101
|
Barott KL, Barron ME, Tresguerres M. Identification of a molecular pH sensor in coral. Proc Biol Sci 2018; 284:rspb.2017.1769. [PMID: 29093223 DOI: 10.1098/rspb.2017.1769] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022] Open
Abstract
Maintaining stable intracellular pH (pHi) is essential for homeostasis, and requires the ability to both sense pH changes that may result from internal and external sources, and to regulate downstream compensatory pH pathways. Here we identified the cAMP-producing enzyme soluble adenylyl cyclase (sAC) as the first molecular pH sensor in corals. sAC protein was detected throughout coral tissues, including those involved in symbiosis and calcification. Application of a sAC-specific inhibitor caused significant and reversible pHi acidosis in isolated coral cells under both dark and light conditions, indicating sAC is essential for sensing and regulating pHi perturbations caused by respiration and photosynthesis. Furthermore, pHi regulation during external acidification was also dependent on sAC activity. Thus, sAC is a sensor and regulator of pH disturbances from both metabolic and external origin in corals. Since sAC is present in all coral cell types, and the cAMP pathway can regulate virtually every aspect of cell physiology through post-translational modifications of proteins, sAC is likely to trigger multiple homeostatic mechanisms in response to pH disturbances. This is also the first evidence that sAC modulates pHi in any non-mammalian animal. Since corals are basal metazoans, our results indicate this function is evolutionarily conserved across animals.
Collapse
Affiliation(s)
- Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Megan E Barron
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
102
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2018; 85:543-556. [PMID: 29750435 DOI: 10.1002/mrd.22996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract, the concentration is around 1 µM. In this study, we characterize the role of Zn2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of GPR39-type Zn-receptor localized mainly in the sperm tail. Zn2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A-tyrosine kinase Src (Src)-epidermal growth factor receptor and phospholipase C. Both the transmembrane AC and the soluble-AC are involved in the stimulation of HAM by Zn2+ . The development of HAM is precisely regulated by cAMP, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn2+ were added to the cells; low Zn2+ stimulated HAM, whereas at relatively high Zn2+ , no effect was seen. We further demonstrate that the Ca2+ -channel CatSper involved in Zn2+ -stimulated HAM. These data support a role for extracellular Zn2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
103
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
104
|
Pozdniakova S, Ladilov Y. Functional Significance of the Adcy10-Dependent Intracellular cAMP Compartments. J Cardiovasc Dev Dis 2018; 5:E29. [PMID: 29751653 PMCID: PMC6023465 DOI: 10.3390/jcdd5020029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence confirms the compartmentalized structure of evolutionarily conserved 3'⁻5'-cyclic adenosine monophosphate (cAMP) signaling, which allows for simultaneous participation in a wide variety of physiological functions and ensures specificity, selectivity and signal strength. One important player in cAMP signaling is soluble adenylyl cyclase (sAC). The intracellular localization of sAC allows for the formation of unique intracellular cAMP microdomains that control various physiological and pathological processes. This review is focused on the functional role of sAC-produced cAMP. In particular, we examine the role of sAC-cAMP in different cellular compartments, such as cytosol, nucleus and mitochondria.
Collapse
Affiliation(s)
- Sofya Pozdniakova
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite, 10115 Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany.
| | - Yury Ladilov
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite, 10115 Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany.
| |
Collapse
|
105
|
Molecular, Enzymatic, and Cellular Characterization of Soluble Adenylyl Cyclase From Aquatic Animals. Methods Enzymol 2018; 605:525-549. [PMID: 29909838 DOI: 10.1016/bs.mie.2018.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The enzyme soluble adenylyl cyclase (sAC) is the most recently identified source of the messenger molecule cyclic adenosine monophosphate. sAC is evolutionarily conserved from cyanobacteria to human, is directly stimulated by [Formula: see text] ions, and can act as a sensor of environmental and metabolic CO2, pH, and [Formula: see text] levels. sAC genes tend to have multiple alternative promoters, undergo extensive alternative splicing, be translated into low mRNA levels, and the numerous sAC protein isoforms may be present in various subcellular localizations. In aquatic organisms, sAC has been shown to mediate various functions including intracellular pH regulation in coral, blood acid/base regulation in shark, heart beat rate in hagfish, and NaCl absorption in fish intestine. Furthermore, sAC is present in multiple other species and tissues, and sAC protein and enzymatic activity have been reported in the cytoplasm, the nucleus, and other subcellular compartments, suggesting even more diverse physiological roles. Although the methods and experimental tools used to study sAC are conventional, the complexity of sAC genes and proteins requires special considerations that are discussed in this chapter.
Collapse
|
106
|
Xu Y, Fan Y, Fan W, Jing J, Xue K, Zhang X, Ye B, Ji Y, Liu Y, Ding Z. RNASET2 impairs the sperm motility via PKA/PI3K/calcium signal pathways. Reproduction 2018; 155:383-392. [DOI: 10.1530/rep-17-0746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/13/2018] [Indexed: 12/30/2022]
Abstract
Asthenozoospermia is one of the leading causes of male infertility owing to a decline in sperm motility. Herein, we determined if there is a correlation between RNASET2 content on human spermatozoa and sperm motility in 205 semen samples from both asthenozoospermia patients and normozoospermia individuals. RNASET2 content was higher in sperm from asthenozoospermia patients than in normozoospermia individuals. On the other hand, its content was inversely correlated with sperm motility as well as progressive motility. Moreover, the inhibitory effect of RNASET2 on sperm motility was induced by incubating normozoospermic sperm with RNase T2 protein. Such treatment caused significant declines in intracellular spermatozoa PKA activity, PI3K activity and calcium level, which resulted in severely impaired sperm motility, and the sperm motility was largely rescued by cAMP supplementation. Finally, protein immunoprecipitation and mass spectrometry identified proteins whose interactions with RNASET2 were associated with declines in human spermatozoa motility. AKAP4, a protein regulating PKA activity, coimmunoprecipated with RNASET2 and they colocalized with one another in the sperm tail, which might contribute to reduced sperm motility. Thus, RNASET2 may be a novel biomarker of asthenozoospermia. Increases in RNASET2 can interact with AKAP4 in human sperm tail and subsequently reduce sperm motility by suppressing PKA/PI3K/calcium signaling pathways.
Collapse
|
107
|
Dey S, Goswami S, Eisa A, Bhattacharjee R, Brothag C, Kline D, Vijayaraghavan S. Cyclic AMP and glycogen synthase kinase 3 form a regulatory loop in spermatozoa. J Cell Physiol 2018; 233:7239-7252. [PMID: 29574946 DOI: 10.1002/jcp.26557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
The multifaceted glycogen synthase kinase (GSK3) has an essential role in sperm and male fertility. Since cyclic AMP (cAMP) plays an important role in sperm function, we investigated whether GSK3 and cAMP pathways may be interrelated. We used GSK3 and soluble adenylyl cyclase (sAC) knockout mice and pharmacological modulators to examine this relationship. Intracellular cAMP levels were found to be significantly lower in sperm lacking GSK3α or GSK3β. A similar outcome was observed when sperm cells were treated with SB216763, a GSK3 inhibitor. This reduction of cAMP levels was not due to an effect on sperm adenylyl cyclase but was caused by elevated phosphodiesterase (PDE) activity. The PDE4 inhibitor RS25344 or the general PDE inhibitor IBMX could restore cAMP levels in sperm lacking GSK3α or β-isoform. PDE activity assay also showed that hyperactivated PDE4 contributes in lowering of cAMP levels in GSK3α null sperm suggesting that in wild-type sperm PDE4 activity is kept in check by GSK3. Conversely, PKA being triggered by cAMP, affected GSK3 activity through increasing its phosphorylation. Increased GSK3 phosphorylation also occurred by inhibition of sperm specific protein phosphatase type 1, PP1γ2. The relationship between cAMP, GSK3, and PP1γ2 activities was also confirmed in sperm from sAC null mice. Pull-down assay using recombinant PP1γ2 indicated that PKA, GSK3, and PP1γ2 could exist as a complex. Pharmacological inhibition of GSK3 in mature spermatozoa resulted in significantly reduced fertilization of eggs in vitro. Our results show that cAMP, PKA, and GSK3 are interrelated in regulation of sperm function.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Alaa Eisa
- School of Biomedical Sciences, Kent State University, Kent, Ohio
| | | | - Cameron Brothag
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
108
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
109
|
The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein. Oncotarget 2018; 7:45597-45607. [PMID: 27323809 PMCID: PMC5216745 DOI: 10.18632/oncotarget.10056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/01/2016] [Indexed: 11/25/2022] Open
Abstract
cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein.
