101
|
Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga G. C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell 2008; 14:132-9. [PMID: 18160346 PMCID: PMC2709403 DOI: 10.1016/j.devcel.2007.12.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/09/2007] [Accepted: 12/05/2007] [Indexed: 12/01/2022]
Abstract
While endocytosis can regulate morphogen distribution, its precise role in shaping these gradients is unclear. Even more enigmatic is the role of retromer, a complex that shuttles proteins between endosomes and the Golgi apparatus, in Wnt gradient formation. Here we report that DPY-23, the C. elegans mu subunit of the clathrin adaptor AP-2 that mediates the endocytosis of membrane proteins, regulates Wnt function. dpy-23 mutants display Wnt phenotypes, including defects in neuronal migration, neuronal polarity, and asymmetric cell division. DPY-23 acts in Wnt-expressing cells to promote these processes. MIG-14, the C. elegans homolog of the Wnt-secretion factor Wntless, also acts in these cells to control Wnt function. In dpy-23 mutants, MIG-14 accumulates at or near the plasma membrane. By contrast, MIG-14 accumulates in intracellular compartments in retromer mutants. Based on our observations, we propose that intracellular trafficking of MIG-14 by AP-2 and retromer plays an important role in Wnt secretion.
Collapse
Affiliation(s)
- Chun-Liang Pan
- Helen Wills Neuroscience Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204
| | - Paul D. Baum
- Helen Wills Neuroscience Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204
| | - Mingyu Gu
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UH 84112
- Department of Biology, University of Utah, Salt Lake City, UH 84112
| | - Erik M. Jorgensen
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UH 84112
- Department of Biology, University of Utah, Salt Lake City, UH 84112
| | - Scott G. Clark
- Molecular Neurobiology Program, Department of Pharmacology, Skirball Institute, NYU School of Medicine, New York, NY 10016
| | - Gian Garriga
- Helen Wills Neuroscience Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204
| |
Collapse
|
102
|
Van Hoffelen S, Herman MA. Analysis of Wnt signaling during Caenorhabditis elegans postembryonic development. Methods Mol Biol 2008; 469:87-102. [PMID: 19109705 DOI: 10.1007/978-1-60327-469-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Wnts play a central role in the development of many cells and tissue types in all species studied to date. Like many other extracellular signaling pathways, secreted Wnt proteins are involved in many different processes; in C. elegans these include: cell proliferation, differentiation, cell migration, control of cell polarity, axon outgrowth and control of the stem cell niche. Perturbations in Wnt signaling are also key factors in cancer formation, and therefore of interest to oncobiologists. Wnts are secreted glycoproteins, which bind to Frizzled transmembrane receptors and signal either through, or independently of beta-catenin. Both beta-catenin-dependant (Wnt/beta-catenin) and -independent pathways function during postembryonic development in C. elegans and allow Wnt researchers to explore aspects of Wnt signaling both in common with other organisms and unique to the nematode. Chapter 9 in Volume 2 discusses various processes controlled by Wnt signaling during C. elegans embryonic development; this chapter discusses Wnt controlled processes that occur during postembryonic development, including an overview of methods used to observe their function.
Collapse
|
103
|
Klassen MP, Shen K. Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C. elegans. Cell 2007; 130:704-16. [PMID: 17719547 DOI: 10.1016/j.cell.2007.06.046] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 03/16/2007] [Accepted: 06/18/2007] [Indexed: 11/21/2022]
Abstract
Nervous system function is mediated by a precisely patterned network of synaptic connections. While several cell-adhesion and secreted molecules promote the assembly of synapses, the contribution of signals that negatively regulate synaptogenesis is not well understood. We examined synapse formation in the Caenorhabditis elegans motor neuron DA9, whose presynapses are restricted to a specific segment of its axon. We report that the Wnt lin-44 localizes the Wnt receptor lin-17/Frizzled (Fz) to a subdomain of the DA9 axon that is devoid of presynaptic specializations. When this signaling pathway, composed of the Wnts lin-44 and egl-20, lin-17/Frizzled and dsh-1/Dishevelled, is compromised, synapses develop ectopically in this subdomain. Conversely, overexpression of LIN-44 in cells adjacent to DA9 is sufficient to expand LIN-17 localization within the DA9 axon, thereby inhibiting presynaptic assembly. These results suggest that morphogenetic signals can spatially regulate the patterning of synaptic connections by subdividing an axon into discrete domains.
