MC), koniocellular (KC), and parvocellular (PC) pathways, respectively. A combined rod and melanopsin response was also measured. The relative phase of the postreceptoral signals was varied with respect to the melanopsin phase. The results showed that light adaptation behavior for all conditions was weaker than typical Weber adaptation. Melanopsin activation combined linearly with luminance, S-cone, and rod inputs, suggesting the locus of integration with MC and KC signals was retinal. The melanopsin contribution to phasic pupil responses was lower than luminance contributions, but much higher than S-cone contributions. Chromatic red-green modulation interacted with melanopsin activation nonlinearly as described by a “winner-takes-all” process, suggesting the integration with PC signals might be mediated by a postretinal site.
Collapse
Affiliation(s)
- Pablo A Barrionuevo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USAInstitute of Research in Light, Environment and Vision, National University of Tucumán - National Scientific and Technical Research Council, San Miguel de Tucumán, Tucumán
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, ://vpl.uic.edu/
| |
Collapse
|
120
|
Dasilva M, Storchi R, Davis KE, Grieve KL, Lucas RJ. Melanopsin supports irradiance-driven changes in maintained activity in the superior colliculus of the mouse. Eur J Neurosci 2016; 44:2314-23. [DOI: 10.1111/ejn.13336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Miguel Dasilva
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Riccardo Storchi
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Katherine E. Davis
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Kenneth L. Grieve
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Robert J. Lucas
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
121
|
Yan SS, Wang W. The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol 2016; 9:1066-74. [PMID: 27500118 DOI: 10.18240/ijo.2016.07.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/14/2016] [Indexed: 12/31/2022] Open
Abstract
Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.
Collapse
Affiliation(s)
- Shen-Shen Yan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
122
|
Abstract
UNLABELLED Signals from cones are recombined in postreceptoral channels [luminance, L + M; red-green, L - M; blue-yellow, S - (L + M)]. The melanopsin-containing retinal ganglion cells are also active at daytime light levels and recent psychophysical results suggest that melanopsin contributes to conscious vision in humans. Here, we measured BOLD fMRI responses to spectral modulations that separately targeted the postreceptoral cone channels and melanopsin. Responses to spatially uniform (27.5° field size, central 5° obscured) flicker at 0.5, 1, 2, 4, 8, 16, 32, and 64 Hz were recorded from areas V1, V2/V3, motion-sensitive area MT, and the lateral occipital complex. In V1 and V2/V3, higher temporal sensitivity was observed to L + M + S (16 Hz) compared with L - M flicker (8 Hz), consistent with psychophysical findings. Area MT was most sensitive to rapid (32 Hz) flicker of either L + M + S or L - M. We found S cone responses only in areas V1 and V2/V3 (peak frequency: 4-8 Hz). In addition, we studied an L + M modulation and found responses that were effectively identical at all temporal frequencies to those recorded for the L + M + S modulation. Finally, we measured the cortical response to melanopsin-directed flicker and compared this response with control modulations that addressed stimulus imprecision and the possibility of stimulation of cones in the shadow of retinal blood vessels (penumbral cones). For our stimulus conditions, melanopsin flicker did not elicit a cortical response exceeding that of the control modulations. We note that failure to control for penumbral cone stimulation could be mistaken for a melanopsin response. SIGNIFICANCE STATEMENT The retina contains cone photoreceptors and ganglion cells that contain the photopigment melanopsin. Cones provide brightness and color signals to visual cortex. Melanopsin influences circadian rhythm and the pupil, but its contribution to cortex and perception is less clear. We measured the response of human visual cortex with fMRI using spectral modulations tailored to stimulate the cones and melanopsin separately. We found that cortical responses to cone signals vary systematically across visual areas. Differences in temporal sensitivity for achromatic, red-green, and blue-yellow stimuli generally reflect the known perceptual properties of vision. We found that melanopsin signals do not produce a measurable response in visual cortex at temporal frequencies between 0.5 and 64 Hz at daytime light levels.
Collapse
|
123
|
Allen AE, Procyk CA, Howarth M, Walmsley L, Brown TM. Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order. J Physiol 2016; 594:1911-29. [PMID: 26842995 PMCID: PMC4818601 DOI: 10.1113/jp271707] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/22/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The lateral posterior and posterior thalamic nuclei have been implicated in aspects of visually guided behaviour and reflex responses to light, including those dependent on melanopsin photoreception. Here we investigated the extent and basic properties of visually evoked activity across the mouse lateral posterior and posterior thalamus. We show that a subset of retinal projections to these regions derive from melanopsin-expressing retinal ganglion cells and find many cells that exhibit melanopsin-dependent changes in firing. We also show that subsets of cells across these regions integrate signals from both eyes in various ways and that, within the lateral posterior thalamus, visual responses are retinotopically ordered. ABSTRACT In addition to the primary thalamocortical visual relay in the lateral geniculate nuclei, a number of other thalamic regions contribute to aspects of visual processing. Thus, the lateral posterior thalamic nuclei (LP/pulvinar) appear important for various functions including determining visual saliency, visually guided behaviours and, alongside dorsal portions of the posterior thalamic nuclei (Po), multisensory processing of information related to aversive stimuli. However, despite the growing importance of mice as a model for understanding visual system organisation, at present we know very little about the basic visual response properties of cells in the mouse LP or Po. Prompted by earlier suggestions that melanopsin photoreception might be important for certain functions of these nuclei, we first employ specific viral tracing to show that a subset of retinal projections to the LP derive from melanopsin-expressing retinal ganglion cells. We next use multielectrode electrophysiology to demonstrate that LP and dorsal Po cells exhibit a variety of responses to simple visual stimuli including two distinct classes that express melanopsin-dependent changes in firing (together comprising ∼25% of neurons we recorded). We also show that subgroups of LP/Po cells integrate signals from both eyes in various ways and that, within the LP, visual responses are retinotopically ordered. Together our data reveal a diverse population of visually responsive neurons across the LP and dorsal Po whose properties align with some of the established functions of these nuclei and suggest new possible routes through which melanopsin photoreception could contribute to reflex light responses and/or higher order visual processing.