Collapse
|
110
|
Xie ZD, Guo YM, Ren MJ, Yang J, Wang SF, Xu TH, Chen LM, Liu Y. The Balance of [Formula: see text] Secretion vs. Reabsorption in the Endometrial Epithelium Regulates Uterine Fluid pH. Front Physiol 2018; 9:12. [PMID: 29422866 PMCID: PMC5788990 DOI: 10.3389/fphys.2018.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022] Open
Abstract
Uterine fluid contains a high concentration of HCO3- which plays an essential role in sperm capacitation and fertilization. In addition, the HCO3- concentration in uterine fluid changes periodically during the estrous cycle. It is well-known that the endometrial epithelium contains machineries involving the apical SLC26 family anion exchangers for secreting HCO3- into the uterine fluid. In the present study, we find for the first time that the electroneutral Na+/HCO3- cotransporter NBCn1 is expressed at the apical membrane of the endometrial epithelium. The protein abundance of the apical NBCn1 and that of the apical SLC26A4 and SLC26A6 are reciprocally regulated during the estrous cycle in the uterus. NBCn1 is most abundant at diestrus, whereas SLC26A4/A6 are most abundant at proestrus/estrus. In the ovariectomized mice, the expression of uterine NBCn1 is inhibited by β-estradiol, but stimulated by progesterone, whereas that of uterine SLC26A4/A6 is stimulated by β-estradiol. In vivo perfusion studies show that the endometrial epithelium is capable of both secreting and reabsorbing HCO3-. Moreover, the activity for HCO3- secretion by the endometrial epithelium is significantly higher at estrus than it is at diestrus. The opposite is true for HCO3- reabsorption. We conclude that the endometrial epithelium simultaneously contains the activity for HCO3- secretion involving the apical SLC26A4/A6 and the activity for HCO3- reabsorption involving the apical NBCn1, and that the acid-base homeostasis in the uterine fluid is regulated by the finely-tuned balance of the two activities.
Collapse
Affiliation(s)
- Zhang-Dong Xie
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Min Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Juan Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shao-Fang Wang
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Tong-Hui Xu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
111
|
Sherrington SL, Kumwenda P, Kousser C, Hall RA. Host Sensing by Pathogenic Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:159-221. [PMID: 29680125 DOI: 10.1016/bs.aambs.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to cause disease extends from the ability to grow within the host environment. The human host provides a dynamic environment to which fungal pathogens must adapt to in order to survive. The ability to grow under a particular condition (i.e., the ability to grow at mammalian body temperature) is considered a fitness attribute and is essential for growth within the human host. On the other hand, some environmental conditions activate signaling mechanisms resulting in the expression of virulence factors, which aid pathogenicity. Therefore, pathogenic fungi have evolved fitness and virulence attributes to enable them to colonize and infect humans. This review highlights how some of the major pathogenic fungi respond and adapt to key environmental signals within the human host.
Collapse
Affiliation(s)
- Sarah L Sherrington
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Pizga Kumwenda
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Courtney Kousser
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
112
|
Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017; 5:204-218. [PMID: 28297559 DOI: 10.1111/andr.12320] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
After leaving the testis, spermatozoa have not yet acquired the ability to move progressively and are unable to fertilize oocytes. To become fertilization competent, they must go through an epididymal maturation process in the male, and capacitation in the female tract. Epididymal maturation can be defined as those changes occurring to spermatozoa in the epididymis that render the spermatozoa the ability to capacitate in the female tract. As part of this process, sperm cells undergo a series of biochemical and physiological changes that require incorporation of new molecules derived from the epididymal epithelium, as well as post-translational modifications of endogenous proteins synthesized during spermiogenesis in the testis. This review will focus on epididymal maturation events, with emphasis in recent advances in the understanding of the molecular basis of this process.
Collapse
Affiliation(s)
- M G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - P E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
113
|
Rahman N, Ramos-Espiritu L, Milner TA, Buck J, Levin LR. Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol 2017; 148:325-39. [PMID: 27670898 PMCID: PMC5037342 DOI: 10.1085/jgp.201611606] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/08/2016] [Indexed: 01/07/2023] Open
Abstract
Lysosomes, the degradative organelles of the endocytic and autophagic pathways, function at an acidic pH. Lysosomes are acidified by the proton-pumping vacuolar ATPase (V-ATPase), but the molecular processes that set the organelle's pH are not completely understood. In particular, pH-sensitive signaling enzymes that can regulate lysosomal acidification in steady-state physiological conditions have yet to be identified. Soluble adenylyl cyclase (sAC) is a widely expressed source of cAMP that serves as a physiological pH sensor in cells. For example, in proton-secreting epithelial cells, sAC is responsible for pH-dependent translocation of V-ATPase to the luminal surface. Here we show genetically and pharmacologically that sAC is also essential for lysosomal acidification. In the absence of sAC, V-ATPase does not properly localize to lysosomes, lysosomes fail to fully acidify, lysosomal degradative capacity is diminished, and autophagolysosomes accumulate.
Collapse
Affiliation(s)
- Nawreen Rahman
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065 Graduate Program in Neuroscience, Weill Cornell Medical College, New York, NY 10065
| | | | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065 Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
114
|
Marchiani S, Tamburrino L, Benini F, Fanfani L, Dolce R, Rastrelli G, Maggi M, Pellegrini S, Baldi E. Chromatin Protamination and Catsper Expression in Spermatozoa Predict Clinical Outcomes after Assisted Reproduction Programs. Sci Rep 2017; 7:15122. [PMID: 29123209 PMCID: PMC5680250 DOI: 10.1038/s41598-017-15351-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/19/2017] [Indexed: 01/19/2023] Open
Abstract
Identification of parameters predicting assisted reproductive technologies (ARTs) success is a major goal of research in reproduction. Quality of gametes is essential to achieve good quality embryos and increase the success of ARTs. We evaluated two sperm parameters, chromatin maturity and expression of the sperm specific calcium channel CATSPER, in relation to ART outcomes in 206 couples undergoing ARTs. Chromatin maturity was evaluated by Chromomycin A3 (CMA3) for protamination and Aniline Blue (AB) for histone persistence and CATSPER expression by a flow cytometric method. CMA3 positivity and CATSPER expression significantly predicted the attainment of good quality embryos with an OR of 6.6 and 14.3 respectively, whereas AB staining was correlated with fertilization rate. In the subgroup of couples with women ≤35 years, CATSPER also predicted achievement of clinical pregnancy (OR = 4.4). Including CMA3, CATSPER and other parameters affecting ART outcomes (female age, female factor and number of MII oocytes), a model that resulted able to predict good embryo quality with high accuracy was developed. CMA3 staining and CATSPER expression may be considered two applicable tools to predict ART success and useful for couple counseling. This is the first study demonstrating a role of CATSPER expression in embryo development after ARTs programs.