Collapse
Affiliation(s)
- Matthew P Klassen
- Department of Biological Sciences and Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
104
|
Mizumoto K, Sawa H. Two betas or not two betas: regulation of asymmetric division by beta-catenin. Trends Cell Biol 2007; 17:465-73. [PMID: 17919911 DOI: 10.1016/j.tcb.2007.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
In various organisms, cells divide asymmetrically to produce distinct daughter cells. In the nematode Caenorhabditis elegans, asymmetric division is controlled by the asymmetric activity of a Wnt signaling pathway (the Wnt/beta-catenin asymmetry pathway). In this process, two specialized beta-catenin homologs have crucial roles in the transmission of Wnt signals to the asymmetric activity of a T-cell factor (TCF)-type transcription factor, POP-1, in the daughter cells. One beta-catenin homolog regulates the distinct nuclear level of POP-1, and the other functions as a coactivator of POP-1. Both beta-catenins localize asymmetrically in the daughter nuclei using different mechanisms. The recent discovery of reiterative nuclear asymmetries of a highly conserved beta-catenin in an annelid suggests that similar molecular mechanisms might regulate asymmetric cell divisions in other organisms.
Collapse
Affiliation(s)
- Kota Mizumoto
- Laboratory for Cell Fate Decision, Riken, Center for Developmental Biology, Kobe 650-0047, Japan
| | | |
Collapse
|
105
|
Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 2007; 21:1720-5. [PMID: 17639078 PMCID: PMC1920166 DOI: 10.1101/gad.1550707] [Citation(s) in RCA: 395] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Stomata are innovations of land plants that allow regulated gas exchange. Stomatal precursor cells are produced by asymmetric cell division, and once formed, signal their neighbors to inhibit the formation of stomatal precursors in direct contact. We report a gene of Arabidopsis thaliana, EPIDERMAL PATTERNING FACTOR 1 (EPF1) that encodes a small secretory peptide expressed in stomatal cells and precursors and that controls stomatal patterning through regulation of asymmetric cell division. EPF1 activity is dependent on the TOO MANY MOUTHS receptor-like protein and ERECTA family receptor kinases, suggesting that EPF1 may provide a positional cue interpreted by these receptors.
Collapse
Affiliation(s)
- Kenta Hara
- Department of Biological Science, Graduate School of Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
106
|
Silhankova M, Korswagen HC. Migration of neuronal cells along the anterior–posterior body axis of C. elegans: Wnts are in control. Curr Opin Genet Dev 2007; 17:320-5. [PMID: 17644372 DOI: 10.1016/j.gde.2007.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Migrating neuronal cells are directed to their final positions by an array of guidance cues. It has been shown that guidance molecules such as UNC-6/Netrin and SLT-1/Slit play a major role in controlling cell and axon migrations along the dorsal-ventral body axis. Much less is known, however, about the mechanisms that mediate migration along the anterior-posterior (AP) body axis. Recent research in Caenorhabditis elegans has uncovered an important role of the Wnt family of signalling molecules in controlling AP-directed neuronal cell migration and polarity. A common theme that emerges from these studies is that multiple Wnt proteins function in parallel as instructive cues or permissive signals to control neuronal patterning along this major body axis.
Collapse
Affiliation(s)
- Marie Silhankova
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
107
|
Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 2007. [PMID: 17639078 DOI: 10.1101/gad.1550707.metric] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Stomata are innovations of land plants that allow regulated gas exchange. Stomatal precursor cells are produced by asymmetric cell division, and once formed, signal their neighbors to inhibit the formation of stomatal precursors in direct contact. We report a gene of Arabidopsis thaliana, EPIDERMAL PATTERNING FACTOR 1 (EPF1) that encodes a small secretory peptide expressed in stomatal cells and precursors and that controls stomatal patterning through regulation of asymmetric cell division. EPF1 activity is dependent on the TOO MANY MOUTHS receptor-like protein and ERECTA family receptor kinases, suggesting that EPF1 may provide a positional cue interpreted by these receptors.