Collapse
|
124
|
Orlowska-Feuer P, Allen AE, Storchi R, Szkudlarek HJ, Lewandowski MH. The contribution of inner and outer retinal photoreceptors to infra-slow oscillations in the rat olivary pretectal nucleus. Eur J Neurosci 2016; 43:823-33. [PMID: 26804179 DOI: 10.1111/ejn.13184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 12/28/2022]
Abstract
A subpopulation of olivary pretectal nucleus (OPN) neurons discharges action potentials in an oscillatory manner, with a period of approximately two minutes. This 'infra-slow' oscillatory activity depends on synaptic excitation originating in the retina. Signals from rod-cone photoreceptors reach the OPN via the axons of either classic retinal ganglion cells or intrinsically photosensitive retinal ganglion cells (ipRGCs), which use melanopsin for photon capturing. Although both cell types convey light information, their physiological functions differ considerably. The aim of the present study was to disentangle how rod-cone and melanopsin photoresponses contribute to generation of oscillatory activity. Pharmacological manipulations of specific phototransduction cascades were used whilst recording extracellular single-unit activity in the OPN of anaesthetized rats. The results show that under photopic conditions (bright light), ipRGCs play a major role in driving infra-slow oscillations, as blocking melanopsin phototransmission abolishes or transiently disturbs oscillatory firing of the OPN neurons. On the other hand, blocking rod-cone phototransmission does not change firing patterns in photopic conditions. However, under mesopic conditions (moderate light), when melanopsin phototransmission is absent, blocking rod-cone signalling causes disturbances or even the disappearance of oscillations implying that classic photoreceptors are of greater importance under moderate light. Evidence is provided that all photoreceptors are required for the generation of oscillations in the OPN, although their roles in driving the rhythm are determined by the lighting conditions, consistent with their relative sensitivities. The results further suggest that maintained retinal activity is crucial to observe infra-slow oscillatory activity in the OPN.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Annette E Allen
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Riccardo Storchi
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Hanna J Szkudlarek
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
125
|
Hughes S, Jagannath A, Rodgers J, Hankins MW, Peirson SN, Foster RG. Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye (Lond) 2016; 30:247-54. [PMID: 26768919 DOI: 10.1038/eye.2015.264] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of both the anatomy and function of the melanopsin system. It has become clear that rather than acting as a simple irradiance detector the melanopsin system is in fact far more complicated. The range of behavioural systems known to be influenced by melanopsin activity is increasing with time, and it is now clear that melanopsin contributes not only to multiple non-image forming systems but also has a role in visual pathways. How melanopsin is capable of driving so many different behaviours is unclear, but recent evidence suggests that the answer may lie in the diversity of melanopsin light responses and the functional specialisation of photosensitive retinal ganglion cell (pRGC) subtypes. In this review, we shall overview the current understanding of the melanopsin system, and evaluate the evidence for the hypothesis that individual pRGC subtypes not only perform specific roles, but are functionally specialised to do so. We conclude that while, currently, the available data somewhat support this hypothesis, we currently lack the necessary detail to fully understand how the functional diversity of pRGC subtypes correlates with different behavioural responses, and ultimately why such complexity is required within the melanopsin system. What we are lacking is a cohesive understanding of how light responses differ between the pRGC subtypes (based not only on anatomical classification but also based on their site of innervation); how these diverse light responses are generated, and most importantly how these responses relate to the physiological functions they underpin.
Collapse
Affiliation(s)
- S Hughes
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A Jagannath
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J Rodgers
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - M W Hankins
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - S N Peirson
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - R G Foster
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
126
|
Walch OJ, Zhang LS, Reifler AN, Dolikian ME, Forger DB, Wong KY. Characterizing and modeling the intrinsic light response of rat ganglion-cell photoreceptors. J Neurophysiol 2015; 114:2955-66. [PMID: 26400257 PMCID: PMC4737408 DOI: 10.1152/jn.00544.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate both image-forming vision and non-image-forming visual responses such as pupillary constriction and circadian photoentrainment. Five types of ipRGCs, named M1-M5, have been discovered in rodents. To further investigate their photoresponse properties, we made multielectrode array spike recordings from rat ipRGCs, classified them into M1, M2/M4, and M3/M5 clusters, and measured their intrinsic, melanopsin-based responses to single and flickering light pulses. Results showed that ipRGC spiking can track flickers up to ∼0.2 Hz in frequency and that flicker intervals between 5 and 14 s evoke the most spikes. We also learned that melanopsin's integration time is intensity and cluster dependent. Using these data, we constructed a mathematical model for each cluster's intrinsic photoresponse. We found that the data for the M1 cluster are best fit by a model that assumes a large photoresponse, causing the cell to enter depolarization block. Our models also led us to hypothesize that the M2/M4 and M3/M5 clusters experience comparable photoexcitation but that the M3/M5 cascade decays significantly faster than the M2/M4 cascade, resulting in different response waveforms between these clusters. These mathematical models will help predict how each ipRGC cluster might respond to stimuli of any waveform and could inform the invention of lighting technologies that promote health through melanopsin stimulation.