Collapse
Affiliation(s)
- S Marchiani
- Dept. of Experimental and Clinical Medicine, Center of Excellence DeNothe, University of Florence, Florence, Italy.
| | - L Tamburrino
- Dept. of Experimental and Clinical Medicine, Center of Excellence DeNothe, University of Florence, Florence, Italy
| | - F Benini
- Centro Procreazione Assistita "Demetra", Florence, Italy
| | - L Fanfani
- Centro Procreazione Assistita "Demetra", Florence, Italy
| | - R Dolce
- Dept. of Experimental and Clinical Medicine, Center of Excellence DeNothe, University of Florence, Florence, Italy
| | - G Rastrelli
- Dept. of Experimental and Clinical Biomedical Sciences "Mario Serio", Center of Excellence DeNothe, University of Florence, Florence, Italy
| | - M Maggi
- Dept. of Experimental and Clinical Biomedical Sciences "Mario Serio", Center of Excellence DeNothe, University of Florence, Florence, Italy
| | - S Pellegrini
- Centro Procreazione Assistita "Demetra", Florence, Italy
| | - E Baldi
- Dept. of Experimental and Clinical Medicine, Center of Excellence DeNothe, University of Florence, Florence, Italy.
| |
Collapse
|
115
|
Kikuchi R, Tsuji T, Watanabe O, Yamaguchi K, Furukawa K, Nakamura H, Aoshiba K. Hypercapnia Accelerates Adipogenesis: A Novel Role of High CO 2 in Exacerbating Obesity. Am J Respir Cell Mol Biol 2017; 57:570-580. [PMID: 28613919 DOI: 10.1165/rcmb.2016-0278oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Obesity is a major risk factor for the development of obstructive sleep apnea (OSA) and obesity hypoventilation syndrome (OHS), which manifest as intermittent hypercapnia and sustained plus intermittent hypercapnia, respectively. In this study, we investigated whether CO2 affects adipocyte differentiation (adipogenesis) and maturation (hypertrophy). Human visceral or subcutaneous preadipocytes were grown to confluence and then induced to differentiate to adipocytes under hypocapnia, normocapnia, and hypercapnia with or without hypoxia. Adipogenesis was also induced under intermittent or sustained hypercapnia. Differentiated adipocytes were maintained to maturity under normocapnia or hypercapnia. Our main findings are as follows: (1) hypercapnia accelerated adipogenesis in visceral and subcutaneous preadipocytes, whereas hypocapnia inhibited adipogenesis; (2) hypercapnia did not affect adipocyte hypertrophy; (3) hypercapnia-accelerated adipogenesis was independent of extracellular acidosis, oxygen concentration, or either intermittent or sustained exposure to high CO2; and (4) the mechanisms underlying hypercapnia-accelerated adipogenesis involved increased production of cyclic adenosine monophosphate (cAMP) via soluble adenylyl cyclase, leading to the activation of protein kinase A and exchanger protein directly activated by cAMP, which, in turn, activated proadipogenic transcription factors, such as cAMP response element binding protein, CCAAT/enhancer binding protein β, and peroxisome proliferator-activated receptor γ. This study reveals a novel role of high CO2 in promoting adipogenesis, which provides mechanistic clues to a pathoetiological interaction between OSA/OHS and obesity. Our data suggest a vicious cycle of disease progression via the following mechanism: OSA/OHS → hypoventilation → hypercapnia → increased adipogenesis → increased fat mass → exacerbated OSA/OHS.
Collapse
Affiliation(s)
- Ryota Kikuchi
- 1 Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Takao Tsuji
- 1 Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
- 2 Respiratory Medicine, Institute of Geriatrics and
| | - Osamu Watanabe
- 1 Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Kazuhiro Yamaguchi
- 3 Comprehensive Medical Center of Sleep Disorders, Tokyo Women's Medical University, Tokyo, Japan; and
| | - Kinya Furukawa
- 4 Department of Chest Surgery, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Hiroyuki Nakamura
- 1 Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Kazutetsu Aoshiba
- 1 Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
116
|
Subcellular localization and characterization of estrogenic pathway regulators and mediators in Atlantic salmon spermatozoal cells. Histochem Cell Biol 2017; 149:75-96. [DOI: 10.1007/s00418-017-1611-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 12/26/2022]
|
117
|
Sun XH, Zhu YY, Wang L, Liu HL, Ling Y, Li ZL, Sun LB. The Catsper channel and its roles in male fertility: a systematic review. Reprod Biol Endocrinol 2017; 15:65. [PMID: 28810916 PMCID: PMC5558725 DOI: 10.1186/s12958-017-0281-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The Catsper channel is a sperm-specific, Ca2+-permeable, pH-dependent, and low voltage-dependent channel that is essential for the hyperactivity of sperm flagellum, chemotaxis towards the egg, capacitation and acrosome reaction. All of these physiological events require calcium entry into sperm cells. Remarkably, Catsper genes are exclusively expressed in the testis during spermatogenesis, and are sensitive to ion channel-induced pH change, such as NHEs, Ca2+ATPase, K+ channel, Hv1 channel and HCO3- transporters. Furthermore, the Catsper channel is regulated by some physiological stimulants, such as progesterone, cyclic nucleotides (e.g., cAMP, cGMP), zona pellucida (ZP) glycoproteins and bovine serum albumin (BSA). All of these factors normally stimulate Ca2+ entry into sperm through the Catsper channel. In addition, the Catsper channel may be a potential target for male infertility treatment or contraception. This review will focus on the structure, functions, regulation mechanisms and medicinal targets of the Catsper channel.
Collapse
Affiliation(s)
- Xiang-hong Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Ying-ying Zhu
- 0000 0001 0455 0905grid.410645.2Department of pharmacy, College of pharmacy of Qingdao University, Qingdao, China
| | - Lin Wang
- grid.412521.1Department of clinical laboratory, the affiliated hospital of Qingdao University Medical College, Qingdao, China
| | - Hong-ling Liu
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Yong Ling
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Zong-li Li
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Li-bo Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| |
Collapse
|
118
|
Salt-induced Na+/K+-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells. Pflugers Arch 2017; 469:1401-1412. [DOI: 10.1007/s00424-017-1999-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022]
|
119
|
Chagtoo M, George N, Pathak N, Tiwari S, Godbole MM, Ladilov Y. Inhibition of Intracellular Type 10 Adenylyl Cyclase Protects Cortical Neurons Against Reperfusion-Induced Mitochondrial Injury and Apoptosis. Mol Neurobiol 2017; 55:2471-2482. [PMID: 28386847 DOI: 10.1007/s12035-017-0473-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/24/2017] [Indexed: 02/07/2023]
Abstract
Mitochondrial injury significantly contributes to the neuronal death under cerebral ischemia and reperfusion. Within several signaling pathways, cyclic adenosine monophosphate (cAMP) signaling plays a substantial role in mitochondrial injury and cell death. Traditionally, the source of cellular cAMP has been attributed to the membrane-bound adenylyl cyclase, whereas the role of the intracellular localized type 10 soluble adenylyl cyclase (sAC) in neuronal pathology has not been considered. Since neurons express an active form of sAC, we aimed to investigate the role of sAC in reperfusion-induced neuronal apoptosis. For this purpose, the in vitro model of oxygen/glucose deprivation (simulated ischemia, 1 h), followed by recovery (simulated reperfusion, 12 h) in rat embryonic neurons, was applied. Although ischemia alone had no significant effect on apoptosis, reperfusion led to an activation of the mitochondrial pathway of apoptosis, hallmarked by mitochondrial depolarization, cytochrome c release, and mitochondrial ROS formation. These effects were accompanied by significantly augmented sAC expression and increased cellular cAMP content during reperfusion. Pharmacological suppression of sAC during reperfusion reduced cellular cAMP and ameliorated reperfusion-induced mitochondrial apoptosis and ROS formation. Similarly, sAC knockdown prevented neuronal death. Further analysis revealed a role of protein kinase A (PKA), a major downstream target of sAC, in reperfusion-induced neuronal apoptosis and ROS formation. In conclusion, the results show a causal role of intracellular, sAC-dependent cAMP signaling in reperfusion-induced mitochondrial injury and apoptosis in neurons. The protective effect of sAC inhibition during the reperfusion phase provides a basis for the development of new strategies to prevent the reperfusion-induced neuronal injury.