Collapse
Affiliation(s)
- Kenta Hara
- Department of Biological Science, Graduate School of Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
108
|
Salinas PC. Modulation of the microtubule cytoskeleton: a role for a divergent canonical Wnt pathway. Trends Cell Biol 2007; 17:333-42. [PMID: 17643305 DOI: 10.1016/j.tcb.2007.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/05/2007] [Accepted: 07/02/2007] [Indexed: 12/16/2022]
Abstract
Wnts are signalling molecules implicated in normal development and in disease. Although Wnts can signal through three pathways, the canonical or beta-catenin pathway has been particularly studied because of its crucial role in embryonic patterning and cancer. It is well accepted that canonical Wnt signalling regulates gene expression by modulating the levels of beta-catenin, a co-activator of Tcf/Lef transcription factors. However, a divergent canonical Wnt pathway directly regulates the microtubule cytoskeleton. Interestingly, many components of the pathway are associated with the cytoskeleton and can act locally. Here I discuss recent evidence supporting a direct role for canonical Wnt signalling in microtubule regulation, and how this function sheds a new light into the mechanisms that regulate cell-fate determination and polarization.
Collapse
Affiliation(s)
- Patricia C Salinas
- Department of Anatomy and Developmental Biology, University College London, London, UK. <>
| |
Collapse
|
109
|
Ascenzi MG, Lenox M, Farnum C. Analysis of the orientation of primary cilia in growth plate cartilage: a mathematical method based on multiphoton microscopical images. J Struct Biol 2007; 158:293-306. [PMID: 17218113 PMCID: PMC2040051 DOI: 10.1016/j.jsb.2006.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 11/26/2022]
Abstract
The chondrocytic primary cilium has been hypothesized to act as a mechano-sensor, analogously to primary cilium of cells in epithelial tissues. We hypothesize that mechanical inputs during growth, sensed through the primary cilium, result in directed secretion of the extracellular matrix, thereby establishing tissue anisotropy in growth plate cartilage. The cilium, through its orientation in three-dimensional space, is hypothesized to transmit to the chondrocyte the preferential direction for matrix secretion. This paper reports on the application of classical mathematical methods to develop an algorithm that addresses the particular challenges relative to the assessment of the orientation of the primary cilium in growth plate cartilage, based on image analysis of optical sections visualized by multiphoton microscopy. Specimens are prepared by rapid cold precipitation-based fixation to minimize possible artifactual post-mortem alterations of ciliary orientation. The ciliary axoneme is localized by immunocytochemistry with antibody acetylated-alpha-tubulin. The method is applicable to investigation of ciliary orientation in different zones of the growth plate, under either normal or altered biomechanical environments. The methodology is highly flexible and adaptable to other connective tissues where tissue anisotropy and directed secretion of extracellular matrix components are hypothesized to depend on the tissue's biomechanical environment during development and growth.
Collapse
Affiliation(s)
- Maria-Grazia Ascenzi
- Department of Orthopaedic Surgery, Biomechanics Research Division, University of California, Rehabilitation Bldg # 22-69, 1000 Veteran Avenue, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
110
|
James CE, Davey MW. A rapid colorimetric assay for the quantitation of the viability of free-living larvae of nematodes in vitro. Parasitol Res 2007; 101:975-80. [PMID: 17492469 DOI: 10.1007/s00436-007-0572-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 04/26/2007] [Indexed: 12/22/2022]
Abstract
With increasing drug resistance in gastrointestinal parasites, identification of new anthelmintics is essential. The non-parasitic nematode Caenorhabditis elegans is used extensively as a model to identify drug targets and potential novel anthelmintics because it can be readily cultured in vitro. Traditionally, the assessment of worm viability has relied on labour-intensive developmental and behavioral assays. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide-formazan (MTT-formazan) colorimetric assay uses metabolic activity as a marker of viability in mammalian cell culture systems and has been applied for use with filarial nematodes. In the present study, this assay has been optimized and validated to rapidly assess the viability of C. elegans after drug treatment. Living, but not dead, C. elegans take up MTT and reduce it to the blue formazan, providing visual, qualitative, and quantitative assessment of viability. MTT at a concentration of 5 mg/ml with 3 h incubation was optimal for detecting changes in viability with drug treatment. We have applied this assay to quantitate the effects of ivermectin and short-chain alcohols on the viability of C. elegans. This assay is also applicable to first-stage larvae of the parasitic nematode Haemonchus contortus. The advantage of this assay is the rapid quantitation in screening drugs to identify potential anthelmintics.