Collapse
Affiliation(s)
- Olivia J Walch
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan
| | - L Samantha Zhang
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Aaron N Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Michael E Dolikian
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan; and
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
127
|
Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. Proc Natl Acad Sci U S A 2015; 112:E5734-43. [PMID: 26438865 DOI: 10.1073/pnas.1505274112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Twice a day, at dawn and dusk, we experience gradual but very high amplitude changes in background light intensity (irradiance). Although we perceive the associated change in environmental brightness, the representation of such very slow alterations in irradiance by the early visual system has been little studied. Here, we addressed this deficit by recording electrophysiological activity in the mouse dorsal lateral geniculate nucleus under exposure to a simulated dawn. As irradiance increased we found a widespread enhancement in baseline firing that extended to units with ON as well as OFF responses to fast luminance increments. This change in baseline firing was equally apparent when the slow irradiance ramp appeared alone or when a variety of higher-frequency artificial or natural visual stimuli were superimposed upon it. Using a combination of conventional knockout, chemogenetic, and receptor-silent substitution manipulations, we continued to show that, over higher irradiances, this increase in firing originates with inner-retinal melanopsin photoreception. At the single-unit level, irradiance-dependent increases in baseline firing were strongly correlated with improvements in the amplitude of responses to higher-frequency visual stimuli. This in turn results in an up to threefold increase in single-trial reliability of fast visual responses. In this way, our data indicate that melanopsin drives a generalized increase in dorsal lateral geniculate nucleus excitability as dawn progresses that both conveys information about changing background light intensity and increases the signal:noise for fast visual responses.
Collapse
|
128
|
Gaub BM, Berry MH, Holt AE, Isacoff EY, Flannery JG. Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity. Mol Ther 2015; 23:1562-71. [PMID: 26137852 PMCID: PMC4817926 DOI: 10.1038/mt.2015.121] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022] Open
Abstract
Retinal disease is one of the most active areas of gene therapy, with clinical trials ongoing in the United States for five diseases. There are currently no treatments for patients with late-stage disease in which photoreceptors have been lost. Optogenetic gene therapies are in development, but, to date, have suffered from the low light sensitivity of microbial opsins, such as channelrhodopsin and halorhodopsin, and azobenzene-based photoswitches. Several groups have shown that photoreceptive G-protein-coupled receptors (GPCRs) can be expressed heterologously, and photoactivate endogenous Gi/o signaling. We hypothesized such a GPCR could increase sensitivity due to endogenous signal amplification. We targeted vertebrate rhodopsin to retinal ON-bipolar cells of blind rd1 mice and observed restoration of: (i) light responses in retinal explants, (ii) visually-evoked potentials in visual cortex in vivo, and (iii) two forms of visually-guided behavior: innate light avoidance and discrimination of temporal light patterns in the context of fear conditioning. Importantly, both the light responses of the retinal explants and the visually-guided behavior occurred reliably at light levels that were two to three orders of magnitude dimmer than required for channelrhodopsin. Thus, gene therapy with native light-gated GPCRs presents a novel approach to impart light sensitivity for visual restoration in a useful range of illumination.
Collapse
Affiliation(s)
- Benjamin M Gaub
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Michael H Berry
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Amy E Holt
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- Vision Science, University of California, Berkeley, California, USA
| |
Collapse
|
129
|
All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr Biol 2015; 25:2763-2773. [PMID: 26441349 DOI: 10.1016/j.cub.2015.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/15/2015] [Accepted: 09/05/2015] [Indexed: 11/22/2022]
Abstract
Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
Collapse
|
130
|
Tsai TI, Atorf J, Neitz M, Neitz J, Kremers J. Rod- and cone-driven responses in mice expressing human L-cone pigment. J Neurophysiol 2015; 114:2230-41. [PMID: 26245314 DOI: 10.1152/jn.00188.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
The mouse is commonly used for studying retinal processing, primarily because it is amenable to genetic manipulation. To accurately study photoreceptor driven signals in the healthy and diseased retina, it is of great importance to isolate the responses of single photoreceptor types. This is not easily achieved in mice because of the strong overlap of rod and M-cone absorption spectra (i.e., maxima at 498 and 508 nm, respectively). With a newly developed mouse model (Opn1lw(LIAIS)) expressing a variant of the human L-cone pigment (561 nm) instead of the mouse M-opsin, the absorption spectra are substantially separated, allowing retinal physiology to be studied using silent substitution stimuli. Unlike conventional chromatic isolation methods, this spectral compensation approach can isolate single photoreceptor subtypes without changing the retinal adaptation. We measured flicker electroretinograms in these mutants under ketamine-xylazine sedation with double silent substitution (silent S-cone and either rod or M/L-cones) and obtained robust responses for both rods and (L-)cones. Small signals were yielded in wild-type mice, whereas heterozygotes exhibited responses that were generally intermediate to both. Fundamental response amplitudes and phase behaviors (as a function of temporal frequency) in all genotypes were largely similar. Surprisingly, isolated (L-)cone and rod response properties in the mutant strain were alike. Thus the LIAIS mouse warrants a more comprehensive in vivo assessment of photoreceptor subtype-specific physiology, because it overcomes the hindrance of overlapping spectral sensitivities present in the normal mouse.
Collapse
Affiliation(s)
- Tina I Tsai
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Biology, Division of Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Biology, Division of Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Maureen Neitz
- Vision Sciences, University of Washington, Seattle, Washington
| | - Jay Neitz
- Vision Sciences, University of Washington, Seattle, Washington
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Anatomy II, University of Erlangen-Nürnberg, Germany; and School of Optometry and Vision Science, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
131
|
Procyk CA, Eleftheriou CG, Storchi R, Allen AE, Milosavljevic N, Brown TM, Lucas RJ. Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones. J Neurophysiol 2015; 114:1321-30. [PMID: 26084909 PMCID: PMC4725120 DOI: 10.1152/jn.00368.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023] Open
Abstract
In advanced retinal degeneration loss of rods and cones leaves melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) as the only source of visual information. ipRGCs drive non-image-forming responses (e.g., circadian photoentrainment) under such conditions but, despite projecting to the primary visual thalamus [dorsal lateral geniculate nucleus (dLGN)], do not support form vision. We wished to determine what precludes ipRGCs supporting spatial discrimination after photoreceptor loss, using a mouse model (rd/rd cl) lacking rods and cones. Using multielectrode arrays, we found that both RGCs and neurons in the dLGN of this animal have clearly delineated spatial receptive fields. In the retina, they are typically symmetrical, lack inhibitory surrounds, and have diameters in the range of 10-30° of visual space. Receptive fields in the dLGN were larger (diameters typically 30-70°) but matched the retinotopic map of the mouse dLGN. Injections of a neuroanatomical tracer (cholera toxin β-subunit) into the dLGN confirmed that retinotopic order of ganglion cell projections to the dLGN and thalamic projections to the cortex is at least superficially intact in rd/rd cl mice. However, as previously reported for deafferented ipRGCs, onset and offset of light responses have long latencies in the rd/rd cl retina and dLGN. Accordingly, dLGN neurons failed to track dynamic changes in light intensity in this animal. Our data reveal that ipRGCs can convey spatial information in advanced retinal degeneration and identify their poor temporal fidelity as the major limitation in their ability to provide information about spatial patterns under natural viewing conditions.