Collapse
Affiliation(s)
- Megha Chagtoo
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.,Department of Bioscience, Integral University, Lucknow, India
| | - Nelson George
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Neelam Pathak
- Department of Bioscience, Integral University, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Madan M Godbole
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Yury Ladilov
- Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany. .,Center for Cardiovascular Research, Charité-Mitte, Hessische Strasse 3-4, 10115, Berlin, Germany.
| |
Collapse
|
120
|
Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol 2017; 16:89-98. [PMID: 29259456 PMCID: PMC5661804 DOI: 10.1002/rmb2.12021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Background Although artificial insemination (AI) technique is an established biotechnology for bovine reproduction, the results of AI (conception rates) have a tendency to decline gradually. To our annoyance, moreover, AI‐subfertile bulls have been occasionally found in the AI centers. To resolve these serious problems, it is necessary to control the sperm quality more strictly by the examinations of sperm molecules. Methods We reviewed a number of recent articles regarding potentials of bovine sperm proteins as the biomarkers for bull AI‐subfertility and also showed our unpublished supplemental data on the bull AI‐subfertility associated proteins. Main findings Bull AI‐subfertility is caused by the deficiency or dysfunctions of various molecules including regulatory proteins of ATP synthesis, acrosomal proteins, nuclear proteins, capacitation‐related proteins and seminal plasma proteins. Conclusion In order to control the bovine sperm quality more strictly by the molecular examinations, it is necessary to select suitable sperm protein biomarkers for the male reproductive problems which happen in the AI centers.
Collapse
Affiliation(s)
- Hiroshi Harayama
- Division of Animal Science Department of Bioresource Science Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kenta Minami
- Division of Animal Science Department of Bioresource Science Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kazumi Kishida
- Department of Obstetrics and Gynecology Shiga University of Medical Science Otsu Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases Osaka University Suita Osaka Japan
| |
Collapse
|
121
|
Jansen V, Jikeli JF, Wachten D. How to control cyclic nucleotide signaling by light. Curr Opin Biotechnol 2017; 48:15-20. [PMID: 28288335 DOI: 10.1016/j.copbio.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Abstract
Optogenetics allows to non-invasively manipulate cellular functions with spatio-temporal precision by combining genetic engineering with the control of protein function by light. Since the discovery of channelrhodopsin has pioneered the field, the optogenetic toolkit has been ever expanding and allows now not only to control neuronal activity by light, but rather a multitude of other cellular functions. One important application that has been established in recent years is the light-dependent control of second messenger signaling. The optogenetic toolkit now allows to control cyclic nucleotide-dependent signaling by light in vitro and in vivo.
Collapse
Affiliation(s)
- Vera Jansen
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Jan F Jikeli
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Dagmar Wachten
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany; Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
122
|
Abstract
The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.
Collapse
Affiliation(s)
- Rute Pereira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| | - Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. do Bessa, 240, 1° Dto. Frente, 4100-012 Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal and Institute of Health Research an Innovation (I3S), University of Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| |
Collapse
|
123
|
Sharif M, Silva E, Shah STA, Miller DJ. Redistribution of soluble N-ethylmaleimide-sensitive-factor attachment protein receptors in mouse sperm membranes prior to the acrosome reaction. Biol Reprod 2017; 96:352-365. [PMID: 28203732 DOI: 10.1095/biolreprod.116.143735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/12/2016] [Accepted: 01/10/2017] [Indexed: 02/03/2023] Open
Abstract
Formation of complexes between soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins on opposing membranes is the minimal requirement for intracellular membrane fusion. The SNARE, syntaxin 2, is found on the sperm plasma membrane and a second SNARE, vesicle associated membrane protein 2 (VAMP2, also known as synaptobrevin 2, SYB2), is on the apposing outer acrosomal membrane. During the acrosome reaction, the outer acrosomal membrane fuses at hundreds of points with the plasma membrane. We hypothesized that syntaxin 2 and VAMP2 redistribute within their respective membranes prior to the acrosome reaction to form trans-SNARE complexes and promote membrane fusion. Immunofluorescence and superresolution structured illumination microscopy were used to localize syntaxin 2 and VAMP2 in mouse sperm during capacitation. Initially, syntaxin 2 was found in puncta throughout the acrosomal region. At 60 and 120 min of capacitation, syntaxin 2 was localized in puncta primarily in the apical ridge. Although deletion of bicarbonate during incubation had no effect, syntaxin 2 puncta were relocated in the restricted region in less than 20% of sperm incubated without albumin. In contrast, VAMP2 was already found in puncta within the apical ridge prior to capacitation. The puncta containing syntaxin 2 and VAMP2 did not precisely co-localize at 0 or 60 min of capacitation time. In summary, syntaxin 2 shifted its location to the apical ridge on the plasma membrane during capacitation in an albumin-dependent manner but VAMP2 was already localized to the apical ridge. Puncta containing VAMP2 did not co-localize with those containing syntaxin 2 during capacitation; therefore, formation of trans-SNARE complexes containing these SNAREs does not occur until after capacitation, immediately prior to acrosomal exocytosis.
Collapse
Affiliation(s)
- Momal Sharif
- Institute of Animal Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Elena Silva
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, USA
| | - Syed Tahir Abbas Shah
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, USA
| | - David J Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, USA
| |
Collapse
|
124
|
Roa JN, Tresguerres M. Bicarbonate-sensing soluble adenylyl cyclase is present in the cell cytoplasm and nucleus of multiple shark tissues. Physiol Rep 2017; 5:5/2/e13090. [PMID: 28108644 PMCID: PMC5269408 DOI: 10.14814/phy2.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
The enzyme soluble adenylyl cyclase (sAC) is directly stimulated by bicarbonate (HCO3−) to produce the signaling molecule cyclic adenosine monophosphate (cAMP). Because sAC and sAC‐related enzymes are found throughout phyla from cyanobacteria to mammals and they regulate cell physiology in response to internal and external changes in pH, CO2, and HCO3−, sAC is deemed an evolutionarily conserved acid‐base sensor. Previously, sAC has been reported in dogfish shark and round ray gill cells, where they sense and counteract blood alkalosis by regulating the activity of V‐type H+‐ ATPase. Here, we report the presence of sAC protein in gill, rectal gland, cornea, intestine, white muscle, and heart of leopard shark Triakis semifasciata. Co‐expression of sAC with transmembrane adenylyl cyclases supports the presence of cAMP signaling microdomains. Furthermore, immunohistochemistry on tissue sections, and western blots and cAMP‐activity assays on nucleus‐enriched fractions demonstrate the presence of sAC protein in and around nuclei. These results suggest that sAC modulates multiple physiological processes in shark cells, including nuclear functions.
Collapse
Affiliation(s)
- Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography University of California San Diego, 9500 Gilman Drive La Jolla, California, 92093, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography University of California San Diego, 9500 Gilman Drive La Jolla, California, 92093, USA
| |
Collapse
|
125
|
A cannabinoid link between mitochondria and memory. Nature 2016; 539:555-559. [PMID: 27828947 DOI: 10.1038/nature20127] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.