Collapse
Affiliation(s)
- Catherine E James
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, 1 Broadway, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
111
|
Mizumoto K, Sawa H. Cortical beta-catenin and APC regulate asymmetric nuclear beta-catenin localization during asymmetric cell division in C. elegans. Dev Cell 2007; 12:287-99. [PMID: 17276345 DOI: 10.1016/j.devcel.2007.01.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 12/12/2006] [Accepted: 01/11/2007] [Indexed: 12/25/2022]
Abstract
In C. elegans, Wnt signaling regulates a number of asymmetric cell divisions. During telophase, WRM-1/beta-catenin localizes asymmetrically to the anterior cortex and the posterior daughter's nucleus. However, cortical WRM-1's functions are not known. Here, we use a membrane-targeted form of WRM-1 to show that cortical WRM-1 inhibits Wnt signaling and the nuclear localization of WRM-1. These functions are mediated by APR-1/APC, which regulates WRM-1 nuclear export. We also show that APR-1 as well as PRY-1/Axin and Dishevelled homologs localize asymmetrically to the cortex. Our results suggest a model in which cortical WRM-1 recruits APR-1 to the anterior cortex before and during division, and the cortical APR-1 stimulates WRM-1 export from the anterior nucleus at telophase. Because beta-catenin and APC are localized to the cortex in many cell types in different species, our results suggest that these cortical proteins may regulate asymmetric divisions or Wnt signaling in other organisms as well.
Collapse
Affiliation(s)
- Kota Mizumoto
- Laboratory for Cell Fate Decision, Riken, Center for Developmental Biology, Kobe 650-0047, Japan
| | | |
Collapse
|
112
|
Bischoff M, Schnabel R. A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo by a Wnt-dependent relay mechanism. PLoS Biol 2007; 4:e396. [PMID: 17121454 PMCID: PMC1637133 DOI: 10.1371/journal.pbio.0040396] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 09/20/2006] [Indexed: 11/19/2022] Open
Abstract
Cellular polarity is a general feature of animal development. However, the mechanisms that establish and maintain polarity in a field of cells or even in the whole embryo remain elusive. Here we provide evidence that in the Caenorhabditis elegans embryo, the descendants of P1, the posterior blastomere of the 2-cell stage, constitute a polarising centre that orients the cell divisions of most of the embryo. This polarisation depends on a MOM-2/Wnt signal originating from the P1 descendants. Furthermore, we show that the MOM-2/Wnt signal is transduced from cell to cell by a relay mechanism. Our findings suggest how polarity is first established and then maintained in a field of cells. According to this model, the relay mechanism constantly orients the polarity of all cells towards the polarising centre, thus organising the whole embryo. This model may also apply to other systems such as Drosophila and vertebrates.
Collapse
Affiliation(s)
- Marcus Bischoff
- Technische Universität Braunschweig Carolo Wilhelmina, Institut für Genetik, Braunschweig, Germany
| | - Ralf Schnabel
- Technische Universität Braunschweig Carolo Wilhelmina, Institut für Genetik, Braunschweig, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
113
|
Seifert JRK, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007; 8:126-38. [PMID: 17230199 DOI: 10.1038/nrg2042] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signalling through Frizzled (Fz)/planar cell polarity (PCP) is a conserved mechanism that polarizes cells along specific axes in a tissue. Genetic screens in Drosophila melanogaster pioneered the discovery of core PCP factors, which regulate the orientation of hairs on wings and facets in eyes. Recent genetic evidence shows that the Fz/PCP pathway is conserved in vertebrates and is crucial for disparate processes as gastrulation and sensory cell orientation. Fz/PCP signalling depends on complex interactions between core components, leading to their asymmetric distribution and ultimately polarized activity in a cell. Whereas several mechanistic aspects of PCP have been uncovered, the global coordination of this polarization remains debated.