Collapse
Affiliation(s)
| | - Cyril G Eleftheriou
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Riccardo Storchi
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Nina Milosavljevic
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
132
|
Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, Milosavljevic N, Pienaar A, Bedford R, Davis KE, Bishop PN, Lucas RJ. Restoration of Vision with Ectopic Expression of Human Rod Opsin. Curr Biol 2015; 25:2111-22. [PMID: 26234216 PMCID: PMC4540256 DOI: 10.1016/j.cub.2015.07.029] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022]
Abstract
Many retinal dystrophies result in photoreceptor loss, but the inner retinal neurons can survive, making them potentially amenable to emerging optogenetic therapies. Here, we show that ectopically expressed human rod opsin, driven by either a non-selective or ON-bipolar cell-specific promoter, can function outside native photoreceptors and restore visual function in a mouse model of advanced retinal degeneration. Electrophysiological recordings from retinal explants and the visual thalamus revealed changes in firing (increases and decreases) induced by simple light pulses, luminance increases, and naturalistic movies in treated mice. These responses could be elicited at light intensities within the physiological range and substantially below those required by other optogenetic strategies. Mice with rod opsin expression driven by the ON-bipolar specific promoter displayed behavioral responses to increases in luminance, flicker, coarse spatial patterns, and elements of a natural movie at levels of contrast and illuminance (≈50–100 lux) typical of natural indoor environments. These data reveal that virally mediated ectopic expression of human rod opsin can restore vision under natural viewing conditions and at moderate light intensities. Given the inherent advantages in employing a human protein, the simplicity of this intervention, and the quality of vision restored, we suggest that rod opsin merits consideration as an optogenetic actuator for treating patients with advanced retinal degeneration. Ectopic human rod opsin restores visual functions in advanced retinal degeneration Rod opsin has greater sensitivity than current optogenetic strategies Rod opsin-treated animals respond to spatial stimuli, flicker, and natural scenes As a human protein ordinarily found in retinal tissue, barriers to clinic are minimized
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester M13 9PT, UK; Manchester Royal Eye Hospital, CMFT, Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK
| | - Cyril Eleftheriou
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annette E Allen
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Abigail Pienaar
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert Bedford
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Katherine E Davis
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Paul N Bishop
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester M13 9PT, UK; Manchester Royal Eye Hospital, CMFT, Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK.
| | - Robert J Lucas
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
133
|
Pupillary light reflex to light inside the natural blind spot. Sci Rep 2015; 5:11862. [PMID: 26115182 PMCID: PMC4481772 DOI: 10.1038/srep11862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
When a light stimulus covers the human natural blind spot (BS), perceptual filling-in corrects for the missing information inside the BS. Here, we examined whether a filled-in surface of light perceived inside the BS affects the size of the short-latency pupillary light reflex (PLR), a pupil response mediated by a subcortical pathway for unconscious vision. The PLR was not induced by a red surface that was physically absent but perceptually filled-in inside the BS in the presence of a red ring surrounding it. However, a white large disk covering the BS unexpectedly induced a larger PLR than a white ring surrounding the BS border did, even though these two stimuli must be equivalent for the visual system, and trial-by-trial percepts did not predict PLR size. These results suggest that some physiological mechanism, presumably the retinal cells containing the photopigment melanopsin, receives the light projected inside the BS and enhances PLR.
Collapse
|
134
|
Light aversion and corneal mechanical sensitivity are altered by intrinscally photosensitive retinal ganglion cells in a mouse model of corneal surface damage. Exp Eye Res 2015; 137:57-62. [PMID: 26070985 DOI: 10.1016/j.exer.2015.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/13/2015] [Accepted: 05/29/2015] [Indexed: 02/03/2023]
Abstract
Animal models of corneal surface damage reliably exhibit altered tear quality and quantity, apoptosis, nerve degeneration, immune responses and many other symptoms of dry eye disease. An important clinical symptom of dry eye disease is photoallodynia (photophobia), which can be modeled in mice using behavioral light aversion as a surrogate. Intrinsically photosensitive retinal ganglion cells (ipRGCs) function as irradiance detectors. They have been shown to mediate innate light aversion and are ideal candidates to initiate or modulate light aversion in disease or dysfunctional states. This study addresses the relationship between light aversion, corneal mechanical sensitivity and corneal surface damage in a preclinical mouse model using bilateral topical application of benzalkonium chloride (BAC). Corneal application of BAC resulted in similar levels of corneal surface damage by fluorescein staining in both wild type mice and mice lacking ipRGCs. Light aversion was an early symptom of corneal surface damage, was proportional to the level of corneal damage and dependent on melanopsin-expressing cells. A decrease in both corneal mechanosensitivity and light aversion was observed in mice lacking melanopsin-expressing cells, suggesting a connection in the neural circuits mediating the two most common symptoms of corneal surface damage.
Collapse
|
135
|
Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biol 2015; 13:e1002143. [PMID: 25950461 PMCID: PMC4423780 DOI: 10.1371/journal.pbio.1002143] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/30/2015] [Indexed: 12/27/2022] Open
Abstract
Photoreceptor degeneration is one of the most prevalent causes of blindness. Despite photoreceptor loss, the inner retina and central visual pathways remain intact over an extended time period, which has led to creative optogenetic approaches to restore light sensitivity in the surviving inner retina. The major drawbacks of all optogenetic tools recently developed and tested in mouse models are their low light sensitivity and lack of physiological compatibility. Here we introduce a next-generation optogenetic tool, Opto-mGluR6, designed for retinal ON-bipolar cells, which overcomes these limitations. We show that Opto-mGluR6, a chimeric protein consisting of the intracellular domains of the ON-bipolar cell-specific metabotropic glutamate receptor mGluR6 and the light-sensing domains of melanopsin, reliably recovers vision at the retinal, cortical, and behavioral levels under moderate daylight illumination.