Collapse
|
126
|
Kaupp UB, Strünker T. Signaling in Sperm: More Different than Similar. Trends Cell Biol 2016; 27:101-109. [PMID: 27825709 DOI: 10.1016/j.tcb.2016.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022]
Abstract
For a given sensory cell type, signaling motifs are rather uniform across phyla. By contrast, sperm from different species use diverse repertoires of sperm-specific signaling molecules and even closely related protein isoforms feature different properties and serve different functions. This surprising diversity has consequences for strategies in fertilization research and it will take some time to get the big picture. We discuss the function of receptors, ion channels, and exchangers embedded in cellular pathways from different sperm species.
Collapse
Affiliation(s)
- U B Kaupp
- Center of Advanced European Studies and Research (CAESAR), Department of Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - T Strünker
- University Hospital Münster, Center of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Geb. D11, 48149 Münster, Germany
| |
Collapse
|
127
|
Gervasi MG, Visconti PE. Chang's meaning of capacitation: A molecular perspective. Mol Reprod Dev 2016; 83:860-874. [PMID: 27256723 DOI: 10.1002/mrd.22663] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/31/2016] [Indexed: 02/04/2023]
Abstract
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
128
|
Ramos-Espiritu L, Kleinboelting S, Navarrete FA, Alvau A, Visconti PE, Valsecchi F, Starkov A, Manfredi G, Buck H, Adura C, Zippin JH, van den Heuvel J, Glickman JF, Steegborn C, Levin LR, Buck J. Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nat Chem Biol 2016; 12:838-44. [PMID: 27547922 PMCID: PMC5030147 DOI: 10.1038/nchembio.2151] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
Abstract
The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.
Collapse
Affiliation(s)
- Lavoisier Ramos-Espiritu
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | | | - Felipe A Navarrete
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Antonio Alvau
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Federica Valsecchi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Anatoly Starkov
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Hannes Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Carolina Adura
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, New York, USA
| | | | - J Fraser Glickman
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
129
|
Navarrete FA, Alvau A, Lee HC, Levin LR, Buck J, Leon PMD, Santi CM, Krapf D, Mager J, Fissore RA, Salicioni AM, Darszon A, Visconti PE. Transient exposure to calcium ionophore enables in vitro fertilization in sterile mouse models. Sci Rep 2016; 6:33589. [PMID: 27627854 PMCID: PMC5024339 DOI: 10.1038/srep33589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022] Open
Abstract
Mammalian sperm acquire fertilizing capacity in the female tract in a process called capacitation. At the molecular level, capacitation requires protein kinase A activation, changes in membrane potential and an increase in intracellular calcium. Inhibition of these pathways results in loss of fertilizing ability in vivo and in vitro. We demonstrated that transient incubation of mouse sperm with Ca2+ ionophore accelerated capacitation and rescued fertilizing capacity in sperm with inactivated PKA function. We now show that a pulse of Ca2+ ionophore induces fertilizing capacity in sperm from infertile CatSper1 (Ca2+ channel), Adcy10 (soluble adenylyl cyclase) and Slo3 (K+ channel) KO mice. In contrast, sperm from infertile mice lacking the Ca2+ efflux pump PMACA4 were not rescued. These results indicate that a transient increase in intracellular Ca2+ can overcome genetic infertility in mice and suggest this approach may prove adaptable to rescue sperm function in certain cases of human male infertility.
Collapse
Affiliation(s)
- Felipe A Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Antonio Alvau
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | | | - Celia M Santi
- Department of Obstetrics and Gynecology, Basic Sciences Division, Washington University School of Medicine. St. Louis, MO, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), 2000 Rosario, Argentina
| | - Jesse Mager
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Ana M Salicioni
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, IBT-UNAM, Cuernavaca, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| |
Collapse
|
130
|
Wilson CM, Roa JN, Cox GK, Tresguerres M, Farrell AP. Introducing a novel mechanism to control heart rate in the ancestral Pacific hagfish. ACTA ACUST UNITED AC 2016; 219:3227-3236. [PMID: 27510962 DOI: 10.1242/jeb.138198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
Although neural modulation of heart rate is well established among chordate animals, the Pacific hagfish (Eptatretus stoutii) lacks any cardiac innervation, yet it can increase its heart rate from the steady, depressed heart rate seen in prolonged anoxia to almost double its normal normoxic heart rate, an almost fourfold overall change during the 1-h recovery from anoxia. The present study sought mechanistic explanations for these regulatory changes in heart rate. We provide evidence for a bicarbonate-activated, soluble adenylyl cyclase (sAC)-dependent mechanism to control heart rate, a mechanism never previously implicated in chordate cardiac control.
Collapse
Affiliation(s)
- Christopher M Wilson
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Georgina K Cox
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.,Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
131
|
Inda C, Dos Santos Claro PA, Bonfiglio JJ, Senin SA, Maccarrone G, Turck CW, Silberstein S. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol 2016; 214:181-95. [PMID: 27402953 PMCID: PMC4949449 DOI: 10.1083/jcb.201512075] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP.
Collapse
Affiliation(s)
- Carolina Inda
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Paula A Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Juan J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Sergio A Senin
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
132
|
Roa JN, Tresguerres M. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells. Am J Physiol Cell Physiol 2016; 311:C340-9. [PMID: 27335168 DOI: 10.1152/ajpcell.00089.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology.
Collapse
Affiliation(s)
- Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| |
Collapse
|
133
|
Stanger SJ, Law EA, Jamsai D, O'Bryan MK, Nixon B, McLaughlin EA, Aitken RJ, Roman SD. A novel germ cell protein, SPIF (sperm PKA interacting factor), is essential for the formation of a PKA/TCP11 complex that undergoes conformational and phosphorylation changes upon capacitation. FASEB J 2016; 30:2777-91. [DOI: 10.1096/fj.201500136r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Simone J. Stanger
- Centre for Chemical Biology, University of NewcastleCallaghanNew South WalesAustralia
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Estelle A. Law
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Duangporn Jamsai
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
| | - Moira K. O'Bryan
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
| | - Brett Nixon
- Centre for Chemical Biology, University of NewcastleCallaghanNew South WalesAustralia
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Eileen A. McLaughlin
- Centre for Chemical Biology, University of NewcastleCallaghanNew South WalesAustralia
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - R. John Aitken
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Shaun D. Roman
- Centre for Chemical Biology, University of NewcastleCallaghanNew South WalesAustralia
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
134
|
Sodium-hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis 2016; 7:e2152. [PMID: 27010853 PMCID: PMC4823964 DOI: 10.1038/cddis.2016.65] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/20/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Our previous work identified NHA1, a testis-specific sodium–hydrogen exchanger, is specifically localized on the principal piece of mouse sperm flagellum. Our subsequent study suggested that the number of newborns and fertility rate of NHA1-vaccinated female mice are significantly stepped down. In order to define the physiological function of NHA1 in spermatozoa, we generated Nha1Fx/Fx, Zp3-Cre (hereafter called Nha1 cKO) mice and found that Nha1 cKO males were viable and subfertile with reduced sperm motility. Notably, cyclic AMP (cAMP) synthesis by soluble adenylyl cyclase (sAC) was attenuated in Nha1 cKO spermatozoa and cAMP analogs restored sperm motility. Similar to Nha1 cKO males, Nha2Fx/Fx, Zp3-Cre (hereafter called Nha2 cKO) male mice were subfertile, indicating these two Nha genes may be functionally redundant. Furthermore, we demonstrated that male mice lacking Nha1 and Nha2 genes (hereafter called Nha1/2 dKO mice) were completely infertile, with severely diminished sperm motility owing to attenuated sAC-cAMP signaling. Importantly, principal piece distribution of NHA1 in spermatozoa are phylogenetically conserved in spermatogenesis. Collectively, our data revealed that NHA1 and NHA2 function as a key sodium–hydrogen exchanger responsible for sperm motility after leaving the cauda epididymidis.