Collapse
Affiliation(s)
- Jessica R K Seifert
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
114
|
Kim GJ, Kumano G, Nishida H. Cell fate polarization in ascidian mesenchyme/muscle precursors by directed FGF signaling and role for an additional ectodermal FGF antagonizing signal in notochord/nerve cord precursors. Development 2007; 134:1509-18. [PMID: 17360771 DOI: 10.1242/dev.02825] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric cell division plays a fundamental role in generating various types of embryonic cell. In ascidian embryos, asymmetric cell divisions occur in the vegetal hemisphere in a manner similar to those found in Caenorhabditis elegans. Early divisions in embryos of both species involve inductive events on a single mother cell that result in production of daughters with different cell fates. Here we show in the ascidian Halocynthia roretzi that polarity of muscle/mesenchyme mother precursors is determined solely by the direction from which the FGF9/16/20 signal is presented, a role similar to that of Wnt signaling in the EMS and T cell divisions in C. elegans. However, polarity of nerve cord/notochord mother precursors is determined by possible antagonistic action between the FGF signal and a signal from anterior ectoderm, providing a new mechanism underlying asymmetric cell division. The ectoderm signal suppresses MAPK activation and expression of Hr-FoxA, which encodes an intrinsic competence factor for notochord induction, in the nerve cord lineage.
Collapse
Affiliation(s)
- Gil Jung Kim
- Faculty of Marine Bioscience and Technology, Kangnung National University, Gangneung Daehangno, Gangneung 210-702, Republic of Korea.
| | | | | |
Collapse
|
115
|
Picco V, Hudson C, Yasuo H. Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 2007; 134:1491-7. [PMID: 17344225 DOI: 10.1242/dev.003939] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Asymmetric cell divisions produce two sibling cells with distinct fates, providing an important means of generating cell diversity in developing embryos. Many examples of such cell divisions have been described, but so far only a limited number of the underlying mechanisms have been elucidated. Here, we have uncovered a novel mechanism controlling an asymmetric cell division in the ascidian embryo. This division produces one notochord and one neural precursor. Differential activation of extracellular-signal-regulated kinase (ERK) between the sibling cells determines their distinct fates, with ERK activation promoting notochord fate. We first demonstrate that the segregation of notochord and neural fates is an autonomous property of the mother cell and that the mother cell acquires this functional polarity via interactions with neighbouring ectoderm precursors. We show that these cellular interactions are mediated by the ephrin-Eph signalling system, previously implicated in controlling cell movement and adhesion. Disruption of contacts with the signalling cells or inhibition of the ephrin-Eph signal results in the symmetric division of the mother cell, generating two notochord precursors. Finally, we demonstrate that the ephrin-Eph signal acts via attenuation of ERK activation in the neural-fated daughter cell. We propose a model whereby directional ephrin-Eph signals functionally polarise the notochord/neural mother cell, leading to asymmetric modulation of the FGF-Ras-ERK pathway between the daughter cells and, thus, to their differential fate specification.
Collapse
Affiliation(s)
- Vincent Picco
- Developmental Biology Unit, Université Pierre et Marie Curie (Paris VI), CNRS, Villefranche sur mer, France
| | | | | |
Collapse
|
116
|
Phillips BT, Kidd AR, King R, Hardin J, Kimble J. Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2007; 104:3231-6. [PMID: 17296929 PMCID: PMC1796998 DOI: 10.1073/pnas.0611507104] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
beta-Catenins are conserved regulators of metazoan development that function with TCF DNA-binding proteins to activate transcription. In Caenorhabditis elegans, SYS-1/beta-catenin and POP-1/TCF regulate several asymmetric divisions, including that of the somatic gonadal precursor cell (SGP). In the distal but not the proximal SGP daughter, SYS-1/beta-catenin and POP-1/TCF transcriptionally activate ceh-22 to specify the distal fate. Here, we investigate the distribution of SYS-1/beta-catenin and its regulation. Using a rescuing transgene, VNS::SYS-1, which fuses VENUS fluorescent protein to SYS-1, we find more VNS::SYS-1 in distal than proximal SGP daughters, a phenomenon we call "SYS-1 asymmetry." In addition, SYS-1 asymmetry is seen in many other tissues, consistent with the idea that SYS-1 regulates asymmetric divisions broadly during C. elegans development. In particular, SYS-1 is more abundant in E than MS, and SYS-1 is critical for the endodermal fate. In all cases, SYS-1 is reciprocal to POP-1 asymmetry: cells with higher SYS-1 have lower POP-1, and vice versa. SYS-1 asymmetry is controlled posttranslationally and relies on frizzled and dishevelled homologs, which also control POP-1 asymmetry. Therefore, upstream regulators modulate the SYS-1 to POP-1 ratio by increasing SYS-1 and decreasing POP-1 within the same cell. By contrast, SYS-1 asymmetry does not rely on WRM-1, which appears specialized for POP-1 asymmetry. We suggest a two-pronged pathway for control of SYS-1:POP-1, which can robustly accomplish differential gene expression in daughters of an asymmetric cell division.