Collapse
|
136
|
Spitschan M, Aguirre GK, Brainard DH. Selective stimulation of penumbral cones reveals perception in the shadow of retinal blood vessels. PLoS One 2015; 10:e0124328. [PMID: 25897842 PMCID: PMC4405364 DOI: 10.1371/journal.pone.0124328] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
In 1819, Johann Purkinje described how a moving light source that displaces the shadow of the retinal blood vessels to adjacent cones can produce the entopic percept of a branching tree. Here, we describe a novel method for producing a similar percept. We used a device that mixes 56 narrowband primaries under computer control, in conjunction with the method of silent substitution, to present observers with a spectral modulation that selectively targeted penumbral cones in the shadow of the retinal blood vessels. Such a modulation elicits a clear Purkinje-tree percept. We show that the percept is specific to penumbral L and M cone stimulation and is not produced by selective penumbral S cone stimulation. The Purkinje-tree percept was strongest at 16 Hz and fell off at lower (8 Hz) and higher (32 Hz) temporal frequencies. Selective stimulation of open-field cones that are not in shadow, with penumbral cones silenced, also produced the percept, but it was not seen when penumbral and open-field cones were modulated together. This indicates the need for spatial contrast between penumbral and open-field cones to create the Purkinje-tree percept. Our observation provides a new means for studying the response of retinally stabilized images and demonstrates that penumbral cones can support spatial vision. Further, the result illustrates a way in which silent substitution techniques can fail to be silent. We show that inadvertent penumbral cone stimulation can accompany melanopsin-directed modulations that are designed only to silence open-field cones. This in turn can result in visual responses that might be mistaken as melanopsin-driven.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Geoffrey K. Aguirre
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DB); (GA)
| | - David H. Brainard
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DB); (GA)
| |
Collapse
|
137
|
Walmsley L, Hanna L, Mouland J, Martial F, West A, Smedley AR, Bechtold DA, Webb AR, Lucas RJ, Brown TM. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol 2015; 13:e1002127. [PMID: 25884537 PMCID: PMC4401556 DOI: 10.1371/journal.pbio.1002127] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision. Environmental measurements and physiological recordings reveal that mice not only use changes in the intensity of sunlight to entrain their circadian clock, but also employ blue–yellow color discrimination to detect spectral changes associated with dawn and dusk. Animals use an internal brain clock to keep track of time and adjust their behaviour in anticipation of the coming day or night. To be useful, however, this clock must be synchronised to external time. Assessing external time is typically thought to rely on measuring large changes in ambient light intensity that occur over dawn/dusk. The colour of light also changes over these twilight transitions, but it is currently unknown whether such changes in colour are important for synchronising biological clocks to the solar cycle. Here we show that the mammalian blue–yellow colour discrimination axis provides a more reliable indication of twilight progression than a system solely measuring changes in light intensity. We go on to use electrical recordings from the brain clock to reveal the presence of many neurons that can track changes in blue–yellow colour occurring during natural twilight. Finally, using mice housed under lighting regimes with simulated dawn/dusk transitions, we show that changes in colour are required for appropriate biological timing with respect to the solar cycle. In sum, our data reveal a new sensory mechanism for estimating time of day that should be available to all mammals capable of chromatic vision, including humans.
Collapse
Affiliation(s)
- Lauren Walmsley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lydia Hanna
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Josh Mouland
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Alexander West
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew R. Smedley
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - David A. Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ann R. Webb
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RJL); (TMB)
| | - Timothy M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RJL); (TMB)
| |
Collapse
|
138
|
Davis KE, Eleftheriou CG, Allen AE, Procyk CA, Lucas RJ. Melanopsin-derived visual responses under light adapted conditions in the mouse dLGN. PLoS One 2015; 10:e0123424. [PMID: 25822371 PMCID: PMC4379008 DOI: 10.1371/journal.pone.0123424] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/24/2015] [Indexed: 01/16/2023] Open
Abstract
A direct projection from melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) reaches the primary visual thalamus (dorsal lateral geniculate nucleus; dLGN). The significance of this melanopsin input to the visual system is only recently being investigated. One unresolved question is the degree to which neurons in the dLGN could use melanopsin to track dynamic changes in light intensity under light adapted conditions. Here we set out to address this question. We were able to present full field steps visible only to melanopsin by switching between rod-isoluminant ‘yellow’ and ‘blue’ lights in a mouse lacking cone function (Cnga3-/-). In the retina these stimuli elicited melanopsin-like responses from a subset of ganglion cells. When presented to anaesthetised mice, we found that ~25-30% of visually responsive neurones in the contralateral dLGN responded to these melanopsin-isolating steps with small increases in firing rate. Such responses could be elicited even with fairly modest increases in effective irradiance (32% Michelson contrast for melanopsin). These melanopsin-driven responses were apparent at bright backgrounds (corresponding to twilight-daylight conditions), but their threshold irradiance was strongly dependent upon prior light exposure when stimuli were superimposed on a spectrally neutral ramping background light. While both onset and offset latencies were long for melanopsin-derived responses compared to those evoked by rods, there was great variability in these parameters with some cells responding to melanopsin steps in <1 s. These data indicate that a subset of dLGN units can employ melanopsin signals to detect modest changes in irradiance under photopic conditions.