Collapse
|
135
|
Mukherjee S, Jansen V, Jikeli JF, Hamzeh H, Alvarez L, Dombrowski M, Balbach M, Strünker T, Seifert R, Kaupp UB, Wachten D. A novel biosensor to study cAMP dynamics in cilia and flagella. eLife 2016; 5. [PMID: 27003291 PMCID: PMC4811770 DOI: 10.7554/elife.14052] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/05/2016] [Indexed: 01/09/2023] Open
Abstract
The cellular messenger cAMP regulates multiple cellular functions, including signaling in cilia and flagella. The cAMP dynamics in these subcellular compartments are ill-defined. We introduce a novel FRET-based cAMP biosensor with nanomolar sensitivity that is out of reach for other sensors. To measure cAMP dynamics in the sperm flagellum, we generated transgenic mice and reveal that the hitherto methods determining total cAMP levels do not reflect changes in free cAMP levels. Moreover, cAMP dynamics in the midpiece and principal piece of the flagellum are distinctively different. The sole cAMP source in the flagellum is the soluble adenylate cyclase (SACY). Although bicarbonate-dependent SACY activity requires Ca2+, basal SACY activity is suppressed by Ca2+. Finally, we also applied the sensor to primary cilia. Our new cAMP biosensor features unique characteristics that allow gaining new insights into cAMP signaling and unravel the molecular mechanisms underlying ciliary function in vitro and in vivo. DOI:http://dx.doi.org/10.7554/eLife.14052.001 Cells can change the way they grow, move or develop in response to information from their environment. This information is first detected at the surface of the cell and then the information is relayed around the interior of the cell by signaling molecules known as “second messengers”. A molecule called cAMP is a well-known second messenger that is involved in many different signaling pathways. Therefore, the levels of cAMP in specific areas of the cell need to be precisely regulated to enable different signaling pathways to be activated at specific times and locations. Some cells have hair-like structures called cilia or flagella on their surface. Cilia and flagella are able to move the fluid that surrounds the cells or even move the cells themselves. The second messenger cAMP plays an essential role in making cilia move, but it is challenging to analyze the dynamics of cAMP – that this, how the levels of this molecule change over time – in these structures. The levels of cAMP in live cells can only be measured using fluorescent biosensors. Introducing these biosensors into specific cell structures is difficult and they are not sensitive enough to respond to low levels of cAMP. Furthermore, it is difficult to measure cAMP activity inside such tiny structures using these biosensors. Mukherjee, Jansen, Jikeli et al. now address some of these challenges by creating a new cAMP biosensor that has several unique features. Most importantly, it can respond to very low levels of cAMP, making it more sensitive than previous biosensors. Mukherjee et al. test this new biosensor in the flagella of sperm cells from mice, which reveals how the production of cAMP is regulated in the flagellum. The new biosensor also shows that different parts of the flagellum can have different cAMP dynamics. In the future, this new biosensor could be used to study cAMP in other structures and compartments within cells. DOI:http://dx.doi.org/10.7554/eLife.14052.002
Collapse
Affiliation(s)
- Shatanik Mukherjee
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Vera Jansen
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Jan F Jikeli
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Hussein Hamzeh
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Marco Dombrowski
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Melanie Balbach
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Timo Strünker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany.,Centrum für Reproduktionsmedizin und Andrologie, Universitätsklinikum Münster, Münster, Germany
| | - Reinhard Seifert
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
136
|
Kleinboelting S, Ramos-Espiritu L, Buck H, Colis L, van den Heuvel J, Glickman JF, Levin LR, Buck J, Steegborn C. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site. J Biol Chem 2016; 291:9776-84. [PMID: 26961873 DOI: 10.1074/jbc.m115.708255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs.
Collapse
Affiliation(s)
- Silke Kleinboelting
- From the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lavoisier Ramos-Espiritu
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, High Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York 10065, and
| | - Hannes Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Laureen Colis
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | | | - J Fraser Glickman
- High Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York 10065, and
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Clemens Steegborn
- From the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany,
| |
Collapse
|
137
|
Sosa CM, Zanetti MN, Pocognoni CA, Mayorga LS. Acrosomal Swelling Is Triggered by cAMP Downstream of the Opening of Store-Operated Calcium Channels During Acrosomal Exocytosis in Human Sperm. Biol Reprod 2016; 94:57. [PMID: 26792943 DOI: 10.1095/biolreprod.115.133231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/15/2016] [Indexed: 11/01/2022] Open
Abstract
Acrosomal exocytosis in mammalian sperm is a regulated secretion with unusual characteristics. One of its most striking features is the postfusion loss of the outer acrosomal membrane and the overlying plasma membrane as hybrid vesicles. We have previously reported in human sperm that, by preventing the release of calcium from the acrosome, the exocytic process can be arrested at a stage where the acrosomes are profusely swollen, with invaginations of the outer acrosomal membrane. In this report, we show by transmission electron microcopy swelling with similar characteristics without arresting the exocytic process. Acrosomal swelling was observed when secretion was promoted by pharmacological and physiological inducers of the acrosome reaction that trigger exocytosis by different mechanisms. We show that progesterone- and thapsigargin-induced swelling depended on a calcium influx from the extracellular medium through store-operated calcium channels. However, calcium was dispensable when sperm were stimulated with cAMP analogs. KH7, an inhibitor of the soluble adenylyl cyclase, blocked progesterone-induced swelling. Our results indicate that swelling is a required process for acrosomal exocytosis triggered by activation of an adenylyl cyclase downstream of the opening of store-operated calcium channels.
Collapse
Affiliation(s)
- Claudia M Sosa
- Instituto de Histología y Embriología de Mendoza (IHEM/CONICET-UNCuyo), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - M Natalia Zanetti
- Instituto de Histología y Embriología de Mendoza (IHEM/CONICET-UNCuyo), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Cristian A Pocognoni
- Instituto de Histología y Embriología de Mendoza (IHEM/CONICET-UNCuyo), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM/CONICET-UNCuyo), School of Medicine, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
138
|
Lark DS, Reese LR, Ryan TE, Torres MJ, Smith CD, Lin CT, Neufer PD. Protein Kinase A Governs Oxidative Phosphorylation Kinetics and Oxidant Emitting Potential at Complex I. Front Physiol 2015; 6:332. [PMID: 26635618 PMCID: PMC4646981 DOI: 10.3389/fphys.2015.00332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/02/2015] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial electron transport system (ETS) is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC)/cyclic AMP (cAMP)/Protein kinase A (PKA) axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA) cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduced complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowered both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS.