Collapse
Affiliation(s)
| | - Ambrose R. Kidd
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706; and
| | - Ryan King
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706; and
| | - Jeff Hardin
- Zoology and
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706; and
| | - Judith Kimble
- Departments of *Biochemistry and
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706; and
- The Howard Hughes Medical Institute, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
117
|
Merkel CE, Karner CM, Carroll TJ. Molecular regulation of kidney development: is the answer blowing in the Wnt? Pediatr Nephrol 2007; 22:1825-38. [PMID: 17554566 PMCID: PMC6949197 DOI: 10.1007/s00467-007-0504-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 01/25/2023]
Abstract
Development of the metanephric kidney is a complicated process regulated by reciprocal signals from the ureteric bud and the metanephric mesenchyme that regulate tubule formation and epithelial branching morphogenesis. Over the past several years, several studies have suggested that Wnt signaling is involved in multiple aspects of normal kidney development as well as injury response and cancer progression. We will review these data here.
Collapse
Affiliation(s)
- Calli E. Merkel
- Departments of Internal Medicine (Nephrology) and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8856 USA
| | - Courtney M. Karner
- Departments of Internal Medicine (Nephrology) and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8856 USA
| | - Thomas J. Carroll
- Departments of Internal Medicine (Nephrology) and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8856 USA
| |
Collapse
|
118
|
Wnt signaling in C. elegans: New insights into the regulation of POP‐1/ TCF‐mediated activation and repression. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1574-3349(06)17003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
119
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
120
|
Colosimo PF, Tolwinski NS. Wnt, Hedgehog and junctional Armadillo/beta-catenin establish planar polarity in the Drosophila embryo. PLoS One 2006; 1:e9. [PMID: 17183721 PMCID: PMC1762359 DOI: 10.1371/journal.pone.0000009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 08/13/2006] [Indexed: 11/18/2022] Open
Abstract
To generate specialized structures, cells must obtain positional and directional information. In multi-cellular organisms, cells use the non-canonical Wnt or planar cell polarity (PCP) signaling pathway to establish directionality within a cell. In vertebrates, several Wnt molecules have been proposed as permissible polarity signals, but none has been shown to provide a directional cue. While PCP signaling components are conserved from human to fly, no PCP ligands have been reported in Drosophila. Here we report that in the epidermis of the Drosophila embryo two signaling molecules, Hedgehog (Hh) and Wingless (Wg or Wnt1), provide directional cues that induce the proper orientation of Actin-rich structures in the larval cuticle. We further find that proper polarity in the late embryo also involves the asymmetric distribution and phosphorylation of Armadillo (Arm or β-catenin) at the membrane and that interference with this Arm phosphorylation leads to polarity defects. Our results suggest new roles for Hh and Wg as instructive polarizing cues that help establish directionality within a cell sheet, and a new polarity-signaling role for the membrane fraction of the oncoprotein Arm.