Collapse
Affiliation(s)
- Katherine E. Davis
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (KED); (RJL)
| | | | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (KED); (RJL)
| |
Collapse
|
139
|
Walmsley L, Brown TM. Eye-specific visual processing in the mouse suprachiasmatic nuclei. J Physiol 2015; 593:1731-43. [PMID: 25652666 DOI: 10.1113/jphysiol.2014.288225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Abstract
Internal circadian clocks are important regulators of mammalian biology, acting to coordinate physiology and behaviour in line with daily changes in the environment. At present, synchronisation of the circadian system to the solar cycle is believed to rely on a quantitative assessment of total ambient illumination, provided by a bilateral projection from the retina to the suprachiasmatic nuclei (SCN). It is currently unclear, however, whether this photic integration occurs at the level of individual cells or within the SCN network. Here we use extracellular multielectrode recordings from the SCN of anaesthetised mice to show that most SCN neurons receive visual input from just one eye. While we find that binocular inputs to a subset of cells are important for rapid responses to changes in illumination, we find no evidence indicating that individual SCN cells are capable of reporting the average light intensity across the whole visual field. As a result of these local irradiance coding properties, our data establish that photic integration is primarily mediated at the level of the SCN network and suggest that accurate assessments of global light levels would be impaired by non-uniform illumination of either eye.
Collapse
Affiliation(s)
- Lauren Walmsley
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
140
|
Cao D, Nicandro N, Barrionuevo PA. A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans. J Vis 2015; 15:15.1.27. [PMID: 25624466 DOI: 10.1167/15.1.27] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) can respond to light directly through self-contained photopigment, melanopsin. IpRGCs also receive synaptic inputs from rods and cones. Thus, studying ipRGC functions requires a novel photostimulating method that can account for all of the photoreceptor inputs. Here, we introduced an inexpensive LED-based five-primary photostimulator that can control the excitations of rods, S-, M-, L-cones, and melanopsin-containing ipRGCs in humans at constant background photoreceptor excitation levels, a critical requirement for studying the adaptation behavior of ipRGCs with rod, cone, or melanopsin input. We described the theory and technical aspects (including optics, electronics, software, and calibration) of the five-primary photostimulator. Then we presented two preliminary studies using the photostimulator we have implemented to measure melanopsin-mediated pupil responses and temporal contrast sensitivity function (TCSF). The results showed that the S-cone input to pupil responses was antagonistic to the L-, M- or melanopsin inputs, consistent with an S-OFF and (L + M)-ON response property of primate ipRGCs (Dacey et al., 2005). In addition, the melanopsin-mediated TCSF had a distinctive pattern compared with L + M or S-cone mediated TCSF. Other than controlling individual photoreceptor excitation independently, the five-primary photostimulator has the flexibility in presenting stimuli modulating any combination of photoreceptor excitations, which allows researchers to study the mechanisms by which ipRGCs combine various photoreceptor inputs.
Collapse
Affiliation(s)
- Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nathaniel Nicandro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Pablo A Barrionuevo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
141
|
A role for the outer retina in development of the intrinsic pupillary light reflex in mice. Neuroscience 2014; 286:60-78. [PMID: 25433236 DOI: 10.1016/j.neuroscience.2014.11.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023]
Abstract
Mice do not require the brain in order to maintain constricted pupils. However, little is known about this intrinsic pupillary light reflex (iPLR) beyond a requirement for melanopsin in the iris and an intact retinal ciliary marginal zone (CMZ). Here, we study the mouse iPLR in vitro and examine a potential role for outer retina (rods and cones) in this response. In wild-type mice the iPLR was absent at postnatal day 17 (P17), developing progressively from P21-P49. However, the iPLR only achieved ∼ 30% of the wild-type constriction in adult mice with severe outer retinal degeneration (rd and rdcl). Paradoxically, the iPLR increased significantly in retinal degenerate mice >1.5 years of age. This was accompanied by an increase in baseline pupil tone in the dark to levels indistinguishable from those in adult wild types. This rejuvenated iPLR response was slowed by atropine application, suggesting the involvement of cholinergic neurotransmission. We could find no evidence of an increase in melanopsin expression by quantitative PCR in the iris and ciliary body of aged retinal degenerates and a detailed anatomical analysis revealed a significant decline in melanopsin-positive intrinsically photosensitive retinal ganglion cells (ipRGCs) in rdcl mice >1.5 years. Adult mice lacking rod function (Gnat1(-/-)) also had a weak iPLR, while mice lacking functional cones (Cpfl5) maintained a robust response. We also identify an important role for pigmentation in the development of the mouse iPLR, with only a weak and transient response present in albino animals. Our results show that the iPLR in mice develops unexpectedly late and are consistent with a role for rods and pigmentation in the development of this response in mice. The enhancement of the iPLR in aged degenerate mice was extremely surprising but may have relevance to behavioral observations in mice and patients with retinitis pigmentosa.
Collapse
|
142
|
Valiente-Soriano FJ, García-Ayuso D, Ortín-Martínez A, Jiménez-López M, Galindo-Romero C, Villegas-Pérez MP, Agudo-Barriuso M, Vugler AA, Vidal-Sanz M. Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina. Front Neuroanat 2014; 8:131. [PMID: 25477787 PMCID: PMC4238377 DOI: 10.3389/fnana.2014.00131] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023] Open
Abstract
Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a+RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina.
Collapse
Affiliation(s)
- Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Maria Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Anthony A Vugler
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology London, UK
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| |
Collapse
|
143
|
Opponent melanopsin and S-cone signals in the human pupillary light response. Proc Natl Acad Sci U S A 2014; 111:15568-72. [PMID: 25313040 DOI: 10.1073/pnas.1400942111] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the human, cone photoreceptors (L, M, and S) and the melanopsin-containing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are active at daytime light intensities. Signals from cones are combined both additively and in opposition to create the perception of overall light and color. Similar mechanisms seem to be at work in the control of the pupil's response to light. Uncharacterized however, is the relative contribution of melanopsin and S cones, with their overlapping, short-wavelength spectral sensitivities. We measured the response of the human pupil to the separate stimulation of the cones and melanopsin at a range of temporal frequencies under photopic conditions. The S-cone and melanopsin photoreceptor channels were found to be low-pass, in contrast to a band-pass response of the pupil to L- and M-cone signals. An examination of the phase relationships of the evoked responses revealed that melanopsin signals add with signals from L and M cones but are opposed by signals from S cones in control of the pupil. The opposition of the S cones is revealed in a seemingly paradoxical dilation of the pupil to greater S-cone photon capture. This surprising result is explained by the neurophysiological properties of ipRGCs found in animal studies.