Collapse
Affiliation(s)
- Daniel S Lark
- East Carolina Diabetes and Obesity Institute Greenville, NC, USA ; Department of Kinesiology, East Carolina University Greenville, NC, USA
| | - Lauren R Reese
- East Carolina Diabetes and Obesity Institute Greenville, NC, USA ; Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Terence E Ryan
- East Carolina Diabetes and Obesity Institute Greenville, NC, USA ; Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Maria J Torres
- East Carolina Diabetes and Obesity Institute Greenville, NC, USA ; Department of Kinesiology, East Carolina University Greenville, NC, USA
| | - Cody D Smith
- East Carolina Diabetes and Obesity Institute Greenville, NC, USA ; Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute Greenville, NC, USA ; Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute Greenville, NC, USA ; Department of Kinesiology, East Carolina University Greenville, NC, USA ; Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
139
|
Dey S, Roy D, Majumder GC, Mukherjee B, Bhattacharyya D. Role of forward-motility-stimulating factor as an extracellular activator of soluble adenylyl cyclase. Mol Reprod Dev 2015; 82:1001-14. [PMID: 26390310 DOI: 10.1002/mrd.22586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022]
Abstract
Forward-motility-stimulating factor (FMSF) is a protein, originally purified from bubaline serum, that promotes progressive motility of mature spermatozoa. FMSF binds to sperm surface receptors and activates transmembrane adenylyl cyclase (tmAC), causing a rise in intracellular cyclic AMP level ([cAMP]i) and subsequent activation of a protein kinase A/tyrosine kinase-mediated pathway that enhances forward motility. This article further evaluates how FMSF works in the caprine system, particularly identifying the stimulatory effect of this glycoprotein on soluble adenylyl cyclase (sAC). Elevated [cAMP]i, initially resulting from FMSF-dependent activation of tmAC, was associated with the release of Ca(2+) from an intracellular calcium store in the sperm head, likely via an inositol triphosphate-sensitive calcium ion channel. This peak Ca(2+) concentration of ∼125-175 nM was capable of stimulating sAC in vitro in a calmodulin-independent manner, thereby triggering more cAMP production. Our model proposes that a positive-feedback loop mediated by cAMP and Ca(2+) is established in FMSF-stimulated sperm, with cAMP playing the role of a chemical messenger at multiple steps, resulting in the observed progressive motility. Thus, FSMF stimulates a novel signaling cascade that synergistically activate both tmAC and sAC to achieve forward sperm motility.
Collapse
Affiliation(s)
- Souvik Dey
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, West Bengal, India
| | - Debarun Roy
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, West Bengal, India
| | - Gopal C Majumder
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, West Bengal, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Debdas Bhattacharyya
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
140
|
Gangwar DK, Atreja SK. Signalling Events and Associated Pathways Related to the Mammalian Sperm Capacitation. Reprod Domest Anim 2015; 50:705-11. [PMID: 26294224 DOI: 10.1111/rda.12541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/21/2015] [Indexed: 12/22/2022]
Abstract
Capacitation is a biological phenomenon occurring prior to fertilization and is a multiple event process. Many physiological and biochemical changes takes place during the process; these changes are related to lipid composition of membrane, intracellular modulation of ion concentration, protein phosphorylation, sperm movement and membrane permeability. These events occur when the sperm is exposed to the new environment of ion concentration in the female reproductive tract. Ions such as bicarbonate and calcium facilitate capacitation by activating adenylyl cyclase, thus initiating protein kinase A (PKA) signalling cascade. Extracellular-regulated kinase pathway is activated by ligand binding to the membrane receptors and intracellular activation by reactive oxygen species (ROS). Activation of these pathways leads to the phosphorylation of different proteins, which is associated with events such as capacitation, hyperactivation and acrosome reaction that are essential for successful fertilization. Extensive studies were carried out on protein phosphorylation in relation to capacitation, but its role still remains ambiguous.
Collapse
Affiliation(s)
- D K Gangwar
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S K Atreja
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
141
|
Navarrete FA, García-Vázquez FA, Alvau A, Escoffier J, Krapf D, Sánchez-Cárdenas C, Salicioni AM, Darszon A, Visconti PE. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J Cell Physiol 2015; 230:1758-1769. [PMID: 25597298 DOI: 10.1002/jcp.24873] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022]
Abstract
Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca(2+), and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca(2+) ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca(2+) salts (nominal zero Ca(2+)) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca(2+). However, chelation of the extracellular Ca(2+) traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca(2+) media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca(2+) ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild-type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca(2+) media. Therefore, sperm lacking Catsper Ca(2+) channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca(2+) involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation.
Collapse
Affiliation(s)
- Felipe A Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Francisco A García-Vázquez
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA.,Department of Physiology, Veterinary School, University of Murcia, Murcia, Spain.,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum) and Institute for Biomedical Research of Murcia, Murcia, Spain
| | - Antonio Alvau
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Jessica Escoffier
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Dario Krapf
- Instituto de Biología Celular y Molecular de Rosario (CONICET), UNR, Buenos Aires, Argentina
| | | | - Ana M Salicioni
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, IBT-UNAM, Cuernavaca, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| |
Collapse
|
142
|
Soluble adenylyl cyclase antibody (R21) as a diagnostic adjunct in the evaluation of lentigo maligna margins during slow Mohs surgery. Am J Dermatopathol 2015; 36:882-7. [PMID: 24698940 DOI: 10.1097/dad.0000000000000074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Margin-controlled staged excision (slow Mohs) has emerged as a preferred method for the treatment of lentigo maligna (LM). The interpretation of margins for LM is one of the most challenging tasks faced by a dermatopathologist. R21 is a mouse monoclonal antibody against soluble adenylyl cyclase (sAC), overexpressed in the nuclei of LM but not in native melanocytes. The objective of this study was to validate the use of sAC immunohistochemistry in histological assessment of slow Mohs surgery margins for LM. Seventeen randomly selected cases of patients who underwent slow Mohs surgery for LM at Lahey Clinic, Burlington, MA, were studied. Ninety-nine margins were stained with R21 and microphthalmia transcription factor antibodies and reevaluated blindly by 2 observers. Sixteen of 17 lesions expressed sAC. In all cases, observers agreed on interpretation of R21 stains. In 85 (86%) margins, there was concordance between routine sections and R21 stains. In 14 margins (14%), the results were discrepant. In 2 margins, R21 identified foci of LM missed on routine sections. In 8 margins, atypical melanocytes, interpreted as positive in routine sections, were negative for R21 questioning the accuracy of the original interpretation. Microphthalmia transcription factor stained nuclei of melanocytes in all margins. We found significant correlation between assessment of margins by sAC immunohistochemistry and routine histology. Evaluation of sAC expression using R21 antibody is a useful diagnostic adjunct in the evaluation of margins of LM during slow Mohs surgery.
Collapse
|
143
|
Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 2015; 92:121. [PMID: 25855261 DOI: 10.1095/biolreprod.114.127266] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/16/2015] [Indexed: 01/04/2023] Open
Abstract
To gain fertilizing capacity, mammalian sperm should reside in the female tract for a period of time. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium, and phosphorylation of different proteins. This process is also accompanied by the hyperpolarization of the sperm plasma membrane potential (Em). In the present work, we used flow cytometry to analyze changes in sperm Em during capacitation in individual cells. Our results indicate that a subpopulation of hyperpolarized mouse sperm can be clearly distinguished by sperm flow cytometry analysis. Using sperm bearing green fluorescent protein in their acrosomes, we found that this hyperpolarized subpopulation is composed of sperm with intact acrosomes. In addition, we show that the capacitation-associated hyperpolarization is blocked by high extracellular K(+), by PKA inhibitors, and by SLO3 inhibitors in CD1 mouse sperm, and undetectable in Slo3 knockout mouse sperm. On the other hand, in sperm incubated in conditions that do not support capacitation, sperm membrane hyperpolarization can be induced by amiloride, high extracellular NaHCO3, and cAMP agonists. Altogether, our observations are consistent with a model in which sperm Em hyperpolarization is downstream of a cAMP-dependent pathway and is mediated by the activation of SLO3 K(+) channels.