Collapse
|
121
|
Wu M, Herman MA. Asymmetric localizations of LIN-17/Fz and MIG-5/Dsh are involved in the asymmetric B cell division in C. elegans. Dev Biol 2006; 303:650-62. [PMID: 17196955 PMCID: PMC1858672 DOI: 10.1016/j.ydbio.2006.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/21/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
LIN-44/Wnt and LIN-17/Frizzled (Fz) function in a planar cell polarity (PCP)-like pathway to regulate the asymmetric B cell division in Caenorhabditis elegans. We observed asymmetric localization of LIN-17/Frizzled (Fz) and MIG-5/Dishevelled (Dsh) during the B cell division. LIN-17::GFP was asymmetrically localized within the B cell prior to and after the B cell division and correlated with B cell polarity. Asymmetric localization of LIN-17::GFP was dependent upon LIN-44/Wnt and MIG-5/Dsh function. The LIN-17 transmembrane domain and a portion of the cysteine-rich domain (CRD) were required for LIN-17 function and asymmetric distribution to the B cell daughters, while the conserved KTXXXW motif was only required for function. MIG-5::GFP was also asymmetrically localized within the B cell prior to and after the B cell division in a LIN-17- and LIN-44-dependent manner. Functions of the MIG-5 DEP, PDZ and DIX domains were also conserved. Thus, a novel PCP-like pathway, in which LIN-17 and MIG-5 are asymmetrically localized, is involved in the regulation of B cell polarity.
Collapse
Affiliation(s)
| | - Michael A. Herman
- *Author for correspondence: , Phone number: 785-532-6773, Fax: 785-532-6653
| |
Collapse
|
122
|
Jopling C, Hertog JD. Essential role for Csk upstream of Fyn and Yes in zebrafish gastrulation. Mech Dev 2006; 124:129-36. [PMID: 17157484 DOI: 10.1016/j.mod.2006.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/12/2006] [Accepted: 10/21/2006] [Indexed: 11/25/2022]
Abstract
Morphogenetic cell movements during gastrulation shape the vertebrate embryo bodyplan. Non-canonical Wnt signaling has been established to regulate convergence and extension cell movements that mediate anterior-posterior axis elongation. In recent years, many other factors have been implicated in the process by modulation of non-canonical Wnt signaling or by different, unknown mechanisms. We have found that the Src family kinases, Fyn and Yes, are required for normal convergence and extension cell movements in zebrafish embryonic development and they signal in parallel to non-canonical Wnts, eventually converging on a common downstream factor, RhoA. Here, we report that Csk, a negative regulator of Src family kinases has a role in gastrulation cell movements as well. Csk knock down induced a phenotype that was similar to the defects observed after knock down of Fyn and Yes, in that gastrulation cell movements were impaired, without affecting cell fate. The Csk knock down phenotype was rescued by simultaneous partial knock down of Fyn and Yes. We conclude that Csk acts upstream of Fyn and Yes to control vertebrate gastrulation cell movements.
Collapse
Affiliation(s)
- Chris Jopling
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
123
|
Zeng G, Taylor SM, McColm JR, Kappas NC, Kearney JB, Williams LH, Hartnett ME, Bautch VL. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 2006; 109:1345-52. [PMID: 17068148 PMCID: PMC1794069 DOI: 10.1182/blood-2006-07-037952] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
New blood vessel formation requires the coordination of endothelial cell division and the morphogenetic movements of vessel expansion, but it is not known how this integration occurs. Here, we show that endothelial cells regulate division orientation during the earliest stages of blood vessel formation, in response to morphogenetic cues. In embryonic stem (ES) cell-derived vessels that do not experience flow, the plane of endothelial cytokinesis was oriented perpendicular to the vessel long axis. We also demonstrated regulated cleavage orientation in vivo, in flow-exposed forming retinal vessels. Daughter nuclei moved away from the cleavage plane after division, suggesting that regulation of endothelial division orientation effectively extends vessel length in these developing vascular beds. A gain-of-function mutation in VEGF signaling increased randomization of endothelial division orientation, and this effect was rescued by a transgene, indicating that regulation of division orientation is a novel mechanism whereby VEGF signaling affects vessel morphogenesis. Thus, our findings show that endothelial cell division and morphogenesis are integrated in developing vessels by flow-independent mechanisms that involve VEGF signaling, and this cross talk is likely to be critical to proper vessel morphogenesis.
Collapse
Affiliation(s)
- Gefei Zeng
- Department of Biology, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Recent studies have begun to shed light on the molecular guidance cues controlling anterior-posterior axon guidance. Two recent studies in the current issue of Developmental Cell show that Wnts play critical roles in patterning processes and directing neuronal migration in C. elegans. Together with previous findings in vertebrates and flies, these new results establish conserved function of Wnts in A-P guidance.
Collapse
Affiliation(s)
- Yimin Zou
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|