Collapse
|
144
|
Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Sobrado-Calvo P, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M. Displaced retinal ganglion cells in albino and pigmented rats. Front Neuroanat 2014; 8:99. [PMID: 25339868 PMCID: PMC4186482 DOI: 10.3389/fnana.2014.00099] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/04/2014] [Indexed: 01/30/2023] Open
Abstract
We have studied in parallel the population of displaced retinal ganglion cells (dRGCs) and normally placed (orthotopic RGCs, oRGCs) in albino and pigmented rats. Using retrograde tracing from the optic nerve, from both superior colliculi (SC) or from the ipsilateral SC in conjunction with Brn3 and melanopsin immunodetection, we report for the first time their total number and topography as well as the number and distribution of those dRGCs and oRGCs that project ipsi- or contralaterally and/or that express any of the three Brn3 isoforms or melanopsin. The total number of RGCs (oRGCs+dRGCs) is 84,706 ± 1249 in albino and 90,440 ± 2236 in pigmented, out of which 2383 and 2428 are melanopsin positive (m-RGCs), respectively. Regarding dRGCs: i/ albino rats have a significantly lower number of dRGCs than pigmented animals (0.5% of the total number of RGCs vs. 2.5%, respectively), ii/ dRGCs project massively to the contralateral SC, iii/ the percentage of ipsilaterality is higher for dRGCs than for oRGCs, iv/ a higher proportion of ipsilateral dRGCs is observed in albino than pigmented animals, v/ dRGC topography is very specific, they predominate in the equatorial temporal retina, being densest where the oRGCs are densest, vi/ Brn3a detects all dRGCs except half of the ipsilateral ones and those that express melanopsin, vii/ the proportion of dRGCs that express Brn3b or Brn3c is slightly lower than in the oRGC population, viii/ a higher percentage of dRGCs (13% albino, 9% pigmented) than oRGCs (2.6%) express melanopsin, ix/ few m-RGCs (displaced and orthotopic) project to the ipsilateral SC, x/ the topography of m-dRGCs does not resemble the general distribution of dRGCs, xi/ The soma size in m-oRGCs ranges from 10 to 21 μm and in m-dRGCs from 8 to 15 μm, xii/ oRGCs and dRGCs have the same susceptibility to axonal injury and ocular hypertension. Although the role of mammalian dRGCs remains to be determined, our data suggest that they are not misplaced by an ontogenic mistake.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain ; Hospital Clínico Universitario Virgen de la Arrixaca Murcia, Spain
| | - Manuel Salinas-Navarro
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Manuel Jiménez-López
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Paloma Sobrado-Calvo
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - María P Villegas-Pérez
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain ; Hospital Clínico Universitario Virgen de la Arrixaca Murcia, Spain
| |
Collapse
|
145
|
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease. Optom Vis Sci 2014; 91:894-903. [PMID: 24879087 DOI: 10.1097/opx.0000000000000284] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are a class of photoreceptors with established roles in non-image-forming processes. Their contributions to image-forming vision may include the estimation of brightness. Animal models have been central for understanding the physiological mechanisms of ipRGC function and there is evidence of conservation of function across species. Intrinsically photosensitive retinal ganglion cells can be divided into five ganglion cell subtypes that show morphological and functional diversity. Research in humans has established that ipRGCs signal environmental irradiance to entrain the central body clock to the solar day for regulating circadian processes and sleep. In addition, ipRGCs mediate the pupil light reflex (PLR), making the PLR a readily accessible behavioral marker of ipRGC activity. Less is known about ipRGC function in retinal and optic nerve disease, with emerging research providing insight into their function in diabetes, retinitis pigmentosa, glaucoma, and hereditary optic neuropathy. We briefly review the anatomical distributions, projections, and basic physiological mechanisms of ipRGCs and their proposed and known functions in animals and humans with and without eye disease. We introduce a paradigm for differentiating inner and outer retinal inputs to the pupillary control pathway in retinal disease and apply this paradigm to patients with age-related macular degeneration (AMD). In these cases of patients with AMD, we provide the initial evidence that ipRGC function is altered and that the dysfunction is more pronounced in advanced disease. Our perspective is that with refined pupillometry paradigms, the PLR can be extended to AMD assessment as a tool for the measurement of inner and outer retinal dysfunction.
Collapse
|
146
|
Gaggioni G, Maquet P, Schmidt C, Dijk DJ, Vandewalle G. Neuroimaging, cognition, light and circadian rhythms. Front Syst Neurosci 2014; 8:126. [PMID: 25071478 PMCID: PMC4086398 DOI: 10.3389/fnsys.2014.00126] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/18/2014] [Indexed: 01/27/2023] Open
Abstract
In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning.