Collapse
Affiliation(s)
- Jessica Escoffier
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts
| | - Felipe Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts
| | - Doug Haddad
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts
| | - Celia M Santi
- Department of Anatomy and Neurobiology. Washington University School of Medicine, St. Louis, Missouri
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnologia-Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
144
|
Bähre H, Hartwig C, Munder A, Wolter S, Stelzer T, Schirmer B, Beckert U, Frank DW, Tümmler B, Kaever V, Seifert R. cCMP and cUMP occur in vivo. Biochem Biophys Res Commun 2015; 460:909-14. [PMID: 25838203 DOI: 10.1016/j.bbrc.2015.03.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. It is unknown whether these tentative new second messenger molecules occur in vivo. We used high performance liquid chromatography quadrupole tandem mass spectrometry to quantitate nucleoside 3',5'-cyclic monophosphates. cCMP was detected in all organs studied, most notably pancreas, spleen and the female reproductive system. cUMP was not detected in organs, probably due to the intrinsically low sensitivity of mass spectrometry to detect this molecule and organ matrix effects. Intratracheal infection of mice with recombinant Pseudomonas aeruginosa harboring the nucleotidyl cyclase toxin ExoY massively increased cUMP in lung. The identity of cCMP and cUMP in organs was confirmed by high performance liquid chromatography quadrupole time of flight mass spectrometry. cUMP also appeared in serum, urine and faeces following infection. Taken together, this report unequivocally shows for the first time that cCMP and cUMP occur in vivo.
Collapse
Affiliation(s)
- Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany; Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Christina Hartwig
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Antje Munder
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Sabine Wolter
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Tane Stelzer
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Ulrike Beckert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany; Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
145
|
Li J, Huang Q, Ge L, Xu J, Shi X, Xie W, Liu X, Liu X. Identification of genetic variations of a Chinese family with paramyotonia congenita via whole exome sequencing. GENOMICS DATA 2015; 4:65-8. [PMID: 26484179 PMCID: PMC4535863 DOI: 10.1016/j.gdata.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 11/09/2022]
Abstract
Paramyotonia congenita (PC) is a rare autosomal dominant neuromuscular disorder characterized by juvenile onset and development of cold-induced myotonia after repeated activities. The disease is mostly caused by genetic mutations of the sodium channel, voltage-gated, type IV, alpha subunit (SCN4A) gene. This study intended to systematically identify the causative genetic variations of a Chinese Han PC family. Seven members of this PC family, including four patients and three healthy controls, were selected for whole exome sequencing (WES) using the Illumina HiSeq platform. Sequence variations were identified using the SoftGenetics program. The mutation R1448C of SCN4A was found to be the only causative mutation. This study applied WES technology to sequence multiple members of a large PC family and was the first to systematically confirm that the genetic change in SCN4A is the only causative variation in this PC family and the SCN4A mutation is sufficient to lead to PC.
Collapse
Affiliation(s)
- Jinxin Li
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Qinghai Huang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Liang Ge
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Jing Xu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xiang Liu
- Hainan Medical University, Hainan 571199, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| |
Collapse
|
146
|
Bacallao K, Monje PV. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination. PLoS One 2015; 10:e0116948. [PMID: 25705874 PMCID: PMC4338006 DOI: 10.1371/journal.pone.0116948] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 12/17/2014] [Indexed: 12/25/2022] Open
Abstract
Isolated Schwann cells (SCs) respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1). To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP) and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC) agonists and antagonists revealed that selective transmembrane AC (tmAC) activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC), a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the uncoupling of signals controlling differentiation and myelination in SCs.
Collapse
Affiliation(s)
- Ketty Bacallao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Paula V. Monje
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
147
|
Affiliation(s)
- Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065; ,
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065; ,
| |
Collapse
|
148
|
Bhattacharjee R, Goswami S, Dudiki T, Popkie AP, Phiel CJ, Kline D, Vijayaraghavan S. Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol Reprod 2015; 92:65. [PMID: 25568307 DOI: 10.1095/biolreprod.114.124495] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The signaling enzyme glycogen synthase kinase 3 (GSK3) exists as two isoforms-GSK3A and GSK3B. Protein phosphorylation by GSK3 has important signaling roles in several cells. In our past work, we found that both isoforms of GSK3 are present in mouse sperm and that catalytic GSK3 activity correlates with motility of sperm from several species. Here, we examined the role of Gsk3a in male fertility using a targeted gene knockout (KO) approach. The mutant mice are viable, but have a male infertility phenotype, while female fertility is unaffected. Testis weights of Gsk3a(-/-) mice are normal and sperm are produced in normal numbers. Although spermatogenesis is apparently unimpaired, sperm motility parameters in vitro are impaired. In addition, the flagellar waveform appears abnormal, characterized by low amplitude of flagellar beat. Sperm ATP levels were lower in Gsk3a(-/-) mice compared to wild-type animals. Protein phosphatase PP1 gamma2 protein levels were unaltered, but its catalytic activity was elevated in KO sperm. Remarkably, tyrosine phosphorylation of hexokinase and capacitation-associated changes in tyrosine phosphorylation of proteins are absent or significantly lower in Gsk3a(-/-) sperm. The GSK3B isoform was present and unaltered in testis and sperm of Gsk3a(-/-) mice, showing the inability of GSK3B to substitute for GSK3A in this context. Our studies show that sperm GSK3A is essential for male fertility. In addition, the GSK3A isoform, with its highly conserved glycine-rich N terminus in mammals, may have an isoform-specific role in its requirement for normal sperm motility and fertility.
Collapse
Affiliation(s)
| | - Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Tejasvi Dudiki
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Anthony P Popkie
- Laboratory of Cancer Epigenomics, Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
149
|
Ivonnet P, Salathe M, Conner GE. Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling. Br J Pharmacol 2014; 172:173-84. [PMID: 25220136 DOI: 10.1111/bph.12934] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE H2 O2 is widely understood to regulate intracellular signalling. In airway epithelia, H2 O2 stimulates anion secretion primarily by activating an autocrine PGE2 signalling pathway via EP4 and EP1 receptors to initiate cytic fibrosis transmembrane regulator (CFTR)-mediated Cl(-) secretion. This study investigated signalling downstream of the receptors activated by H2 O2 . EXPERIMENTAL APPROACH Anion secretion by differentiated bronchial epithelial cells was measured in Ussing chambers during stimulation with H2 O2 , an EP4 receptor agonist or β2 -adrenoceptor agonist in the presence and absence of inhibitors of ACs and downstream effectors. Intracellular calcium ([Ca(2+) ]I ) changes were followed by microscopy using fura-2-loaded cells and PKA activation followed by FRET microscopy. KEY RESULTS Transmembrane adenylyl cyclase (tmAC) and soluble AC (sAC) were both necessary for H2 O2 and EP4 receptor-mediated CFTR activation in bronchial epithelia. H2 O2 and EP4 receptor agonist stimulated tmAC to increase exchange protein activated by cAMP (Epac) activity that drives PLC activation to raise [Ca(2+) ]i via Ca(2+) store release (and not entry). Increased [Ca(2+) ]i led to sAC activation and further increases in CFTR activity. Stimulation of sAC did not depend on changes in [HCO3 (-) ]. Ca(2+) -activated apical KCa 1.1 channels and cAMP-activated basolateral KV 7.1 channels contributed to H2 O2 -stimulated anion currents. A similar Epac-mediated pathway was seen following β2 -adrenoceptor or forskolin stimulation. CONCLUSIONS AND IMPLICATIONS H2 O2 initiated a complex signalling cascade that used direct stimulation of tmACs by Gαs followed by Epac-mediated Ca(2+) crosstalk to activate sAC. The Epac-mediated Ca(2+) signal constituted a positive feedback loop that amplified CFTR anion secretion following stimulation of tmAC by a variety of stimuli.
Collapse
Affiliation(s)
- P Ivonnet
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida, USA
| | | | | |
Collapse
|
150
|
Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclases — similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2535-47. [DOI: 10.1016/j.bbadis.2014.08.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
|