Collapse
Affiliation(s)
- Giulia Gaggioni
- Cyclotron Research Centre, University of LiègeLiège, Belgium
| | - Pierre Maquet
- Cyclotron Research Centre, University of LiègeLiège, Belgium
| | - Christina Schmidt
- Cyclotron Research Centre, University of LiègeLiège, Belgium
- Centre for Chronobiology, Psychiatric Hospital of the University of BaselBasel, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of SurreyGuildford, UK
| | | |
Collapse
|
147
|
Hughes S, Jagannath A, Hickey D, Gatti S, Wood M, Peirson SN, Foster RG, Hankins MW. Using siRNA to define functional interactions between melanopsin and multiple G Protein partners. Cell Mol Life Sci 2014; 72:165-79. [PMID: 24958088 PMCID: PMC4282707 DOI: 10.1007/s00018-014-1664-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/10/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
Melanopsin expressing photosensitive retinal ganglion cells (pRGCs) represent a third class of ocular photoreceptors and mediate a range of non-image forming responses to light. Melanopsin is a G protein coupled receptor (GPCR) and existing data suggest that it employs a membrane bound signalling cascade involving Gnaq/11 type G proteins. However, to date the precise identity of the Gα subunits involved in melanopsin phototransduction remains poorly defined. Here we show that Gnaq, Gna11 and Gna14 are highly co-expressed in pRGCs of the mouse retina. Furthermore, using RNAi based gene silencing we show that melanopsin can signal via Gnaq, Gna11 or Gna14 in vitro, and demonstrate that multiple members of the Gnaq/11 subfamily, including Gna14 and at least Gnaq or Gna11, can participate in melanopsin phototransduction in vivo and contribute to the pupillary light responses of mice lacking rod and cone photoreceptors. This diversity of G protein interactions suggests additional complexity in the melanopsin phototransduction cascade and may provide a basis for generating the diversity of light responses observed from pRGC subtypes.
Collapse
Affiliation(s)
- Steven Hughes
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Aarti Jagannath
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
- F. Hoffman La Roche, RED Research and Development, CNS DTA, Basel, Switzerland
| | - Doron Hickey
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Silvia Gatti
- F. Hoffman La Roche, RED Research and Development, CNS DTA, Basel, Switzerland
| | - Matthew Wood
- Department of Anatomy, Physiology and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| |
Collapse
|
148
|
Chellappa SL, Viola AU, Schmidt C, Bachmann V, Gabel V, Maire M, Reichert CF, Valomon A, Landolt HP, Cajochen C. Light modulation of human sleep depends on a polymorphism in the clock gene Period3. Behav Brain Res 2014; 271:23-9. [PMID: 24893318 DOI: 10.1016/j.bbr.2014.05.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/19/2014] [Accepted: 05/24/2014] [Indexed: 12/13/2022]
Abstract
Non-image-forming (NIF) responses to light powerfully modulate human physiology. However, it remains scarcely understood how NIF responses to light modulate human sleep and its EEG hallmarks, and if there are differences across individuals. Here we investigated NIF responses to light on sleep in individuals genotyped for the PERIOD3 (PER3) variable-number tandem-repeat (VNTR) polymorphism. Eighteen healthy young men (20-28 years; mean ± SEM: 25.9 ± 1.2) homozygous for the PER3 polymorphism were matched by age, body-mass index, and ethnicity. The study protocol comprised a balanced cross-over design during the winter, during which participants were exposed to either light of 40 lx at 6,500 K (blue-enriched) or light at 2,500 K (non-blue enriched), during 2h in the evening. Compared to light at 2,500 K, light at 6,500 K induced a significant increase in all-night NREM sleep slow-wave activity (SWA: 1.0-4.5 Hz) in the occipital cortex for PER3(5/5) individuals, but not for PER3(4/4) volunteers. Dynamics of SWA across sleep cycles revealed increased occipital NREM sleep SWA for virtually all sleep episode only for PER3(5/5) individuals. Furthermore, they experienced light at 6,500 K as significantly brighter. Intriguingly, this subjective perception of brightness significantly predicted their increased occipital SWA throughout the sleep episode. Our data indicate that humans homozygous for the PER3(5/5) allele are more sensitive to NIF light effects, as indexed by specific changes in sleep EEG activity. Ultimately, individual differences in NIF light responses on sleep may depend on a clock gene polymorphism involved in sleep-wake regulation.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Cyclotron Research Center, University of Liège, Liège, Belgium
| | - Antoine U Viola
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christina Schmidt
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Valérie Bachmann
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Virginie Gabel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Micheline Maire
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Amandine Valomon
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
| |
Collapse
|
149
|
Barrionuevo PA, Cao D. Contributions of rhodopsin, cone opsins, and melanopsin to postreceptoral pathways inferred from natural image statistics. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A131-9. [PMID: 24695161 PMCID: PMC4117214 DOI: 10.1364/josaa.31.00a131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Visual neural representation is constrained by the statistical properties of the environment. Prior analysis of cone pigment excitations for natural images revealed three principal components corresponding to the major retinogeniculate pathways identified by anatomical and physiological studies in primates. Here, principal component analyses were conducted on the excitations of rhodopsin, cone opsins, and melanopsin for nine hyperspectral images under 21 natural illuminants. The results suggested that rhodopsin and melanopsin may contribute to the three major retinogeniculate pathways. Rhodopsin and melanopsin may provide additional constraints in natural scene statistics, leading to new components that cannot be revealed by analysis based on cone opsin excitations only.
Collapse
|
150
|
Viénot F, Brettel H. The Verriest Lecture: Visual properties of metameric blacks beyond cone vision. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A38-A46. [PMID: 24695197 DOI: 10.1364/josaa.31.000a38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The generic framework of metamerism implies that the number of sensors is smaller than the dimension of the stimulus. The metameric black paradigm was introduced by Wyszecki [Farbe2, 39 (1953)] and developed by Cohen and Kappauf [Am. J. Psychol.95, 537 (1982)]. Within a multireceptor and multiprimary scheme, we investigate how far the choice of illumination can isolate a photoreceptor response. The spectral profiles of the fundamental metamers that correspond to a collection of (x,y) values over the chromaticity diagram are shown. When the luminance is set at a fixed value, the relative excitation of the melanopsin cells and of the rods elicited by the fundamental metamers varies over the chromaticity diagram. The range of excitation of the melanopsin cells and of the rods that could be achieved at a given chromaticity, by manipulating the metameric black content, is examined. When only the melanopsin excitation is manipulated, the range of melanopsin excitation that can be achieved is rather limited. On the chromaticity diagram, the largest range of variation of the rods and the melanopsin cells excitation is obtained for (x,y) chromaticity coordinates near (1/3,1/3). Extension of Cohen's procedure to rod and cone metamers is proposed. The higher the number of spectral bands, the wider the choice of metameric lights.
Collapse
|